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Abstract. Herman’s algorithm is a synchronous randomized protocol
for achieving self-stabilization in a token ring consisting of N processes.
The interaction of tokens makes the dynamics of the protocol very diffi-
cult to analyze. In this paper we study the expected time to stabilization
in terms of the initial configuration.
It is straightforward that the algorithm achieves stabilization almost
surely from any initial configuration, and it is known that the worst-case
expected time to stabilization (with respect to the initial configuration)
is Θ(N2). Our first contribution is to give an upper bound of 0.64N2

on the expected stabilization time, improving on previous upper bounds
and reducing the gap with the best existing lower bound. We also intro-
duce an asynchronous version of the protocol, showing a similar O(N2)
convergence bound in this case.
Assuming that errors arise from the corruption of some number k of bits,
where k is fixed independently of the size of the ring, we show that the
expected time to stabilization is O(N). This reveals a hitherto unknown
and highly desirable property of Herman’s algorithm: it recovers quickly
from bounded errors. We also show that if the initial configuration arises
by resetting each bit independently and uniformly at random, then sta-
bilization is significantly faster than in the worst case.

1 Introduction

Self-stabilization is a concept of fault-tolerance in distributed computing. A sys-
tem is self-stabilizing if, starting in an arbitrary state, it reaches a correct or le-
gitimate state and remains in a legitimate state thereafter. Thus a self-stabilizing
system is able to recover from transient errors such as state-corrupting faults.
The study of self-stabilizing algorithms originated in an influential paper of Di-
jkstra [4]. By now there is a considerable body of work in the area, see [18,
5].

In this paper we consider self-stabilization in a classical context that was
also treated in Dijkstra’s original paper—a token ring, i.e., a ring of N identical
processes, exactly one of which is meant to hold a token at any given time. If,
through some error, the ring enters a configuration with multiple tokens, self-
stabilization requires that the system be guaranteed to reach a configuration with
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only one token. In particular, we are interested in analyzing a self-stabilization
algorithm proposed by Herman [12].

Herman’s algorithm is a randomized procedure by which a ring of processes
connected uni-directionally can achieve self-stabilization almost surely. The algo-
rithm works by having each process synchronously execute the following action
at each time step: if the process possesses a token then it passes the token to
its clockwise neighbor with probability 1/2 and keeps the token with probabil-
ity 1/2. If such a process decides to keep its token and if it receives a token
from its neighbor then the two tokens are annihilated. Due to the way the al-
gorithm is implemented we can assume that an error state always has an odd
number of tokens, thus this process of pairwise annihilation eventually leads to
a configuration with a single token.

While the almost-sure termination of Herman’s algorithm is straightforward,
computing the time to termination is a challenging problem. This is characteris-
tic of systems of interacting particles under random motion, which are ubiquitous
in the physical and medical sciences, including statistical mechanics, neural net-
works and epidemiology [15]. The analysis of such systems typically requires
delicate combinatorial arguments [6]. Our case is no exception, and we heavily
exploit work of Balding [1], which was motivated by a scenario from physical
chemistry.

Given some initial configuration, let T be the time until the token ring sta-
bilizes under Herman’s algorithm. We analyze the expectation of T in three
natural cases: the worst case (over all initial configurations); the case in which
the initial configuration is chosen uniformly at random; the case in which the
initial configuration arises from a legitimate configuration by a bounded number
of bit errors. In addition we introduce and analyze an asynchronous variant of
Herman’s algorithm. The latter dispenses with the successive time steps required
in the synchronous algorithm, and instead has each process pass its token after
an exponentially distributed time delay.

Herman’s original paper [12] showed that ET ≤ (N2 logN)/2 in the worst
case (i.e., over all initial configurations with N processes). It also mentions an
improved upper bound ofO(N2) due to Dolev, Israeli, and Moran, without giving
a proof or a further reference. In 2005, three papers [10, 16, 17] were published,
largely independently, all of them giving improvedO(N2) bounds. The paper [16]
also gives a lower bound of 4N2/27, which is the expected stabilization time
starting from a configuration with three equally spaced tokens. It was conjectured
in [16] that this is the worst case among all starting configurations, including
those with more than three tokens. This intriguing conjecture is supported by
experimental evidence [2].

Our first result, Theorem 2, gives an upper bound of 0.64N2 for the expected
stabilization time in the synchronous version of Herman’s protocol (improving
the constant in the hitherto best bound by a third). We also give an upper bound
in the asynchronous case. To the best of our knowledge this is the first analysis
of an asynchronous version of Herman’s algorithm.
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To understand the other main results of the paper requires some detail of the
implementation of Herman’s algorithm. We assume that each process has a bit
that it can read and write, and that each process can read the bit of its counter-
clockwise neighbor. A process’s bit does not directly indicate the presence of a
token, rather a process has a token if it has the same bit as its counterclockwise
neighbor. Token passing is then implemented by having processes flip their bits.

In Theorem 7 we provide an upper bound on the expected time to stabilize
starting from the random initial configuration, that is, the configuration in which
each process’s bit is reset independently and uniformly at random. Herman’s
algorithm is such that the random configuration is obtained in one step from
the full configuration, i.e., the configuration in which every process has a token.
The upper bound for the random configuration is far better than the worst-case
bound in Theorem 2; in particular, there are three-token configurations for which
ET is provably larger than the upper bound for the random configuration.

In Theorem 8 we show that for configurations that are obtained from a
legitimate configuration by flipping a constant number of process bits, we have
ET = O(N); i.e., the expected restabilization time is linear in N . This contrasts
with the fact that there are configurations, even with only three tokens, that
need Ω(N2) expected time for self-stabilization. Intuitively, our result points at
a highly desirable—and, to the best of our knowledge, previously unknown—
feature of Herman’s protocol: it recovers quickly from bounded errors. This is
related to the notion of a time adaptive protocol from [14], which refers to a
protocol whose recovery time depends on the number of state-corrupted nodes
rather than the total number of nodes.

Full proofs are given in the appendix.

Related Work. One parameter in the design of self-stabilizing algorithms is the
number of states per machine. In [9], three different self-stabilizing algorithms
with two states per machine are investigated. Only one of those algorithms works
in a unidirectional ring, the other algorithms need more connections. The ring
algorithm is probabilistic, but it is not symmetric: it requires an “exceptional
machine” which executes different code. Herman’s algorithm is mentioned in [9]
as another two-state algorithm, but it is criticized by saying “it requires that all
machines make moves synchronously which is not easily done”. In this paper,
we suggest and analyze an asynchronous variant of Herman’s algorithm, which
is symmetric and has only two states per machine.

The protocol of [13], also described in [2], is similar to Herman’s protocol in
that tokens are passed on a ring of processors. A scheduler selects a processor
among those with a token; the selected processor passes the token to left or right
neighbor, with probability 0.5, respectively. Two colliding tokens are merged to
a single token. Our analysis of the asynchronous version of Herman’s protocol
could possibly be adapted to this protocol, by assuming that a processor passes
its token after an exponentially distributed holding time. Of course, the fact
that meeting tokens are merged and not annihilated would have to be taken into
account.

3



2 Preliminaries

We assume N processors, with N odd, organized in a ring topology. Each pro-
cessor may or may not have a token. Herman’s protocol in the traditional syn-
chronous variant [12] works as follows: in each time step, each processor that
has a token passes its token to its clockwise neighbor with probability r (where
0 < r < 1 is a fixed parameter), and keeps it with probability 1−r; if a processor
keeps its token and receives another token from its counterclockwise neighbor,
then both of those tokens are annihilated. Notice that the number of tokens
never increases, and can decrease only by even numbers.

Herman’s protocol can be implemented as follows. Each processor possesses
a bit, which the processor can read and write. Each processor can also read the
bit of its counterclockwise neighbor. In this representation having the same bit
as one’s counterclockwise neighbor means having a token. In each time step,
each processor compares its bit with the bit of its counterclockwise neighbor;
if the bits are different, the processor keeps its bit; if the bits are equal, the
processor flips its bit with probability r and keeps it with probability 1 − r. It
is straightforward to verify that this procedure implements Herman’s protocol:
in particular a processor flipping its bit corresponds to passing its token to its
clockwise neighbor.4

We denote the number of initial tokens by M , where 1 ≤ M ≤ N . The token
representation described above enforces that M be odd. A configuration with
only one token is called legitimate. The protocol can be viewed as a Markov chain
with a single bottom SCC in which all states are legitimate configurations. So
a legitimate configuration is reached with probability 1, regardless of the initial
configuration, that is, the system self-stabilizes with probability 1.

In this paper we also propose and analyze an asynchronous variant of Her-
man’s protocol which works similarly to the synchronous version. The asyn-
chronous variant gives rise to a continuous-time Markov process. Each processor
with a token passes the token to its clockwise neighbor with rate λ, i.e., a proces-
sor keeps its token for a time that is distributed exponentially with parameter λ,
before passing the token to its clockwise neighbor (i.e., flipping its bit). The
advantage of this variant is that it does not require processor synchronization.
Note that a processor can approximate an exponential distribution by a geomet-
ric distribution, that is, it can execute a loop which it leaves with a small fixed
probability at each iteration. A more precise approximation can be obtained us-
ing a random number generator and precise clocks. For our performance analyses
we assume an exact exponential distribution.

Let T denote the time until only one token is left, i.e., until self-stabilization
has occurred. In this paper we analyze the random variable T, focusing mainly

4 Notice that flipping all bits in a given configuration keeps all tokens in place. In fact,
in the original formulation [12], in each iteration each bit is effectively flipped once
more, so that flipping the bit means keeping the token, and keeping the bit means
passing the token. The two formulations are equivalent in the synchronous version,
but our formulation allows for an asynchronous version.
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on its expectation ET. Many of our results hold for both the synchronous and
the asynchronous protocol version.

To aid our analysis we think of the processors as numbered from 1 to N ,
clockwise, according to their position in the ring. We write m := (M − 1)/2.
Let z : {1, . . . ,M} → {1, . . . , N} be such that z(1) < · · · < z(M) and for all
i ∈ {1, . . . ,M}, the processor z(i) initially has a token; in other words, z(i) is
the position of the i-th token. We often write zuv for z(v)− z(u).

3 Bounds on ET for Arbitrary Configurations

The following proposition gives a precise formula for ET in both the synchronous
and asynchronous protocols in case the number of tokens is M = 3.

Proposition 1 (cf. [16]). Let N denote the number of processors and let a, b, c
denote the distances between neighboring tokens, so that a+ b+ c = N . For the

synchronous protocol with parameter r let D = r(1−r), and for the asynchronous

protocol with parameter λ let D = λ. Then the expected time to stabilization is

ET =
abc

DN
.

Proposition 1 is shown in [16] for the synchronous case with r = 1
2 . Essentially

the same proof works for 0 < r < 1, and also in the asynchronous case.
We call a configuration with M = 3 equally spaced tokens an equilateral con-

figuration. If N is an odd multiple of 3 then a = b = c = N/3 for the equilateral
configuration. If N is not a multiple of 3 then we ask that a, b, c equal either
⌊N/3⌋ or ⌈N/3⌉ . By Proposition 1 the expected stabilization time for a equilat-

eral configuration is ET = N2

27D . It follows that for configurations with M = 3 the
worst case is ET = Ω(N2) and this case arises for the equilateral configuration.
In fact it has been conjectured in [16] that, for all N , the equilateral configu-
ration is the worst case, not only among the configurations with M = 3, but
among all configurations. This conjecture is supported by experiments carried
out using the probabilistic model checker PRISM—see [2].

Finding upper bounds on ET in the synchronous case goes back to Herman’s
original work [12]. He does not analyze ET in the journal version, but in his
technical report [12], where he proves ET ≤ N2⌈logN⌉/2. He also mentions
an improvement to O(N2) due to Dolev, Israeli, and Moran, without giving a
proof or a further reference. In 2005, three papers [10, 16, 17] were published,
largely independently, all of them giving improved O(N2) bounds. In [10] path-
coupling methods are applied to self-stabilizing protocols, which lead in the case
of Herman’s protocol to the bound ET ≤ 2N2 for the case r = 1

2 . Independently,
the authors of [16] claimed O(N2). Their proof is elementary and also shows
ET ≤ 2N2 for the case r = 1

2 . Finally, the author of [17] (being aware of the
conference version of [10]) applied the theory of coalescing random walks to

Herman’s protocol to obtain ET ≤
(

π2

8 − 1
)
· N2

r(1−r) , which is about 0.93N2 for
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the case r = 1
2 . By combining results from [17] and [16], we further improve the

constant in this bound (by about 32%), and at the same time generalize it to
the asynchronous protocol.

Theorem 2. For the synchronous protocol with parameter r let D = r(1 − r),
and for the asynchronous protocol with parameter λ let D = λ. Then, for all N
and for all initial configurations, we have

ET ≤
(
π2

8
− 29

27

)
· N

2

D
.

Hence, ET ≤ 0.64N2 in the synchronous case with r = 1
2 .

4 Expressions for ET

Our analysis of Herman’s protocol exploits the work of Balding [1] on annihi-
lating particle systems. Such systems are a special case of interacting particle

systems, which model finitely or infinitely many particles, which, in the absence
of interaction, would be modeled as independent Markov chains. Due to particle
interaction, the evolution of a single particle is no longer Markovian. Interacting
particle systems have applications in many fields, including statistical mechan-
ics, neural networks, tumor growth and spread of infections, see [15]. Balding’s
paper [1] is motivated by a scenario from physical chemistry, where particles can
be viewed as vanishing on contact, because once two particles have met, they
react and are no longer available for reactions afterwards. We refer the reader to
[11] and the references therein for more information on such chemical reaction
systems.

We transfer results from [1] to Herman’s protocol. The setup is slightly differ-
ent because, unlike chemical particles, the tokens in Herman’s protocol move only
in one direction. This difference is inconsequential, as the state of a system can be
captured using only relative token (or particle) distances. Care must be taken
though, because Balding does not consider “synchronous” particle movement
(this would make no sense in chemistry), but particles moving “asynchronously”
or continuously in a Brownian motion.

Given two tokens u and v with 1 ≤ u < v ≤ M , we define a random vari-
able Tuv and events A(uv)↓ and A(uv)↑ in terms of a system in which collisions
between tokens u and v cause u and v to be annihilated, but the movement of
the other tokens and their possible collisions are ignored. In that system, Tuv

denotes the time until u and v have collided. Further, let A(uv)↓ and A(uv)↑ de-
note the events that tokens u and v eventually collide down and up, respectively.
By colliding down (resp. up) we mean that, upon colliding, the token u (resp. v)
has caught up with v (resp. u) in clockwise direction; more formally, if du, dv ≥ 0
denote the distances travelled in clockwise direction by the tokens until collision,
then the collision is said to be down (resp. up) if z(u) + du = z(v) + d(v) (resp.
z(u) + du + N = z(v) + dv). The behavior of two such tokens is equivalent to
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that of a one-dimensional random walk on {0, . . . , N}, started at zuv, with ab-
sorbing barriers at 0 and N : the position in the random walk corresponds to the
distance between the tokens, and colliding down (resp. up) corresponds to being
absorbed at 0 (resp. N). By this equivalence we have P

(
A(uv)↓

)
= 1 − zuv/N

and P
(
A(uv)↑

)
= zuv/N (see, e.g., [8]).

Proposition 3 below allows to express the distribution of T in terms of
the distribution of Tuv, conditioned under A(uv)↓ and A(uv)↑, respectively.
Those distributions are well-known [8, 3]. For the statement we need to de-
fine the set WM of all pairings. A pairing is a set w = {(u1, v1), . . . , (um, vm)}
with 1 ≤ ui < vi ≤ M for all i, such that there is w0 ∈ {1, . . . ,M} with
{u1, v1, . . . , um, vm, w0} = {1, . . . ,M}. Define s(w) = 1 if the permutation
(u1v1 · · ·umvmw0) is even, and s(w) = −1 otherwise. (This is well-defined: it
is easy to see that s(w) does not depend on the order of the (ui, vi).) We have
the following proposition:

Proposition 3 (cf. [1, Theorem 2.1]). Let M ≥ 3. For all t ≥ 0:

P (T ≤ t) =
∑

w∈WM

s(w)
∏

(u,v)∈w

(
P
(
Tuv ≤ t ∩ A(uv)↓

)
− P

(
Tuv ≤ t ∩ A(uv)↑

))
.

Balding’s Theorem 2.1 in [1] is more general in that it gives a generating function
for the number of remaining tokens at time t. Strictly speaking, Balding’s theo-
rem is not applicable to the synchronous version of Herman’s protocol, because
he only considers tokens that move according to the asynchronous version (in
our terms), and tokens in a Brownian motion. In addition, his proof omits many
details, so we give a self-contained proof for Proposition 3 in the appendix.

Theorem 4 below yields an expression for ET. We define the set
−−→
WM of all

directed pairings as the set of all sets −→w = {(u1, v1, d1), . . . , (um, vm, dm)} such
that {(u1, v1), . . . , (um, vm)} ∈ WM and di ∈ {↓, ↑} for all i ∈ {1, . . . ,m}. For a
directed pairing −→w = {(u1, v1, d1), . . . , (um, vm, dm)} we define

−→s (−→w ) := s({(u1, v1), . . . , (um, vm)}) · (−1)|{i|1≤i≤m, di=↑}|

and the event A−→w :=
⋂m

i=1 A(uivi)di
. Notice that P (A−→w ) =

∏m
i=1 P

(
A(uivi)di

)
.

Further, we set T−→w := max{Tuivi | 1 ≤ i ≤ m}. We have the following theorem:

Theorem 4. For M ≥ 3:

ET =
∑

−→w∈−−→
WM

−→s (−→w ) · E [T−→w | A−→w ] · P (A−→w ) .

A Finite Expression for ET. In the rest of the section we focus on the syn-
chronous protocol. We obtain a closed formula for ET in Proposition 5 below.

For 1 ≤ u < v < M , we define zuv↓ := zuv and zuv↑ := N − zuv. For

sets ∅ 6= −→x ⊆ −→w ∈ −−→
WM with −→x = {(u1, v1, d1), . . . , (uk, vk, dk)} and −→w =
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{(u1, v1, d1), . . . , (um, vm, dm)} we write

yF (
−→x ,−→w ) :=

(zu1v1d1

N
, . . . ,

zukvkdk

N

)
and

yG(
−→x ,−→w ) :=

(zuk+1vk+1dk+1

N
, . . . ,

zumvmdm

N

)
.

Let

g(j, y;u) :=
sin(jπy) · sin(jπu)

1− cos(jπu)
and h(j;u) := 1−2r(1−r) (1− cos(jπu)) ,

and define, for k ∈ N+ and ℓ ∈ N+,

F
(N)
k (y1, . . . , yk) := −

(−1

N

)k

·
∑

j∈{1,...,N−1}k

∏k
i=1 g(j(i), yi; 1/N)

1−∏k
i=1 h(j(i); 1/N)

and

Gℓ(y1, . . . , yℓ) :=

ℓ∏

i=1

(1− yi) .

We drop the subscripts of F
(N)
k and Gℓ, if they are understood. Observe that

F (N) and G are continuous and do not depend on the order of their arguments.
The following proposition gives, for the synchronous protocol, a concrete expres-
sion for ET.

Proposition 5. Consider the synchronous protocol. For M ≥ 3:

ET =
∑

−→w∈−−→
WM

−→s (−→w )
∑

∅6=−→x⊆−→w
F (N)(yF (

−→x ,−→w )) ·G(yG(
−→x ,−→w )) .

An Approximation for ET. The function F (N) in Proposition 5 depends on N ,
and also on r. This prohibits a deeper analysis as needed in Section 6. Propo-
sition 6 gives an approximation of ET without those dependencies. To state it,
we define, for k ∈ N+, a function F̃k : [0, 1]k → R with

F̃k(y1, . . . , yk) =
−1

π2

(−2

π

)k ∑

j∈Nk

+

∏k
i=1 sin(yij(i)π)(∏k

i=1 j(i)
)(∑k

i=1 j(i)
2
) .

We drop the subscript of F̃k, if it is understood. It follows from Lemma 15 in
the appendix that the series in F̃k converges. We have the following proposition.

Proposition 6. Consider the synchronous protocol. Let

Ẽ :=
N2

r(1 − r)

∑

−→w∈−−→
WM

−→s (−→w )
∑

∅6=−→x⊆−→w
F̃ (yF (

−→x ,−→w )) ·G(yG(
−→x ,−→w )) .

Then, for each fixed M ≥ 3 and r ∈
(

1
2 − 4√27

6 , 1
2 +

4√27
6

)
≈ (0.12, 0.88) and

ε > 0,
ET = Ẽ +O(Nε) .

The proof of Proposition 6 is elementary but involved.
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5 The Full Configuration

In this section we consider the initial configuration in which every processor has
a token, i.e., N = M . We call this configuration full. Notice that in the full
configuration, with all bits set to 0, in the successor configuration each bit is
independently set to 1 with probability r. Thus we study the full configuration
in lieu of the random configuration. We have the following theorem:

Theorem 7. For the synchronous protocol with parameter r let D = r(1 − r).
For the asynchronous protocol with parameter λ > 0 let D = λ. For almost all

odd N ∈ N+, we have for the full configuration:

ET ≤ 0.0285N2/D and P
(
T ≥ 0.02N2/D

)
< 0.5 .

Recall from Proposition 1 that, for N an odd multiple of 3, we have

ET = 1
27

N2

D ≈ 0.0370N2

D if we start from the equilateral configuration. It follows
that, for large N , the full configuration (with M = N) stabilizes faster than the
equilateral configuration (with M = 3). This is consistent with the aforemen-
tioned conjecture of McIver and Morgan that the equilateral configuration with
M = 3 is the worst case among all configurations for a fixed N .

6 Restabilization

In this section we restrict attention to the synchronous version of Herman’s al-
gorithm and consider the standard bit-array implementation. Theorem 2 shows
that the worst-case expected time to termination, considering all initial configu-
rations, is ET = O(N2). We imagine that an initial configuration represents the
state of the system immediately after an error, that is, the ring of tokens has
become illegitimate because some of positions in the bit array were corrupted. In
this light a natural restriction on initial configurations is to consider those that
arise from a one-token configuration by corrupting some fixed number m of bits.
We call these flip-m configurations. Notice that, by the token representation in
Herman’s protocol, a single bit error can lead to the creation of two neighboring
tokens. So, m bit errors could lead to the creation of m new pairs of neighboring
tokens. It could also happen that two bit errors affect neighboring bits, leading
to a new pair of tokens at distance 2. To account for this, we characterize flip-m
configuration as those with at most 2m+ 1 tokens such that the tokens can be
arranged into pairs, each pair at distance at most m, with one token left over.

Fixing the number of bit errors we show that the expected time to restabi-
lization improves to O(N). Formally we show:

Theorem 8. Consider the synchronous protocol. Fix any m ∈ N+ and r ∈(
1
2 − 4√27

6 , 1
2 +

4√27
6

)
≈ (0.12, 0.88). Then for any flip-m configuration we have

ET = O(N).
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Proof. It suffices to consider flip-m configurations with M = 2m + 1 tokens.
Without loss of generality, we assume that, when removing token 2m + 1, the
token pairs (1, 2), (3, 4), . . . , (2m − 1, 2m) have distances at most m; i.e., we
assume z(u+ 1)− z(u) ≤ m for all odd u between 1 and 2m− 1.

For each directed pairing −→w ∈ −−→
WM , we define its class Cl(−→w ) and its com-

panion pairing −→w ′ ∈ −−→
WM . For the following definition, we define ũ := u+1, if u

is odd, and ũ := u− 1, if u is even.

– If (u,M, d) ∈ −→w for some u, then Cl(−→w ) = 0. Its companion pairing is
obtained, roughly speaking, by u and ũ switching partners. More precisely:
• If (ũ, v, d′) (resp. (v, ũ, d′)) for some (v, d′), then the companion pairing
of w is obtained by replacing (u,M, d) and (ũ, v, d′) with (ũ,M, d) and
(u, v, d′) (resp. (v, u, d′)).

• Otherwise (i.e., ũ does not have a partner), the companion pairing of w
is obtained by replacing (u,M, d) with (ũ,M, d).

– If −→w = {(1, 2, d1), (3, 4, d2), . . . , (M − 2,M − 1, dm)} for some d1, . . . , dm,
then Cl(−→w ) = m. In this case, −→w does not have a companion pairing.

– Otherwise, Cl(−→w ) is the greatest number i such that for all 1 ≤ j ≤ i − 1,
the tokens 2j− 1 and 2j are partners (i.e., (2j − 1, 2j, d) for some d). Notice
that 0 < Cl(−→w ) < m. The companion pairing of −→w is obtained by 2i−1 and
2i switching partners.

It is easy to see that, for any −→w ∈ −−→
WM with Cl(−→w ) < m, we have Cl(−→w ) =

Cl(−→w ′), and the companion pairing of −→w ′ is −→w , and −→s (−→w ) = −−→s (−→w ′). Partition−−→
WM into the following sets:

−−→
WM

(+) := {−→w ∈ −−→
WM | Cl (−→w ) < m and −→s (−→w ) = +1} and

−−→
WM

(−) := {−→w ∈ −−→
WM | Cl (−→w ) < m and −→s (−→w ) = −1} and

−−→
WM

(m) := {−→w ∈ −−→
WM | Cl (−→w ) = m} .

The idea of this proof is that, in the sum of Proposition 6, the terms from−−→
WM

(+) ∪ −−→
WM

(−) cancel each other “almost” out, and the terms from
−−→
WM

(m)

are small. To simplify the notation in the rest of the proof, let y(−→x ,−→w ) :=

(yF (
−→x ,−→w ), yG(

−→x ,−→w )) and H(y(−→x ,−→w )) := F̃ (yF (
−→x ,−→w )) ·G(yG(

−→x ,−→w )). Since

F̃ and G are continuous and bounded, so is H .

– Let (−→x ,−→w ) with −→x ⊆ −→w ∈ −−→
WM

(+) ∪ −−→
WM

(−). To any such (−→x ,−→w ) we
associate a companion (−→x ′,−→w ′) such that −→w ′ is the companion pairing of −→w ,
and −→x ′ ⊆ −→w ′ is obtained from −→x in the following way: if −→w ′ is obtained
from −→w by replacing one or two triples (u, v, d), then −→x ′ is obtained by
performing the same replacements on −→x (of course, only if (u, v, d) ∈ −→x ).
Note that y(−→x ,−→w ) and y(−→x ′,−→w ′) are equal in all components, except for
one or two components, where they differ by at most m

N . Hence we have (for
constant m) that

y(−→x ′,−→w ′) = y(−→x ,−→w ) +O(1/N) · (1, . . . , 1) .

10



Since H is continuous, it follows

H(y(−→x ′,−→w ′)) = H(y(−→x ,−→w )) +O(1/N) .

– Let (−→x ,−→w ) with −→x ⊆ −→w ∈ −−→
WM

(m). Note that all components of yF (
−→x ,−→w )

are at most m
N or at least 1− m

N . Also note that for any vector e ∈ {0, 1}|−→x |

it holds H(e, yG(
−→x ,−→w )) = 0. Since H is continuous, it follows

H(y(−→x ,−→w )) = O(1/N) .

Take 0 < ε < 1. By Proposition 6 and the above considerations, we have:

ET = O(Nε) +
N2

r(1 − r)

∑

−→w∈−−→
WM

−→s (−→w )
∑

∅6=−→x⊆−→w
H(y(−→x ,−→w ))

= O(Nε) +
N2

r(1 − r)
·




∑

−→w∈−−→
WM

(+)

∑

∅6=−→x⊆−→w
H(y(−→x ,−→w ))

−
∑

∅6=−→x ′⊆−→w ′

H(y(−→x ′,−→w ′))

+
∑

−→w∈−−→
WM

(m)

∑

∅6=−→x⊆−→w
H(y(−→x ,−→w ))




= O(Nε) +
N2

r(1 − r)
·




∑

−→w∈−−→
WM

(+)

∑

∅6=−→x⊆−→w
O(1/N)

+
∑

−→w∈−−→
WM

(m)

∑

∅6=−→x⊆−→w
O(1/N)




= O(Nε) +O(N) = O(N) .

⊓⊔

7 Conclusions and Future Work

We have obtained several results on the expected self-stabilization time ET in
Herman’s algorithm. We have improved the best-known upper bound for arbi-
trary configurations, and we have given new and significantly better bounds for
special classes of configurations: the full configuration, the random configura-
tion, and, in particular, for configurations that arise from a fixed number of bit
errors. For the latter class, ET reduces to O(N), pointing to a previously un-
known feature that Herman’s algorithm recovers quickly from bounded errors.
We have also shown that an asynchronous version of Herman’s algorithm not re-
quiring synchronization behaves similarly. For our analysis, we have transferred
techniques that were designed for the analysis of chemical reactions.

11



The conjecture of [16], saying that the equilateral configuration with three
tokens constitutes the worst-case, remains open. We hope to exploit our closed-
form expression for ET to resolve this intriguing problem. While we have already
shown that many relevant initial configurations provably converge faster, solving
this conjecture would close the gap between the lower and upper bounds for
stabilization time for arbitrary configurations. We would also like to investigate
the performance of the algorithm in case the number of bit errors is not fixed,
but is small (e.g., logarithmic) in the number of processes.
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A Proof of Theorem 2

Here is a restatement of Theorem 2:
Theorem 2. For the synchronous protocol with parameter r let D = r(1− r),
and for the asynchronous protocol with parameter λ let D = λ. Then, for all N
and for all initial configurations, we have

ET ≤
(
π2

8
− 29

27

)
· N

2

D
.

Hence, ET ≤ 0.64N2 in the synchronous case with r = 1
2 .

Proof. We build upon the proof in [17] for the synchronous case, which works as
follows. For M ≥ 3, let τM denote the maximal expected time for a configuration
with M tokens to reach a configuration with fewer than M tokens, where the
maximum is taken over all M -token configurations. It is shown that τM ≤ 1

M2 ·
N2

D . Since ET ≤ τ3 + τ5 + τ7 + · · · and 1
12 + 1

32 + 1
52 + · · · = π2

8 , it follows

that ET ≤
(

π2

8 − 1
)
· N2

D . We obtain the improvement by replacing the bound

τ3 ≤ 1
9 ·N

2

D with τ3 ≤ 1
27 ·N

2

D , which follows from Proposition 1 and the comments
below the proposition.

To generalize the result to the asynchronous case, one needs to show that

τM ≤ 1
M2 ·N

2

D also holds in the asynchronous case. Before showing how to suitably
adapt the proof in [17], we first provide more details on the proof in [17] for the
synchronous case. Let M ≥ 3. For a configuration c with at most M tokens,
define δM (c) as follows: if c has less than M tokens, then δM (c) = 0; otherwise
δM (c) is the minimal token distance in c. Let c′ the successor configuration of c.
Note that δM (c) and δM (c′) differ by at most 1. Also note that a given token
pair decreases its distance by 1 with probability r(1 − r), because one token
must be passed, the other one kept. Similarly, the distance is increased by 1 also
with probability r(1 − r). For the event that δM decreases by 1, it suffices that
the distance decreases for one token pair among those that define the minimal
distance δM (c). For the event that δM increases by 1, the distance must increase
for all token pairs which define δM (c). It follows:

P (δM (c′) = δM (c)− 1 | c and 1 ≤ δM (c) ≤ ⌊N/M⌋) ≥ r(1 − r)

P (δM (c′) = δM (c) + 1 | c and 1 ≤ δM (c) ≤ ⌊N/M⌋ − 1) ≤ r(1 − r) .

This process is compared in [17] with the following random walk on
{0, . . . , ⌊N/M⌋}, absorbing at state 0:

P (X ′ = X − 1 | 1 ≤ X ≤ ⌊N/M⌋) = r(1 − r)

P (X ′ = X + 1 | 1 ≤ X ≤ ⌊N/M⌋ − 1) = r(1 − r)

P (X ′ = X | 1 ≤ X ≤ ⌊N/M⌋ − 1) = 1− 2r(1− r)

P (X ′ = X | X = ⌊N/M⌋) = 1− r(1 − r) .
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It is argued there that the expected time to hit 0 in this random walk is an upper
bound on the expected time to hit a configuration c with δM (c) = 0, and hence
also on τM . The expected time to hit 0 in the random walk is maximized when

starting at X = ⌊N/M⌋, in which case the expected time is ⌊N/M⌋(⌊N/M⌋+1)
2r(1−r) ≤

1
M2 · N2

D .
This argument can be adapted to the asynchronous protocol in a straightfor-

ward way: Arguing similarly as above, the rate in which δM decreases by 1 is at
least λ, and the rate in which δM increases by 1 is at most λ. We compare this
process with a continuous-time Markov chain on {0, . . . , ⌊N/M⌋}, absorbing at
state 0:

– the rate in which X is decreased by 1 is λ;
– the rate in which X is increased by 1 is λ if 1 ≤ X ≤ ⌊N/M⌋ − 1; and 0 if

X = ⌊N/M⌋.
Analogous arguments yield

τM ≤ ⌊N/M⌋(⌊N/M⌋+ 1)

2λ
≤ 1

M2
· N

2

D
.

⊓⊔

B Proof of Proposition 3

The proof follows the one of Theorem 2.1 of [1], but is more detailed and applies
also to the synchronous version of Herman’s protocol.

We first prove the following lemma.

Lemma 9. Let M ≥ 3. Denote, for 1 ≤ u < v ≤ M , by T−uv the time until

one token is left, in a system with M − 2 tokens obtained by removing the u-th
and the v-th token. Then, for all t ≥ 0:

P (T ≤ t) =
1

m

∑

1≤u<v≤M

(−1)v−u−1
(
P
(
Tuv ≤ t ∩ A(uv)↓

)
− P

(
Tuv ≤ t ∩ A(uv)↑

))
P (T−uv ≤ t) .

Proof. Consider, for 1 ≤ u < v ≤ M , the expression
(
P
(
Tuv ≤ t ∩ A(uv)↓

)
− P

(
Tuv ≤ t ∩ A(uv)↑

))
P (T−uv ≤ t)

=P
(
Tuv ≤ t ∩ A(uv)↓

)
P (T−uv ≤ t)− P

(
Tuv ≤ t ∩ A(uv)↑

)
P (T−uv ≤ t) .

(1)

We wish to define events D(uv)↓ and D(uv)↑ such that

P
(
D(uv)↓

)
= P

(
Tuv ≤ t ∩ A(uv)↓

)
P (T−uv ≤ t)

and

P
(
D(uv)↑

)
= P

(
Tuv ≤ t ∩ A(uv)↑

)
P (T−uv ≤ t) .
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This can be done as follows. Call the tokens u and v red, and the other tokens
green. Think of a system in which red and green tokens do not interact, i.e.,
red-green meetings do not cause annihilations. Meeting tokens of the same color
are however annihilated. Then D(uv)↓ can be defined as the event that, by time
t, the red tokens u and v have met down, and all other tokens have annihilated,
except for one remaining (green) token. The event D(uv)↑ is defined similarly.

With this definition, the expression in (1) is equal to P
(
D(uv)↓

)
−P

(
D(uv)↑

)
.

Now we partition the event D(uv)↓ according to the first red-green meeting
as follows:

D(uv)↓ = D0
(uv)↓ ∪

⋃

p∈{u,v}
q∈{1,...,M}\{u,v}

Dpq
(uv)↓ ,

where the unions are disjoint, Dpq
(uv)↓ is the event that the first red-green meeting

is between p and q, and D0
(uv)↓ is the event that no red-green meeting occurs. If

it happens that u and v have their first meeting with a green token (say, with gu
and gv, respectively) at the same time, then we count this sample run in Dugu

(uv)↓.
The event D(uv)↑ is partitioned similarly; in particular, if u and v have their first

meeting with a green token (say, with gu and gv, respectively) at the same time,
then we count this sample run in Dvgv

(uv)↑.

We show that each nonempty event Dpq
(uv)↓ has a “companion” event with

the same probability.

– Consider Dug
(uv)↓ with g < v. Its companion event is Dgu

(gv)↓. In order to prove

that those events have the same probability, we establish a bijection between
Dug

(uv)↓ and Dgu
(gv)↓. The bijection b is defined as follows: Let ω be a sample

run (up to time t) of Dug
(uv)↓. Let t0 ≤ t be the time of the first red-green

meeting in ω, i.e., u and g meet at t0. Then b(ω) equals ω, except that after
time t0, the movement of token u in b(ω) is the movement of token g in ω,
and the movement of token g in b(ω) is the movement of token u in ω. By
the reflection principle, ω and b(ω) have the same probability. Furthermore,
it is straightforward to verify that any sample run ω is in Dug

(uv)↓ if and only

if b(ω) ∈ Dgu
(gv)↓.

Note that Dug
(uv)↓ and Dgu

(gv)↓ are nonempty only if u− g is odd, because all

tokens between u and g must annihilate, so their number must be even.

– Similarly, for g > v, the companion event of Dug
(uv)↓ is Dgu

(vg)↑. The events are
nonempty only if u− g is even.

– For g < u, the companion event of Dvg
(uv)↓ isD

gv
(gu)↑. The events are nonempty

only if v − g is even.
– For g > u, the companion event of Dvg

(uv)↓ isD
gv
(ug)↓. The events are nonempty

only if v − g is odd.

Similarly, there is a companion event to each nonempty event Dpq
(uv)↑. Letting

RHS denote the right hand side of the equation in the statement of the lemma,

15



we have:

RHS =
1

m

∑

1≤u<v≤M

(−1)v−u−1
(
P
(
Tuv ≤ t ∩ A(uv)↓

)
− P

(
Tuv ≤ t ∩ A(uv)↑

))
P (T−uv ≤ t)

=
1

m

∑

1≤u<v≤M

(−1)v−u−1
(
P
(
D(uv)↓

)
− P

(
D(uv)↑

))

=
1

m

∑

1≤u<v≤M

(−1)v−u−1
(
P
(
D0

(uv)↓

)
− P

(
D0

(uv)↑

))
,

where the last equality is because the probabilities of the events Dpq
(uv)↓

and Dpq
(uv)↑ cancel with the probabilities of their respective companion events.

The event D0
(uv)↓ is nonempty if and only if v − u is odd; similarly, D0

(uv)↑ is
nonempty if and only if v − u is even. Hence, we have

RHS =
1

m

∑

1≤u<v≤M

P
(
D0

(uv)

)
,

where D0
(uv) := D0

(uv)↓ ∪D0
(uv)↑. Note that D0

(uv) contains exactly those sample
runs in which, under the normal annihilation rules, by time t, the tokens u
and v have met and annihilated, and all other tokens except for one have also
annihilated.

Recall that WM is the set of pairings. For any pairing w =
{(u1, v1), . . . , (um, vm)} ∈ WM we denote by Ew the event that, by time t, for
all i ∈ {1, . . . ,m}, the tokens ui and vi have met and annihilated (under the
normal annihilation rules). Note that

D0
(uv) =

⋃

w:(u,v)∈w∈WM

Ew ,

where the union is disjoint. Hence, we have:

RHS =
1

m

∑

1≤u<v≤M

P
(
D0

(uv)

)

=
1

m

∑

1≤u<v≤M

∑

w:(u,v)∈w∈WM

P (Ew)

=
∑

w∈WM

P (Ew)

= P
(
⋃

w∈WM

Ew

)

= P (T ≤ t) ,

which concludes the proof of the lemma. ⊓⊔
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Now we can prove Proposition 3 which is restated here.

Proposition 3. Let M ≥ 3. For all t ≥ 0:

P (T ≤ t) =
∑

w∈WM

s(w)
∏

(u,v)∈w

(
P
(
Tuv ≤ t ∩ A(uv)↓

)
− P

(
Tuv ≤ t ∩ A(uv)↑

))
.

Proof. The proof is by induction on M = 3, 5, 7, . . .. The case M = 3 is imme-
diate from Lemma 9. (Notice in particular that P (T−uv ≤ t) = 1 if M = 3.)

For the induction step, let M ≥ 5. By Lemma 9 we have

P (T ≤ t) =
1

m

∑

1≤u<v≤M

(−1)v−u−1
(
P
(
Tuv ≤ t ∩ A(uv)↓

)
− P

(
Tuv ≤ t ∩ A(uv)↑

))
P (T−uv ≤ t) .

For 1 ≤ u < v ≤ M , we define the set W−uv similarly to the set WM , but W−uv

is the set of pairings on {1, . . . ,M}\{u, v} rather than on {1, . . . ,M}. Similarly,
for w′ ∈ W−uv, the number s′(w′) ∈ {−1,+1} is defined as s(w), but depending
on the parity of the permutation of {1, . . . ,M} \ {u, v}. Applying the induction
hypothesis we have:

P (T ≤ t) =
1

m

∑

1≤u<v≤M

(−1)v−u−1
(
P
(
Tuv ≤ t ∩ A(uv)↓

)
− P

(
Tuv ≤ t ∩ A(uv)↑

))

·
∑

w′∈W−uv

s′(w′)
∏

(u′,v′)∈w′

(
P
(
Tu′v′ ≤ t ∩ A(u′v′)↓

)
− P

(
Tu′v′ ≤ t ∩ A(u′v′)↑

))
.

We claim that for any w′ ∈ W−uv, we have (−1)v−u−1s′(w′) = s(w ∪
{(u, v)}). To see this, assume w′ = {(u1, v1), . . . , (um−1, vm−1)} and
{u1, v1, . . . , um−1, vm−1, w0} = {1, . . . ,M} \ {u, v}. We need to argue that
the parities of the permutations p1 = (u1v1 · · ·um−1vm−1w0) and p2 =
(uvu1v1 · · ·um−1vm−1w0) are equal if and only if v − u is odd. It suffices to
argue that adding u, v at the front of p1 adds an even number of inversions in
the permutation, if and only if v − u is odd. Since u < v, the pair (u, v) is not
an inversion. For x < u, both (u, x) and (v, x) are inversions. For x > v, neither
(u, x) nor (v, x) are inversions. For x ∈ {u+ 1, . . . , v − 1}, the pair (u, x) is not
an inversion, but (v, x) is. There is an even number of such x, if and only if v−u
is odd. This proves the claim. It follows:

P (T ≤ t) =
1

m

∑

1≤u<v≤M

∑

w:(u,v)∈w∈WM

s(w)

·
∏

(u,v)∈w

(
P
(
Tuv ≤ t ∩ A(uv)↓

)
− P

(
Tuv ≤ t ∩ A(uv)↑

))

=
∑

w∈WM

s(w)
∏

(u,v)∈w

(
P
(
Tuv ≤ t ∩ A(uv)↓

)
− P

(
Tuv ≤ t ∩ A(uv)↑

))
,

which completes the induction proof. ⊓⊔

17



C Proof of Theorem 4

Theorem 4 is restated here:

Theorem 4. Let M ≥ 3. For all t ≥ 0:

P (T ≤ t) =
∑

w∈WM

s(w)
∏

(u,v)∈w

(
P
(
Tuv ≤ t ∩ A(uv)↓

)
− P

(
Tuv ≤ t ∩ A(uv)↑

))
.

Proof. By Proposition 3 we have:

P (T > t) = 1− P (T ≤ t)

= 1−
∑

w∈WM

s(w)
∏

(u,v)∈w

(
P
(
Tuv ≤ t ∩ A(uv)↓

)
− P

(
Tuv ≤ t ∩ A(uv)↑

))

= 1−
∑

−→w∈−−→
WM

−→s (−→w )
∏

(u,v,d)∈−→w
P
(
Tuv ≤ t ∩ A(uv)d

)

= 1−
∑

−→w∈−−→
WM

−→s (−→w ) · P (T−→w ≤ t ∩ A−→w ) . (2)

The Markov chain associated with Herman’s protocol has a unique bottom SCC.

Hence, P (T = ∞) = 0. Similarly, P (T−→w = ∞) = 0 for all −→w ∈ −−→
WM . By (2) it

follows
1 =

∑

−→w∈−−→
WM

−→s (−→w ) · P (A−→w ) ,

and hence

P (T > t) =
∑

−→w∈−−→
WM

−→s (−→w ) · P (T−→w > t ∩ A−→w )

=
∑

−→w∈−−→
WM

−→s (−→w ) · P (T−→w > t | A−→w ) · P (A−→w ) . (3)

For any random variableX on {0, 1, . . .}, it is known that EX =
∑∞

t=0 P (X > t).
Similarly, if X is on [0,∞), then EX =

∫∞
t=0

P (X > t) dt, see [8]. Hence, sum-
ming or integrating (3) over t yields the result. ⊓⊔

D Proof of Proposition 5

Proposition 5 is restated here.

Proposition 5. Consider the synchronous protocol. For M ≥ 3:

ET =
∑

−→w∈−−→
WM

−→s (−→w )
∑

∅6=−→x⊆−→w
F (N)(yF (

−→x ,−→w )) ·G(yG(
−→x ,−→w )) .
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Proof. Given −→w ∈ −−→
WM and any −→x ⊆ −→w , we define A−→x :=

⋂
(u,v,d)∈−→x A(uv)d.

Recall that

P
(
A−→w\−→x

)
=

∏

(u,v,d)∈−→w\−→x
P
(
A(uv)d

)
=

∏

(u,v,d)∈−→w\−→x
(1−zuvd/N) = G(yG(

−→x ,−→w )) .

(4)
The maximum-minimums identity states, for any set S of numbers, that maxS =∑

∅6=S′⊆S(−1)|S
′|+1 minS′. Using Theorem 4 and the maximum-minimums iden-

tity, we get

ET =
∑

−→w∈−−→
WM

−→s (−→w )E [T−→w | A−→w ]P (A−→w )

=
∑

−→w∈−−→
WM

−→s (−→w )E [max{Tuv | (u, v, d) ∈ −→w } | A−→w ]P (A−→w )

=
∑

−→w∈−−→
WM

−→s (−→w )
∑

∅6=−→x⊆−→w
(−1)|

−→x |+1 · E [min{Tuv | (u, v, d) ∈ −→x } | A−→w ]P (A−→w )

=
∑

−→w∈−−→
WM

−→s (−→w )
∑

∅6=−→x⊆−→w
−(−1)|

−→x | · E [min{Tuv | (u, v, d) ∈ −→x } | A−→x ]P (A−→x )P
(
A−→w\−→x

)
.

Consequently, by (4) it suffices to show

E [min{Tuv | (u, v, d) ∈ −→x } | A−→x ]P (A−→x ) =
1

N |−→x |

∑

j∈{1,...,N−1}−→
x

∏
(u,v,d)∈−→x g

(
j(u, v, d), zuvd

N ; 1
N

)

1−∏(u,v,d)∈−→x h
(
j(u, v, d); 1

N

) .

(5)
For any (u, v, d), it follows from [3] (Section 2.2, Equation (25)) that

P
(
Tuv > t ∩ A(uv)d

)
=

1

N

N−1∑

j=1

g

(
j,
zuvd
N

;
1

N

)
h

(
j;

1

N

)t

.

For any −→x , we therefore have

P (min{Tuv | (u, v, d) ∈ −→x } > t ∩ A−→x )

=
1

N |−→x |

∑

j∈{1,...,N−1}−→
x




∏

(u,v,d)∈−→x
g

(
j(u, v, d),

zuvd
N

;
1

N

)




∏

(u,v,d)∈−→x
h

(
j(u, v, d);

1

N

)


t

.

(6)

Summing (6) over t = 0, 1, . . . yields (5). ⊓⊔

E Proof of Proposition 6

In this section we prove Proposition 6, which is restated here:
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Proposition 6. Consider the synchronous protocol. Let

Ẽ :=
N2

r(1 − r)

∑

−→w∈−−→
WM

−→s (−→w )
∑

∅6=−→x⊆−→w
F̃ (yF (

−→x ,−→w )) ·G(yG(
−→x ,−→w )) .

Then, for each fixed M ≥ 3 and r ∈
(

1
2 − 4

√
27
6 , 1

2 +
4
√
27
6

)
≈ (0.12, 0.88) and

ε > 0,
ET = Ẽ +O(Nε) .

Proof. In the following we write j = (j1, . . . , jk) and y = (y1, . . . , yk) for ele-
ments of Nk

+ and [0, 1]k, respectively, where k ∈ N+. Define the function

fk(j,y;u) :=

∏k
i=1 g(ji, yi;u) · uk+2

1−∏k
i=1 h(ji;u)

.

Proposition 5 then reads as

ET = N2 ·
∑

−→w∈−−→
WM

−→s (−→w )
∑

∅6=−→x⊆−→w
−(−1)|

−→x | ·G(yG(
−→x ,−→w ))

·
∑

j∈{1,...,N−1}|−→x |

fk(j, yF (
−→x ,−→w ); 1/N) .

Consequently, it suffices to show that, for any fixed k ∈ N+ and r ∈(
1
2 − 4√27

6 , 1
2 +

4√27
6

)
and ε > 0,

∑

j∈{1,...,N−1}k

fk(j,y; 1/N) =
F̃ (y)

−(−1)k · r · (1− r)
+O

(
1

N2−ε

)
. (7)

Let

a0(j) :=
2k

r · (1− r) · πk+2 · j1 · · · jk · (j21 + · · ·+ j2k)
and

s(j,y) := sin(y1j1π) · · · sin(ykjkπ) and

fk(j;u) :=
fk(j,y;u)

s(j,y)
.

Note that fk(j;u) is independent of y. Then (7) is equivalent to

∑

j∈{1,...,N−1}k

s(j,y)fk(j; 1/N) =
∑

j∈Nk

+

s(j,y)a0(j) +O

(
1

N2−ε

)
. (8)

Since |s(j,y)| ≤ 1 and a0(j) > 0, Equation (8) is implied by the following two
lemmata.
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Lemma 10. For any fixed k ∈ N+ and r ∈
(

1
2 − 4√27

6 , 1
2 +

4√27
6

)
, we have

∑

j∈{1,...,N−1}k

∣∣fk(j,y; 1/N)− a0(j)
∣∣ = O

(
(logN)k

N2

)
.

Lemma 11. For any fixed k ∈ N+ and ε > 0, we have

∞∑

jk=N

∑

(j1,...,jk−1)∈N
k−1
+

1

j1 · . . . · jk · (j21 + · · ·+ j2k)
= O

(
1

N2−ε

)
.

Lemmata 10 and 11 are proved in the following Subsections E.1 and E.1, respec-
tively. ⊓⊔

E.1 Proof of Lemma 10

In the following, for ℓ ∈ N, let Ek((j
2)ℓ) denote a sum of monomials of the

form c · j2ℓ11 · · · j2ℓkk such that c ∈ R and ℓi ∈ {0, . . . , ℓ} for i ∈ {1, . . . , k} and

ℓ1 + · · ·+ ℓk = ℓ. For instance, we write 3j81 −
√
2j21j

6
2 = E2((j

2)4).

Lemma 12. The function fk has a Taylor expansion

fk(j;u) = a0(j) + a2(j)u
2 + a4(j)u

4 + · · ·

with

ai(j) =
Ek((j

2)i)

j1 · · · jk · (j21 + · · ·+ j2k)
(i+2)/2

for i = 0, 2, . . .

More precisely, we have

a0(j) =
2k

r · (1− r) · πk+2 · j1 · · · jk · (j21 + · · ·+ j2k)
,

and for r ∈
(

1
2 − 4

√
27
6 , 1

2 +
4
√
27
6

)
, all coefficients of the multivariate polynomial

in the nominator of a4(j) are negative.

Proof. Let g(j;u) := g(j, y;u)/ sin(yjπ). Notice that 1/g(j;u) and h(j;u) have
the following Taylor series:

1

g(j;u)
= c1ju+ c3j

3u3 + c5j
5u5 + · · · and

h(j;u) = 1 + d2j
2u2 + d4j

4u4 + · · ·

with c1 = π
2 and d2 = −r(1 − r)π2. It follows that we have

fk(j;u) =
1

e0 + e2u2 + e4u4 + · · ·
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with

e0 =

ck1 ·(−d2)︷ ︸︸ ︷
r · (1− r) · πk+2

2k
·j1 · . . . · jk · (j21 + · · ·+ j2k) and

ei = j1 · · · jk ·Ek((j
2)(i+2)/2) for i = 0, 2, . . .

Since e0 > 0, the power series e0+e2u
2+e4u

4+· · · can be inverted. The inversion
formula yields

fk(j;u) = a0 + a2u
2 + a4u

4 + · · ·
with

a0 =
1

e0
=

2k

r · (1 − r) · πk+2 · j1 · · · jk · (j21 + · · ·+ j2k)
and

ai = −a0 ·
∑

ℓ=0,2,...,i−2

aℓei−ℓ for i = 2, 4, . . .

It follows by an easy induction that

ai =
Ek((j

2)i)

j1 · · · jk · (j21 + · · ·+ j2k)
(i+2)/2

for i = 0, 2, . . .

Using further values of the Taylor coefficients ci, di from above, a straightforward
but tedious computation shows that

a4 =
2k−4P (j)

45 · πk−2 · r · (1− r) · j1 · · · jk · (j21 + · · ·+ j2k)
3
,

where

P (j) =
∑

1≤i1≤k

−3j8i1 +
∑

1≤i1<i2≤k

−9(j6i1j
2
i2 + j2i1j

6
i2) +

∑

1≤i1<i2≤k

(720(r(1− r))2 − 240r(1− r) + 8)j4i1j
4
i2 +

∑

1≤i1<i2<i3≤k

(720(r(1− r))2 − 300r(1− r) + 13)(j4i1j
2
i2j

2
i3 + j2i1j

4
i2j

2
i3 + j2i1j

2
i2j

4
i3) +

∑

1≤i1<i2<i3<i4≤k

(1440(r(1− r))2 − 720r(1− r) + 60)j2i1j
2
i2j

2
i3j

2
i4 .

We have determined the above coefficients of P (j) using the computer al-
gebra system Maple. Now it is straightforward to verify that all coefficients

of P (j) are negative, if 3−
√
3

12 < r · (1 − r) ≤ 1
4 . Those inequalities hold, if

r ∈
(

1
2 − 4√27

6 , 1
2 +

4√27
6

)
. ⊓⊔

The following lemma is used as an induction step in the proof of Lemma 10
below.
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Lemma 13. If k ∈ {2, 3, . . .} and u > 0, then

lim
jk→0

(
jk · fk(j1, . . . , jk;u)

)
=

2

π
fk−1(j1, . . . , jk−1;u) ,

where the ji vary over the nonnegative reals. Consequently, with the Taylor ex-

pansion fk(j;u) = ak;0(j) + ak;2(j)u
2 + ak;4(j)u

4 + · · · from Lemma 12 we also

have

lim
jk→0

(jk · ak;i(j1, . . . , jk)) =
2

π
ak−1;i(j1, . . . , jk−1) .

Proof. As h(0, u) = 1, it suffices to show that limjk→0
jk sin(jkπu)
1−cos(jkπu)

= 2
πu . This

follows easily from l’Hopital’s rule:

lim
jk→0

jk sin(jkπu)

1− cos(jkπu)
= lim

jk→0

sin(jkπu) + jk cos(jkπu) · πu
sin(jkπu) · πu

=
1

πu
+ lim

jk→0

jk cos(jkπu)

sin(jkπu)

=
1

πu
+ lim

jk→0

cos(jkπu)− jk sin(jkπu)

cos(jkπu) · πu

=
1

πu
+

1

πu
=

2

πu

⊓⊔

Now we can prove Lemma 10 which is restated here.

Lemma 10. For any fixed k ∈ N+ and r ∈
(

1
2 − 4√27

6 , 1
2 +

4√27
6

)
, we have

∑

j∈{1,...,N−1}k

∣∣fk(j,y; 1/N)− a0(j)
∣∣ = O

(
(logN)k

N2

)
.

Proof. By Lemma 12 it is equivalent to prove

∑

j∈{1,...,N−1}k

∣∣∣∣
a2(j)

N2
+

a4(j)

N4
+ · · ·

∣∣∣∣ = O

(
(logN)k

N2

)
.

Notice that an easy induction shows that

∑

j∈{1,...,N−1}k

1

j1 · · · jk
=

N−1∑

jk=1

1

jk

∑

j∈{1,...,N−1}k−1

1

j1 · · · jk−1
= O((logN)k) .

Hence, with Lemma 12 we have

∑

j∈{1,...,N−1}k

∣∣∣∣
a2(j)

N2

∣∣∣∣ =
1

N2
·

∑

j∈{1,...,N−1}k

O(1)

j1 · · · jk
= O

(
(logN)k

N2

)
.
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Similarly, we also have

∑

j∈{1,...,N−1}k

∣∣∣∣
a4(j)

N4

∣∣∣∣ =
1

N2
·

∑

j∈{1,...,N−1}k

O(j21 + · · ·+ j2k)

N2 · j1 · · · jk

=
1

N2

∑

j∈{1,...,N−1}k

O(1)

j1 · · · jk
= O

(
(logN)k

N2

)
.

Now it suffices to show that, for any fixed k ∈ N+,

Rk(j; 1/N) :=
fk(j; 1/N)− a0(j)− a2(j)/N

2

a4(j)/N4
=

a4(j)/N
4 + a6(j)/N

6 + · · ·
a4(j)/N4

is bounded over all N ∈ N+ and all j ∈ {1, . . . , N − 1}k, because then we also
have that

∑

j∈{1,...,N−1}k

∣∣∣∣
a4(j)

N4
+

a6(j)

N6
+ · · ·

∣∣∣∣ = O

(
(logN)k

N2

)
.

It follows from Lemma 12 that Rk depends only on j1/N, . . . , jk/N ;

i.e., there is a function R̃k : [0, 1]k → R such that Rk(j1, . . . , jk; 1/N) =

R̃k(j1/N, . . . , jk/N). Therefore it suffices to take N = 1 and to show that

Rk(j; 1) =
fk(j; 1)− a0(j)− a2(j)

a4(j)

is bounded over all j ∈ (0, 1]k. We first argue that Rk(j; 1) does not have poles
for j ∈ (0, 1]k. This follows from the facts that (1) the function fk(j; 1) clearly
does not have poles there, (2) the coefficients a0(j) and a2(j) do not have poles
there by Lemma 12, and (3) we have a4(j) < 0 for j ∈ (0, 1]k by Lemma 12.
Let j ∈ [0, 1]k \ (0, 1]k. By symmetry, we can assume that there is ℓ ∈ {1, . . . , k}
such that ji 6= 0 for i ∈ {1, . . . , ℓ− 1} and ji = 0 for i ∈ {ℓ, . . . , k}. Denote by 0
a vector (0, . . . , 0), whose dimension is clear from the context. We need to show
that lim(jℓ,...,jk)→0 Rk(j; 1) exists and is finite. We proceed by induction on k.
For the induction base, let k = 1. Basic computations show that

R1(j1; 1) =
240

π4j41
− 60 sin(j1π)

π(1− cos(j1π))2j1
.

One can use l’Hopital’s rule to find limj1→0 R1(j1; 1) = 1. For the induction
step, let k ≥ 2. In the following we write ak;i to make the dependence of ai on k
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explicit. We have:

lim
(jℓ,...,jk)→0

Rk(j; 1)

= lim
(jℓ,...,jk−1)→0

lim
jk→0

fk(j; 1)− ak;0(j)− ak;2(j)

ak;4

= lim
(jℓ,...,jk−1)→0

limjk→0

(
jk · (fk(j; 1)− ak;0(j)− ak;2(j))

)

limjk→0 (jk · ak;4(j))

= lim
(jℓ,...,jk−1)→0

fk−1(j1, . . . , jk−1; 1)− ak−1;0(j1, . . . , jk−1)− ak−1;2(j1, . . . , jk−1)

ak−1;4(j1, . . . , jk−1)

(by Lemma 13)

= lim
(jℓ,...,jk−1)→0

Rk−1(j1, . . . , jk−1; 1) ,

where the last limit exists and is finite by induction hypothesis. ⊓⊔

E.2 Proof of Lemma 11

Lemma 14. Let j1, . . . , jk ∈ N+. Let δ, ε ∈ R with δ > 0 and 0 ≤ ε ≤ 2δ. Then

jεk

(j21 + · · ·+ j2k)
δ
≤ 1
(
j21 + · · ·+ j2k−1

)δ−ε/2
.

Proof. Define r :=
√
j21 + · · · j2k−1. Then we need to prove that

jεk · r2δ−ε ≤
(
j2k + r2

)δ
,

or, equivalently,

j
ε/δ
k · r2−ε/δ ≤ j2k + r2 .

If jk ≤ r, then j
ε/δ
k · r2−ε/δ ≤ rε/δ · r2−ε/δ = r2 ≤ j2k + r2. The case jk ≥ r is

similar. ⊓⊔

Lemma 15. Let δ ∈ R+ and k ∈ N+. The following series converges:

∑

(j1,...,jk)∈Nk

+

1

j1 · . . . · jk · (j21 + · · ·+ j2k)
δ
.
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Proof. The proof is by induction on k. The assertion clearly holds for the base
case k = 1. For k ≥ 2 we have:

∑

(j1,...,jk)∈Nk

+

1

j1 · . . . · jk · (j21 + · · ·+ j2k)
δ

=
∑

jk∈N+

1

j1+δ
k

∑

j1,...,jk−1∈N+

jδk

j1 · . . . · jk−1 · (j21 + · · ·+ j2k)
δ

≤
∑

jk∈N+

1

j1+δ
k

∑

j1,...,jk−1∈N+

1

j1 · . . . · jk−1 ·
(
j21 + · · ·+ j2k−1

)δ/2 (Lemma 14)

=
∑

jk∈N+

1

j1+δ
k

· Cδ/2,k−1 ,

where Cδ/2,k−1 is the constant from the induction hypothesis. The series
∑

jk∈N+
j
−(1+δ)
k clearly converges. ⊓⊔

Now we can prove Lemma 11, which is restated here.

Lemma 11. For any fixed k ∈ N+ and ε > 0, we have

∞∑

jk=N

∑

(j1,...,jk−1)∈N
k−1
+

1

j1 · . . . · jk · (j21 + · · ·+ j2k)
= O

(
1

N2−ε

)
.

Proof. Let

Rk(N) :=
∞∑

jk=N

∑

(j1,...,jk−1)∈N
k−1
+

1

j1 · . . . · jk · (j21 + · · ·+ j2k)
.

We have for all ε ∈ (0, 2):

Rk(N) =

∞∑

jk=N

1

j3−ε
k

∑

(j1,...,jk−1)∈N
k−1
+

j2−ε
k

j1 · . . . · jk−1 · (j21 + · · ·+ j2k)

≤
∞∑

jk=N

1

j3−ε
k

∑

(j1,...,jk−1)∈N
k−1
+

1

j1 · . . . · jk−1 · (j21 + · · ·+ j2k−1)
ε/2

(Lemma 14)

=
∞∑

jk=N

1

j3−ε
k

· Cε/2,k−1 (Lemma 15)

≤ Cε/2,k−1 ·
∫ ∞

x=N−1

1

x3−ε
dx

=
Cε/2,k−1

2− ε
· (N − 1)−2+ε = O(N−2+ε) .

⊓⊔
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F Proof of Theorem 7

Theorem 7 is restated here.

Theorem 7. For the synchronous protocol with parameter r let D = r(1 − r).
For the asynchronous protocol with parameter λ > 0 let D = λ. For almost all

odd N ∈ N+, we have for the full configuration:

ET ≤ 0.0285N2/D and P
(
T ≥ 0.02N2/D

)
< 0.5 .

Proof. Recall that Proposition 3 expresses the distribution of T in terms of
the distributions of one-dimensional random walks with absorbing barriers at
0 and N . It is well-known that such random walks converge, for large N , to
an appropriately scaled Brownian motion; see [7, Chapter XIV]. (In passing

we remark that the approximation of F (N) through N2F̃
r(1−r) in Proposition 6 is

exactly the same approximation; however, there we also establish bounds on the
rate of convergence, which are not needed here.) For the theorem it suffices to
consider N tokens in a Brownian motion placed equidistantly on a circle of unit
circumference, so that the variance of the relative movement of two tokens is
2σ2 = 2D/N2 per time unit. We use Balding’s analysis [1] in the following. Let
S(t) denote the expected number of tokens at time t. Balding [1, p. 740] gives

S(t) = 1 +
2N

π

∞∑

j=1

1

j
tan

jπ

N
e−4π2j2σ2t .

We have

S̃(t) := lim
N→∞

S(t) = 1 + 2

∞∑

j=1

e−4π2j2σ2t .

As S(t) ≥ P (T ≤ t) · 1 + P (T > t) · 3 = 2P (T > t) + 1, we have for all ε > 0
that

P (T > t) ≤ min

(
1,

S(t)− 1

2

)
≤ min

(
1, (1 + ε)

S̃(t)− 1

2

)

for almost all odd N . With t1 := 1
100σ2 we get S̃(t1)−1

2 ≈ 0.91 < 1. Notice that

S̃(t) is decreasing. Hence we obtain

ET =

∫ ∞

0

P (T > t) dt ≤ t1 + (1 + ε)

∫ ∞

t1

∞∑

j=1

e−4π2j2σ2t dt

= t1 + (1 + ε)

∞∑

j=1

e−π2j2/25

4π2j2σ2
≤ 0.0285

σ2
,

where the last inequality holds for small ε. The first statement of the theorem
follows by setting σ2 = D/N2. The second statement follows by noting that with

t2 := 2
100σ2 we get S̃(t2)−1

2 ≈ 0.497 < 0.5. ⊓⊔
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