
Recent Developments in FDR?

Philip Armstrong, Michael Goldsmith, Gavin Lowe, Joël Ouaknine,
Hristina Palikareva, A. W. Roscoe, and James Worrell

Department of Computer Science, Oxford University, UK
{phila,michael,gavinl,joel,hrip,awr,jbw}@cs.ox.ac.uk

Abstract. We describe and report upon various substantial extensions
of the CSP refinement checker FDR including (i) the direct ability to han-
dle real-time processes; (ii) the incorporation of bounded model check-
ing technology; (iii) the development of conservative and highly efficient
static analysis algorithms for guaranteeing livelock-freedom; and (iv) the
development of automated CEGAR technology.

1 Introduction

FDR, standing for Failures Divergence Refinement, is the best-known tool sup-
porting CSP [13, 21, 22]. It was originally released in 1991/2 and underwent a
major re-write in 1994/5 to become FDR2. All subsequent developments have
extended FDR2, including those reported in this paper. It is extensively de-
scribed in [21, 22]. Most of its functionality is based around proving or refuting
refinement between finite-state CSP processes, where refinement is over a se-
lection of semantic models with different expressive powers. The best known of
these are traces, which proves partial correctness, failures, which additionally
handles deadlock, and failures-divergences, which captures a wide variety of to-
tal correctness properties. Refinement over one of these models is always reverse
containment between the sets of relevant behaviours representing the processes.

Traditionally it has been an explicit model checker—capable of exploring
millions of states per minute on a modern workstation—supported by state-space
compression techniques and the partial-order compression chase, as described in
[21, 22].

FDR has been widely used in research, teaching and industry [3, 6, 15], and
is well known for its use in security analysis [14]. Until 2007 it was a product of
Formal Systems (Europe) Ltd, but since 2008 it has been developed in Oxford
University under support from EPSRC, ONR and industry. The present paper
summarises the new features added in this latter phase.

In recent years FDR has been used the back-end of verification engines aimed
at notations other than CSP. Casper (security) is and the shared-variable anal-
yser SVA (see Chapters 18 and 19 of [22]) are examples, as well as a number of
proprietary industrial tools.

? Research supported by EPSRC, ONR, Verum BV and Qinetiq.



2 Authors Suppressed Due to Excessive Length

2 New Techniques and Features

Modelling and Verifying Real-Time Systems. Two different timed exten-
sions have been developed for CSP. The first is Timed CSP [20], which is a
real-time interpretation of Hoare’s CSP notation [13]. In its usual form it adds
a single construct to CSP, namely WAIT t which waits t units of time before
terminating successfully. It is possible to express a wide variety of time-based
operations such as time-outs in terms of WAIT t and standard CSP. Timed CSP
generally assumes a continuous clock in the hands of external observers. A sec-
ond form, tock -CSP, was introduced by Roscoe [21] as a medium for verifying
discretely timed systems on FDR, most naturally with an internal clock signal.
A special event tock represents the regular passage of time.

Thanks to the idea of digitisation introduced by Henzinger, Manna and
Pnueli [12] and developed for Timed CSP by Ouaknine [17, 18], it is possible
to establish theoretical connections among continuous Timed CSP, the Timed
CSP language with a discrete semantics, and tock -CSP. It is therefore possible to
model check Timed CSP programs, drawing conclusions about their continuous
semantics by a relatively modest modification to FDR along the lines suggested
in [17, 22]. This modification – described in more detail in [4] – takes the form
of a mode within FDR that instructs it to interpret the syntax inside it as a
Timed CSP process and translate it into semantically equivalent tock -CSP. It is
possible, and frequently very useful, to mix Timed CSP, tock -CSP and ordinary
CSP in the same script and indeed in the same process or refinement check.

We can check Timed CSP processes for refinement against specifications for-
mulated in Timed CSP itself, in tock -CSP, or—when time is suitably abstracted—
in ordinary CSP. As reported in [23], it is possible to check Timed CSP for
noninterference (i.e. information flow) properties and therefore find or prove the
absence of timing channels that pass information between mutual users of a
system.

This Timed CSP mode of FDR is a recent development and we have not yet
had time to try it on serious industrial examples. We have, however, tried it on
several well known benchmarks such as Fischer’s mutual exclusion protocol and
the puzzle in which a number of soldiers have to cross a bridge in pairs using
a torch. In both of these it demonstrated great efficiency: Table 1 shows results
for the first of these in comparison to Uppaal [2] and PAT [1]. Further results
can be found in [4].

Bounded Model Checking and Temporal k-Induction. For the traces
model of CSP, FDR now supports an alternative refinement engine employing
symbolic techniques based on Boolean satisfiability (SAT). In particular, FDR
features bounded model checking (BMC) [7], that can be used for bug detection,
and temporal k-induction [11], which builds upon BMC, aims at establishing
inductiveness of properties and is capable of both bug finding and establish-
ing the correctness of systems. It adopts FDR’s implicit operational represen-
tation based on supercombinators [22], but [19] explores this using SAT rather



Recent Developments in FDR 3

Table 1. Timed CSP. Times reported are in seconds, with ? denoting memout. Com-
parison against Uppaal 4.0.13 and PAT 3.40. The columns titled PAT-zone and PAT-
digit denote, respectively, PAT using zone abstraction and digitisation as underlying
engines. All experiments were performed on a 2.6 GHz PC with 2 GB RAM running
Linux Fedora.

Benchmark FDR Uppaal PAT-zone PAT-digit

Fischer mutual exclusion-6 0 0 13 7
Fischer mutual exclusion-7 0 0 196 85
Fischer mutual exclusion-8 0 2 ? ?
Fischer mutual exclusion-10 2 20 ? ?
Fischer mutual exclusion-12 18 312 ? ?

than explicitly. For both BMC and k-induction, FDR offers configurable sup-
port for a SAT solver (MiniSAT, PicoSAT or ZChaff, all used in incremental
mode), Boolean encoding (one-hot or binary), traversal mode (forward or back-
ward), etc. The BMC engine sometimes substantially outperforms the original
explicit state-space exploration, especially for complex tightly-coupled combina-
torial problems, as reported in [19]. For k-induction, the completeness threshold
blows up in all cases, due to concurrency, and, therefore, high performance de-
pends on whether or not the property is k-inductive for some small value of k.
Thus we have only seen it outperform FDR when there are counterexamples.

Static Analysis for Establishing Livelock Freedom. FDR now supports a
mode for establishing livelock freedom. Livelock, also called divergence, indicates
that a process is unresponsive due to being engaged forever in internal computa-
tions. The new back-end relies on static analysis of the syntactic structure of a
process rather than state exploration. It employs a collection of rules to calculate
a sound approximation of the fair/co-fair sets of events of a process [16]. The
rules either safely classify processes as livelock-free or report inconclusiveness,
thereby trading accuracy for speed. The algorithms generate and manipulate
various sets of events in a fully symbolic way. The choice of an underlying sym-
bolic engine is configurable, with support for using a SAT engine (based on
MiniSAT 2.0), a BDD engine (based on CUDD 2.4.2), or running a SAT and
a BDD analyser in parallel and reporting the results of the first one to finish.
Experiments indicate that the static analyser is substantially more efficient than
the exhaustive-search approach, outperforming it by multiple orders of magni-
tude whilst exhibiting a low rate of inconclusive results. We experimented with a
wide range of benchmarks, including parameterised, parallelised, and piped ver-
sions of Milner’s Scheduler, the Alternating Bit Protocol, the Sliding Window
Protocol, the Dining Philosophers, Yantchev’s Mad Postman Algorithm, etc., as
reported in [16].

CEGAR. We developed abstraction/refinement schemes for the traces, failures
and failures-divergences models and embedded them into a fully automated and



4 Authors Suppressed Due to Excessive Length

compositional counterexample-guided abstraction refinement framework (CE-
GAR) [10]. An initially coarse abstraction of the system is iteratively refined
(i.e. made more precise) on the basis of spurious counterexamples until either a
genuine counterexample is derived or the property is proven to hold. We exploit
the compositionality of CSP for the stages of initial abstraction, counterexam-
ple validation and abstraction refinement, extending the framework proposed
in [9, 8]. Generally, we adopt lazy refinement strategies that yield coarser ab-
stractions even though it takes a greater number of iterations to converge. Ex-
periments can show performance enhancement when verifying both safety and
liveness properties, as illustrated in Table 2.

Table 2. CEGAR. Times reported are in seconds, with * denoting a 30-minute timeout.
The last column titled ] reports the number of iterations that it takes for CEGAR to
converge. All experiments were performed on a 3.07GHz Intel Xeon processor with
8 GB RAM running Linux Ubuntu.

Property Benchmark FDR CEGAR ]

Trace Milner-10 0 0.03 21
(safety), Milner-20 158 0.07 41

holds Milner-30 * 0.16 61
Milner-100 * 4.42 201
Milner-200 * 40.01 401

Deadlock Mad Postman-3 4 0.03 4
(liveness), Mad Postman-5 * 0.22 4

holds Mad Postman-7 * 1.49 4
Mad Postman-9 * 7.13 4

The columns for FDR represent its use with none of its compression functions
used. Compression can be used effectively on these systems, but of course requires
skill in picking the right compression and compression strategy.

New Semantic Models of CSP. While traces, failures and failures-divergences
remain the most generally used models in FDR, it is sometimes useful to have
the expressive power of richer models. FDR now supports the revivals and re-
fusal testing models [22], together with their divergence-strict analogues. We
eventually hope to support almost the full range of models reported in Chapters
10–12 of [22], including some which support non-strict reasoning about diver-
gence. Compositional reasoning about Timed CSP and priority each require one
of these stronger models.

Divergence-Respecting Weak Bisimulation. The range of compression op-
erators is now augmented with divergence-respecting weak bisimulation (DRWB)
—the largest weak bisimulation which does not identify any immediately diver-
gent node with one that is not. Typically, DRWB does not achieve quite the



Recent Developments in FDR 5

same degree of compression as the combination of strong bisimulation and di-
amond compression, which is frequently used with FDR. However, it has the
great advantage that it is faithful to all CSP models and also inside the priority
operator, something that is not true of diamond compression (which works for
traces and failures based models only). DRWB compression was, for example,
crucial to the efficiency of the timed noninterference work described above.

A Priority Operator. In [22] Roscoe proposed a priority operator for CSP
that would fit within the general operational semantic framework of CSP and
for which the most refined of the abstract semantic models described in that
book would be compositional. It is a generalisation of the timing priority model
that had been used for some time with tock -CSP models of timed systems,
as discussed above. It is an operator which takes a CSP process in which no
actions are intrinsically prioritised and returns another one of the same type. In
theory, we can take any partial order on the actions of an operational semantics:
ordinary visible actions together with the internal τ and termination signal X,
in which the latter two are both maximal. The priority operator then blocks
any action at an operational state when that state has one of higher priority.
We support orders in which there are a number of distinct priority levels—
sets of equal-priority events—that are linearly ordered, with the first of these
sets of events the possibly empty set at the same priority level as {τ,X}. These
levels need not partition the entire alphabet, with any events outside their union
neither blocking nor being blocked by any other. Thus prioritise(P , {}, {tock})
represents the operator that gives τ and X higher priority than tock , with no
other priorities enforced.

This operator was implemented thanks to industrial funding from Verum af-
ter it was discovered [5] that priority plus other CSP operators such as renaming
could be used to determine whether a system can still diverge when we disallow
some infinite τ sequences in which hidden events from a set M are infinitely
often accompanied by offers of events from some set A. This was required for
important availability checks in Verum’s ASD tool [6], which has FDR embedded
as its verification engine.

3 Technical Details, Availability and Usage

FDR is largely written in C++ and runs on Linux, Mac OS X and Solaris on
SPARC. The binaries, as well as a user manual, are available for download from:

http://www.cs.ox.ac.uk/projects/concurrency-tools/.

There are two ways of using FDR: either through its own GUI or through a
command-line interface that is primarily used by other verification tools which
use FDR as a back end. Details can be found in the user manual. Collections of
CSP scripts can be downloaded from http://www.cs.ox.ac.uk/ucs/CSPM.

http://www.cs.ox.ac.uk/projects/concurrency-tools/
http://www.cs.ox.ac.uk/ucs/CSPM


6 Authors Suppressed Due to Excessive Length

References

[1] PAT: Process analysis toolkit. http://www.comp.nus.edu.sg/~pat/.
[2] Uppaal. http://http://www.uppaal.org/.
[3] A. E. Abdallah. Communicating sequential processes: the first 25 years, volume

3525. Springer, 2005.
[4] P. Armstrong, G. Lowe, J. Ouaknine and A.W. Roscoe. Model checking Timed

CSP. In HOWARD, to appear 2012 (Easychair, pub).
[5] P. Armstrong, P. Hopcroft and A.W. Roscoe. Fairness checking through priority.

Submitted for publication, 2012.
[6] G H. Broadfoot and P.J. Hopcroft, A paradigm shift in software development,

Proceedings of Embedded World Conference 2012, Nuremberg. February 29, 2012.
[7] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Sym-

bolic model checking without BDDs. In TACAS, pages 193–207. Springer-Verlag,
1999.

[8] Sagar Chaki, Edmund M. Clarke, Joël Ouaknine, Natasha Sharygina, and Nishant
Sinha. Concurrent software verification with states, events, and deadlocks. Formal
Aspects of Computing, 17(4):461–483, 2005.

[9] Sagar Chaki, Joël Ouaknine, Karen Yorav, and Edmund M. Clarke. Automated
compositional abstraction refinement for concurrent C programs: A two-level ap-
proach. In Electronic Notes in Theoretical Computer Science, volume 89, 2003.

[10] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In CAV’00. Springer LNCS, 2000.

[11] Niklas Eén and Niklas Sörensson. Temporal induction by incremental SAT solving.
In Electronic Notes in Theoretical Compututer Science, volume 89, 2003.

[12] Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. What good are digital
clocks? In ICALP, pages 545–558, 1992.

[13] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall International,
London, 1985.

[14] Gavin Lowe. Breaking and Fixing the Needham-Schroeder Public-Key Protocol
Using FDR. In TACAS ’96, volume 1055 of LNCS, pages 147–166. Springer, 1996.

[15] C.M. O’Halloran. Acceptance based assurance, ASE 2001, IEEE
[16] J. Ouaknine, H. Palikareva, A. W. Roscoe, and J. Worrell. Static livelock analysis

in CSP. In Proceedings of CONCUR 2011, volume 6901 of LNCS, pages 389–403.
Springer, 2011.

[17] Joël Ouaknine. Digitisation and full abstraction for dense-time model checking.
In TACAS. Springer LNCS, 2002.

[18] Joël Ouaknine and James Worrell. Timed CSP = Closed Timed epsilon-automata.
Nord. J. Comput., 10(2):99–133, 2003.

[19] H. Palikareva, J. Ouaknine, and A. W. Roscoe. SAT-solving in CSP trace refine-
ment. Science of Computer Programming, special issue on Automated Verification
of Critical Systems, 2011. In press.

[20] G. Reed and A. W. Roscoe. A timed model for communicating sequential pro-
cesses. Automata, Languages and Programming, pages 314–323, 1986.

[21] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1998.
[22] A. W. Roscoe. Understanding Concurrent Systems. Springer, 2011. http://www.

cs.ox.ac.uk/ucs/.
[23] A. W. Roscoe and Jian Huang. Extending noninterference properties to the timed

world. In Proceedings of SAC 2006, 2006.

http://www.comp.nus.edu.sg/~pat/
http://http://www.uppaal.org/
http://www.cs.ox.ac.uk/ucs/
http://www.cs.ox.ac.uk/ucs/

	Recent Developments in FDR

