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Abstract. We study the computational complexity of model checKitglogic
and modal logic on parametric one-counter automata (POCA). A POCérisa
counter automaton whose counter updates are either integer valuekeérioo
binary or integer-valued parameters. Given a formula and a coafigarof a
POCA, the model-checking problem asks whether the formula is true inghis ¢
figuration for all possible valuations of the parameters. We show thatribtidgmm

is undecidable foEF logic via reduction from Hilbert's tenth problem, however
for modal logic we prové®’SPACE-completeness. Obtaining tiRSPACE upper
bound involves analysing systems of linear Diophantine inequalities ohexpo
tial size that admit solutions of polynomial size. Finally, we show that model
checkingEF logic on POCA without parameters BRSPACE-complete.

1 Introduction

Counter automata, a fundamental and widely-studied modebmputation, consist
of a finite-state controller which manipulates a finite setofinters ranging over the
naturals. A classic result by Minsky states that Turing clengmess can already be ob-
tained when restricting to two counters [17]. Due to thid,feesearch has subsequently
focused on studying restricted classes of counter autoaradarelated formalisms.
Among others, we note the use of restrictions to a single tevjone-counter automata
or OCA for short), restrictions on the underlying structure aé gontroller (such as
flatness [5, 15]), restrictions on the kinds of allowablegem the counters, and on
the types of computations considered (such as reversaideainess [10, 11]). Counter
automata are also closely related to Petri nets and pushdotemata. In recent years,
motivated by complexity-theoretic considerations on the lsand and practical applica-
tions on the other, researchers have investigated degisitalems for counter automata
with additional primitive operations on counters, such dditaive updates encoded in
binary [1, 15] or even inparametricform, i.e,, updates whose precise values depend
on a finite set of parameters [3, 12]. We refer to such counttemaata asuccinctand
parametricrespectively, the former being a subclass of the latterufdatpplications
of such counter automata include the modeling of resouoterbed processes, numeric
data types, programs with lists, recursive or multi-thezhgrograms, and XML query
evaluation; seeg.g, [4,11, 10, 1].

The two most prominent decision problems for counter autaragereachability
and model checkingReachability asks whether there is path between two caafigu
tions in the potentially infinite transition system genedhby a counter automaton. For



counter automata with parameters, this problem genesals@sking whether there
exists a valuation of the parameters such that reachabditys between two configura-
tions in the concrete transition system induced throughdheation. Model checking is
the problem of deciding whether a formula given in some teragogic holds in a con-
figuration of the transition system induced by a counter maton, and when param-
eters are present whether the formula holds in a configuratiall transition systems
induced by all possible valuations. Due to Minsky’s restlilg restriction to aingle
counter is a natural way to potentially obtain decidabifily reachability and model
checking problems. Consequently, in this paper we resiticattention to this class of
counter automata, and in particular investigate modellihggroblems forsuccinct
one-counter automata (SOCAndparametric one-counter automata (POCA)

State of the artReachability is known to bEL-complete for OCA and has recently
been shown to bBIP-complete for SOCA and decidable for POCA [9]. The complex-
ity of model-checking problems for various temporal logiesluding LTL, CTL and
fragments thereof has been studied for OCA, SOCA and POCAimzber of recent
works [20, 8,7, 6,22]. When comparing OCA with SOCA, an exia¢ complex-
ity jump for the model checking problem may arise: b&fhiL and u-calculus model
checking on OCA ar&SPACE-complete [20, 7], whereas for SOCA these problems
areEXPSPACE-complete [20, 6]. However, this jump is not inherent, sifazeexample
model checkind TL is PSPACE-complete for both OCA and SOCA. When parameters
come into play, model checkirlgl'L on POCA isNEXP-complete and becomes unde-
cidable forCTL [6]. In [8], model checking the fragmemidF of CTL on OCA, which
can be seen as an extension of modal logic with a reachapiktyicate, is shown to be
complete folPNP. Despite its relatively limited expressiveneBs,is a useful specifica-
tion language, and in particular bisimilarity checking dierary systems against finite
systems is polynomial-time reducible E& model checking [13].

Our contribution.In this paper, we investigate the decidability and compyjesf
EF and modal logic f1L) model checking on transition systems generated by SOCA
and POCA. As mentioned aboveTL model checking of POCA is undecidable [6],
which is shown by reduction from the reachability problemti@o-counter automata.
In [6], we conjectured thalEF model checking on POCA could be decidable, which
is not unreasonable for two reasons. First, the undecitiapiloof for CTL on POCA
in [6] heavily relies on the use of thentil operator. Second, reachability for POCA
is decidable [9], which is shown via a translation into theumfifier-free fragment of
Presburger arithmetic with divisibility. Since there éx@gtensions of the latter theory
that allow for universal quantification, seeg.[2], and sinceEF primarily allows for
reasoning about reachability relations, it seemed pléisitat an instance of aBF
model-checking problem on POCA could be translated intonéesee in such an ex-
tended theory. Nevertheless, we show in this paper that heba@eking EF logic on
POCA is undecidable via a different reduction, namely froitbétt's tenth problem,
which Matiyasevich showed to be undecidable [16]. On thetipesside, we establish
tight complexity bounds for model checking POCA and SOCAgdarge fragments
of EF. First, by dropping the reachability modality and thus niehg EF to ML, we
show that the model-checking problem for POCA becoRt&#RACE-complete. Obtain-
ing thePSPACE upper bound involves a careful analysis of the size of thetsum sets



OCA SOCA POCA

CTL, p-cal. | PSPACE-complete [7, 20] EXPSPACE-complete [6, 20] 179-complete[6]
EF PNP_complete [7, 8]
ML P-complete [14]

I19-complete

PSPACE-complete

Table 1.Complexity of model checkingF, ML andCTL/modalu-calculus on OCA, SOCA and
POCA.

of certain systems of linear Diophantine inequalities ofeptially exponential size.
Second, when no parameters are present, we shovizfhatodel checking for SOCA
is PSPACE-complete. The main technical challenge is to develop apdeential peri-
odicity property” that characterizes those counter vahteshich anEF formula holds.
Our results are summarized bold font in Table 1, which also summarizes known
results from the literature.

Structure of this papeie introduce basic definitions and notations in Section 2
and present results on model checking POCA in Section 3id®ettdeals with model
checking SOCA before we conclude in Section 5. Due to spauitakions, details of
some proofs are deferred to a full version of this paper.

2 Preliminaries

Throughout this paper, we denote Ny= {0, 1, ...} thenon-negative integerand by

Z theintegers We defin€i, j] g {i,i+1,...,7} and introducds] as an abbreviation
for [1,]. For anyn € N, we denote byg n the smallest € N such that: < 2¢. Given
afunctionf : N — N, we write f(n) = poly(n) (resp.f(n) = exp(n)) if there is some
polynomialp(n) such thatf(n) < p(n) (resp.f(n) < 2P(") for eachn € N.

The Branching-Time Logic EF: Formulas ofEF over a finite seP of atomic propo-
sitionsare inductively defined by the following grammar, whenanges oveP:

pu=pleAe|-p|EXp|EFp.

We define the standard Boolean abbreviatipns’ o def =(=p1 A=pa), p1 — pa def

—p1 Vg andypy <« o def ©1 — w2 A s — 1. Moreover, we define the additional

modalitiesAX¢ . —EX-p andAGy = —EF—-¢. Modal Logic(ML) is obtained from
EF by disallowing theEF operator. AnEF formula ¢ is in negation normal formif
all negation symbols occur only in front of atomic propasis. Thesize|p| of EF
formulasy is defined as usual.

The semantics of aBF formula is given in terms of transition systemstransition
systenil" is a tupleT = (S,P, \,—), whereS is the set ofstates P is a finite set
of atomic propositions) : S — 2F is thestate-labeling functiomnd — C S x S
is thetransition relation We use infix notation fo— and writes — s’ whenever



(T.s)Ep < peXs) (I,s)Epr1Ap2 < (T,s) Eyiand(T,s) = ¢2
(T,s)E~p <= (T,s)Ev (T,s) EEXp <= 3s' € S.(T,s') = pands — s
(T,s) EEFp += 35’ € S.(T,s') E pands —" &’
Table 2. Semantics oEF.

(s,s’) e—. An s-¢’ path g in a transition systenT” is a finite sequence of states
0 : 818y, suchthats = sy, s’ = s, ands; — s;41 forall ¢ € [n — 1], and we
write o : s —* s’ to express thap is ans-s’ path. Table 2 presents the semantics
of EF formulas. Given arkF formulay, a transition systerfi’ and a state € S, the
satisfaction relation{T, s) = ¢ is defined by induction on the structure of and we
sayp holds ats in T'if (T, s) = .

Parametric One-Counter Automata: Let X = {z4,...,z,} denote a finite set of

parametersand letOp der {add(z),add(z) : z € Z,x € X} U {zero} be a set obper-
ations A parametric one-counter automaton (POG8) tupled = (Q, X, P, A, A),
where( is a finite set ofcontrol locations P is a finite set ofatomic propositions
A : Q — 2% is thelocation-labeling functionand A C @ x Op x @ is thetransi-
tion relation A succinct one-counter automaton (SOG&pn POCA withX = 0. We
write ¢ =% ¢’ whenever(q,op,¢') € A. BY nme.(A) we denote the largest absolute

value of all integers occurring in the operations.4f The size|.4| of a POCAA is
defined ag.A| oot |A| + 1g nmas (A). A valuationv : X — Z is a function assign-
ing an integer to each parameter. Given a PQZAa valuation induces a SOCAY
which is obtained by replacing each transitipnw q' with ¢ LGN q'. For
a SOCAA, we denote byl'(A) def (S4,P, A4, — 4) thetransition system induced
def

by A, whereS4 &' Q x N, A\x &' (¢,n) — Ag), and(¢,n) —4 (¢,n') if, and

. . dd
only if, eitherg 20dz), ¢ andn’ =n+z0rq =3 ¢ € Aandn = n’ = 0. For

convenience, we writg(n) instead of(¢, n) for states inS 4. Given two stateg(n) and
q'(n'), reachabilityis to decide whether there existg(@)-¢’'(n') path inT'(A).

Proposition 1 ([9]). Reachability in SOCA islP-complete.

Themodel-checking problefior POCA, and thus for SOCA, is defined as follows:
ML/EF MODEL CHECKING ON POCA
INPUT: APOCAA = (Q,X,P, )\ A), g € Qand anML/EF formula.
QUESTION: Does(T'(A"),q(0)) = ¢ hold for each assignment: X — Z?

We note that deciding whethéT’(A”), ¢(0)) = ¢ holds for each assignmentis the
complement of deciding ifZ'(A"), ¢(0)) = —¢ holds for some assignment

We close this section with an example of a model-checkinglpro. Figure 1 de-
picts a SOCAA; with i € [0,m] for somem € N. Starting in statey;(n) with
n € [0,2m*! — 1], it is easily verified that the statg (0), which is labeled withp;,
is reachable fromy;(n) if, and only if, the coefficient o2’ in the binary expansion



add(—2°) add(—2"1) add(—271) add(—2™)

TN TN TN

i ——> o --- @ > ® > ® >0 --- @ o >z
add(0) add(0) add(—2") add(0) add(0) 2810 p;

Fig. 1. SOCA A, used for testing a bit of a numberc [2™*! — 1].

of n is 1, which is the case if, and only i{,T(A),¢;(n)) = EFp; or alternatively
(T(A), g;(n)) = EX"2p,. Here,EX" 2 is an abbreviation for the: + 2-fold appli-
cation of theEX operator.

3 Model Checking POCA

In this section, we prove that model checkiigon POCA is undecidable (Section 3.1).
We show that foML model checking on POCA is decidable andP8PACE (Section
3.2).

3.1 Model checking EF on POCA

We now consider model checkireF on POCA and show that this problem is-
complete. WithEF being a notational fragment &TL, membership inl7? follows
from the fact thatlCTL model checking on POCA ifl{-complete [6]. Thus, we con-
centrate in this section on a matchidff’-lower bound by giving a reduction from
Hilbert’s Tenth Problem to the complement of the model civegbroblem.

HILBERT'S TENTH PROBLEM (HTP)

INPUT: A polynomialp with coefficients ranging over the integers.
QUESTION: Do there existiy, ..., a, € Z such thap(ay,...,a,) = 0?

HTP was shown to be&J-complete by Matiyasevich [16]. Note thidil P remainsX?-
hard if we restrict they; to range ovelN: A Diophantine equatiop(z1, za, .., z,) =0

is solvable in the integers if, and only if, one of leequation(+x1,...,+x,) =0
has a solution in the naturals. Replacing every unknown tligrsum of squares of four
unknowns gives, by Lagrange’s Theorem, the reduction irother direction.

Moreover, we may assume with no loss of generality that 0 for eachi € [n].

If somea; were to be zero in a solution, we can obtain a new polynopiial n — 1
variables by replacing; with 0 in p.

Let us fix some polynomial with coefficients ranging ovet. We will subsequently
show how we can compute fropa POCAA,, with a control stateg, and arEF formula
¢p Such thap has a solution over the naturals if, and only(if,(A}), ¢,(0)) = , for
somevaluationr of the parameters afl. Recall that the valuation of the parameters
of A, ranges ovelZ. However, we can easily ensure with a simpleformula that a
parameter is positive. For the following SOCA, >



add(1)

<—> ; (T(A7>1),9(0)) = —EFL

q oo ® we have if, and only if,

More challenging than testing if a parameter is positive nvredlucing fromHTP
is that we need to be able to express a multiplication redaticer the parameters in
the POCA. In order to do that, we employ a trick that becameufaoby the work of
Robinson [18] which allows us to define multiplication inrtex of the least common
multiple. In fact givenz, y € N, we have

lem(z +y,z+y+1) —lem(z,z + 1) — lem(y,y + 1)
=@ tr+2ry+yi+y) - (P +a2) - (P +y) = 2y

We note that addition and subtraction of the parameters asityebe realized by in-
troducing additionaslack parameteri the POCA. Thus, we can enhance our POCA
by transitions of the kindub(x), meaning thav/(x) is subtracted from the counter,
provided the counter is at leasfxz). We now demonstrate that for parameterg, =

of some POCA that each assume positive values, which we ek as seen above,
we can “express” irEF thatz = lcm(z, y). Consider the following POCA,,, where
unlabeled transitions are assumed to be labeled with(0)":

sub(z)
(5 zero

o — =~ s el

add(1) /Jb(y)
Alem Q ( zero

° ° e Py

D7 \ib(z)
Q Z€Ero

o — =~ s el

The idea is to express that for all € N, we have that botlr andy divide » if, and
only if, z dividesn. We note that for each : {z,y, 2} — Z with v(x),v(y),v(y) > 1
we have thatT'(A{,.),¢(0))) = AG(p> — ((EFps, A EFp,) < EFp.)) if, and only if,

lem
v(z) = lem(v(z), v(y)).
Thus, by introducing a sufficient number of slack variablgs,can express mul-
tiplication, addition and subtraction, which allows us tve HTP for any arbitrary
polynomial. Thus, we obtain the following theorem.

Theorem 2. Model checkindeF logic on POCA islT?-complete.

We note that by [16] there existdiged universapolynomialp,, (n, k, z1, ..., Tm)
such that for each recursively enumerable$et N, there is somé, € N such that
S={neN|3Ing,...,nym € N: p,(n,ko,n1,...,n,) = 0}. This allows us to
strengthen our result insofar as there existixad EF formula ¢ and afixed POCA

A = (Q,X,P, )\ A) with a transitiong 2ddlw), ¢’ € A and a control state, € Q

such that it isIT-complete to decide for a givenc N whether by replacing with n,
(T'(AY),q0(0)) E @ holds for ally : X — Z.



3.2 Model Checking ML on POCA

This section will be devoted to proving? PACE upper bound for model checkirigL
on POCA. Let us fix some POCA = (Q, X, P, \, A) with X = {z1,...,24}, some
control stategy, € @@ and someML formula «. Providedthat ML model checking of
SOCA is inPSPACE (we show that even model checkig§ on SOCA is inPSPACE
in Section 4.2), in order to obtainRSPACE upper bound, it is sufficient to show that
if (T'(AY),q0(0)) = « holds for somes : X — Z then there is somg : X — Z such
that(T'(A*), ¢(0)) = « and|u(x)| can be represented with polynomially many bits in
|A| + |a| for eachr € X, since such an assignment can be guess@8RACE.

For eachy € @ and each subformula of «, let us defineM(q, ) C Z* x N C
74+ as follows:

M(g.9) E {(z15- ., 20m) | (T(AY),q(n)) @ andu(z;) = zi,i € [1, 4}

Before we proceed with the proof of the upper bound, we neédttoduce some ad-
ditional notation. For an integer matrit = (a;;) € Z™*", we denote by|A| =

max;{)_; [a;;|} the norm ofA. For an integer vectoh = (b;), we denote byjb| =
>, |bi| the norm ofb. A system of linear Diophantine inequalities (SLM¥)a system
of the formS = (AZ > b), whereA € Z™*" is anm x n matrix,b € Z™ is anm-
vector andr is ann-vector of indeterminates all ranging over the integersSBY.S),

we denote the set dfiteger solutiongo the SLDIS = (AZ > b). Finally, we define

def def | 7,
|SImat = [ Al and|S|vec = [b].

Recallthatey, . . ., z, are the parameters gf. Our overall goal is to expresst (¢, )
by aunionof solutions to SLDIs, each of the form

-,

S=(AZ>0b), whered e Z™* D) andb € Z™ for somem > 1.

In the remainder of this section, we will assume for doyc > 5) that A is some
m x (¢ + 1) matrix andb is somem-vector for somen > 1. The intuition is that the
i component ofr with i € [¢] is going to correspond to the parametgrof A and
the (¢ 4+ 1) component off is going to correspond to the counter value whereMte
formula is evaluated. In casé = (a,;) we define| A1 o max{|a;41y| : @ € [m]}

and lift this definition to]S]e1 = |Aes1.

In order to prove that small valuations: X — Z suffice for«, we are now going
to prove that for each € @ and each subformula of «, we have

M(q,a) = U Sol(S;)

el

for some index sef with |S;|mar = poly(|e]) and |Si|vec = poly(J¢|) - exp(].A])
for eachi € I. Once this fact has been established, we will show that eREH S;
admits solutions that can be represented using polynommehy bits in|.A| + |«/, thus
establishing the desired upper bound on necessary vaisaifdhe parameters of.
We require some additional notation that, together with ghbsequent lemma,
will be useful for proving the existence of sets of SLDIs ofri@l” size for each



M(q.¢). LetH C Z+'. We definell — oy & {(z1,.... 2, 2001 — ) € 27 |

(21,...,2e41) € H} foreachk € [(] andH — z oo {(21,. .., 20,2001 — 2) € Z'F |

(21,...,2¢41) € H} for eachz € Z. The following lemma states that solutions to
SLDIs are closed under the operations;, and —z and gives bounds on the blow-up
of the introduced norms. We remark that we do not require fatidfe variant of this
lemma to establish ol*'SPACE upper bound.

Lemma 3. LetS = (AZ > b) be an SLDI withA = (a;;) € Z™*¢*+1, Then the
following holds:

(1) For eachk € [{] there is some SLD$’ with Sol(S’) = Sol(S) — xg, |S'|mar <
|SImat + [Sles1, IS le41 = [Slers, and |5 vee = |Svec

(2) Foreach: € Z, there is some SLIA’ with Sol(S’) = Sol(S)—2z, |S’ |mat = | S| mat
IS o1 = [Sler1, and S vee < [Slvec+ IS [ev1 - |21
Proof. Let us assumé = (b;). For Point (1), letc € [1,/]. For each(zy, ..., zp41) €

71 we have

(21, ., 2041) € Sol(S) — .
(#1,- -, 20, 2041 + 21) € Sol(S)

!

!

VZ S [Lm] . Z aij . Zj + ai(g+1) (Zerl + Zk) 2 bl
JE[1,4]

— Vi€ [l,m] : (U,ik + ai(ul))zk + Z Qij * 2j 2 b;

jE[l,[+1],
ik

We can thus define the matriA’ = (a;;), wherea;; = a;; if j # k anda;; =
aij + a;41) if j = k, for eachi € [1,m]. We putS’ = (A'Z > b) and we just
provedSol(S’) = Sol(S) — xi. Moreover, it hold§ S’ |mat = | 4’| < |A] + |A]e+1 =
[Shmat + 1S ]ex1, [Sle+1 = [Alesr = [Sletr, and][S'fvee = [6] = |S]vec

Point (2) is shown analogously. O

We are now ready to prove the desired lemma.

Lemma 4. For everyg € @ and every subformula of « in negation normal form, we
have M(q, p) = U, Sol(S;), wherel is some index set and ead is some SLDI
With [Silmar < o], [Sillera < 1, [Silvee < (nmax(A) +1) - ool

Proof. We prove the lemma by structural induction gn

Caseyp = p for somep € P (the casep = —p is dual).

First, let us assume € \(q). ThenM(q, ¢) = Z* x N, which can be described by
the solutions to the single SLIN &' (47 > b) with b £ G andA &' (a;;) € Z1*¢+D
with a1; 20 for eachj € [1,4] anday ;1) £ 1. Note that|S|mar = [A] = 1 = |4,
[Se41 = [Alesr = 1, and|S[vee = [b] = 0 < (nmaA) +1) - [¢]-



In casep ¢ A(q), we haveM(q,¢) = 0, which we express as the solutions of

-

the SLDIS = (A% > b), whereA is 1 x (£ + 1) zero matrix and &' 1. We have
|Slmat = |A] =0 < 1 = ||, [Sle+1 = [Ale+1 = 0 < 1, and|S|vec = [b] = 0 <
(nmad(A) +1) - [o].

Casep = 1 V ¢": By the induction hypothesis we havet(q, v)) = [J;; Sol(S;) for
some index sef and for SLDIS;, for eachi € I andM(q,9") = |J;c Sol(S;) for
some index sef’ and for SLDIS], for eachi € I’. Obviously we can writeV(q, ¢)
aslJ,;c; Sol(S;) U U, Sol(S;) and the bounds on the norms easily carry over from
induction hypothesis.

Casep = 1 A ¢": By induction the hypothesis we havel(q, v)) = (U, Sol(S;) for
some index sef and for SLDIsS;, for eachi € I andM(q,v") = U, Sol(S;) for

some index sef’ and for SLDIsS], for eachi € I'. Let us assumé; = (A;7 > b;)

for eachi € I andS! = (Al7 > bZ) for eachi € I’. We define the matrix,;, %' (j“‘j)
b;

and the vectow;;s def (b ) for eachi € I and each’ € I’. Obviously, we have
M(q, ) = M(q,%) N M(q,¢") = Uierirer Sol(Ain > byir). Again, the bounds
on the norms immediately carry over from induction hypoihes

Caseyp = AXy: By the induction hypothesis, we havel(q', ) = ;< , Sol(Si¢)

for some SLDIsS; , for eachg’ € Q. Let us assume thal; ,, = (A; @ > b, /) for
eachi € I, and eachly’ € Q. Before giving the translation, we need to introduce some
auxiliary SLDISS, . andS,, for eachz € Z, eachk € [¢] and each € {<,>, <, >}
such that

Sol(S..) = {(21, ..., 2041) € ZT1 | 2041 0 2} and

Sol(Sozy.) = {(21, -+ 2041) € ZV | 241 0 21}

For z € Z, we only giveS,, for o ="<”, the remaining cases far can be defined
analogously. We puS.. &' (A7 > b), whereA &' (a1;) € ZY¥UHD with ay %y if

J € [f] anday(o11) %1, and finallyb o (—z + 1) since over the integers we have

zey1 < zif,and only if, zp; < z — 1if, and only if, —z,11 > —z + 1. Observe that
IS0z lmat < 1, [Sozfer1 < 1, and|So. Jvec < |2| + 1 for eacho € {<, >, <, >}.
Likewise, we defineS,,, for o ="<*, the other cases fos can be dealt with

analogously. The reader easily verifies that one can define ger (CZ > d) with

C = (e1;) € ZXE D with ¢y €' 1if j =4, 00y E ~11if j = £+ 1, andey; €0

otherwise. Moreover, we p&dﬁf(l). Observe thafSo ., [mat < 1, [Soz le+1 < 1, and
[Soxy Ivec < 1 for eacho € {<, >, <, >}. We now define

M(g¢) ESol(S20)n [ | Sol(S<,) U | (Sol(Sig) — )
LI NPN i€l
YyeELUX
In the same fashion as for disjunction and conjunction, weesgress the right-hand
side of the latter equality as a union of SLDIs. Note that iis thodification process



the number of rows of the matrix may change, beitherdo the norms of the matrices
nor the norms of the vectors of the systems. The reader easiljegethat the| - |mar
|- les1, and| - Jvec Norms of each auxiliary SLDI satisfy the bounds required iy t
lemma. Hence, in order to bound the norms of the SLDI that oiccthe final union, it
suffices to bound the norms of each SL®such thatol(S) = Sol(S; ,) —y for some

¢ € @, somei € I, and some; 2dd), q € A, wherey € Z U X. To this end, we

apply Lemma 3 by distinguishing betwegre Z andy € X.
If y = x4 for somek € [¢],i.e.y € X, we obtain the following bounds by Point (1)
of Lemma 3:

Lemma 3 (1) IH
= [Slmat < JAig |+ 1Aig lera <[]+ 1 =],
— 181 M3 PA, [ < 1, and
— 18Tvee M V1| S (sl A) + 1) - [] < (manlcA) + 1) - [
In casey € Z, we obtain the following by Point (2) of Lemma 3:

Lemma 3 (2) H
= ISlmat =" Ai g | < 0] < o],

L 3(2 H
~ 8l "= P)4; g |41 <1, and

emma3(2) IH
— [Slvec < 10| + [Ai g lev1 -yl < (nmadA) + 1) - [ + 1+ nmax(A) <
(nmaxl(A) + 1) - ¢

Caseyp = EX4. By induction hypothesis, we havet(q’, ) = U,c; , Sol(Si,q) for

some SLDIsS; , for eachy’ € Q. Let us assume tha; ,, = (A; & > b; ) for each
i € Iy and eacly’ € Q. We define

M) EsolSso)n | | U Sol(Sig) —v)

add(y) icl,
—

q qgeA

The analysis of the sizes of the norms can be proven analygasifor the case =
AXa. O

The following lemma from [19] states that solvable SLDIs énamall solutions
whose norm is independent on the number of rows of the SLDI.

Lemma5 ([19], p. 239).Each solvable SLDHZ > b has a solution of norm at most
poly([[A] + [b])-

Let us return to our original formula. By Lemma 4, there exists some SLB)
such thatM(qo, @) = Sol(S;), and wherg|S;|mar < || and|Sifvec < (Pmax(A) +
1) - |a|. Since we are interested(iT’(A"), ¢o(0)) = « for somev : X — Z, think of
adding to each matrix that occursst two more rows expressing thag,; = 0. Let us
call the resulting SLDIS;. By Lemma 5, we know that i/ is solvable, thers! has a
solution of norm at mostoly (nmax(\A) + |a|). In other words, i T'(A"), ¢0(0)) E «
for somev : X — Z, then(T(A"),q0(0)) | « already holds for somg : X — Z
andp(xz) is polynomially bounded ifn4| + || for eachz € X.

Hence, we obtain the following theorem.

10
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Fig. 2. SOCA A constructed for simulating the QBF formula

g

Theorem 6. ML model checking for POCA is iRSPACE.

4 Model Checking SOCA

In this section we prove that model checkilll. on SOCA isPSPACE-hard (Section
4.1) and that model checkirieF on SOCA is inPSPACE (Section 4.2).

4.1 Model checking ML on SOCA

PSPACE-hardness oML model checking on SOCA follows from a straight-forward
reduction from QBF.

Proposition 7. Model checkingviL on SOCA i?SPACE-hard.

Proof. We give a reduction from QBF. Let = Jz1Vxy - - - 3z, 8(x1,. .., 2,) be an
instance of QBF. Without loss of generality, we can assuragghs in 3-CNF,i.e.,
of the formg3 = /\ie[m] 3;, where each clausé; consists of three literals, s =
(4;, V €, V ¢;,). We construct in polynomial time a SOCA = (Q,P, A\, A) and
an ML formula ¢ such that for some, € @ we have that is valid if, and only if,
(T(A), q0(0)) E . We defineP = {p: | i € [n]}. The states and transitions dfare
given in Figure 2, where the SOCA, is taken from Figure 1. Finally, we defineto
be theML formula that is obtained by replacing eagh; from « with EX, eachvz;
with AX, and each literad;, with EX"?p, if ¢;, = x;, and—EX""?p, if ¢;, = 77,.
It is easily verified thatv is valid if, and only if,(T'(A), ¢o(0)) = ¢. O

4.2 Model checking EF on SOCA

In this section, we are going to show tt&t model checking on SOCA is iRSPACE,
and henc®SPACE-complete by Proposition 7. To this end, let us fix some SOCA
(Q,P, \,d). Our result is based on the following lemma, which expregse®dicity
properties of reachability relations j#.

Lemma 8. There are naturals, ¢, § = exp(].A|) with e > nmax.A) such that for each
n,n',m,m’ > 7 withn = n’ modé andm = m’ mod¢ the following statements hold
for eachq, ¢’ € Q:

11



(1) fm+e <nandm’ + ¢ < n/, theng(n) —7 ¢'(m) if, and only if,g(n') —7%
q'(m').

(2) f m > n+ecandm’ > n' + ¢, theng(n) —7 ¢'(m) if, and only if,g(n’) —7%
q'(m").

Section 4.3 will be devoted to sketching a proof of Lemma &ukse the constants

e andé from Lemma 8 to be fixed for the rest of this section. Let us @efifi(q, ¢) =

{n e N: (T(A),q(n)) = ¢} for each control state € ) and eactEF formulay over
P. For thePSPACE upper bound, we will show tha1 (g, ¢) is ultimately periodic with
periodé.

Lemma 9. If n = n’ modd, thenn € M(q, ¢) if, and only if,n’ € M(q, ), for each
control stateg € ), eachEF formulap overP and eachn,n’ > 7+ || - & + 4.

Proof. Without loss of generality assumgé > n. We show(T'(A), ¢(n)) & ¢ if, and
only if, (T'(A),q(n + 6)) = ¢ by induction on|p|, from which the statement will
follow. We only consider the most interesting cages EXy’ andyp = EFy’, the other
cases are easy.

If o = EX¢’, we have(T'(A), ¢(n)) | ¢ if, and only if, there is some’ € @ and

z € Zsuch thay 2d() ¢ € Aand(T(A),q (n+z)) E ¢'. Sincen+z > 7+|¢'|-e+94,
the induction hypothesis yield9'(A), ¢'(n + 2)) = ¢’ if, and only if, (T'(A), ¢'(n +
z+9)) E ¢'. Hence(T(A), q(n)) = EXy' if, and only if, (T'(A), g(n + §)) = EX¢'.
If o = EFy’, we have(T'(A), q(n)) | ¢ if, and only if, there arg’ € Q, m € N
andp such thatp : ¢(n) —% ¢'(m) and(T(A),q(m)) = ¢'. Supposen > 7 +
|¢'| - € + § and no counter value less tharoccurs along, so in particular there is
no zero test along. The induction hypothesis yieldd'(A), g(m + §)) = ¢, and by
shifting ¢ by 4 the existence of a pathl : g(n + §) —% ¢(m + ) follows, hence
(T(A),q(n +9)) = EFy’. Otherwise, ifm < 7 + |¢'| - € + J or a counter value less
thano occurs along, Lemma 8, Point (1) guarantees that) —* ¢'(m) if, and only
if, g(n +0) —% ¢'(m), which again allows us to conclude that(.A), ¢(n)) = EFy'.
The direction(T'(A), g(n)) = ¢ implies(T(A), g(n + 0)) = ¢ follows analogously.
O

Theorem 10. EF model checking of SOCARSPACE-complete.

Proof. PSPACE-hardness has already been established in Section 4.1h&apper
bound, Algorithm 1 is an alternating algorithm that decid&§.4),¢(n)) = ¢ in
PSPACE. For brevity, the caseg = AXy' andy’ = AGy’ have been left out, they
are defined complementary to th&K respectivelyEF counterparts. We only sketch
correctness of the cage= EF¢’ by induction on||, all other cases are obviously cor-
rect. Letm = maz{n+ec+4,7+|¢'| €+ }. Supposd’(A), q(n)) = EF¢/, there is
someq’(n') such thay(n) —% ¢'(n") and(T'(A),¢'(n")) = ¢'. If n’ > m, Lemma
9 guarantees that thereq#$ € [0,m] such thatl'(A), ¢'(n”)) E ¢’, and Lemma 8,
Point (2) yieldsg(n) —%* ¢'(n”), which by Proposition 1 can be checkedNR. By
the induction hypothesis, Algorithm 1 returtrae on inputg’(n”) and¢’, which con-
cludes the correctness proof. O
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Algorithm 1 Fragment of th&€F SOCA model checking algorithm

Input: EF formulap, configurationg(n) of A
casep = p: return p € A(q)
casep = —p: return p ¢ A(q)
casep = 1 A pat retum (T(A), q(n)) = @1 and(T(A), q(n)) |= o2
casep = o1 V ot retum (T(A),q(n)) 1 0f (T(A),q(n)) | o2
casep = EXy': existential move
chooseg =% ¢ € A
caseop = add(z): return (T(A),q'(n+2)) E ¢’
caseop = zero andn = 0: return (T'(A),q'(0)) = ¢’
casep = EFy': existential move
choosey’ (m) such thay(n) —7% ¢'(m) andm € [0, maz{n+e+3, 7+|¢'|-e+3}]
retun (T'(A),q'(m)) | ¢’

4.3 Proof Sketch of Lemma 8

In this section, we give a proof sketch of Lemma 8 which watsdpén in the previous
section. The technical details are deferred to a full versicthis paper.

On a technical level, it is helpful to view SOCA agighted graphsan approach
also used in [9]. Given a SOCA, its corresponding weighted grapgh, is obtained by
removing allzero-labeled edges from, and for every edge labeled withld(z), G 4
has an edge labeled with Thus, we can assign any pathn G 4 aweightw(r) and
adrop d(n), which is the smallest weight of all prefixes of This allows us to relate
runs inT'(A) with paths inG 4: there is a zero-test free rusin) —% ¢/(n’) if, and
only if, there is a pathr from g to ¢’ in G 4 with w(w) = n’ — n andd(w) > —n.

Let us fixa SOCAA and its corresponding gragh In order to prove the periodicity
properties expressed in Lemma 8, we will use cycle&€im order to construct paths
whose weight is periodic for some periéd For a start, let us concentrate oycles
in G with negative weightGiven a strongly connected component (SG0h G, we
defineged S as greatest common divisor of the set of all weights of alpléree cycles
in S. Note thatged S = exp(].A]). It is easy to check thajcd S divides the weight of
every cycle that runs through, soged S could potentially serve as a period. However,
if the weights of all cycles in5 have the same sign, we cannot necessarily construct
a cycle whose weight is an arbitrary multiplegfd S. For example, le{5, 7} be the
set of all weights of simple cycles in some SGCwith S = {q} for someq € Q.
We haveged S = 1, however there is no cycle in S with, say,w(w) = 23. This
obstacle is related to therobenius problemwhich is stated as follows [21]: given
x1 < ... < x, € Nsuch thatged{z1,...,z,} = 1, what is thelargestg € N such
that g cannot be represented as non-negative integer linear ocatidn of thex;. It
is shown in [21] thaly < 2. Thus in our example, this fact guarantees that there is
a g-cycler with w(w) = m for everym > 49. The preceding observations allow us
to conclude that once a certain threshold is crossed, wepeniadicity of weights of
cycles in an SCC.

Lemma 11. There exists docal thresholdy € N such thaty = exp(|.A|) and for all
w,w’ < —yandq € @ such thatw = w’ mod (ged S) for some SCCS such that
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q € S, whenever there existsgacyclen with w(m) = w then there existg-cyclern’
with w(7') = v’ andd(n’) > w(n’) — 7.

Proving this lemma involves some tedious analysis of patlis, but it is not too com-
plicated. Note that the drop af does not get too large. We can now generalise Lemma
11 to arbitrary paths, and we define thgobal periods as the least common multi-
ple of ged S of all SCCs inG. It is easily checked that = exp(].4|). Now consider

an arbitraryg-¢’ pathw in G with negative weight. If we find @”-cycle =’ along =

with w(n’) < —v, we can invoke Lemma 11 in order to obtairy’acycle 7’ with
w(7") = w(n”) mod §. Thus, by using a counting argument on the number of con-
trol locations of A, we can define global thresholds = exp(].4]) that guarantees the
existence of such a cycle. This allows us to state a variabheofma 11 for arbitrary
paths:

Lemma 12. For all w,w’ € Z such thatw,w’ < —e andw = w’ mod §, whenever
there exists @-¢’ path with w(w) = w then there exists g-¢’ path7’ with w(7") =
w’' andd(7") > w(n') — 7.

We can now “re-import” the observations made for paths ingivieid graphs to

paths inT(A) and sketch how to prove Lemma 8. To this end, we defin€' 2.
Regarding Point 1 of the lemma, we have thét.{n,n’'} — min{m, m’} > . Lemma

12 thus guarantees the existence of a pathith w(w) = n — m if, and only if,
there is a pathr’ with w(#’) = n’ — m/. Sinced(r) > w(r) — 7 andm > 7, the
existence of a rug(n) —7% ¢'(m) is guaranteed. The same argument yields a run
q(n') —% ¢'(m'). Finally regarding Point 2, by using a symmetry argumentcese
get a similar statement as in Lemma 12 for paths with positiggght that exceed.

The existence of the desired runs then follows from an argusieilar to Point 1.

5 Conclusion

We have strengthened our results from [6] and have provedntbdel checking the
CTL fragmentEF on POCA is undecidable via reduction from Hilbert's tentlokpr
lem. We showed that, when dropping the reachability mogalie regain decidability:
Model checkingML on POCA isPSPACE-complete, which was proved by showing
the existence of small solutions for a class of systems eéliDiophantine inequalities
whose matrix norm is small. We showed that it is aRSPACE-complete to model
check EF on SOCA by establishing an exponential periodicity propdittis inter-
esting to mention that, in contrast @I'L, one can avoid an exponential complexity
jump for EF and ML when model checking SOCA. More precisely, model checking
EF (respectivelyML) is PNP-complete (respectivelp-complete) on OCA, whereas it
is PSPACE-complete for SOCA.
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