Completeness and Complexity of Bounded
Model Checking *

Edmund Clarke! Daniel Kroening! Joél Ouaknine! Ofer Strichman?

! Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA
emc | kroening|ouaknine@cs.cmu.edu
2 Faculty of Industrial Engineering, Technion, Haifa, Israel
ofers@ie.technion.ac.il

Abstract. For every finite model M and an LTL property ¢, there ex-
ists a number C7 (the Completeness Threshold) such that if there is no
counterexample to ¢ in M of length C7 or less, then M = ¢. Finding
this number, if it is sufficiently small, offers a practical method for mak-
ing Bounded Model Checking complete. We describe how to compute
an over-approximation to C7 for a general LTL property using Biichi
automata, following the Vardi-Wolper LTL model checking framework.
Based on the value of C7, we prove that the complexity of standard
SAT-based BMC is doubly exponential, and that consequently there is
a complexity gap of an exponent between this procedure and standard
LTL model checking. We discuss ways to bridge this gap.

The article mainly focuses on observations regarding bounded model
checking rather than on a presentation of new techniques.

1 Introduction

Bounded Model Checking (BMC) [2, 3] is a method for finding logical errors, or
proving their absence, in finite-state transition systems. It is widely regarded as
a complementary technique to symbolic BDD-based model checking (see [3] for
a survey of experiments with BMC conducted in industry). Given a finite tran-
sition system M, an LTL formula ¢ and a natural number k, a BMC procedure
decides whether there exists a computation in M of length k or less that violates
. SAT-based BMC is performed by generating a propositional formula, which
is satisfiable if and only if such a path exists. BMC is conducted in an iterative
process, where k is incremented until either (i) an error is found, (ii) the prob-
lem becomes intractable due to the complexity of solving the corresponding SAT
instance, or (iii) k reaches some pre-computed threshold, which indicates that

* This research is supported by the Semiconductor Research Corporation (SRC) under
contract no. 99-TJ-684, the National Science Foundation (NSF) under grants no.
CCR-9803774 and CCR-0121547, the Office of Naval Research (ONR) and the Naval
Research Laboratory (NRL) under contract no. N00014-01-1-0796, and the Army
Research Office (ARO) under contract no. DAAD19-01-1-0485.

M satisfies . We call this threshold the Completeness Threshold, and denote it
by CT. CT is any natural number that satisfies

ME.,p—=MEep

where M =,, ¢ denotes that no computation of M of length CT or less violates
@. Clearly, if M = ¢ then the smallest CT is equal to 0, and otherwise it is
equal to the length of the shortest counterexample. This implies that finding the
smallest CT is at least as hard as checking whether M = ¢. Consequently, we
concentrate on computing an over-approximation to the smallest C7 based on
graph-theoretic properties of M (such as the diameter of the graph represent-
ing it) and an automaton representation of —¢. In particular, we consider all
models with the same graph-theoretic properties of M as one abstract model.
Thus, this computation corresponds to finding the length of the longest shortest
counterexample to ¢ by any one of these graphs, assuming at least one of them
violates ¢!. Thus, when we say the value of CT in the rest of the paper, we refer
to the value computed by this abstraction.

The value of CT depends on the model M, the property ¢ (both the structure
of ¢ and the propositional atoms it refers to), and the exact scheme used for
translating the model and property into a propositional formula. The original
translation scheme of [2], which we will soon describe, is based on a k-steps
syntactic expansion of the formula, using Pnueli’s expansion rules for LTL [8,
12] (e.g., Fp = p vV XFp). With this translation, the value of CT was until now
known only for unnested properties such as Gp formulas [2] and Fp formulas
[11]. Computing C7 for general LTL formulas has so far been an open problem.

In order to solve this problem we suggest to use instead a semantic translation
scheme, based on Biichi automata, as was suggested in [6]2. The translation is
straightforward because it follows very naturally the Vardi-Wolper LTL model
checking algorithm, i.e., checking for emptiness of the product of the model
M and the Biichi automaton B-,, representing the negation of the property ¢.
Non-emptiness of M x B, i.e., the existence of a counterexample, is proven by
exhibiting a path from an initial state to a fair loop. We will describe in more
detail this algorithm in Section 3. Deriving from this product a propositional
formula (2, (k) that is satisfiable iff there exists such a path of length k or less
is easy: one simply needs to conjoin the k-unwinding of the product automaton
with a condition for detecting a fair loop. We will give more details about this
alternative BMC translation in Section 4. For now let us just mention that due
to the fact that {2,(k) has the same structure regardless of the property ¢, it
is easy to compute C7 based on simple graph-theoretic properties of M x B—,.
Furthermore, the semantic translation leads to smaller CNF formulas comparing
to the syntactic translation. There are two reasons for this:

L If this assumption does not hold, e.g., when ¢ is a tautology, the smallest threshold
is of course 0.

2 The authors of [6] suggested this translation in the context of Bounded Model Check-
ing of infinite systems, without examining the implications of this translation on
completeness and complexity as we do here.

1. The semantic translation benefits from the existing algorithms for construct-
ing compact representations of LTL formulas as Biichi automata. Such op-
timizations are hard to achieve with the syntactic translation. For example,
the syntactic translation for FFp results in a larger propositional formula
compared to the formula generated for Fp, although these are two equivalent
formulas. Existing algorithms [14] generate in this case a Biichi automaton
that corresponds to the second formula in both cases.

2. The number of variables in the formula resulting from the semantic transla-
tion is linear in k£, comparing to a quadratic ratio in the syntactic translation.

This paper is mainly an exposition of observations about bounded model check-
ing? rather than a presentation of new techniques. In particular, we show how
to compute C7 based on the semantic translation; prove the advantages of this
translation with respect to the size of the resulting formula as mentioned above,
both theoretically and through experiments; and, finally, we discuss the question
of the complexity of BMC. In Section 5 we show that due to the fact that CT
can be exponential in the number of state variables, solving the corresponding
SAT instance is a doubly exponential procedure in the number of state variables
and the size of the formula. This implies that there is a complexity gap of an
exponent between the standard BMC technique and LTL model checking. We
suggest a SAT-based procedure that closes this gap while sacrificing some of
the main advantages of SAT. So far our experiments show that our procedure
is not better in practice than the standard SAT-based BMC, although future
improvements of this technique may change this conclusion.

2 A translation scheme and its completeness threshold

2.1 Preliminaries

A Kripke structure M is a quadruple M = (S,I,T, L) such that (i) S is the set
of states, where states are defined by valuations to a set of Boolean variables
(atomic propositions) At (ii) I C S is the set of initial states (iii) 77C S x S is
the transition relation and (iv) L: S — 2(4% is the labeling function. Labeling
is a way to attach observations to the system: for a state s € S the set L(s)
contains exactly those atomic propositions that hold in s. We write p(s) to denote
p € L(s). The initial state I and the transition relation T' are given as functions
in terms of At. This kind of representation, frequently called functional form,
can be exponentially more succinct comparing to an explicit representation of
the states. This fact is important for establishing the complexity of the semantic
translation, as we do in Section 4.

Propositional Linear Temporal Logic (LTL) formulas are defined recursively:
Boolean variables are in LTL; then, if @1, 92 € LTL then so are Fy; (Future),
Gp1 (Globally), X¢1 (neXt), o1 Ups (@1 Until p2) and o1 Wps (1 Waiting-for
©2), p1V p2 and —p1.

3 Some of these observations can be considered as folk theorems in the BMC commu-
nity, although none of them to the best of our knowledge was previously published.

2.2 Bounded Model Checking of LTL properties

Given an LTL property ¢, a Kripke structure M and a bound k, Bounded
Model Checking is performed by generating and solving a propositional formula
Qu(k) : [M)|, N[=]|, where [M], represents the reachable states up to
step k and [-], specifies which paths of length k violate . The satisfiability
of this conjunction implies the existence of a counterexample to ¢. For example,
for simple invariant properties of the form Gp the BMC formula is

k—1 k
(k) = I(s0) A N\ T(si.sit1) A\ =p(s0),
1=0

i=0
where the left two conjuncts represent [M]|, and the right conjunct represents
[~ 1

There are several known methods for generating [—¢], [2,3,7]. These
translations are based on the LTL expansion rules [8,12] (e.g., Fp = p VvV XFp
and Gp = p A XGp).

In the rest of this section we consider the translation scheme of Biere et al.
[3] given below. This translation distinguishes between finite and infinite paths
(for the latter it formulates a path ending with a loop). For a given property, it
generates both translations, and concatenates them with a disjunction.

Constructing a propositional formula that captures finite paths is simple. The
formula is expanded k times according to the LTL expansion rules mentioned
above, where each subformula, at each location, is represented by a new variable.
For example, for the operator F, the expansion for i <k is [Fe [} :==[¢ [v
[Fo Ji and for i > k [Fy]|}, := FALSE. Similar rules exist for the other
temporal operators and for the propositional connectives.

To capture paths ending with a loop (representing infinite paths) we need to
consider the state s; (I < k), which the last state transitions to. The translation
for the operator F for such paths is: ,[Fe [} == ,[¢ I. v ,[Fo 3" where
succ(i) =i+ 1 if i < k, and succ(i) = | otherwise.

Finally, in order to capture all possible loops we generate Vf:o(LNy]]2)
where Ly = (s; = si), i.e., an expression that is true iff there exists a back
loop from state sy to state s;. Each expression of the form ;[¢]|} or [¢]} is
represented by a new variable. The total number of variables introduced by this
translation is quadratic in k. More accurately:

Proposition 1. The syntactic translation results in O(k - [v| + (k + 1)% - |¢])
variables, where v is the set of variables defining the states of M, i.e., |v| =
O(log |S]).

Proof. Recall the structure of the formula 2,(k) : [M], A [=¢ J|- The sub-
formula [M]|, adds O(k-|v|) variables. The sub-formula [[=]|, adds, according
to the recursive translation scheme, not more than (k+1)2-|p| variables, because
each expression of the form [[¢]]ﬁc is a new variable, and both indices i and [
range over (... k. Further, each subformula is unfolded separately, hence leading
to the result stated above.

2.3 A completeness threshold for simple properties

There are two known results regarding the value of C7, one for Gp and one for
Fp formulas. Their exposition requires the following definitions.

Definition 1. The diameter of a finite transition system M, denoted by d(M),
is the longest shortest path (defined by the number of its edges) between any two
reachable states of M.

The diameter problem can be reduced to the ‘all pair shortest path’ problem,
and therefore be solved in time polynomial in the size of the graph. In our case,
however, the graph itself is exponential in the number of variables. Alternatively,
one may use the formulation of this problem as satisfiability of a Quantified
Boolean Formula (QBF), as suggested in [2], and later optimized in [1,13].

Definition 2. The recurrence diameter of a finite transition system M, denoted
by rd(M) is the longest loop-free path in M between any two reachable states.

Finding the longest loop-free path between two states is NP-complete in the size
of the graph. One way to solve it with SAT was suggested in [2]. The number of
variables required by their method is proportional to the length of the longest
loop-free path. Hence, the SAT instance may have an exponential number of
variables, and finding a solution to this instance is doubly exponential.

We denote by d!(M) and rd’ (M) the initialized diameter and recurrence
diameter, respectively, i.e., the length of the corresponding paths when they are
required to start from an initial state.

For formulas of the form Fp (i.e., counterexamples to G—p formulas), Biere et
al. suggested in [2] that C7 is less than or equal to d(M) (it was later observed by
several researchers independently that in fact df (M) is sufficient). For formulas
of the form Gp formulas (counterexamples to F—p formulas), it was shown in
[11] that CT is equal to rd’(M). Computing CT for general LTL formulas, as
was mentioned in the introduction, has so far been an open problem.

In the next section we review how LTL model checking can be done with
Biichi automata. In Section 4 we will show how a similar method can be used
for generating 2, (k).

3 LTL model checking with Biichi automata

In this section we describe how model checking of LTL formulas can be done
with Biichi automata, as it was first introduced by Vardi and Wolper in [15]. A
labeled Biichi automaton M = (S, Sy, d, L, F) is a 5-tuple where S is the set of
states, Sp C S is a set of initial states, § C (S x S) is the transition relation,
L is a labeling function mapping each state to a Boolean combination of the
atomic propositions, and F' C S is the set of accepting states. The structure
of M is similar to that of a finite-state automaton, but M is used for deciding
acceptance of infinite words. Given an infinite word w, w € L(M) if and only if
the execution of w on M passes an infinite number of times through at least one

of the states in F. In other words, if we denote by inf(w) the set of states that
appear infinitely often in the path of w on M, then inf(w) N F # (.

Every LTL formula ¢ can be translated into a Biichi automaton B, such
that B, accepts exactly the words (paths) that satisfy ¢. There are several
known techniques to translate ¢ to B,[9]%. We do not repeat the details of this
construction; rather we present several examples in Fig. 1 of such translations.

'
N
N N
© ©
FGf GFf Ff Gf

Fig.1. Several LTL formulas and their corresponding Biichi automata. Accepting
states are marked by double circles.

LTL model-checking can be done as follows: Given an LTL formula ¢, con-
struct B-, a Biichi automaton that accepts exactly those paths that violate (.
Then, check whether ¥ = M x B-, is empty. It is straightforward to see that
M E o if and only if ¥ is empty. Thus, LTL model checking is reduced to the
question of Biichi automaton emptiness, i.e., proving that no word is accepted
by the product automaton ¥. In order to prove emptiness, one has to show that
no computation of ¥ passes through an accepting state an infinite number of
times. Consequently, finding a reachable loop in ¥ that contains an accepting
state is necessary and sufficient for proving that the relation M [~ ¢ holds. Such
loops are called fair loops.

4 The semantic translation

The fact that emptiness of ¥ is proven by finding a path to a fair loop gives us a
straightforward adaptation of the LTL model checking procedure to a SAT-based

4 Most published techniques for this translation construct a generalized Biichi automa-
ton, while in this article we use a standard Biichi automaton (the only difference be-
ing that the former allows multiple accepting sets). The translation from generalized
to standard Biichi automaton multiplies the size of the automaton by up to a factor
of |¢|.

BMC procedure. This can be done by searching for a witness to the property
¢' = G(TRUE) under the fairness constraint \/ . . F; [5] (that is, Vi cp Fi
should be true infinitely often in this path). Thus, given ¥ and k, we can use the
standard BMC translation for deriving £2¢(k), a SAT instance that represents
all the paths of length k that satisfy ¢’. Finding such a witness of length % or

less is done in BMC by solving the propositional formula:

k—1 k—1 k
Qu(k) =I(s)) A)\ T(sivsiy) A\ | (si=s) A\ Filsy) (1)
i=0 1=0 j=l F;€F

The right-most conjunct in Equation 1 constrains one of the states in F' to be
true in at least one of the states of the loop.

Since the Biichi automaton used in this translation captures the semantics of
the property rather than its syntactic structure, we call this method a semantic
translation for BMC.

We continue by proving the two advantages of this translation: the efficiency
of the translation and the ease of computing C7.

4.1 The semantic translation is more efficient

The semantic translation has a clear advantage in terms of the size of the re-
sulting formula (in terms of the number of variables), as stated in the following
proposition (compare to Proposition 1).

Proposition 2. The semantic translation results in O(k - (|v| + |¢|)) variables.

Proof. The transition relation of the Biichi automaton constructed from ¢ is
defined by O(]y|) variables (the automaton itself is exponential in the size of
the formula, but its corresponding representation by a transition relation is as
defined above). The SAT formula is constructed by unfolding & times the prod-
uct ¥, hence it uses O(k - (|v| + |¢|)) variables. It also includes constraints for
identifying a loop with a fair state, but these constraints only add clauses, not
new variables. a

We conducted some experiments in order to check the difference between the
translations. We conducted this experiment with NuSMV 2.1, which includes
an optimized syntactic translation [4]. To generate the semantic translation, we
derived the Biichi automaton with WRING [14] and added the resulting automa-
ton to the NuSMV model. Then the property to be checked is simply F(FALSE)
under possible fairness constraints, as prescribed by the Biichi automaton. The
table in Figure 2 summarizes these results.

As can be seen from the table and from Figure 3, there is a linear growth
in the number of variables in the resulting CNF formula with the semantic
translation, and a quadratic growth with the syntactic translation. Furthermore,
the last three formulas have redundancy that is removed by WRING, but is not
removed with the syntactic translation (observe that formulas 2 and 3 result in

Property K |Semantic|Syntactic
(zoU(lzo A x1))Ux2| 7| 1090 986

15| 2298 3098
30| 4563 14073
45| 6828 39898
FFFax, 7 528 569

15| 1112 1321
30 2207 3076
45 3302 5281

FFFFFFz, 7 528 632
15| 1112 |Timeout
30 2207
45 3302

GFGFz- 7 586 590

15| 1234 1426
30| 2449 3511
45| 3664 | Timeout

Fig. 2. The number of variables in the CNF formula resulting from the semantic and
syntactic translation. The former grows linearly with k, while the latter may grow
quadratically. The Timeout entry indicates that it takes NuSMV more than 15 minutes
to generate the CNF formula.

45000
40000 /I
35000

30000

25000
20000

15000
10000 /
5000

0 5 10 15 20 25 30 35 40 45 50
K

Vars

_

‘+ Semantic —— Syntactic ‘

Fig. 3. The number of variables for the formula (xoU(!zo A z1))Ux2 with the semantic
and syntactic translations.

the same number of variables in the semantic translation, but not in the syntactic
translation). The model which we experimented with was a toy example, and
hence the resulting CNF was easy to solve with both translations. But it was
sufficient for demonstrating the differences between the translations and that
in some cases even generating the CNF formulas takes a long time with the
syntactic translation.

4.2 A calculation of CT for LTL based on M X B-,

A major benefit of the semantic translation is that it implies directly an over-
approximation of the value of C7:

Theorem 1. A completeness threshold for any LTL property ¢ when using
Equation 1 is min(rd" (¥) +1,d' (@) + d(¥)).

Proof. (a) We first prove that C7 is bounded by d!(¥) + d(¥). If M [~ ¢ then
¥ is not empty. The shortest witness for the non-emptiness of ¥ is a path
50,...,5f,...5; where s is an initial state, sy is an accepting state and s; = s;
for some [< f. The shortest path from sg to s; is not longer than d!(¥), and
the shortest path from sy back to itself is not longer than d(¥). (b) We now
prove that C7 is also bounded by rd”(¥) + 1 (the addition of 1 to the longest
loop-free path is needed in order to detect a loop). Falsely assume that M [¢
but all witnesses are of length longer than rdI(W) + 1. Let W :sg,...,5f,...5k
be the shortest such witness. By definition of rd”(¥), there exists at least two
states, say s; and s; in this path that are equal (other than the states closing
the loop, i.e., s; # sg). If 4,5 < f or 4,5 > f then this path can be shortened
by taking the transition from s; to s;41 (assuming, without loss of generality,
that ¢ < j), which contradicts our assumption that W is the shortest witness. If
i < f < j, then the path W' : sq,...,sf,...,s; is also a loop witnessing M F ¢,
but shorter than W, which again contradicts our assumption. O

The left-hand side drawing below demonstrates a case in which d!(¥) + d(¥) >
rd (@) +1 (d' (@) = d(¥) = rd" (¥) = 3), while the right-hand side drawing
demonstrates the opposite case (in this case d' (¥) = d(¥) = 1, rd’ () +1 = 5).
These examples justify taking the minimum between the two values.

e S =N)
— "

An interesting special case is invariant properties (Gp). The Biichi automaton
for the negation of this property (F—p) has a special structure (see third drawing
in Fig 1): for all M, any state satisfying —p in the product ¥ : M X ¢ leads to
a fair loop. Thus, to prove emptiness, it is sufficient to search for a reachable
state satisfying —p. A path to such a state cannot be longer than d(¥). More
formally:

Theorem 2. A completeness threshold for Fp formulas, where p is non-temporal,
is d1(¥).

We believe that this theorem can be extended to all safety properties.

5 The complexity of BMC

According to Theorem 1, the value of C7 can be exponential in the number
of state variables. This implies that the SAT instance (as generated in both the
syntactic and semantic translations) can have an exponential number of variables
and hence solving it can be doubly exponential. All known SAT-based BMC
techniques, including the one presented in this article, have this complexity. Since
there exists a singly exponential LTL model checking algorithm in the number of
state variables, it is clear that there is a complexity gap of an exponent between
the two methods. Why, then, use BMC for attempting to prove that M = ¢
holds? There are several answers to this question:

1. Indeed, BMC is normally used for detecting bugs, not for proving their ab-
sence. The number of variables in the SAT formula is polynomial in k. If the
property does not hold, k£ depends on the location of the shallowest error. If
this number is relatively small, solving the corresponding SAT instance can
still be easier than competing methods.

2. In many cases the values of rd’ (¥) and d’(¥) are not exponential in the
number of state variables, and can even be rather small. In hardware circuits,
the leading cause for exponentially long loop-free paths is counters, and hence
designs without counters are much easier to solve. For example, about 25%
of the components examined in [1] have a diameter smaller than 20.

3. For various technical reasons, SAT is not very sensitive to the number of vari-
ables in the formula, although theoretically it is exponential in the number of
variables. Comparing it to other methods solely based on their correspond-
ing complexity classes is not a very good indicator for their relative success
in practice.

We argue that the reason for the complexity gap between SAT-based BMC and
LTL model checking (as described in Section 3), is the following: SAT-based
BMC does not keep track of visited states, and therefore it possibly visits the
same state an exponential number of times. Unlike explicit model checking it
does not explore a state graph, and unlike BDD-based symbolic model checking,
it does not memorize the set of visited states. For this reason, it is possible
that all paths between two states are explored, and hence a single state can be
visited an exponential number of times. For example, an explicit model checking
algorithm, such as the double DFS algorithm [10], will visit each state in the
graph below not more than twice. SAT-based BMC, on the other hand, will
consider in the worst case all 2™ possible paths between s and ¢, where n is the
number of ‘diamonds’ in the graph.

A natural question is whether this complexity gap can be closed, i.e., is
it possible to change the SAT-based BMC algorithm so it becomes a singly

exponential rather than a doubly exponential algorithm. Figure 4 presents a
possible singly exponential BMC algorithm for Gp formulas (i.e., reachability)
based on an altered SAT algorithm that can be implemented by slightly changing
a standard SAT solver. The algorithm forces the SAT solver to follow a particular
variable ordering, and hence the main power of SAT (guidance of the search
process with splitting heuristics) is lost. Further, it adds constrains for each
visited state, forbidding the search process from revisiting it through longer or
equally long paths. This potentially adds an exponential number of clauses to
the formula.

1. Force a static order, following a forward traversal.
2. Each time a state i is fully evaluated (assigned):
— Prevent the search from revisiting it through deeper paths, e.g., If (z;, —y;) is
a visited state, then for i < j < CT add the following blocking state clause:
(—@; V ;).
— When backtracking from state ¢, prevent the search from revisiting it in step
i by adding the clause (—z; V ;).
— If —=p; holds, stop and return ‘Counterexample found’.

Fig. 4. A singly exponential SAT-based BMC algorithm for Gp properties.

So far our experiments show that this procedure is worse in practice than the
standard BMC®. Whether it is possible to find a singly exponential SAT-based
algorithm that works better in practice than the standard algorithm, is still an
open question with a very significant practical importance.

6 Conclusions

We discussed the advantages of the semantic translation for BMC, as was first
suggested in [6]. We showed that it is in general more efficient, as it results in
smaller CNF formulas, and it potentially eliminates redundancies in the property
of interest. We also showed how it allows to compute the completeness threshold
CT for all LTL formulas.

The ability to compute C7 for general LTL enabled us to prove that all
existing SAT-based BMC algorithms are doubly exponential in the number of
variables. Since LTL model checking is only singly exponential in the number of
variables, there is a complexity gap between the two approaches. In order to close
this gap, we suggested a revised BMC algorithm that is only singly exponential,
but in practice, so far, has not proved to be better than the original SAT based
BMC.

5 A. Biere implemented a similar algorithm in 2001 and reached the same conclusion.
For this reason he did not publish this algorithm. Similar algorithms were also used
in the past in the context of Automatic Test Pattern Generation (ATPG).

References

1.

10.

11.

12.

13.

14.

15.

J. Baumgartner, A. Kuehlmann, and J. Abraham. Property checking via structural
analysis. In E. Brinksma and K.G. Larsen, editors, Proc. 14" Intl. Conference
on Computer Aided Verification (CAV’02), volume 2404 of LNCS, Copenhagen,
Denmark, July 2002. Springer-Verlag.

A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In Proc. of the Workshop on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’99), LNCS, pages 193-207. Springer-Verlag, 1999.
A. Biere, A. Cimatti, E.M. Clarke, O. Strichman, and Y. Zue. Bounded Model
Checking, volume 58 of Advances in computers. Academic Press, 2003.
Alessandro Cimatti, Marco Pistore, Marco Roveri, and Roberto Sebastiani. Im-
proving the encoding of LTL model checking into SAT. In VMCAI, pages 196-207,
2002.

E.M. Clarke, O. Grumberg, and K. Hamaguchi. Another look at LTL model check-
ing. In D. L. Dill, editor, Proc. 6th Conference on Computer Aided Verification,
volume 818 of Lect. Notes in Comp. Sci., pages 415-427. Springer-Verlag, 1994.

. L. de Moura, H. Ruef}, and M. Sorea. Lazy theorem proving for bounded model

checking over infinite domains. In Proc. 18th International Conference on Auto-
mated Deduction (CADE’02), Copenhagen, Denmark, July 2002.

A. Frisch, D. Sheridan, and T. Walsh. A fixpoint based encoding for bounded
model checking. In Formal Methods in Computer-Aided Design (FMCAD 2002),
pages 238 — 255, Portland, Oregon, Nov 2002.

D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of fairness.
In Proc. 7th ACM Symp. Princ. of Prog. Lang., pages 163-173, 1980.

R. Gerth, D. Peled, M. Vardi, and P. Wolper. Simple on-the-fly automatic verifi-
cation of linear temporal logic. In Protocol Specification Testing and Verification,
pages 3-18. Chapman & Hall, 1995.

G.J. Holzmann, D. Peled, and M. Yannakakis. On nested depth first search. In
Second SPIN workshop, AMS, pages 23-32, 1996.

D. Kroening and O. Strichman. Efficient computation of recurrence diameters.
In 4th International Conference on Verification, Model Checking, and Abstract
Interpretation, volume 2575 of Lecture Notes in Computer Science, pages 298-309,
NYU, New-York, January 2003. Springer Verlag.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, New York, 1991.

M. Mneimneh and K. Sakallah. SAT-based sequential depth computation. In
Constraints in formal verification workshop, Ithaca, New-York, Sep 2002.

F. Somenzi and R. Bloem. Efficient Biichi automata from LTL formulae. In
E. A. Emerson and A. P. Sistla, editors, Twelfth Conference on Computer Aided
Verification (CAV’00), pages 248263, Berlin, July 2000. Springer-Verlag.

M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proc. First IEEE Symp. Logic in Comp. Sci., pages 332-344, 1986.

