
The Church Synthesis Problem with Metric
Mark Jenkins1, Joël Ouaknine1, Alexander Rabinovich∗2, and
James Worrell1

1 Department of Computer Science, University of Oxford,
Oxford, UK
{marj,joel,jbw}@cs.ox.ac.uk

2 School of Computer Science, Tel Aviv University,
Tel Aviv, Israel
rabinoa@post.tau.ac.il

Abstract
Church’s Problem asks for the construction of a procedure which, given a logical specification
ϕ(I,O) between input strings I and output strings O, determines whether there exists an operator
F that implements the specification in the sense that ϕ(I, F (I)) holds for all inputs I. Büchi and
Landweber gave a procedure to solve Church’s problem for MSO specifications and operators
computable by finite-state automata.

We consider extensions of Church’s problem in two orthogonal directions: (i) we address the
problem in a more general logical setting, where not only the specifications but also the solutions
are presented in a logical system; (ii) we consider not only the canonical discrete time domain of
the natural numbers, but also the continuous domain of reals.

We show that for every fixed bounded length interval of the reals, Church’s problem is decid-
able when specifications and implementations are described in the monadic second-order logics
over the reals with order and the +1 function.

1998 ACM Subject Classification F.4.1 Mathematical Logic, F.4.3 Formal Languages

Keywords and phrases Church’s Problem, Monadic Logic, Games, Uniformization

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Church’s synthesis problem [3] is to automatically construct an implementation of a specifi-
cation relating the inputs and outputs of a state-based system. The specification is assumed
to be an MSO(<)-formula S(I,O), which determines a binary relation between input strings
I and output strings O. An implementation is a function (or operator) P from strings to
strings that uniformizes S in the sense that S(I, P (I)) holds for all inputs I. Church required
that P be computable by a finite-state machine that at every moment t ∈ N reads an input
symbol I(t) and produces an output symbol O(t). Hence, the output O(t) produced at t
depends only on input symbols I(0), I(1), . . . , I(t) received before t, that is, P should be a
causal operator. Another property of interest is that the machine computing P be finite-state.
In the light of Büchi’s proof [1] of the expressive equivalence of MSO(<) and finite automata,
P is finite-state if and only if it is MSO(<)-definable.

Church’s synthesis problem can therefore be stated formally as follows.

∗ This author was partially supported by the ESF GAMES programme and by the EPSRC.

© Mark Jenkins, Joël Ouaknine, Alexander Rabinovich and James Worrell;
licensed under Creative Commons License NC-ND

Conference title on which this volume is based on.
Editors: Billy Editor, Bill Editors; pp. 1–15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 The Church Synthesis Problem with Metric

Church Synthesis Problem
Input: an MSO(<) formula ϕ(X,Y).
Task: Check whether there is a causal operator F such that

〈N, <〉 |= ∀Xϕ(X,F (X)) and if so, construct this operator.

This problem, which is more general than the satisfiability problem for MSO over 〈N, <〉,
was shown decidable in a landmark paper of Büchi and Landweber [2]. Their main theorem
is stated as follows:

I Theorem 1 (Büchi and Landweber). Given an MSO(<) formula ϕ(X,Y) one can decide
whether there is a causal operator that uniformizes ϕ. If such an operator exists then it can
be represented by a finite-state automaton which can be computed from ϕ.

Note that this theorem guarantees that whenever ϕ has a uniformizer then it has
a uniformizer that is computable by a finite-state automaton (equivalently, definable in
MSO(<)).

In the continuous-time setting, one can naturally consider the synthesis problem over the
non-negative reals rather than the naturals. Here we think of a specification as a relation
between signals rather than words. As specification language one again takes MSO(<), which
has a natural interpretation over the non-negative reals. As implementations one again takes
MSO(<)-definable causal operators.

Shelah [13] proved that MSO(<) is undecidable over the reals if we allow quantification over
arbitrary predicates. In Computer Science however, it is natural to restrict to finitely variable
predicates, that is, predicates whose characteristic function has finitely many discontinuities
in any bounded interval. Under the finite-variability interpretation, MSO is decidable over
the reals and there are automata that have the same expressive power [10].

However, the full extension of the Büchi and Landweber theorem fails over the nonnegative
reals, even under the finite-variability assumption. For example, the formula that says that
Y has at least two points of discontinuity can be uniformized by a causal operator, but not
by an MSO(<)-definable causal operator (see Example 7 for details).

Nevertheless, we are able to show the following result:

I Theorem 2. Given a MSO(<) formula ϕ(X,Y) one can decide whether there is an
MSO(<)-definable causal operator that uniformizes ϕ over 〈R≥0, <〉. If so, the algorithm
computes a formula that defines such an operator.

In the continuous setting a deficiency of MSO(<) is that it cannot express metric properties
such as “the distance between two points is one”. Thus we consider specifications expressed
in MSO(<,+1), which extends MSO(<) with the +1 function.

Unfortunately, even with the finitely-variable interpretation, the satisfiability problem
over the non-negative reals is undecidable for MSO(<,+1) [5]. However in [9] we proved that
MSO(<,+1) is decidable for every fixed bounded-length intervals of the reals. The main
result of our paper is that Church’s synthesis problem is also decidable for MSO(<,+1) for
every fixed bounded-length interval of the reals. Specifically,

I Theorem 3. Given an MSO(<,+1) formula ϕ(X,Y) and N ∈ N, one can decide whether
there is an MSO(<,+1)-definable causal operator that uniformizes ϕ over the the interval
[0, N). If such an operator exists, the algorithm computes a formula that represents the
operator.

In order to prove Theorem 3 we need to consider the Church synthesis problem with
parameters—additional predicates that the specification may reference but which do not have

Mark Jenkins, Joël Ouaknine, Alexander Rabinovich and James Worrell 3

to be considered in a causal way by the implementation. This problem was considered in [11]
for MSO(<) over 〈N, <〉. Here we extend the Church synthesis problem with parameters to
the non-negative reals.

Finally, we show that the synthesis problem over bounded intervals of reals is non-
elementary, even for specifications expressed in fragments of MSO(<,+1) with an elementary
satisfiability problem.

2 Monadic Second-Order Logic

We consider monadic second-order logic MSO(<,+1) over a signature consisting of the
binary relations < and +1 and a countable family of monadic predicate names P0, P1,
The vocabulary of MSO(<,+1) also includes first-order variables t0, t1, . . . and monadic
second-order variables X1, X2, Atomic formulas are of the form X(t), P (t), t1 < t2,
+1(t1, t2) or t1 = t2. Well-formed formulas are obtained from atomic formulas using Boolean
connectives, the first-order quantifiers ∃t and ∀t, and the second-order quantifiers ∃X and
∀X. We denote by MSO(<) the sub-language consisting of all formulas that do not mention
the +1 relation.

We are interested in structures of the formM = 〈A,<,+1,P1, . . . ,Pm〉 where A is an
interval of non-negative reals with the usual order, +1(x, y) holds if and only if y = x+ 1,
and P1, . . . ,Pm are subsets of A that interpret the monadic predicate names P1, . . . , Pm.
(Generally we use boldface to denote interpretations of predicate names.) We omit the
standard definition of what it means for a structure to satisfy a sentence. A formula
ϕ(P1, . . . , Pm, X1, . . . , Xn) with free second-order variables among X1, . . . , Xn is interpreted
in a structure 〈M,X1, . . . ,Xn〉 obtained by expandingM with interpretations of X1, . . . , Xn.

We say that a subset P ⊆ R≥0 is finitely variable if its characteristic function has finitely
many discontinuities in any bounded sub-interval of R≥0. Likewise we say that P is right-
continuous if its characteristic function is right continuous. In our semantics for MSO(<,+1)
we restrict interpretations of monadic predicate names and variables to be finitely variable
and right-continuous. The finite variability restriction is essential: it is known that allowing
unrestricted second-order quantification leads to an undecidable satisfiability problem [13].
On the other hand, the assumption of right-continuity is only for simplicity of presentation.
In case the domain A is unbounded we also make the simplifying assumption that at least
one of the predicates in any structure 〈A,<,P〉 is not eventually constant.

We also consider discrete structures for MSO(<) of the form 〈A,<,P1, . . . ,Pm〉, where A
is an initial segment of the natural numbers with the usual order and P1, . . . ,Pm are subsets
of A. In line with our assumption for structures over the reals we assume that if A = N then
in any structure 〈A,<,P〉, at least one of the predicates is not eventually constant.

Let ΣP = {0, 1}m be a finite alphabet. A structure 〈A,<,P1, . . . ,Pm〉 corresponds to a
function f : A→ ΣP , where f(t)i = 1 if t ∈ Pi and f(t)i = 0 otherwise. If A ⊆ R≥0 then f
is called a signal and if A ⊆ N then f is a (finite or infinite) word. By assumption, a signal is
finitely variable, right-continuous and if its domain is unbounded it is not eventually constant.
We denote by Σω the set of all infinite words over an alphabet Σ and by Sig(Σ) the set of
all signals over Σ with domain R≥0. An MSO(<)-sentence ϕ(P) that mentions predicate
names P1, . . . , Pm respectively defines a word language LN(ϕ) def= {w ∈ (ΣP)ω : w |= ϕ} and
a signal language LR(ϕ) def= {f ∈ Sig(ΣP) : f |= ϕ}.

4 The Church Synthesis Problem with Metric

3 Transforming Between Words and Signals

In this paper we answer questions about MSO over the non-negative reals under the finite
variability and right-continuous interpretation by reduction to questions about MSO over
the naturals. This section presents the foundations of this reduction—semantic translations
between signal languages and word languages and corresponding syntactic translations on
MSO(<) formulas. We concentrate here on signals with domain R≥0 and on infinite words,
though the ideas easily apply to signals with bounded domain and to finite words.

Let f : R≥0 → Σ be a signal over alphabet Σ. Recall that by assumption f has a
countably infinite and unbounded set of discontinuities. Define a sampling sequence for f to
be an unbounded strictly increasing sequence of reals 0 = τ0 < τ1 < τ2 < . . . that includes
all discontinuities of f . Given a sampling sequence τ we define the word Wτ (f) ∈ Σω by
Wτ (f) = f(τ0)f(τ1)f(τ2) Given a language L ⊆ Sig(Σ) we define the corresponding word
language L† ⊆ Σω to comprise all words Wτ (f) where f ∈ L and τ is a sampling sequence
for f .

Motivated by the translation above we define the relation ∼ of stutter equivalence on Σω
to be the least equivalence relation such that

a0a1 . . . ak−1akak+1 . . . ∼ a0a1 . . . ak−1akakak+1 . . .

for any k. A word language L ⊆ Σω is stutter-closed if it saturates ∼. It is straightforward
that if L is a signal language then the corresponding word language L† is stutter-closed.

Define the stutter-closure of a language L ⊆ Σω to be the smallest stutter-closed language
L′ that contains L. It is straightforward that L′ is ω-regular if L is ω-regular.

Given a word w = w0w1w2 . . . ∈ Σω and an unbounded strictly increasing sequence of
reals 0 = τ0 < τ1 < τ2 < . . ., define the signal Sτ (w) : R≥0 → Σ by Sτ (t) = wk for the unique
interval [τk, τk+1) containing t. Given a word language L ⊆ Σω, the corresponding signal
language L? comprises all signals Sτ (w) for some w ∈ L and unbounded sequence of reals τ .

Define the relation ∼ of stretching equivalence on the set Sig(Σ) of signals over alphabet Σ
by f ∼ g iff f = g ◦ρ for some order isomorphism ρ : dom(f)→ dom(g). A signal language L
is speed-independent if it saturates ∼. It is straightforward that LR(ϕ) is speed-independent
for any MSO(<)-formula ϕ. It is also clear that L? is speed-independent for any word
language L ⊆ Σω.

The operators (−)† and (−)? define a bĳection between stutter-closed word languages
and speed-independent signal languages:

I Proposition 4. If L ⊆ Σω is stutter-closed then L?† = L. If L ⊆ Sig(Σ) is speed
independent then L†? = L.

Next we recall from [10] syntactic analogs of the language operators (−)† and (−)?. The
following results show that the language operators (−)† and (−)? preserve MSO-definability.
We briefly justify these constructions and refer the reader to [10] for full details.

I Proposition 5. Given an MSO(<)-sentence ϕ(P) we can compute another MSO(<)-
sentence ϕ†(P) such that LR(ϕ)† = LN(ϕ†).

Proof. (Sketch.) In order to define ϕ† we first rewrite ϕ by replacing first-order variables
with second-order variables. Intuitively we represent an element t ∈ R≥0 by a set with left
endpoint t. (Recall that the restriction to finitely variable right-continuous signals means
any set interpreting a second-order variable has a least element.) To this end we introduce
the following new atomic formulas: Ls(X,Y), which is true if the left endpoint of X is less

Mark Jenkins, Joël Ouaknine, Alexander Rabinovich and James Worrell 5

than the left endpoint of Y ; Eq(X,Y), which is true if the left endpoint of X equals the left
endpoint of Y ; In(X,Y), which is true if the left endpoint of X is an element of Y . These
atoms are clearly MSO(<)-definable, moreover it is straightforward to construct a formula
equivalent to ϕ using only these atoms, Boolean connectives and second-order quantification.

Having performed this translation, we proceed to define ϕ† by structural induction on ϕ.
The new atomic formulas Ls(X,Y), Eq(X,Y) and In(X,Y) go unchanged, as do negation
and conjunction. The only non-trivial element of the transformation concerns second-order
quantification. If ϕ def= ∃Xψ we let ϕ† be the formula that defines the stutter closure of
the language LN(∃Xψ†). (We have already observed above that this language is definable.)
After this process it is trivial to replace occurrences of Ls(X,Y), Eq(X,Y) and In(X,Y)
with their MSO(<)-equivalents. J

I Proposition 6. Given an MSO(<)-sentence ϕ(P) we can compute another MSO(<)-
sentence ϕ?(P) such that LR(ϕ?) = LN(ϕ)?.

Proof. (Sketch.) It is straightforward to write an MSO(<)-formula Sample(P ,D) that is
satisfied when each discontinuity of the characteristic signal of P is also a discontinuity of the
characteristic signal of D. Given ϕ(P) let ϕ′(P ,D) be obtained by relativizing all first-order
quantification in ϕ to the set of discontinuities in D. We now define

ϕ? := ∃D(Sample(P ,D) ∧ ϕ′(P ,D)) . J

4 Church’s Problem with Parameters

Recall that a binary relation R is uniformized by a partial function f if f ⊆ R and
dom(f) = dom(R). In this paper we are interested in uniformizing MSO-definable relations
by MSO-definable functions. The problem of uniformizing MSO-definable relations on the
structure 〈N, <〉 was first studied over fifty years ago by Church [3], motivated by the problem
of synthesizing circuits from relational input-output specifications. Later Rabinovich [11]
and Hänsch, Slaats and Thomas [4] considered the problem of uniformization over labelled
chains 〈N, <,P〉.

Our eventual goal is to study uniformization of MSO-definable relations over the structure
〈A,<,+1〉 for A a bounded interval of reals. We delay a treatment of the +1 relation until
the following section. Here we lay the groundwork by considering uniformization of labelled
chains 〈R≥0, <,P〉. This extends the treatment of the labelled case from [4, 11] to dense
orders.

4.1 The Uniformization Problem
Consider a second-order language over a signature including the binary relation symbol <
and monadic predicate names P1, . . . , Pm. LetM = 〈A,<,P1, . . . ,Pm〉 be a labelled chain.
We say that an MSO-formula ψ(P ,X, Y) uniformizes an MSO-formula ϕ(P ,X, Y) overM
ifM satisfies the following sentences:
1. ∀X∀Y

(
ψ(P ,X, Y)→ ϕ(P ,X, Y)

)
2. ∀X∃=1Y ψ(P ,X, Y)
We say that ψ(P ,X, Y) uniformizes ϕ(P ,X, Y) over a class of chains C if ψ(P ,X, Y)
uniformizes ϕ(P ,X, Y) over each individual chain in C. Notice that the above conditions can
only hold if ϕ(P ,X, Y) is a total relation, however there is no loss of generality in considering
only uniformization for total relations.

6 The Church Synthesis Problem with Metric

We say that a formula ψ(P ,X, Y) satisfying 1 above is faithful to ϕ and a formula
satisfying 2 above is functional. We furthermore say that ψ is causal if the following sentence
holds inM:
3. ∀X Y U V ∀t

[
ψ(P ,X, Y) ∧ ψ(P ,U, V) ∧

(
∀s ≤ t (X(s) = U(s))

)
⇒ Y (t) = V (t)

]
Intuitively a function is causal if its output at any time only depends on its input in the
past—a reasonable assumption for any realizable function.

Roughly speaking, the uniformization problem is to determine whether a given formula
ϕ(P ,X, Y) has a uniformizer over a given structure, or class of structures, and if so to
compute such a uniformizer. We are interested here in uniformizers which are definable by
an MSO formula and this proves an important restriction over structures with real-valued
domains. The following example illustrates a case where one can easily think of a uniformizer
for ϕ, but no such uniformizer can be definable in MSO.

I Example 7. There is a formula ϕ(X,Y) (even without parameters) such that there is
a causal operator which uniformizes ϕ over the reals however, no MSO-definable causal
operator uniformizes it.

Proof. Let ϕ(X,Y) be an MSO(<)-formula which says that Y has at least two points of
discontinuity. It is clear that the operator F which ignores its input and sets F (X)(t) = 1 if
and only if t ∈ ([0, 1) ∪ [2, 3)) uniformizes this formula, however we prove below there is no
MSO-definable uniformizer ψ(X,Y).

Let ψ(X,Y) be an MSO(<)-formula that defines a functional operator. Interpret X by
the constant false signal X and let Y be the unique interpretation of Y such that ψ(X,Y)
holds. For any order isomorphism ρ : R≥0 → R≥0, since every MSO(<)-formula is speed-
independent, ψ(X ◦ ρ,Y ◦ ρ) also holds. But X ◦ ρ = X; as ψ is functional we must also have
Y ◦ ρ = Y. It is easy to see that this entails that Y be constant, contrary to the requirement
that it have two discontinuities. J

Motivated by failures such as this, we seek to compute the set of parameter values
for which there exists a definable uniformizer along with a single formula which defines a
uniformizer for all such parameter values. We formally state the main result of this section
as follows:

I Theorem 2. Given an MSO(<)-formula ϕ(P ,X, Y) one can compute a sentence θ(P)
and formula ψ(P ,X, Y) such that for every structure M = 〈R≥0, <,P〉, ϕ has a causal
uniformizer overM if and only ifM |= θ and in this case ψ is such a causal uniformizer.

In Theorem 2 we call ϕ the winning condition, ψ the uniformizer and θ the domain
formula. We call the predicate names P parameters and X,Y variables.

We sketch a proof of Theorem 2 in Sections 4.2 and 4.3.

4.2 From Signals to Words
Let L1 be a speed-independent language of signals over alphabet ΣP = {0, 1}m and let
L2 = (L1)† be the corresponding stutter-closed language of words. We identify a signal f
with the corresponding structure 〈R≥0, <,P1, . . . ,Pm〉, where f is the characteristic function
of P; we similarly identify a word w with the corresponding structure 〈N, <,P〉. We further
identify a language L with the class of stuctures that correspond to the elements of L.

We reduce the problem of computing a uniformizer of an MSO(<)-formula ϕ(P ,X, Y)
over the class of signals L1 to the problem of computing a uniformizer for the corresponding
formula ϕ†(P ,X, Y) over the class of words L2. Superficially these two problems are quite

Mark Jenkins, Joël Ouaknine, Alexander Rabinovich and James Worrell 7

different since L1 is a class of dense orders and L2 a class of discrete orders. The key fact
that makes this reduction work is that for each signal f ∈ L1 we include in L2 the whole
stutter-closed class of words representing f . Given this, the reduction is simply stated:

I Theorem 8. If ψ(P ,X, Y) is a causal uniformizer for ϕ(P ,X, Y) over L1 then ψ†(P ,X, Y)
is a stutter-closed causal uniformizer for ϕ†(P ,X, Y) over L2. Conversely if ψ(P ,X, Y) is
a stutter-closed causal uniformizer for ϕ†(P ,X, Y) over L2, then ψ?(P ,X, Y) is a causal
uniformizer for ϕ(P ,X, Y) over L1.

The proof of Theorem 8 relies on the relations between speed-independent signal languages
and stutter-closed word languages developed in Section 3.

We will use Theorem 8 to reduce the problem of uniformizing classes of signals, considered
in Theorem 2, to the problem of computing stutter-closed uniformizers of stutter-closed
formulas over words. We therefore undertake to prove the following Theorem.

I Theorem 9. Given a stutter-closed MSO(<)-formula ϕ(P ,X, Y) one can compute a stutter-
closed sentence θ(P) and stutter-closed formula ψ(P ,X, Y) such that for any stutter-closed
language of words L ⊆ (ΣP)ω, ϕ has a causal uniformizer over L if and only if L |= θ and
in this case ψ is such a causal uniformizer.

Considering ϕ over signals, we observe that the word language defined by ϕ† is always
stutter-closed. We therefore first apply Theorem 9 then Theorem 8 to ϕ† to derive Theorem 2.

4.3 Stutter-Closed Uniformizers
Say that a formula ψ(P ,X, Y) defines a stutter-preserving relation onM = 〈N, <,P〉 ifM
satisfies ∀X,Y (ψ(P ,X, Y)→ StutPres(P ,X, Y)), where

StutPres(P ,X, Y) def= ∀n(X(n) = X(n+ 1) ∧ P (n) = P (n+ 1)→ Y (n) = Y (n+ 1)) (1)

In other words, in the function defined by ψ the output Y can only change when either the
input X or parameters P change.

The following is straightforward.

I Proposition 10. Let L ⊆ (ΣP)ω be a stutter-closed language of words. If ψ(P ,X, Y) is
functional over L and stutter-closed then it is also stutter-preserving over L.

Say that an ω-word u = u0u1 . . . is stutter-free if ui 6= ui+1 for all i. Recall that we
assume that for any structure 〈N, <,P〉 one of the predicates Pi is not eventually constant.
This means that the characteristic ω-word of the structure is stutter equivalent to a unique
stutter-free word.

Proof of Theorem 9. We define a game based on ϕ such that the uniformizer ψ defines a
winning strategy in this game. Our proof is based on the construction of Hänsch, Slaats
and Thomas [4] but requires non-trivial modification to handle various issues related to
stuttering.

Step 1: definition of game arena G. Define a formula ϕ′(P ,X, Y) by

ϕ′(P ,X, Y) def= (ϕ(P ,X, Y) ∧ StutPres(P ,X, Y)) ∨ EvConst(P) , (2)

where StutPres is the formula in (1) expressing stutter preservation and EvConst(P) expresses
that P is eventually constant. The inclusion of StutPres is justified by the observation in
Proposition 10 that a stuttering-closed uniformizer is stutter-preserving. The inclusion of

8 The Church Synthesis Problem with Metric

EvConst(P) is connected with our semantic assumption that the characteristic words of
structures over N are not eventually constant.

The formula ϕ′ mentions predicate names P = (P1, . . . , Pm) and free variables X =
(X1, . . . , Xn) and Y = (Y1, . . . , Y`). Then interpretations for ϕ′ over domain N are ω-words
over the alphabet {0, 1}m × {0, 1}n × {0, 1}`. The first step is to construct a deterministic
parity automaton A over this alphabet that accepts precisely those words that satisfy ϕ′. We
transform this automaton into a parity game arena G by separating each transition s (p,x,y)−−−−→ t

of A into a pair of transitions s −→ (s, p, x) and (s, p, x) −→ t controlled by Player 1 and
Player 2 respectively. The priorities of the states in G are inherited from A.

Step 2: definition of parity game Gπ. Next, given a stutter-free ω-word π over alphabet
{0, 1}m, representing an interpretation of the parameters, we transform the arena G into an
infinite-state parity game denoted Gπ. This game is stratified into finite levels—one level for
each letter of π, the states at each level being a copy of those of G. Multiple rounds of the
game can be played at each level, with Player 1 controlling passage from one level to the
next.

The states of Gπ are pairs consisting of a state of G and a level number i. For each
Player-1 edge s −→ (s, p, x) in G and index i ∈ N we include a Player-1 edge (s)i −→ (s, p, x)i
if p = πi and an edge (s)i −→ (s, p, x)i+1 if p = πi+1. For each Player-2 edge (s, p, x) −→ t

in G and index i ∈ N we include an edge (s, p, x)i −→ (t)i in Gπ. Finally we add a new initial
Player-1 state (ŝ)0 to Gπ, where s is the initial state of G. From this state there is an edge
to a state (s, p, x)0 if p = π0.

Note that due to the disjunct EvConst(P) in (2) Player 1 cannot win Gπ by choosing
never to leave a given level.

The key property of the game Gπ, which depends on the fact that A is stutter-closed, is
as follows:

Player 2 wins Gπ if and only if ϕ(P ,X, Y) has a causal uniformizer over the class of
all infinite words π′ that are stutter equivalent to π.

The easier direction in the proof of the above claim is the right-to-left implication: one
can easily show that a causal uniformizer for ϕ(P ,X, Y) over the stutter equivalence class of
π yields a winning strategy in Gπ. Below we concentrate on the left-to-right implication.

Step 3: coding and testing strategies. As Gπ is a parity game it is determined and has
memoryless winning strategies. To compute winning strategies we first divide the set of
game states into levels Si which contain those nodes annotated with level number i. We can
encode the possible levels by a finite alphabet Σ and thus represent the game as an ω-word
σ ∈ Σω in which σi represents level Si. Note that σ can be produced as the output of a
transducer S on input π.

A memoryless strategy for Player 2 in Gπ maps each node (s, p, x)i to a node (t)i and
can be represented by an word γ over a finite alphabet Γ whose letters encode the finite
sub-strategy for each level i. We build a deterministic parity automaton T that takes as
input pairs of words π and γ and accepts if and only if the strategy γ is winning in Gπ.
The automaton T incorporates the transducer S to transform the input word π into a word
σ representing the game Gπ in the manner described above. For each level i of Gπ and
level-i Player-2 strategy γi, automaton T computes the finite set of all possibilities over
Player-1 moves for the first state, last state and lowest-priority intermediate state of the
level-i segment of of a play of Gπ.

The strategy tester automaton T is equivalent to an MSO(<)-formula χ(P , S), where
S encodes letters of the strategy alphabet Γ. Note that χ is only satisfied by stutter-free

Mark Jenkins, Joël Ouaknine, Alexander Rabinovich and James Worrell 9

interpretations of P .
Step 4: selecting a winning strategy. The formula χ(P , S) allows us to detect when S

encodes a winning strategy in Gπ. A key issue here is that there may be more than one
winning strategy for a given set of parameters π: a uniformizer corresponds to a particular
winning strategy.

We can compute an MSO(<)-formula that picks a winning strategy using a result of
Lifsches and Shelah [8] on the computability of selectors in MSO(<). We say that a formula
α(P , S) is a selector for a formula β(P , S) over a structureM = 〈N, <,P〉 if:
1. M |= ∃≤1S α(P , S);
2. M |= ∀S(α(P , S)→ β(P , S));
3. M |= (∃Sβ(P , S))→ (∃Sα(P , S)).

I Lemma 11 (Selector Lemma [12]). There is an algorithm that for every formula β(P , S)
constructs a formula α(P , S) such that α is a selector for β over all structuresM = 〈N, <,P〉.

Applying Lemma 11 we can compute a selector χ′(P , S) for χ(P , S). Then χ′(P , S) is
satisfied when P is interpreted by a stutter-free word π and S is interpreted by a word
representing a winning strategy γ in Gπ.

Step 5: definition of θ(P) and ψ(P ,X, Y).
Similar to the definition of the strategy tester automaton we can compute a formula

Strat(P ,X, Y , S) that is true precisely when in Gπ, for π the unique stutter-free word
equivalent to P , the sequence of moves X by Player 1 generates the sequence of responses Y
by Player 2 given that his strategy on the k-th round is S(k).

Note that Strat(P ,X, Y , S) defines a stutter-closed language. Closure under removing
stutters follows from the fact that S encodes a memoryless strategy and (it can be assumed
without loss of generality that) A doesn’t change state when its input stutters. Closure under
adding stutters follows similarly using in addition the fact that S encodes a stutter-preserving
strategy.

We also define χ′′(P , S) to be the stutter-closure of the strategy selection operator
χ′(P , S). To define χ′′ consider positions where P changes and state that χ′ holds over this
set of positions (just relativization) and that S does not change between changes of P .

Finally we are able to define

θ(P) def= ∃Sχ′′(P , S)

ψ(P ,X, Y) def= ∃S
(
χ′′(P , S) ∧ Strat(P ,X, Y , S)

)
.

Then both θ and ψ are stutter-closed since both χ′′ and Strat are stutter-closed.
By construction, θ(P) holds if and only if there exists S that encodes a winning strategy

for Player 2 in Gπ, where π the unique stutter-free word equivalent to the characteristic
ω-word uP. Since Strat encodes plays of this game that follow this winning strategy, ψ
uniformizes ϕ.

This concludes the proof of Theorem 9. J

5 Uniformizing Metric Formulas

In this section we show decidability of the uniformization problem for MSO(<,+1) over
bounded real time domains.

Note that as an immediate corollary of Theorem 2, we can establish an analogous result
over bounded domains.

10 The Church Synthesis Problem with Metric

I Corollary 12. Let T = [0, N) be a bounded interval of reals. Given an MSO(<)-formula
ϕ(P ,X, Y) one can compute a sentence θ(P) and formula ψ(P ,X, Y) such that for every
structureM = 〈T, <,P〉, ϕ has a causal uniformizer overM if and only ifM |= θ and in
this case ψ is such a causal uniformizer.

We now seek to apply this result to formulas of MSO(<,+1) by first removing all references
to the +1 relation using the following translation.

5.1 Eliminating the Metric
Given an MSO(<,+1)-formula ϕ, we define a straightforward syntactic transformation into
an MSO(<)-formula ϕ such that there is a natural bĳection between models of ϕ with domain
[0, N) and models of ϕ with domain [0, 1).

With each monadic predicate X that appears in ϕ, we associate a collection X0, . . . , XN−1
of N fresh monadic predicates. Intuitively, each Xi is a predicate on [0, 1) that represents X
over the subinterval [i, i + 1). Formally, an interpretation of X over domain [0, N) yields
interpretations of the Xi over [0, 1) by defining Xi(t) if and only if X(i+ t). Note that this
correspondence yields a bĳection between interpretations of X on [0, N) and interpretations
of X0, . . . , XN−1 on [0, 1).

We can assume that ϕ does not contain any (first- or second-order) existential quantifiers,
by replacing them with combinations of universal quantifiers and negations if need be. It is
also convenient to rewrite ϕ into a formula that makes use of a unary function +1 instead of the
+1 relation. To this end, replace every occurrence of +1(x, y) in ϕ by (x < N −1∧x+1 = y).

Next, replace every instance of ∀xψ in ϕ by the formula

∀x (ψ[x/x] ∧ ψ[x+ 1/x] ∧ . . . ∧ ψ[x+ (N − 1)/x]) ,

where ψ[t/x] denotes the formula resulting from substituting every free occurrence of the
variable x in ψ by the term t. Intuitively, this transformation is legitimate since first-order
variables in our target formula will range over [0, 1) rather than [0, N).

Having carried out these substitutions, use simple arithmetic to rewrite every term in ϕ
as x+ k, where x is a variable and k ∈ N is a non-negative integer constant.

Every inequality occurring in ϕ is now of the form x + k < N − 1 or x + k1 < y + k2.
Replace every inequality of the first kind by true if k + 2 ≤ N and by false otherwise, and
replace every inequality of the second kind by (i) x < y, if k1 = k2; (ii) true, if k1 < k2; and
(iii) false otherwise.

Every equality occurring in ϕ is now of the form x+ k1 = y + k2. Replace every such
equality by x = y if k1 = k2, and by false otherwise.

Every use of monadic predicates in ϕ now has the form X(x+ k), for k ≤ N − 1. Replace
every such predicate by Xk(x).

Finally, replace every occurrence of ∀X ψ in ϕ by ∀X0 ∀X1 . . . ∀XN−1 ψ. The resulting
formula is the desired ϕ. Note that ϕ does not mention the +1 function, and is therefore indeed
a non-metric (i.e., purely order-theoretic) sentence in MSO(<). The following proposition is
then clear.

I Proposition 13 ([9]). 〈[0, N), <,+1,P〉 |= ϕ if and only if 〈[0, 1), <,P0, . . . ,PN−1〉 |= ϕ.

5.2 Main Result
The following result, concerning the computability of uniformizers in MSO(<,+1), is the
main result of the paper. We state this problem for unlabelled intervals, although considering

Mark Jenkins, Joël Ouaknine, Alexander Rabinovich and James Worrell 11

labelled intervals is essential in the proof. Our proof technique generalises straightforwardly to
handle a more general result involving uniformisation of MSO(<,+1) over labelled intervals [6].

I Theorem 3. Let T = [0, N) be a bounded interval of reals. Given an MSO(<,+1)-formula
ϕ(X,Y) one can decide whether ϕ has an MSO(<,+1)-definable causal uniformizer over
〈T, <,+1〉 and if so one can compute such a uniformizer ψ(X,Y).

Proof. To simplify notation, we consider the special case where ϕ has only X and Y as free
variables.

Step 1. Applying the transformation described in Section 5.1 to ϕ(X,Y) yields an MSO(<
)-formula ϕ(X0, . . . , XN−1, Y0, . . . , YN−1), such that there is a natural bĳection between the
models of ϕ over [0, N) and the models of ϕ over [0, 1), where Xi(t) holds if and only if
X(i+ t) holds for i = 0, 1, . . . , N − 1 and 0 ≤ t < 1.

Step 2. We reduce the problem of uniformizing ϕ over 〈T, <,+1〉 to an N-phase
uniformization procedure applied to ϕ. In the first phase, we construct a causal operator
to determine the values of Y0 from the values of X0. The second phase then constructs a
causal operator to determine the values of Y1 from those of X1, treating the values of X0
and Y0 generated in the previous phase as parameters that are already fixed. At the end
of the N -th phase we wish ϕ to be satisfied by the values of X and Y we have determined.
Our claim is that we can construct a series of functions in such a scenario if and only if we
can uniformize ϕ over 〈T, <,+1〉.

We formalise the above idea by defining N uniformization problems G0, G1 . . . , GN−1
involving only MSO(<) over [0, 1). The basic data of each problem Gk, 0 ≤ k < N are
illustrated in Figure 1.

We define the problems Gk by backward induction, starting with GN−1. The winning
condition in this problem is

ϕN−1(X0, . . . , XN−1, Y0, . . . , YN−1)
def= ϕ(X0, . . . , XN−1, Y0, . . . , YN−1) ,

where X0, . . . , XN−2 and Y0, . . . , YN−2 are considered as parameters and XN−1 and YN−1
as variables. Applying Corollary 12 we obtain a domain formula θN−1 and uniformizer ψN−1
for ϕN−1.

Suppose that we have defined Gk, with basic data as given in Figure 1. Then we
define Gk−1 as follows. The formula to be uniformized, denoted ϕk−1, is defined to be the
domain formula θk from the preceding problem Gk. In Gk−1 we consider X0, . . . , Xk−2 and
Y0, . . . , Yk−2 as parameters and Xk−1 and Yk−1 as variables. The domain formula θk−1 and
uniformizer ψk−1 are then obtained by applying Corollary 12 to the problem Gk−1.

Notice that the domain formula θ0 is equivalent to either the sentence true or the sentence
false. Below we show that θ0 ≡ true just in case ϕ(X,Y) has a uniformizer over 〈T, <,+1〉.

Step 3: Definition of uniformizer ψ(X,Y) for ϕ(X,Y). Let

ψ
def= ψ0 ∧ · · · ∧ ψN−1 .

Then ψ is a formula in variables X0, . . . , XN−1 and Y0, . . . , YN−1. The MSO(<,+1)-formula
ψ(X,Y) is obtained from ψ by replacing every occurrence of Xi(t) with X(i+ t) and Yi(t)
with Y (i+t). The transformation from ψ to ψ can be seen as the reverse of the transformation
in Section 5.1, motivating our choice of notation.

This completes the description of the procedure to decide whether ϕ(X,Y) has a uni-
formizer and if so to construct such a uniformizer. We turn now to the correctness of this
construction.

12 The Church Synthesis Problem with Metric

Uniformization Problem Gk

Input:
Winning condition ϕk(X0, . . . , Xk, Y0, . . . , Yk)
Parameters X0, . . . , Xk−1, Y0, . . . , Yk−1

Variables Xk, Yk

Output:
Domain formula θk(X0, . . . , Xk−1, Y0, . . . , Yk−1)
Uniformizer ψk(X0, . . . , Xk, Y0, . . . , Yk)

Figure 1 Basic data for Gk.

Suppose that θ0 ≡ true. We show that ψ(X,Y) defines a causal uniformizer for ϕ(X,Y)
on 〈T, <,+1〉.

Let X ⊆ T. We must show that there is a unique Y ⊆ T such that ψ(X,Y) and for this
Y also ϕ(X,Y). Write X = X0, . . . ,XN−1 for the tuple of subsets of [0, 1) defined by Xi(t)
if and only if X(i+ t).

Since θ0 ≡ true we know that ψ0 uniformizes ϕ0. Thus there exists Y0 ⊆ [0, 1) such that
ψ0(X0,Y0) and ϕ0(X0,Y0) both hold. But θ1 ≡ ϕ0, so θ1(X0,Y0) also holds. Since ψ1
uniformizes ϕ1 there exists Y1 ⊆ [0, 1) such that ψ1(X0,X1,Y0,Y1) and ϕ1(X0,X1,Y0,Y1)
both hold. Continuing in this vein we successively generate predicates Y0, . . . ,YN−1 such
that

ψ0(X0,Y0) ∧ ψ1(X0,X1,Y0,Y1) ∧ · · · ∧ ψN−1(X0, . . . ,XN−1,Y0, . . . ,YN−1) .

Thus by definition of ψ we have ψ(X0, . . . ,XN−1,Y0, . . . ,YN−1).
Now define Y ⊆ T by having Y(t+ i) hold if and only if Yi(t) holds for i = 0, . . . , N − 1

and 0 ≤ t < 1. Then by definition of ψ we have ψ(X,Y). Furthermore, since ψN−1
uniformizes ϕN−1 we also have that

ϕN−1(X0, . . . ,XN−1,Y0, . . . ,YN−1) .

But ϕN−1 was defined to be ϕ and thus by Proposition 13 we have that ϕ(X,Y) also holds.
The fact that ψ is functional and causal can easily be obtained from the corresponding

properties of ψ0, . . . , ψN−1 in the above construction. Reversing the above argument also
allows us to deduce that if ϕ(X,Y) has a uniformizer over 〈T, <,+1〉 then θ0 ≡ true: given a
uniformizer ψ(X,Y) for ϕ one successively generates uniformizers for ϕN−1 down to ϕ0. J

6 Lower Bounds

Define a family of functions expk : N → N by exp0(n) = n and expk+1(n) = 2expk(n). A
function f : N→ N is non-elementary if it grows faster than any expk.

The procedure for uniformizing MSO(<,+1)-formulas over bounded time domain T =
[0, N) described in Section 5.2 has non-elementary complexity. This blow-up arises not only
from the non-elementary transformation of MSO(<,+1) to automata—repeated application
of Corollary 12 leads to an N -fold exponential blow-up.

In this section we give a non-elementary lower bound for the bounded uniformization
problem for FO(<,+1) that holds even for formulas of a fixed quantifier alternation depth (for

Mark Jenkins, Joël Ouaknine, Alexander Rabinovich and James Worrell 13

which satisfiability over bounded intervals is elementary1). This is proven by reduction from
the language emptiness problem for star-free regular expressions. The construction we outline
below can also be used to show that uniformization is non-elementary also for the temporal
logic MTL for which satisfiability over bounded intervals is EXPSPACE-complete [9]. We
have used a related idea to show that the language emptiness problem for alternating timed
automata over bounded time domains is non-elementary [7].

A star-free regular expression over alphabet Σ is built from the symbols ∅ and σ, for any
σ ∈ Σ, using the operations of union (+), concatenation (·), and complementation (¬). Such
an expression E denotes a language L(E) ⊆ Σ∗ which is defined as follows:

L(∅) = ∅ and L(σ) = {σ};
L(¬E) = Σ∗ \ L(E);
L(E + E′) = L(E) ∪ L(E′);
L(E · E′) = L(E) · L(E′).

The operator depth odp(E) of a star-free regular expression E is defined as follows:
odp(∅) = odp(σ) = 1;
odp(¬E) = odp(E);
odp(E + E′) = max{odp(E), odp(E′)}+ 1;
odp(E · E′) = max{odp(E), odp(E′)}+ 1.

Note that negation does not count toward the operator depth.
The following result was shown in [14].

I Theorem 14. The language emptiness problem for star-free regular expressions is non-
elementary.

Given a star-free regular expression E over alphabet Σ and a word w = w0w1 . . . wn−1 ∈ Σ∗
we define the membership game G(w,E). This is a two-player game with N rounds, where
N is the operator depth of E. The two players are Prover, who is trying to show w ∈ E, and
Refuter, who is trying to show w 6∈ E. The positions of the game are triples (b, e, F) where b
and e are positions in the word w and F has the form G or ¬G for G a sub-expression of E.
The initial position is (0, n, E). If the position at the start of a given round is (b, e, F) the
goal of Prover is to show that wbwb+1 . . . we−1 ∈ F . The round proceeds as follows:

If F ≡ F1 · F2 then Prover moves first by choosing an index i with b ≤ i ≤ e. Refuter
responds by selecting either (b, i, F1) or (i, e, F2) as the position in the next round;
If F ≡ ¬(F1 · F2) then Refuter moves first by choosing an index i with b ≤ i ≤ e. Prover
responds by selecting either (b, i,¬F1) or (i, e,¬F2) as the position in the next round;
If F ≡ F1 + F2 then Prover selects either (b, e, F1) or (b, e, F2) as the position in the next
round;
If F ≡ ¬(F1 + F2) then Refuter selects either (b, e,¬F1) or (b, e,¬F2) as the position in
the next round.

The positions (b, e, σ), (b, e,¬σ), (b, e, ∅) and (b, e,¬∅) are terminal and are classified as
winning for Prover or Refuter according to whether ub, ub+1 . . . , ue−1 is a member of the
corresponding expression.

It is clear that Prover has a winning strategy in G(w,E) if and only if w ∈ L(E).
For any regular expression F , let Sub(F) be the set of sub-expressions of E along with their

negations. Given that a position in G(w,E) is a triple from the set Π def= {0, . . . , n}2×Sub(E),

1 The paper [9] provides an elementary reduction of the satisfiability problem for FO(<,+1) over bounded
intervals to the problem for FO(<) which does not change the quantifier alternation depth.

14 The Church Synthesis Problem with Metric

a play of G(w,E) can be represented as a word in Π∗ denoting a sequence of successive
positions. The idea of our reduction is to encode plays as signals over a domain [0, N + 1)
and to construct a formula of FO(<,+1) that is satisfied by a signal if and only it encodes a
winning play for Prover. In this encoding successive game positions are encoded in successive
unit-length subintervals of the domain.

Our encoding represents plays using monadic predicates Pb, Pe, P#, PSPr , PLPr , PRPr ,
PSRf , PLRf , PRRf and two families of predicates Pσ, σ ∈ Σ and PF , F ∈ Sub(E). For a signal
to encode a play of G(w,E) we require, among other things, that:

The predicates PF , F ∈ Sub(E), hold on intervals [k, k + 1) for k = 0, 1, . . . , N and are
mutually exclusive.
Exactly one of the predicates Pσ, σ ∈ Σ, and P# holds at any given point. Moreover
these predicates hold in sequence Pw0 , Pw1 , . . . , Pwn−1 , P# over the interval [0, 1).
If s = t+ 1 then Pσ holds at s if and only if Pσ holds at t; likewise P# holds at s if and
only if P# holds at t.
In each successive unit interval [k, k + 1) the predicate Pb holds in one sub-interval over
which some predicate Pσ or P# also holds. The same restriction applies to Pe.
If PE1·E2 holds on [k, k + 1) then PSPr holds in exactly one sub-interval in this time unit
and either PLRf holds at the same time as P# during this time unit and PE1 holds in
the next time unit, or PRRf holds at the same time as P# during this time unit and PE2

holds in the next time unit.
Notice how the third clause ensures that a copy of the word w is propagated between
successive time units, cf. Figure 2.

A game position (i, j, F) is encoded in a unit-length subinterval [k, k + 1) by having PF
hold throughout the interval, Pb hold at the same time as Pwi and Pe hold at the same time
as Pwj (where we take wn = #). The idea is that the propositions PSPr , PLPr and PRPr

encode moves of Prover and the propositions PSRf , PLRf and PRRf encodes moves of Refuter;
the respective position of these S propositions indicate the position around which the input
word is split while the L and R propositions indicate whether that player wished to continue
playing in the left or right subword.

Given a star-free regular expression E we can define a formula ϕE(X,Y) such that ϕE
has a uniformizer if and only if there exists a word w ∈ Σ∗ such that Prover has a winning
strategy in the game G(w,E). The tuple X just includes the predicates PSRf , PLRf and PRRf

while the tuple Y includes all the other predicates mentioned above. We define ϕE such
that it is true on any signal that represents a play of G(w,E) that is winning for Prover
according to the encoding defined above. For signals that do not encode such plays ϕE is
only satisfied if the predicates PSRf , PLRf or PRRf do not obey the above rules (intuitively
Refuter broke the rules of the game). Details of this encoding can be found in [6].

I Theorem 15. The time-bounded uniformization problem for FO(<,+1) is non-elementary
for formulas of quantifier alternation depth at most three.

7 Conclusion

In this paper, we considered extensions of Church’s synthesis problem to the continuous-
time domain of the reals. We proved that under the finite-variability and right-continuous
assumption, Church’s problem is decidable when we require that the uniformizer be definable
in the same logic as the specification. This result holds over unbounded intervals when only
the < relation is available and over every fixed bounded-length interval when the +1 relation
is also used.

Mark Jenkins, Joël Ouaknine, Alexander Rabinovich and James Worrell 15

E1 · E2 E1

u0 uj

b SPr

uk

e

ul un−1

LRf

u0 uj

b e

uk ul un−1 #

u0 . . . uj

b

. . .uk

i

E1 · E2

. . . ul

e

. . .un−1 u0 . . . uj

b

. . .

E1

uk

e

. . . ul. . .un−1

game positions

underlying word

equivalent signal

Figure 2 A signal encoding a play

References
1 J. R. Büchi. On a decision method in restricted second-order arithmetic. In Proceedings of

the 1960 International Congress on Logic, Methodology and Philosophy of Science, pages
1–11. Stanford University Press, 1962.

2 J. R. Büchi and L. H. Landweber. Solving sequential conditions by finite-state strategies.
Transactions of the AMS, 138(27):295–311, 1969.

3 A. Church. Applications of recursive arithmetic to the problem of circuit synthesis. In
Summaries of the Summer Institute of Symbolic Logic, volume 1, pages 3–50. Cornel Univ,
Ithaca, 1957.

4 P. Hänsch, M. Slaats, and W. Thomas. Parametrized regular infinite games and higher-
order pushdown strategies. In Proceedings of FCT 09, volume 5699 of Lecture Notes in
Computer Science. Springer, 2009.

5 Y. Hirshfeld and A. Rabinovich. Logics for real time: Decidability and complexity. Fundam.
Inform., 62(1), 2004.

6 M. Jenkins, J. Ouaknine, A. Rabinovich, and J. Worrell. The Church synthesis problem
with metric (full version).
http://www.cs.ox.ac.uk/people/mark.jenkins/church-metric.pdf.

7 M. Jenkins, J. Ouaknine, A. Rabinovich, and J. Worrell. Alternating timed automata over
bounded time. In LICS, pages 60–69. IEEE Computer Society, 2010.

8 S. Lifsches and S. Shelah. Uniformization and Skolem functions in the class of trees. J.
Symb. Log., 63(1):103–127, 1998.

9 J. Ouaknine, A. Rabinovich, and J. Worrell. Time-bounded verification. In Proceedings of
CONCUR 09, volume 5710 of Lecture Notes in Computer Science. Springer, 2009.

10 A. Rabinovich. Finite variability interpretation of monadic logic of order. Theoretical
Computer Science, 275(1-2):111–125, 2002.

11 A. Rabinovich. The Church synthesis problem with parameters. Logical Methods in Com-
puter Science, 3(4), 2007.

12 A. Rabinovich. On decidability of monadic logic of order over the naturals extended by
monadic predicates. Inf. Comput., 205(6):870–889, 2007.

13 S. Shelah. The monadic theory of order. The Annals of Mathematics, 102(3):379–419, 1975.
14 L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time. In Proceed-

ings of STOC 73, pages 1–9, New York, NY, USA, 1973. ACM.

	Introduction
	Monadic Second-Order Logic
	Transforming Between Words and Signals
	Church's Problem with Parameters
	The Uniformization Problem
	From Signals to Words
	Stutter-Closed Uniformizers

	Uniformizing Metric Formulas
	Eliminating the Metric
	Main Result

	Lower Bounds
	Conclusion

