
Algebraic Invariants for Linear Hybrid Automata
Rupak Majumdar
Max Planck Institute for Software Systems, Kaiserslautern, Germany
rupak@mpi-sws.org

Joël Ouaknine
Max Planck Institute for Software Systems, Saarland Informatics Campus, Germany
Department of Computer Science, Oxford University, UK
joel@mpi-sws.org

Amaury Pouly
Université de Paris, IRIF, CNRS, F-75013 Paris, France
amaury.pouly@irif.fr

James Worrell
Department of Computer Science, Oxford University, UK
jbw@mpi-sws.org

Abstract
We exhibit an algorithm to compute the strongest algebraic (or polynomial) invariants that hold at
each location of a given guard-free linear hybrid automaton (i.e., a hybrid automaton having only
unguarded transitions, all of whose assignments are given by affine expressions, and all of whose
continuous dynamics are given by linear differential equations). Our main tool is a control-theoretic
result of independent interest: given such a linear hybrid automaton, we show how to discretise the
continuous dynamics in such a way that the resulting automaton has precisely the same algebraic
invariants.

2012 ACM Subject Classification Theory of computation → Timed and hybrid models; Theory of
computation → Models of computation

Keywords and phrases Hybrid automata, algebraic invariants

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2020.32

Funding Rupak Majumdar : Supported by the European Research Council under Grant Agreement
610150 (ERC Synergy Grant ImPACT) and DFG grant 389792660 as part of TRR 248 (see
https://perspicuous-computing.science).
Joël Ouaknine: Supported by ERC grant AVS-ISS (648701) and DFG grant 389792660 as part of
TRR 248 (see https://perspicuous-computing.science).
Amaury Pouly: Part of this work was done at MPI-SWS.
James Worrell: Supported by EPSRC Fellowship EP/N008197/1.

Acknowledgements We thank Khalil Ghorbal for helpful discussions on the subject of this paper.

1 Introduction

Invariants are one of the most fundamental and useful notions in the quantitative sciences,
appearing in a wide range of contexts, from gauge theory, dynamical systems, and control
theory in physics, mathematics, and engineering to program verification, static analysis,
abstract interpretation, and programming language semantics (among others) in computer
science. In spite of decades of scientific work and progress, automated invariant synthesis
remains a topic of active research, particularly in the fields of computer-aided verification
and program analysis, and plays a central role in methods and tools seeking to establish
correctness properties of computer systems; see, e.g., [8], and particularly Sec. 8 therein.

© Rupak Majumdar, Joël Ouaknine, Amaury Pouly, and James Worrell;
licensed under Creative Commons License CC-BY

31st International Conference on Concurrency Theory (CONCUR 2020).
Editors: Igor Konnov and Laura Kovács; Article No. 32; pp. 32:1–32:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rupak@mpi-sws.org
mailto:joel@mpi-sws.org
https://orcid.org/0000-0002-2549-951X
mailto:amaury.pouly@irif.fr
mailto:jbw@mpi-sws.org
https://doi.org/10.4230/LIPIcs.CONCUR.2020.32
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 Algebraic Invariants for Linear Hybrid Automata

In this paper, we consider the task of computing strongest algebraic inductive invariants
for guard-free linear hybrid automata. Hybrid automata are a formalism for describing systems
or processes that combine discrete and continuous evolutions over their state variables (see,
for example, [6]). A hybrid automaton is therefore equipped with a finite set of real-valued
variables, as well as a finite set of control location (or modes). In each location, the variables
evolve in continuous time according to some dynamics. Transitions between control locations
may effect discrete updates (also known as resets) to these variables. A hybrid automaton is
guard-free if the transitions do not have any guards, or preconditions, in order to be fired, and
it is linear if the discrete updates on the variables consist entirely of affine transformations,
and the continuous dynamics within each control location are defined by linear differential
equations.1

An invariant assigns to each control location a fixed set of real values in such a way that
through any trajectory of the hybrid automaton, the values of the variables always remain
within the invariant. The invariant is inductive provided, informally speaking, that it is itself
preserved by the (continuous and discrete) dynamics of the hybrid automaton. Finally, an
invariant is algebraic (or polynomial) if it consists in a collection of varieties (or algebraic
sets), i.e., positive Boolean combination of polynomial equalities. As it happens, the strongest
polynomial invariant (i.e., smallest variety with respect to set inclusion) is obtained by taking
the Zariski closure of the set of reachable configurations in each control location; such an
invariant is always inductive provided that the dynamics are Zariski continuous.

There is a rich history of research into the computation of algebraic invariants for various
classes of (discrete) computer programs; we refer the reader to our recent paper [7] and
references therein. There has also been a substantial amount of work on algebraic invariant
generation for hybrid systems, albeit in more recent years. One of the earliest pieces of
work on this topic is by Rodrígez-Carbonell and Tiwari [15], who consider linear dynamical
systems (i.e., linear hybrid automata with a single discrete location and no transition)
and show how to compute strongest algebraic invariants for these. They then leverage
abstract-interpretation techniques to derive algebraic invariants for linear hybrid automata,
however without guarantees on the strength of the invariants. In [17], Sankaranarayanan et al.
compute algebraic invariants for polynomial hybrid systems directly using constraint solving
over template invariants (without however guaranteeing to obtain the strongest invariant).
In subsequent work, Sankaranarayanan shows how to compute strongest algebraic invariants
up to a fixed degree [16] for the same class of automata. Using different analytic techniques,
Ghorbal and Platzer show in [5] how to compute algebraic invariants and differential invariants
for polynomial hybrid automata; more precisely, they show that it is decidable whether
a collection of algebraic sets forms an algebraic invariant; however they do not provide a
procedure to guarantee that a given invariant is the strongest possible. In fact, while algebraic
invariants for various classes of systems is a well-studied topic (see e.g., [2, 4, 13, 14, 1, 9]
and references therein), as far as we know, none of these papers unconditionally guarantee
the strongest algebraic invariants when applied to hybrid automata.

Main results. Our contributions in the present paper are threefold. First, for the class
of guard-free linear hybrid automata, building on our recently developed invariant-generation
techniques for affine programs [7], we show how to compute strongest algebraic invariants.
Our main technical tools come from linear algebra, algebraic geometry, and Diophantine

1 Following [6], the control locations of hybrid automata can also be equipped with ‘invariant conditions’
meant to enforce discrete transitions when the continuous variables reach the limit of their allowed range;
however the hybrid automata considered in this paper do not feature any such invariant conditions.

R. Majumdar, J. Ouaknine, A. Pouly, and J. Worrell 32:3

geometry. Second, we show how one can discretise a guard-free linear hybrid automaton in
such a way that the discretised version has precisely the same algebraic invariants as the
original one; we are not aware of any such result in the extant control-theoretic and cyber-
physical systems literature. Third, we show that as soon as equality guards are allowed,
even for the restricted class of linear switching systems, there cannot exist an algorithm for
computing strongest algebraic invariants, thereby establishing clearly a hard theoretical limit
on how far the work presented here can be extended.

We now provide a slightly more detailed overview of our approach and results. Our main
theorem uses an effective reduction from guard-free linear hybrid automata to affine programs
that preserves algebraic invariants. More formally, given a hybrid automaton we show how
to construct a finite (discrete-time) affine program that has the same set of variables and the
same algebraic invariants as the original hybrid automaton. Thus we reduce the problem
of computing strongest algebraic invariants for hybrid automata to the analogous problem
for affine programs. In particular, this allow us to use a result in [7] to compute strongest
algebraic invariants for hybrid automata. In fact, we show a stronger discretisation result
that replaces the continuous dynamics with a finite set of discrete actions, which already
preserves algebraic invariants.

In Section 7 we consider a simple but important class of hybrid systems, with purely
continuous dynamics, called switching systems. A switching system [10] can transition
arbitrarily between modes, but the variables are not reset when changing mode. It is natural
to think of mode switches as being determined by an external controller which provides inputs
to the system. We show that for a switching system, the Zariski closure of the set of reachable
configurations is an irreducible variety. We exploit this feature to give a conceptually simple
algorithm to compute the strongest algebraic invariant of a given switching system.

On the other hand, we consider the problem of computing the strongest algebraic
invariant for switching systems that are augmented with the ability to test variables for
zero on transitions. Here again the dynamics are exclusively continuous. We show that it is
undecidable in general to compute a strongest algebraic invariant for such systems. Roughly
speaking, we prove this result by defining a simulation of an arbitrary Minsky machine C by
a hybrid automaton A, such that we can effectively determine whether the set of reachable
configurations of C is infinite from the strongest algebraic invariant of A.

2 Examples

2.1 Bouncing ball
Consider a ball that bounces on horizontal slabs, as illustrated in Figure 1. The ball is
moving at constant horizontal speed c and is subject to gravity along the vertical axis. We
assume that there is no friction and that collisions are perfectly elastic. We do not want to
make any assumption on the location of the slabs, to obtain the most general system. Thus
from the system’s point of the view, the positions of the slabs are “nondeterministic” and
the slabs can “appear” at any moment.

We fix an arbitrary coordinate system in which the ball starts at position (0, h) with initial
velocities (c, 0). The system is modelled using a single discrete location. There are three
constants c (the horizontal speed), h (the initial height), and g (approximately 9.8ms−2).
Technically speaking we could also include m (the mass of the ball), but it will not feature
in the final set of invariants that we derive nor in our differential equations. There are
five variables: t, x, y, vx, and vy, where t is the time variable. The differential equations
are simply Newton’s laws of motion. There is a single reset with no guards modelling the

CONCUR 2020

32:4 Algebraic Invariants for Linear Hybrid Automata

x

y

Figure 1 A ball bouncing on horizontal slabs.

action of the ball bouncing on each of the slabs (notably ensuring that the vertical velocity
is instantly inverted). We obtain the hybrid system described in Figure 2a.

Now we come to the invariants. The most obvious is that the horizontal speed is constant:
vx = c, which in turn entails that x = tc. Next, consider an inertial coordinate system moving
horizontally to the right at speed c. In that system energy must be conserved. Initially there
is no kinetic energy, and all the potential energy amounts to mgh (where m is the mass of the
ball). At any subsequent time t, the sum of the kinetic and potential energy must therefore
sum to that value, i.e., 1

2mv
2
y +mgy = mgh, so v2

y + 2g(y − h) = 0. These must be the only
invariants: the ambient space is 5-dimensional (given that our variables are t, x, y, vx, and
vy), and the corresponding variety (with 3 equations) is two dimensional. But the system
has indeed exactly two degrees of freedom, since t and vy can be set to arbitrary values
(provided |vy| ≤ gt), and once t and vy are fixed, every other variable is fixed. In summary,
the strongest algebraic invariant is the conjunction of the following three equations:

vx = c, x = tc, v2
y + 2g(y − h) = 0. (1)

One way to obtain the invariants in (1) is to construct an affine program (i.e., a hybrid
system with trivial continuous dynamics) over the same set of locations and variables as the
original hybrid automaton and that moreover has the same algebraic invariants. One can
then apply Theorem 2 to compute a strongest invariant of the latter. In the case at hand,
such an affine program can be obtained by a direct time-discretisation construction in which
the continuous flow of variables is replaced by a self-loop—see Figure 4a—which performs a
simultaneous assignment x := x+ vx, y := y + vy − 1

2g, vy := vy − g and t := t+ 1. Here,
essentially, we have replaced a system of linear differential equations of the form ẋ(t) = Ax(t)
with an analogous system of linear difference equations x(t + 1) = eAx(t); this is sound
because the discrete semigroup {eAn : n ∈ N} is Zariski dense is the semigroup {eAt : t ≥ 0}
(see Proposition 13). Unfortunately, due to the presence of the matrix exponential, this naive
construction in general yields affine programs with transcendental constants, which precludes
applying the algorithm described in Theorem 2. As it happens, in the case at hand, the
matrix eA has rational entries. We refer to Section B of the Appendix for more details of
how the affine program is obtained.

2.2 RC circuit
Consider an RC circuit with a switch, as illustrated in Figure 3. When the switch is on,
the capacitor is connected to a battery and charges. When the switch is off, the capacitor
discharges through the resistor. The battery has constant voltage V , the resistor has
resistance R and the capacitor has capacity C. There are 5 variables: the current I in the

R. Majumdar, J. Ouaknine, A. Pouly, and J. Worrell 32:5

ẋ = vx
ẏ = vy
v̇x = 0
v̇y = −g
ṫ = 1

t := 0
x := 0
y := h

vx := c

vy := 0

vy := −vy

(a) Bouncing ball.

İ = 0
İR = − 1

RC IR
V̇R = − 1

C IR
Q̇ = IR
V̇C = 1

C IR

open

İ = − 1
RC IR

İR = − 1
RC IR

V̇R = − 1
C IR

Q̇ = IR
V̇C = 1

C IR

closed
I := 1

R (V−VC)

IR := 1
R (V−VC)

VR :=V−VC

I :=0

IR :=− 1
RVC

VR :=−VC

(b) RC circuit.

Figure 2 Examples of hybrid systems: (a) bouncing ball, (b) RC circuit

OPEN

I CLOSED IR

R

VR

VC
Q

C

V

Figure 3 An RC circuit with a switch to disconnect the battery.

wire between the battery and the switch, the voltages VR and VC across the resistor and
capacitor respectively, the current IR flowing through the resistor, and finally the charge Q
held by the capacitor. All derivatives are with respect to time, though this time we choose
not to include an explicit variable for the passage of time. There are two discrete locations,
open and closed, corresponding to the two possible positions of the switch. We assume the
switch starts in the open position. When switching from open to closed, all variables but
Q and VC experience a reset. We obtain the hybrid system described in Figure 2b.

In this example, there is one set of invariants per location. In both locations, we clearly
have the invariants associated with the passive components: Q = CVC and VR = RIR. In the
open location, we further have the invariants I = 0 and VR = −VC . On the other hand, in
the closed location, we have I = IR and V = VR + VC . These must be the only invariants:
once Q is fixed, all variables are uniquely determined. In summary, the invariants are

open: Q = CVC , VR = RIR, I = 0, VR = −VC ,

closed: Q = CVC , VR = RIR, I = IR, VR = V − VC .

The above invariants were obtained by producing an affine program with the same set of
invariants as the hybrid system in Figure 2b, and applying Theorem 2 to compute a strongest
invariant of the latter. However, in this case, the naive discretisation procedure that was
used in Section 2.1 yields transcendental constants (for the reasons described in Section 2.1).
In fact the affine program that we construct, shown in Figure 4b, is the result of applying
the more abstract discretisation procedure that is described in Section 6. The core idea
of the latter procedure is, given a square matrix A with rational coefficients, to produce a
matrix B, with algebraic coefficients, such that the respective semigroups {eAt : t ≥ 0} and
{Bn : n ∈ N} have the same Zariski closure (see Proposition 9). The algebraic nature of this
construction makes it more subtle to relate the dynamics of the resulting affine program to
the original hybrid system (we invite the reader to compare the automata shown respectively

CONCUR 2020

32:6 Algebraic Invariants for Linear Hybrid Automata

BALL

t := 0
x := 0
y := h

vx := c

vy := 0

vy := −vy
vy := vy − g
t := t+ 1

x := x + vx

y := y + vy − 1
2 g

(a) Affine program modelling a bouncing
ball.

OPEN CLOSED

I := 1
R (V−VC)

IR := 1
R (V−VC)

VR :=V−VC

I :=0

IR :=− 1
RVC

VR :=−VC

IR :=2IR

VR :=RIR+VR

Q :=−RCIR+Q

VC :=−RIR+VC

I :=I+IR

IR :=2IR

VR :=RIR+VR

Q :=−RCIR+Q

VC :=−RIR+VC

(b) Affine program modelling an RC circuit.

Figure 4 Time discretisation of the hybrid systems in Figure 2.

in Figures 2b and 4b). We refer to Section B of the Appendix for more details of how the
affine program is obtained.

3 Mathematical Background

Let K be a field. Given a set X ⊆ Kn, we denote by I(X) the ideal of polynomials in
K[x1, . . . , xn] that vanish on X. Given an ideal I ⊆ K[x1, . . . , xn], we denote by V (I) ⊆ Kn
the set of common zeroes of the polynomials in I. A set X ⊆ Kn is said to be an affine
variety (also called an algebraic set) if X = V (I) for some ideal I ⊆ K[x1, . . . , xn]. By the
Hilbert Basis Theorem, every affine variety can be described as the set of common zeroes of
finitely many polynomials. We identify GLn(K), the set of n× n invertible matrices with
entries in K, with the variety {(A, y) ∈ Kn2+1 : det(A) · y = 1}.

Given an affine variety X ⊆ Kn, the Zariski topology on X has as closed sets the
subvarieties of X, i.e., those sets A ⊆ X that are themselves affine varieties in Kn. Given an
arbitrary set S ⊆ X, we write S for its closure in the Zariski topology on X.

A set S ⊆ X is irreducible if for all closed subsets A1, A2 ⊆ X such that S ⊆ A1 ∪ A2
we have either S ⊆ A1 or S ⊆ A2. It is well known that the Zariski topology on a variety
is Noetherian. In particular, any closed subset A of X can be written as a finite union of
irreducible components, where an irreducible component of A is a maximal irreducible closed
subset of A.

The class of constructible subsets of a variety X is obtained by taking all finite Boolean
combinations (including complementation) of Zariski closed subsets. Suppose that the
underlying field K is algebraically closed. Since the first-order theory of algebraically closed
fields admits quantifier elimination, the constructible subsets of X are exactly the subsets of
X that are first-order definable over K.

A function f : Km → Kn is said to be a polynomial map if there exist polynomials
p1, . . . , pn ∈ K[x1, . . . , xm] such that f(a) = (p1(a), . . . , pn(a)) for all a ∈ Km. Recall that
polynomial maps are Zariski-continuous and thus f(X) ⊆ f(X) for a polynomial map f . In
particular matrix multiplication is a Zariski-continuous map Kn2 ×Kn2 → Kn2 .

Given a complex variety V ⊆ Cn, the intersection V ∩ Rn, which is a real variety, can
be computed effectively. Indeed if V is represented by the ideal I ⊆ C[x1, . . . , xn], then
V ∩Rn is represented by the ideal generated by {p1, p2 ∈ R[x1, . . . , xn] : p1 + ip2 ∈ I} Given
S ⊆ Rn, write SR for its real Zariski closure and S for its complex Zariski closure (i.e., we

R. Majumdar, J. Ouaknine, A. Pouly, and J. Worrell 32:7

treat the complex Zariski closure of S ⊆ Rn as the default). It is straightforward to verify
that SR = S ∩ Rn.

4 Algebraic Invariants for Hybrid Automata

We are concerned with computing strongest algebraic invariants for the subclass of hybrid
automata that has no guards, linear discrete updates, and linear continuous dynamics.
Each location of such an automaton specifies a linear differential equation (x′ = Ax),
and each transition between states (nondeterministic choices are allowed) specifies a linear
transformation (x 7→ Bx). Such a hybrid automaton can be pictured as follows:

x′ = Aix x′ = Ajx

Bij1

. . .

Bijk

Formally, such an automaton A in dimension d is a tuple (Q,A,E, T), where Q is a finite
set of locations, A = {Aq : q ∈ Q} is a family of real d× d matrices, E ⊆ Q× Rd×d ×Q is a
set of transitions labelled by real d× d matrices, and {Tq : q ∈ Q} is a family of algebraic
subsets of Rd. Matrix Aq ∈ Rd×d describes the continuous dynamics at location q ∈ Q and
Tq ⊆ Rd is the set of initial states in location q. We assume that the entries of all matrices
are algebraic numbers and that the polynomials defining Tq have algebraic coefficients.

We will consider the subclasses of automata with the following restrictions:
affine programs: Aq = 0 for all q ∈ Q, and E is finite,
constructible affine programs: Aq = 0 for all q ∈ Q, and E is constructible,
switching systems: E = {(p, In, q) : p, q ∈ Q}, i.e., every pair of locations is connected by
an edge that does not update the variables,
linear hybrid automata: E is finite.

In affine programs, variables are only updated on discrete edges: there is no continuous
evolution within locations. At the other end of the spectrum, in switching systems variables
only evolve continuously, and there are no discrete updates. The full class of linear hybrid
automata accommodate both discrete and continuous updates to the variables.

The collecting semantics of A assigns to each location q ∈ Q the set Sq ⊆ Rd of states
that can occur in location q during a run of the automaton, starting from a configuration
(q,a) for some a ∈ Tq. Formally, this the smallest family (with respect to set inclusion) such
that

Sq ⊇ Tq for all q ∈ Q,
Sq ⊇ BSp for all (p,B, q) ∈ E,
Sq ⊇ eAqtSq for all t ∈ R>0.

Equivalently, let the operator ΦA : P(Rd)Q → P(Rd)Q be defined by(
ΦA(S)

)
q

= Tq ∪
⋃
t>0

eAqtSq ∪
⋃

(p,B,q)∈E

BSp.

Then S is the least fixed-point of ΦA with respect to set inclusion. Such a least fixed-point
exists because ΦA is monotone.

CONCUR 2020

32:8 Algebraic Invariants for Linear Hybrid Automata

In general we say that a family of sets {S′q}q∈Q, with S′q ⊆ Rd is an inductive invariant
if ΦA(S′) ⊆ S′, i.e., the family is pre-fixed-point of ΦA. If each set S′q is algebraic then we
moreover say that {S′q}q∈Q is an inductive algebraic invariant.

Given P ∈ R[x1, . . . , xd], we say that the relation P = 0 holds at location q if P vanishes
on Sq. We are interested in computing at each location q ∈ Q a finite set of polynomials
that generates the ideal Iq := I(Sq) ⊆ R[x1, . . . , xd] of all polynomial relations that hold at
location q. The real variety Vq := V (Iq) = Sq

R corresponding to Iq is the Zariski closure of
Sq viewed a subset of the affine space Rd.

Note that the collection V (A) := {Vq : q ∈ Q} defines an inductive algebraic invariant.
Inductiveness amounts to the following two claims:

for every edge (p,B, q) ∈ E, we have BVp ⊆ Vq,
for every q ∈ Q and t ∈ R>0, we have eAqtVq ⊆ Vq.

The first point follows from the fact that x 7→ Bx is Zariski-continuous; the second point
likewise follows from the fact that for every t ∈ R>0 the map x 7→ eAqtx is Zariski-continuous.

I Lemma 1. For an automaton A, V (A) is the least fixpoint of the map X 7→ ΦA(X).

Proof. Let S denote the collecting semantics of A, then

V (A) = S by definition of V (A)

= ΦA(S) by definition of S

= ΦA(S) by Zariski-continuity of ΦA
= ΦA(V (A))

thus V (A) is indeed a fixed-point. Conversely, let X be such that X = ΦA(X). Then X is
closed and clearly ΦA(X) ⊆ ΦA(X) = X so it is a pre-fixpoint of ΦA. By virtue of S being
the least (pre-)fixpoint of ΦA we must have S ⊆ X. But then S ⊆ X i.e., V (A) ⊆ X. J

The discussion above shows that V (A), the Zariski closure of the collecting semantics, is
the least inductive invariant of A. Previously we have shown how to compute the Zariski
closure of the collecting semantics of an affine program:

I Theorem 2 ([7]). There is an algorithm that given a constructible affine program A
computes V (A) = {Vq : q ∈ Q}—the real Zariski closure of its collecting semantics.

Note that this theorem also applies to (finite) affine programs since those are particular
instances of constructible affine programs.

The main result of the current paper extends the above result by accommodating the
continuous dynamics of hybrid automata:

I Theorem 3. There is an algorithm that given a guard-free linear hybrid automaton A
computes {Vq : q ∈ Q}—the real Zariski closure of its collecting semantics.

5 Proof of Theorem 3

The proof of Theorem 3 has two main ingredients. First, in Subsection 5.1, we show how
to compute the Zariski closure of the orbit of a single continuous linear dynamics (i.e., the
continuous evolution in a single state). Then, in Subsection 5.2, we show that computing the
real Zariski closure of the collecting semantics of a linear hybrid automaton can be effectively
reduced to computing the real Zariski closure of the collecting semantics of a constructible
affine program. At this point, we can apply the algorithm from Theorem 2.

R. Majumdar, J. Ouaknine, A. Pouly, and J. Worrell 32:9

5.1 Linear Continuous Dynamics
The first step towards computing Zariski closure in the general case is to be able to handle the
case of one differential equation. Write A for the field of algebraic numbers. Let A ∈ Ad×d
and x0 ∈ Ad, then the solution to x(0) = x0, x′(t) = Ax(t) is given by x(t) = eAtx0. We
are interested in computing the Zariski closure of the orbit {x(t) : t ∈ R>0}. Since the map
φ : M 7→Mx0 is Zariski-continuous, we have that

{x(t) : t ∈ R>0} = {eAtx0 : t ∈ R>0} = φ({eAt : t ∈ R>0}) = φ({eAt : t ∈ R>0})

and thus it suffices to compute {eAt : t ∈ R>0}. Furthermore, let OA :=
{
eAt : t ∈ R

}
, which

is a commutative group. We claim that {eAt : t ∈ R>0} = OA . The left-to-right inclusion is
clear. The converse inclusion comes from the fact that an exponential polynomial (in one
variable), being an analytic function, vanishes over R>0 if and only if it vanishes over R.
Thus it suffices to compute OA .

The following lemma gives a description of the ideal of the variety OA when A is diagonal.

I Lemma 4. Let A = diag(λ1, . . . , λd) ∈ Ad×d be a diagonal matrix, then

OA = {diag(z1, . . . , zd) : ∀p ∈ I, p(z1, . . . , zd) = 0} ,

where I =
〈
za − zb : a− b ∈ L

〉
and L =

{
n ∈ Zd : n1λ1 + · · ·+ ndλd = 0

}
. Furthermore,

one can compute a basis for L considered as an abelian group under addition.

Proof. Clearly eAt = diag(eλ1t, . . . , eλdt). Since the set of diagonal matrices is closed, then
the closure is of the form

OA = {diag(z1, . . . , zn) : p1(z) = · · · = pk(z) = 0}

for some polynomials p1, . . . , pk. Thus, the ideal I of the closure is generated by all polynomials
p such that p(eλ1t, . . . , eλdt) = 0 for all t ∈ R. Let J be the ideal of all polynomials
xa − xb with a, b ∈ Nd such that λ · a = λ · b. Clearly J ⊆ I since if λ · a = λ · b, then
(eλ1t)a1 · · · (eλdt)ad − (eλ1t)b1 · · · (eλdt)bd = e(λ·a)t − e(λ·b)t = 0 for all t ∈ R. Conversely,
assume by contradiction that p ∈ I \ J and write p =

∑r
i=1 bimi for some bi ∈ A and

monomials m1, . . . ,mr. Further choose p so that r is minimal. For each monomial mi(x) =
xa1

1 · · ·x
ad

d , let µi := λ · a. Then we must have µi 6= µj for i 6= j because otherwise
mi − mj ∈ J and p − bi(mi − mj) ∈ I \ J would have fewer terms than p. Since the
maps t 7→ eµ1t, . . . , t 7→ eµdt are linearly independent, it follows that b1 = · · · = br = 0
which is contradiction. Thus we must have have I = J . It is immediate to see that J is
generated by all polynomials xa − xb such that λ · (a− b) = 0, thus it suffices to compute
L =

{
a ∈ Zd : λ · a = 0

}
, the set of additive relations of λ. Notice that L is an additive

subgroup of Zd and as such must be finitely generated. An upper bound on the size of the
elements of a basis of L can be found in [11] and therefore we can compute a basis for L and
thus J , I and OA. J

A corollary of this result is that we can compute OA by separating the diagonal and
nilpotent parts of A. The fact that this closure is computable is well known (see, e.g., [15]),
however the particular form of the polynomials determining the Zariski closure is the
important part of Lemma 4 for our purposes. In particular, Lemma 4 is instrumental in
the proof of Proposition 6, which reduces the problem of computing the strongest algebraic
invariants of hybrid automata to the analogous problem for affine programs.

I Proposition 5. There is an algorithm that given A ∈ Ad×d, computes {eAt : t ∈ R>0}.

CONCUR 2020

32:10 Algebraic Invariants for Linear Hybrid Automata

Proof. We can write A = P (D+N)P−1 where P is invertible, D is diagonal, N is nilpotent,
and D and N commute. Notice that OD only consists of diagonal matrices and ON of
unipotent matrices. Since OA is a commutative group, and D and N commute, we have
that OA = P (OD · ON)P−1, and thus OA = POD · ON P−1. All the operations in this
equation are effective thus it suffices to compute OD as explained above, and ON . But
since N is nilpotent, qn(t) := eNt is really a polynomial in Nt and thus in t. It follows that
ON = qn(R) = qn(R) = qn(C) which we know how to compute. J

5.2 From Continuous Dynamics to Constructible Discrete Dynamics
In the previous section, we saw that given a linear continuous system, one can compute
its strongest inductive algebraic invariant. The main obstacle to generalize this approach
to linear hybrid system is the mixture of discrete and continuous dynamics. In particular,
the invariants are not irreducible. The idea to work around this problem is to replace the
continuous evolution of the variables in each location of a hybrid automaton with an infinite
set of discrete transitions. Graphically this corresponds to rewriting the automaton as follows:

x′ = Ax x′ = 0

{eAt : t ∈ R>0}

The key point is that this infinite set is very special: it is constructible (and in fact algebraic),
and hence falls into the scope of our previous paper [7].

I Proposition 6. Given a linear hybrid automaton A, one can compute a constructible affine
program A′ that has the same algebraic invariants, i.e., V (A) = V (A′).

Proof. The idea is to replace each continuous dynamics x′ = Aqx by a closed (and thus
constructible) set of discrete transitions: {eAqt : t ∈ R>0}, which we know how to compute
thanks to Proposition 5.

Formally, let A = (Q,A,E, T) be a linear hybrid automaton. Define the constructible
affine program A′ = (Q,A′, E′, T) where A′q = 0 for all q ∈ Q and

E′ = E ∪
{

(q,X, q) : q ∈ Q,X ∈ OAq

}
where OA :=

{
eAt : t ∈ R>0

}
. Note that it is constructible because OAq

is closed (and thus
constructible).

We will now relate the operators ΦA and ΦA′ . Given X ∈ P(Cd)Q we have

ΦA(X)q = Tq ∪ (OAq
·Xq) ∪

⋃
(p,B,q)∈E

BXp

= Tq ∪ OAq ·Xq ∪
⋃

(p,B,q)∈E

BXp

= Tq ∪ (OAq
·Xq) ∪

⋃
(p,B,q)∈E

BXp

= ΦA′(X)q .

Thus the maps X 7→ ΦA(X) and X 7→ ΦA′(X) are identical. But, by Lemma 1, V (A) is the
least fixpoint of X 7→ ΦA(X) and V (A′) is the least fixpoint of X 7→ ΦA′(X). We conclude
that V (A′) = V (A). J

R. Majumdar, J. Ouaknine, A. Pouly, and J. Worrell 32:11

6 From Continuous Dynamics to Finite Discrete Dynamics

The proof of Theorem 3 used an effective reduction from a linear hybrid automaton to a
constructible affine program with the same set of algebraic invariants. In this section, we
show a stronger result—of independent control-theoretic interest—that one can in fact reduce
a linear hybrid automaton to a finite affine program with the same set of algebraic invariants.
The idea is to replace the continuous evolution of the variables in each location of a hybrid
automaton with a finite set of discrete transitions. Graphically this corresponds to rewriting
the automaton as follows:

x′ = Ax x′ = 0

B1 . . . Bk

The result is stronger because finite affine programs are also constructible.
Mathematically, the task is as follows: Given A ∈ Ad×d, find B1, . . . , Bk ∈ Ad×d such

that {eAt : t ∈ R} = 〈B1, . . . , Bk〉. There is a conceptually simple approach to this problem:
namely for every matrix A ∈ Ad×d and rational number τ we have {eAt : t ∈ R} = 〈eAτ 〉
(see Section A). But this does not fulfil our desiderata, since it is not possible in general
to find τ ∈ R such that eAτ has exclusively algebraic entries. Nevertheless given A ∈ Ad×d
it is possible to find B ∈ Ad×d such that {eAt : t ∈ R} = 〈B〉. The idea is to construct B
such that there is a correspondence between the set of additive relations satisfied by the
eigenvalues of A and the multiplicative relations satisfied by the eigenvalues of B.

I Proposition 7. Let a1, . . . , ad ∈ C be algebraic numbers. Then we can compute rational
numbers λ1, . . . , λd such that a1n1 + · · ·+ adnd = 0 iff λn1

1 · · ·λ
nd

d = 1 for all n1, . . . , nd ∈ Z.

Proof. Let s be the dimension of the Q-vector space spanned by a1, . . . , ad. By computing a
basis over Q for the number field Q(a1, . . . , ad) and the respective rational coordinates of
a1, . . . , ad with respect to this basis, we obtain an s× d integer matrix A such that for every
integer vector x = (n1, . . . , nd) ∈ Zd we have n1a1 + · · ·+ ndad = 0 iff Ax = 0.

Now write A = PBQ, where B is an s× d matrix in Smith normal form and P,Q are
unimodular square matrices. Since B has rank s it has the form B =

(
D 0

)
for D an s× s

diagonal matrix of full rank.
We define positive integers µ1, . . . , µd as follows. Choose µ1, . . . , µs to be the first s prime

numbers and let µs+1 = . . . = µd = 1. Write Q = (qij) and define λi = µq1i

1 · · ·µ
qdi

d for
i ∈ {1, . . . , d}.

Then for all n1, . . . , nd ∈ Z we have

λn1
1 · · ·λ

nd

d = 1 ⇔ µ
(Qx)1
1 · · ·µ(Qx)d

d = 1
⇔ (Qx)1 = 0, . . . , (Qx)s = 0
⇔ BQx = 0 (since B =

(
D 0

)
)

⇔ PBQx = 0 (since P is invertible)
⇔ Ax = 0
⇔ a1n1 + · · ·+ adnd = 0 .

J

CONCUR 2020

32:12 Algebraic Invariants for Linear Hybrid Automata

I Corollary 8. Let D be a d× d diagonal matrix with algebraic entries. Then there exists a
diagonal matrix D′, of the same dimension and with rational entries, such that 〈eD〉 = 〈D′〉.

Proof. Write D = diag(a1, . . . , ad) and let rational numbers λ1, . . . , λd be chosen as in
Proposition 7, i.e., such that a1n1 + · · ·+ adnd = 0 iff λn1

1 · · ·λ
nd

d = 1 for all n1, . . . , nd ∈ Z.
Define D′ = diag(λ1, . . . , λd). By Lemma 4, the ideal of the variety 〈eD〉 is generated by
zn − zm such that (n1 − m1)a1 + · · · + (nd − md)ad = 0. On the other hand, it follows
from [3, Lemma 6] that the ideal of the variety 〈D′〉 is generated by zn − zm such that
λn1−m1

1 · · ·λnd−md

d = 1. But by construction the additive relations of a are the same as the
multiplicative relations of λ, therefore the ideals are the same. It follows 〈eD〉 = 〈D′〉. J

I Proposition 9. Let A ∈ Qd×d be a rational matrix. Then there exists an algebraic matrix
B such that 〈B〉 = 〈eA〉 = {eAt : t ∈ R}.

Proof. Let P be an invertible matrix such that A = P−1(D+N)P with D = diag(a1, . . . , ad)
diagonal and N a nilpotent Jordan matrix. By Corollary 8 there exists a rational di-
agonal matrix D′ such that 〈D′〉 = 〈eD〉. We now define B := P−1(D′eN)P where
D′ = diag(λ1, . . . , λd). Note that eN is a matrix of rational numbers. Then we have:

〈eA〉 = P−1〈eDeN 〉P = P−1〈eD〉 · 〈eN 〉P = P−1〈D′〉 · 〈eN 〉P = P−1〈D′eN 〉P = 〈B〉 .

J

I Proposition 10. Given a linear hybrid automaton A, one can compute a finite affine
program A′ that has the same algebraic invariants, i.e., V (A) = V (A′).

Proof. Suppose that A = (Q,A,E, T). We define A′ = (Q,A′, E′, T), where A′q = 0 for all
q ∈ Q and

E′ = E ∪ {(q,Bq, q) : q ∈ Q} ,

with Bq is an algebraic matrix such that 〈eAq 〉 = 〈Bq〉 for all q ∈ Q. The existence of the
matrices Bq is guaranteed by Proposition 9. In other words, we obtain A′ from A by setting
the derivative of all variables to 0 in every location and by adding a compensatory selfloop
edge to every location.

The reasoning that V (A) = V (A′) is entirely analogous to that in the proof of Proposi-
tion 6. J

7 Switching Systems

Finally, we consider the special case of switching systems, that is, hybrid systems in which
every pair of locations is connected by an edge and such that variables are not updated
on discrete edges. It is known that reachability is undecidable even for this restricted
class of systems [12]. We show two results: first, we give a simple algorithm to compute
strongest algebraic invariants for this class, benefitting from the fact that the strongest
algebraic invariant is an irreducible variety (Subsection 7.1); second, we show undecidability
of computing a strongest algebraic invariant if guards are introduced (Subsection 7.2).

7.1 Computing Algebraic Invariants
We compute strongest algebraic invariants for switching systems building on Proposition 5.

R. Majumdar, J. Ouaknine, A. Pouly, and J. Worrell 32:13

Procedure Semigroup-Closure(A1, . . . , Ak)
input :A1, . . . , Ak ∈ Ad×d

1 H := {Id}
2 G1 := {eA1t : t ≥ 0}; . . . ;Gk := {eAkt : t ≥ 0}
3 repeat
4 Hold := H

5 for i ∈ {1, . . . , k} do
6 H := H ·Gi
7 until Hold = H

output :H

I Proposition 11. Algorithm Semigroup-Closure terminates and outputs the Zariski closure
of the sub-semigroup of GLd(C) generated by {eA1t, . . . , eAkt : t ≥ 0}.

Proof. First note that the effectiveness of Line 2 relies on Proposition 5.
Now we argue that H in the algorithm is always an irreducible variety. For this it suffices

to show that if X ⊆ GLd(C) is an irreducible variety then so is Y := X · {eAt : t ≥ 0} for any
matrix A ∈ Cd×d. First observe that if X and Z are irreducible sets then so is X · Z , thus is
it enough to show that G = S is irreducible, where S = {eAt : t ≥ 0}. But S is a semigroup,
thus G is a group. This makes G a linear algebraic group, which is therefore irreducible if
and only if it is (Zariski-)connected. But G being the closure of S means it is enough to
show that S is Zariski-connected, and hence enough to show that it is Euclidean-connected.
The latter is trivial since every element of S is path-connected to Id.

Now a strictly increasing chain H1 ⊆ H2 ⊆ · · · of irreducible sub-varieties of GLd(C) has
length at most the dimension of GLd(C), which is d2. Thus Algorithm Semigroup-Closure
terminates after at most d2 iterations of the outer loop. It is clear that the terminating
value of the algorithm is the Zariski closure of the sub-semigroup of GLd(C) generated by
{eA1t, . . . , eAkt : t ≥ 0}. J

Now consider a switching system A = (Q,A,E, T). Let G be the Zariski closure of the
semigroup generated by the matrices eAqt, for q ∈ Q and t ≥ 0, which can be computed
by Proposition 11. Then V (A) = {Vq : q ∈ Q}, the real Zariski closure of the collecting
semantics of A, is such that Vq = G ·X ∩GLd(R) for every q ∈ Q, where X =

⋃
q∈Q Tq. But

then V (A) is computable from G and T .

7.2 Undecidability for Switching Systems with Guards
Finally, we show that computing the strongest algebraic inductive invariant becomes undecid-
able if we introduce guards to switching systems. Specifically, we consider switching systems
with no discrete updates on the variables but with equality guards on the discrete mode
changes. For such systems there is a smallest algebraic inductive invariant, which can be
obtained as the (location-wise) intersection of the family of all algebraic inductive invariants.
However, as we show in this section, this invariant is no longer computable. In other words,
in the presence of equality guards the analog of Theorem 3 fails. (We remark also that the
discrete mode changes no longer induce Zariski continuous maps on configurations if there
are equality guards. Hence we cannot necessarily recover the smallest algebraic inductive
invariant as the Zariski closure of the collecting semantics).

CONCUR 2020

32:14 Algebraic Invariants for Linear Hybrid Automata

I Theorem 12. There is no algorithm that computes the strongest algebraic inductive
invariant for the class of switching systems with equality guards.

Proof Sketch (see full proof in appendix). The idea is to simulate a 2-counter machine in
such a way that if the machine has an infinite run then the strongest invariant has dimension
2, and otherwise it has dimension 1. Since the dimension of an algebraic set can be effectively
determined; this concludes the sketch. J

References
1 Hirokazu Anai and Volker Weispfenning. Reach set computations using real quantifier

elimination. In Hybrid Systems: Computation and Control, 4th International Workshop, HSCC
2001, Rome, Italy, March 28-30, 2001, Proceedings, volume 2034 of Lecture Notes in Computer
Science, pages 63–76. Springer, 2001.

2 Michele Boreale. Complete algorithms for algebraic strongest postconditions and weakest
preconditions in polynomial odes. Sci. Comput. Program., 193:102441, 2020.

3 H. Derksen, E. Jeandel, and P. Koiran. Quantum automata and algebraic groups. J. Symb.
Comput., 39(3-4):357–371, 2005.

4 Stephan Falke and Deepak Kapur. When is a formula a loop invariant? In Logic, Rewriting,
and Concurrency - Essays dedicated to José Meseguer on the Occasion of His 65th Birthday,
volume 9200 of Lecture Notes in Computer Science, pages 264–286. Springer, 2015.

5 Khalil Ghorbal and André Platzer. Characterizing algebraic invariants by differential radical
invariants. In Tools and Algorithms for the Construction and Analysis of Systems - 20th
International Conference, TACAS 2014, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014. Proceedings,
volume 8413 of Lecture Notes in Computer Science, pages 279–294. Springer, 2014.

6 Thomas A. Henzinger. The theory of hybrid automata. In Proceedings, 11th Annual IEEE
Symposium on Logic in Computer Science, New Brunswick, New Jersey, USA, July 27-30,
1996, pages 278–292. IEEE Computer Society, 1996.

7 Ehud Hrushovski, Joël Ouaknine, Amaury Pouly, and James Worrell. Polynomial invariants
for affine programs. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages 530–539, 2018.

8 Z. Kincaid, J. Cyphert, J. Breck, and T. W. Reps. Non-linear reasoning for invariant synthesis.
PACMPL, 2(POPL):54:1–54:33, 2018.

9 Gerardo Lafferriere, George J. Pappas, and Sergio Yovine. Symbolic reachability computation
for families of linear vector fields. J. Symb. Comput., 32(3):231–253, 2001. URL: https:
//doi.org/10.1006/jsco.2001.0472, doi:10.1006/jsco.2001.0472.

10 Daniel Liberzon. Switching in Systems and Control. Birkhauser/Springer, 2003.
11 D. W. Masser. Linear relations on algebraic groups. In New Advances in Transcendence

Theory. Cambridge University Press, 1988.
12 Joël Ouaknine, Amaury Pouly, João Sousa Pinto, and James Worrell. Solvability of matrix-

exponential equations. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS ’16, New York, NY, USA, July 5-8, 2016, pages 798–806, 2016.

13 Enric Rodríguez-Carbonell and Deepak Kapur. Automatic generation of polynomial invari-
ants of bounded degree using abstract interpretation. Sci. Comput. Program., 64(1):54–75,
2007. URL: https://doi.org/10.1016/j.scico.2006.03.003, doi:10.1016/j.scico.2006.
03.003.

14 Enric Rodríguez-Carbonell and Deepak Kapur. Generating all polynomial invariants in simple
loops. J. Symb. Comput., 42(4):443–476, 2007. URL: https://doi.org/10.1016/j.jsc.2007.
01.002, doi:10.1016/j.jsc.2007.01.002.

15 Enric Rodríguez-Carbonell and Ashish Tiwari. Generating polynomial invariants for hybrid
systems. In Manfred Morari and Lothar Thiele, editors, Hybrid Systems: Computation and
Control, pages 590–605, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

https://doi.org/10.1006/jsco.2001.0472
https://doi.org/10.1006/jsco.2001.0472
http://dx.doi.org/10.1006/jsco.2001.0472
https://doi.org/10.1016/j.scico.2006.03.003
http://dx.doi.org/10.1016/j.scico.2006.03.003
http://dx.doi.org/10.1016/j.scico.2006.03.003
https://doi.org/10.1016/j.jsc.2007.01.002
https://doi.org/10.1016/j.jsc.2007.01.002
http://dx.doi.org/10.1016/j.jsc.2007.01.002

R. Majumdar, J. Ouaknine, A. Pouly, and J. Worrell 32:15

16 Sriram Sankaranarayanan. Automatic invariant generation for hybrid systems using ideal
fixed points. In Proceedings of the 13th ACM International Conference on Hybrid Systems:
Computation and Control, HSCC 2010, Stockholm, Sweden, April 12-15, 2010, pages 221–230.
ACM, 2010.

17 Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna. Constructing invariants for
hybrid systems. Formal Methods in System Design, 32(1):25–55, 2008.

A Time Discretisation

I Proposition 13. For a rational matrix A ∈ Qd×d we have

{eAt : t ∈ R} = 〈eA〉 .

Proof. Suppose that A is diagonalisable—say A = U−1DU for some invertible matrix U
and D = diag(a1, . . . , ad). It suffices to prove that {eDt : t ∈ R} = 〈eD〉.

Consider a multiplicative relationship among the eigenvalues of eD—say (ea1)n1 · · · (ead)nd =
1, where n1, . . . , nd ∈ Z. Then a1n1 + · · ·+ adnd ∈ (2πi)Z. But since a1, . . . , ad are algebraic
numbers, we must in fact have adnd + · · ·+ adnd = 0. It follows that a1tn1 + · · ·+ adtnd = 0
for all t ∈ R and hence (ea1t)n1 · · · (eadt)nd = 1 for all t ∈ R, i.e., the same multiplicative
relation also holds among the eigenvalues of eDt.

Since the ideal of all polynomial relations satisfied by 〈eD〉 is generated by the multi-
plicative relations satisfied by the eigenvalues of eD, we have that for any t ∈ R, matrix eDt
satisfies all polynomial relations satisfied by 〈eD〉. This proves the proposition in case A is
diagonalisable.

Next, suppose that A is nilpotent. The fact that {eAt : t ∈ R} = 〈eA〉 is already shown
in Section 3.3 of Derksen, Jeandel, and Koiran.

The general case can by handled by reduction to the diagonalisable and nilpotent cases
as in Proposition 5. J

Proposition 13 crucially relies on the fact that π does not appear in the description of A.
Indeed, consider the case that A =

(
2πi
)
∈ C1×1. Then

{
eAt : t ∈ R

}
= {z ∈ C : |z| = 1} is

the unit circle. However
{
eAn : n ∈ Z

}
= {1} is a singleton. Such an example is possible

because the map z ∈ C 7→ eAz is not Zariski-continuous in general.

B Examples

We explain how to discretise the hybrid system in Section 2.1 into a corresponding affine
program. The first step is to get rid of the continuous dynamics entirely. Let X =
(x, y, vx, vy, t, 1) be the state, where we add 1 to make it linear, then the continuous behaviour
can be rewritten as Ẋ = AX. Intuitively, we can replace the continuous dynamics by infinitely
many discrete transitions eAt for t > 0. The key observation (Proposition 13) is that we
can in fact replace this infinite set with just one matrix, eA, without changing the smallest
algebraic invariant of the system. The strongest algebraic invariant is then obtained by our
previous result on affine programs (Theorem 2). In this example, we have

A =

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 −g
0 0 0 0 0 1
0 0 0 0 0 0

, eA =

1 0 1 0 0 0
0 1 0 1 0 − 1

2g

0 0 1 0 0 0
0 0 0 1 0 −g
0 0 0 0 1 1
0 0 0 0 0 1

.

CONCUR 2020

32:16 Algebraic Invariants for Linear Hybrid Automata

We can now rephrase the discrete transition X := eAX as x := x + vx, y := y + vy − 1
2g,

vy := vy − g and t := t+ 1. By construction, this exactly corresponds to a time-discretisation
with 1 unit of time. We then obtain the equivalent, for algebraic invariant, affine program
depicted in Figure 4a. For instance, one can check that (1) is indeed invariant under this
new transition (x′, y′, . . . denotes the value after the transition):

x′ − t′c = x+ vx − (t+ 1)c = x− tc− c+ vx = 0 since x = tc and vx = c,

v′y
2 + 2g(y′ − h) = (vy − g)2 + 2g(y + vy − 1

2g − h)
= v2

y + 2g(y − h) = 0.

We next describe how to use the procedure in Section 6 to transform the hybrid system
shown in Figure 2b to the equivalent (with respect to algebraic invariants) affine program in
Figure 4b. Let X = (I, IR, VR, Q, VC) be the state, then the continuous behaviour in location
OPEN (resp. CLOSED) can be rewritten as Ẋ = AX (resp. Ẋ = BX). We proceed as in
the previous example and replace the continuous dynamics by two discrete transitions eA
and eB . Unfortunately in this case, the resulting matrices

A =

0 0 0 0 0
0 − 1

RC 0 0 0
0 − 1

C 0 0 0
0 1 0 0 0
0 1

C 0 0 0

 , eA =

1 0 0 0 0
0 e−

1
RC 0 0 0

0 (e− 1
RC − 1)R 1 0 0

0 (1− e− 1
RC)RC 0 1 0

0 (1− e− 1
RC)R 0 0 1

have non-algebraic entries in general. Indeed, since RC is algebraic, e−

1
RC is never algebraic

and this prevents us from computing the strongest algebraic invariant using Theorem 2. We
circumvent this issue by constructing another matrix, call it Â, with algebraic coefficients such
that if we replace eA by Â then the two affine programs have the same algebraic invariants.
We show in Section 6 how to compute such a matrix, which is this example produces

Â =

1 0 0 0 0
0 2 0 0 0
0 R 1 0 0
0 −RC 0 1 0
0 −R 0 0 1

 , B̂ =

1 1 0 0 0
0 2 0 0 0
0 R 1 0 0
0 −RC 0 1 0
0 −R 0 0 1

 .

We then obtain the equivalent, for algebraic invariant, affine program depicted in Figure 4b.
For instance, one can check that the OPEN invariant is indeed invariant by Â:

Q′ − CV ′C = (−RCIR +Q)− C(−RIR + VC) = Q− CVC = 0
V ′R −RI ′R = (RIR + VR)−R(2IR) = VR −RIR = 0
V ′R + V ′C = (RIR + VR) + (−RIR + VC) = VR + VC = 0.

C Proof of Theorem 12

Recall that a non-deterministic 2-counter machine M consists of two counters C and D and a
list of n instructions. Each instruction increments one of the counters, decrements one of the
counters, or tests one of the counters for zero. After executing a counter update or a successful
test, the machine proceeds nondeterministically to one of two specified instructions. The
machine halts if it executes a test instruction whose condition is false. Given an instruction

R. Majumdar, J. Ouaknine, A. Pouly, and J. Worrell 32:17

i, if j is one of the two possible successors of i then we call the pair (i, j) a transition of M .
Initially M starts with both counters zero and instruction 1 is the first to be executed. A
configuration of M is a triple consisting of the current instruction and the current counter
values. The problem of whether such a machine M can reach infinitely many configurations
from its initial configuration is undecidable.

Corresponding to such a 2-counter machine M we define a linear hybrid automaton
A = (Q,A,E, q) in dimension 3. We think of A as having continuous variables c, d, t, where
c and d respectively correspond to the counters of M . Each variable has constant derivative
in each location, which is zero unless otherwise specified. For each instruction i of M we
postulate a location qi of A and for each transition (i, j) of M we postulate a location qi,j of
A. Variable t has slope 1 in each location qi and slope −1 in each location qi,j . For every
transition (i, j) of M , automaton A has an edge from qi to qi,j with guard t = 1 and an edge
from qi,j to qj with guard t = 0. Intuitively, if an execution of A correctly simulates a run
of M then A spends one time unit in each location, alternating between locations qi that
correspond to instructions of M and locations qi,j that correspond to transitions of M .

Suppose that the i-th instruction of M performs an incrementation C := C + 1. Then
variable C has slope 1 in location qi. Likewise if the i-th instruction if C := C − 1, then
variable c has slope −1 in location qi. If the i-th instruction of M is the zero test C = 0, then
the edge from location qi to qi,j in A has guard c = 0. There are corresponding constructions
for counter operations and tests on counter D.

This completes the description of A. We now claim that:
1. If M can only reach finitely many configurations from the initial configuration then

V (A) = {Vq : q ∈ Q}, the Zariski closure of the collecting semantics, is an inductive
invariant that has dimension one.

2. If infinitely many configurations are reachable from the initial configuration of M then
the smallest inductive invariant has dimension strictly greater than one.

To prove the claim, note that for each reachable configuration (i, z1, z2) of M , the
collecting semantics Φ(A)qi

contains a half-line L containing the point (z1, z2, 0), whose
direction is determined by the slopes of the respective variables of A in location qi. The
Zariski closure of L is the affine hull of L, i.e., the corresponding full line containing L.
Crucially, the points added to L to obtain the full line are all predecessors of L under the
flow relation of A. In particular the Zariski closure is inductive: it remains closed under the
transition relation of A. In particular, if M can only reach finitely many configurations, then
the Zariski closure of the collecting semantics consists of finitely many lines in each location
(and so has dimension one) and is moreover an inductive invariant.

Suppose M can reach infinitely many configurations. Since any algebraic inductive
invariant must in particular contain the Zariski closure of the collecting semantics, it follows
that any algebraic inductive invariant must contain infinitely many lines in some location
and thus must have dimension strictly greater than one.

Since the dimension of an algebraic set can be effectively determined, we conclude that it
is not possible to compute the smallest algebraic invariant of a linear hybrid automaton with
equality guards (even with a no discrete updates of the variables).

CONCUR 2020

	Introduction
	Examples
	Bouncing ball
	RC circuit

	Mathematical Background
	Algebraic Invariants for Hybrid Automata
	Proof of Theorem 3
	Linear Continuous Dynamics
	From Continuous Dynamics to Constructible Discrete Dynamics

	From Continuous Dynamics to Finite Discrete Dynamics
	Switching Systems
	Computing Algebraic Invariants
	Undecidability for Switching Systems with Guards

	Time Discretisation
	Examples
	Proof of Theorem 12

