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Abstract

Recent work has focused on increasing availability
in the face of Internet path failures. To date, pro-
posed solutions have relied on complex routing and path-
monitoring schemes, trading scalability for availability
among a relatively small set of hosts.

This paper proposes a simple, scalable approach to re-
cover from Internet path failures. Our contributions are
threefold. First, we conduct a broad measurement study
of Internet path failures on a collection of 3,153 Internet
destinations consisting of popular Web servers, broad-
band hosts, and randomly selected nodes. We monitored
these destinations from 67 PlanetLab vantage points over
a period of seven days, and found availabilities ranging
from 99.6% for servers to 94.4% for broadband hosts.
When failures do occur, many appear too close to the
destination (e.g., last-hop and end-host failures) to be
mitigated through alternative routing techniques of any
kind. Second, we show that for the failures that can
be addressed through routing, a simple, scalable tech-
nique, called one-hop source routing, can achieve close
to the maximum benefit available with very low over-
head. When a path failure occurs, our scheme attempts
to recover from it by routing indirectly through a small
set of randomly chosen intermediaries.

Third, we implemented and deployed a prototype one-
hop source routing infrastructure on PlanetLab. Over
a three day period, we repeatedly fetched documents
from 982 popular Internet Web servers and used one-hop
source routing to attempt to route around the failures we
observed. Our results show that our prototype success-
fully recovered from 56% of network failures. However,
we also found a large number of server failures that can-
not be addressed through alternative routing.

Our research demonstrates that one-hop source rout-
ing is easy to implement, adds negligible overhead, and
achieves close to the maximum benefit available to indi-
rect routing schemes, without the need for path monitor-
ing, history, or a-priori knowledge of any kind.

1 Introduction

Internet reliability demands continue to escalate as the
Internet evolves to support applications such as banking
and telephony. Yet studies over the past decade have
consistently shown that the reliability of Internet paths
falls far short of the “five 9s” (99.999%) of availability
expected in the public-switched telephone network [11].
Small-scale studies performed in 1994 and 2000 found
the chance of encountering a major routing pathology
along a path to be 1.5% to 3.3% [17, 26].

Previous research has attempted to improve Internet
reliability by various means, including server replica-
tion, multi-homing, or overlay networks. While effec-
tive, each of these techniques has limitations. For ex-
ample, replication through clustering or content-delivery
networks is expensive and commonly limited to high-end
Web sites. Multi-homing (provisioning a site with mul-
tiple ISP links) protects against single-link failure, but
it cannot avoid the long BGP fail-over times required to
switch away from a bad path [12]. Overlay routing net-
works, such as RON, have been proposed to monitor path
quality and select the best available path via the Inter-
net or a series of RON nodes [2]. However, the required
background monitoring is not scalable and therefore lim-
its the approach to communication among a relatively
small set of nodes.

This paper re-examines the potential of overlay rout-
ing techniques for improving end-to-end Internet path re-
liability. Our goal is to answer three questions:

1. What do the failure characteristics of wide-area In-
ternet paths imply about the potential reliability
benefits of overlay routing techniques?

2. Can this potential be realized with a simple, state-
less, and scalable scheme?

3. What benefits would end-users see in practice for a
real application, such as Web browsing, when this
scheme is used?

To answer the first question, we performed a large-
scale measurement study that uses 67 PlanetLab vantage



points to probe 3,153 Internet destinations for failures
over seven days. Of these destinations, 378 were popu-
lar Web servers, 1,139 were broadband hosts, and 1,636
were randomly selected IP addresses. During the course
of our 7-day study we observed more failures than the 31
node RON testbed saw in 9 months [7].

Our results show that end-to-end path availability
varies substantially across different destination sets. On
average, paths to popular Web servers had 99.6% avail-
ability, but paths to broadband hosts had only 94.4%
availability. The vast majority of paths experienced at
least one failure. Unfortunately, many failures are lo-
cated so close to the destination that no alternative rout-
ing or overlay scheme can avoid them: 16% of failures
on paths to servers and 60% of failures on paths to broad-
band hosts occur were last-hop or end-system failures.
Effective remedies for these failures are increased end-
system reliability and multi-homing.

To answer the second question, we use our measure-
ment results to show that when an alternative path ex-
ists, that path can be exploited through extremely simple
means. Inspired by the Detour study [21] and RON [2],
we explore the use of a technique we call one-hop
source routing. When a communication failure occurs,
the source attempts to reach the destination indirectly
through a small set of intermediary nodes. We show that
a selection policy in which the source node chooses four
potential intermediary nodes at random (called random-
4) can obtain close to the maximum possible benefit.
This policy gives well-connected clients and servers the
ability to route around failures in the middle of the net-
work without the need for complex schemes requiring a
priori communication or path knowledge.

To answer the third question, we built and evaluated a
prototype one-hop source routing implementation called
SOSR (for Scalable One-hop Source Routing). SOSR
uses the Linux netfilter/iptables facility to implement al-
ternative packet routing for sources and NAT-style for-
warding for intermediaries – both at user level. SOSR
is straightforward to build and completely transparent to
destinations. On a simple workload of Web-browsing re-
quests to popular servers, SOSR with the random-4 pol-
icy recovered from 56% of network failures. However,
many failures that we saw were application-level fail-
ures, such as server timeouts, which are not recoverable
through any alternative routing or overlay schemes. In-
cluding such application-level failures, SOSR could re-
cover from only 20% of the failures we encountered. The
user-level perception of any alternative routing scheme is
ultimately limited by the behavior of the servers as well
as of the network.

The rest of the paper is organized as follows. We
present our measurement study characterizing failures in
the next section. Section 3 then shows the potential ef-

fectiveness of different practical policies for improving
Internet path reliability. Section 4 describes the design,
implementation, and evaluation of our prototype one-hop
source routing system. We end with a discussion of re-
lated work (Section 5) and our conclusions (Section 6).

2 Characterizing Path Failures

This section describes our large-scale measurement
study of Internet path failures. Our goals were: (1) to dis-
cover the frequency, location, and duration of path fail-
ures, and (2) to assess the potential benefits of one-hop
source routing in recovering from those failures.

2.1 Trace methodology

From August 20, 2004 to August 27, 2004 we moni-
tored the paths between a set of PlanetLab [18] vantage
points and sets of destination hosts in the Internet. We
periodically sent a probe on each path and listened for a
response. If we received a response within a pre-defined
time window, we declared the path to be normal. If not,
we declared a loss incident on that path. Once a loss inci-
dent was declared, we began to probe the path more fre-
quently to: (1) distinguish between a “true” path failure
and a short-lived congestion episode and (2) measure the
failure duration. We used traceroute to determine where
along the path the failure occurred. In parallel, we also
sent probes from the vantage point to the destination indi-
rectly through a set of intermediary nodes. This allowed
us to measure how often indirect paths succeeded when
the default path failed.

2.1.1 Probes and traceroutes

Our probes consist of TCP ACK packets sent to a
high-numbered port on the destination. Correspondingly,
probe responses consist of TCP RST packets sent by the
destination. We used TCP ACK packets instead of UDP
or ICMP probes for two reasons. First, many routers and
firewalls drop UDP or ICMP probes, or treat them with
lower priority than TCP packets, which would interfere
with our study. Second, we found that TCP ACK probes
raise fewer security alarms than other probes. Before we
included a candidate destination in our study, we vali-
dated that it would successfully respond to a burst of 10
TCP ACK probes. This ensured that destinations were
not rate-limiting their responses, avoiding confusion be-
tween rate-limiting and true packet loss.

To determine where a failure occurred along a path,
we used a customized version of traceroute to probe the
path during a loss incident. Our version of traceroute
uses TTL-limited TCP ACK packets, probing multiple
hops along the route in parallel. This returns results
much faster than the standard traceroute and permits us
to determine the location of even short-lived failures.



2.1.2 Node selection

Initially, we selected 102 geographically distributed
PlanetLab nodes as vantage points. Following the exper-
iment, we examined the logs on each node to determine
which had crashed or were rebooted during our trace. We
then filtered the trace to remove any nodes with a total
downtime of more than 24 hours, reducing the set to 67
stable vantage points for our analysis. We similarly se-
lected 66 PlanetLab nodes to use as intermediaries, but
only 39 of these survived crash/reboot post-filtering.

Using our vantage points, we monitored paths to
three different sets of Internet hosts: popular Web
servers, broadband hosts, and randomly selected IP ad-
dresses. A full list of IP addresses in each set and
additional details describing our selection process are
available at http://www.cs.washington.edu/
homes/gummadi/sosr.

The members of each set were chosen as follows:

• We culled our popular server set from a list of
the 2,000 most popular Web sites according to
www.ranking.com. Removing hosts that failed the
TCP ACK rate-limit test and filtering duplicate IP
addresses left us with 692 servers. The path behav-
ior to a popular server is meant to be representative
of the experience of a client when contacting a well-
provisioned server.

• We selected our broadband hosts from an IP
address list discovered through a 2002 crawl
of Gnutella [20]. From that set, we re-
moved hosts whose reverse DNS lookup did not
match a list of major broadband providers (e.g.,
adsl*bellsouth.net) and again filtered those
that failed the rate-limit test. Finally, we selected
2,000 nodes at random from those that survived this
filtering. The path behavior to a broadband host is
meant to be representative of a peer-to-peer appli-
cation or voice-over-IP (VoiP).

• The random IP address set consists of 3,000 IP ad-
dresses that were randomly generated and that sur-
vived the rate-limit test. We use this set only as a
basis for comparison.

We partitioned the destination sets across our ini-
tial vantage points such that each destination node was
probed by only one vantage point. Because some of the
vantage points were filtered from the trace due to failure
or low availability, some of the destinations were conse-
quently removed as well. Following this filtering, 378
servers, 1,139 broadband hosts, and 1,636 random IP ad-
dresses remained in the trace. Note that while we filtered
vantage points and intermediaries for availability, we did
not filter any of the destination sets beyond the initial
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Figure 1: Probe timing. (a) The sequence of probes that
are sent along each path during the trace. (b) A loss in-
cident begins with a single probe loss, and ends after 10
consecutive successful probe responses. (c) For each of
the first 10 probe intervals of a loss incident, we issued
indirect probes through each of 66 intermediaries.

TCP ACK rate-limit test. As a consequence, some desti-
nations crashed or otherwise shut down during the trace,
causing last-hop path failures.

2.1.3 Probe timing

During the 7-day trace period, we probed each path
every 15 seconds. If the vantage point failed to receive a
response within 3 seconds, we declared a loss to have oc-
curred. A single loss transitioned the path into a loss inci-
dent – an event initiated by a single probe loss and ended
by the reception of ten consecutive probe responses (Fig-
ure 1a). While a path is in the midst of a loss incident,
we probed every 5 seconds (Figure 1b). We also issued
a traceroute from the vantage point to the destination at
the start of the loss incident.

For each of the first 10 probe intervals during a loss
incident, we also attempted to probe the destination in-
directly through each of the 66 PlanetLab intermediaries
selected at the beginning of the experiment. Thus, dur-
ing one of these probe intervals, the vantage point emits a
probe to an intermediary every 5/66

th of a second (Fig-
ure 1c). We allow six seconds for a response to flow
back from the destination through the intermediary to the
vantage point; if no response is received in this time we
declare a loss through that intermediary.

2.1.4 Failures vs. loss incidents

In principle, it may seem simple to declare a path fail-
ure when some component of a path has malfunctioned
and all packets sent on that path are lost. In practice,
however, failures are more complex and difficult to de-
fine. For example, packet loss may be due to a true long-
term failure or a short-term congestion event. In general,



7,0245,723962classifiable failure events

3,5951,837524unclassifiable failure events

4,456 (63%)

2,568 (37%)
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1,395

10,619

67

1,636

random

2,317 (40%)

3,406 (60%)

1,052

999

7,560

67

1,139

broadband

337failed links

serverscharacteristic

294failed paths

151 (16%)last-hop

811 (84%)non-last-hop

1,486failure events

67vantage points

378paths probed

Table 1: High-level characterization of path failures,
observed from 08/20/04 to 08/27/04. We obtained path
information using traceroutes. A failure is identified as
a last-hop failure when it is attributable to either the ac-
cess link connecting the destination to the network or the
destination host itself.

any operational definition of failure based on packet loss
patterns is arbitrary.

We strove to define failure as a sequence of packet
losses that would have a significant or noticeable ap-
plication impact. We did not want to classify short se-
quences of packet drops as failures, since standard re-
liability mechanisms (such as TCP retransmission) can
successfully hide these. Accordingly, we elevated a loss
incident to a failure if and only if the loss incident began
with three consecutive probe losses and the initial tracer-
oute failed. We defined the failure to last from the send
of the first failed probe until the send of the first of the
ten successful probes that terminated the loss incident.
For example, the loss incident shown in Figure 1b corre-
sponds to a failure that lasted for 30 seconds.

2.2 Failure characteristics

Table 1 summarizes the high-level characteristics of
the failures we observed, broken down by our three des-
tination sets. In the table we show as classifiable those
failures for which our modified traceroute was able to
determine the location of the failure; the remainder we
show as unclassifiable. The classifiable failures are fur-
ther broken down into last-hop failures, which are fail-
ures of either the end-system or last-hop access link (we
cannot distinguish the two), and non-last-hop failures,
which occurred within the network.

For the popular servers, we saw 1,486 failures spread
over 294 paths and 337 links along these paths. Of the
962 classifiable failures, 811 (84%) occurred within the
network, while 16% were last-hop failures. On aver-
age, a path experienced 3.9 failures during the week-long
trace, of which 0.4 were last-hop failures, 2.1 were non-
last-hop failures, and 1.4 were unclassifiable.

For the broadband hosts we saw 7,560 failures of
which 5,723 were classifiable. On average, a broadband
path experienced 6.6 failures over the week, nearly dou-

0

0.5

1

1.5

2

2.5

3

3.5

src_side middle_core dst_side last_hop unclassifiable

failure location

av
g

. #
 f

ai
lu

re
s 

p
er

 p
at

h
 p

er
 w

ee
k

servers
broadband
random

Figure 2: Location of failures. Failures are spread
throughout the Internet for all three destination sets.
Last-hop failures dominate other failures for broadband
hosts, but for popular servers, last-hop failures are rare.

ble that of the popular server set. Of these 6.6 failures,
3.0 were last-hop, 2.0 non-last-hop, and 1.6 were un-
classifiable. Comparing server and broadband paths, we
saw approximately the same rate of non-last-hop failures,
but broadband paths showed a much higher rate of last-
hop failures (0.4 per path per week for servers, and 3.0
per path per week for broadband). Therefore, the net-
work behaved similarly for broadband and popular server
hosts, except over the last-hop.

2.2.1 Location of failures

To describe the failure locations in a meaningful way,
we divide each path into four parts: last hop, mid-
dle core, src side, and dst side. Last hop are either end-
system failures or last-hop access-link failures. Mid-
dle core failures occur in the “core of the Internet,”
which we define as the Tier1 domains. These are the few
important domains, such as AT&T and Sprint, through
which the vast majority of all Internet paths pass. We
identify them using the methodology of Subramanian et
al. [23]. Src side and dst side are therefore the remaining
path segments between the core and source, or core and
destination, respectively. If traceroute could not classify
the failure location, we labeled it “unclassifiable.”

Figure 2 shows the distribution of failures across these
categories. Failures are spread throughout the Inter-
net, and all three data sets observe approximately equal
source-side and core failures. For popular servers, there
are relatively few last-hop failures, and in fact the last-
hop appears to be more reliable than the rest of the In-
ternet! This is strong evidence that techniques such as
one-hop source routing can improve end-to-end avail-
ability for server paths, as it targets these non-last-hop
failures. For broadband hosts, however, last-hop failures
dominate all other failures, and accordingly we should
expect less of a benefit from one-hop source routing.

Not surprisingly, the random IP destination set be-
haves in a manner that is consistent with a blend of



85 secs67 secs70 secsunclassifiable

1,744 secs3,085 secs302 secsunclassifiable

518 secs981 secs333 secsmedian path downtime

1,680 secs5,066 secs651 secsaverage failure duration

10,904 secs33,630 secs2,561 secsaverage path downtime

72 secs75 secs73 secsmedian failure duration

66 secs

61 secs

735 secs

3,228 secs

random

64 secs

100 secs

859 secs

8,997 secs

broadband

113 secslast-hop

servers

70 secsnon-last-hop

3,539 secslast-hop

339 secsnon-last-hop

Table 2: Path downtime and failure durations. This
table shows average and median path downtime, as well
as average and median failure durations, for our three
destination sets. The downtime for a path is the sum of
all its failure durations.

server-like and broadband-like hosts. Somewhat surpris-
ingly, however, the random IP set sees a greater rate of
destination-side failures than both servers and broadband
hosts. We do not yet have an explanation for this.

2.2.2 Duration of failures

In Table 2, we show high-level statistics that charac-
terize failure duration and path availability in our trace.
The average path to a server is down for 2,561 seconds
during our week long trace, which translates into an av-
erage availability of 99.6%. In comparison, the aver-
age path to a broadband host is down for 33,630 sec-
onds during trace, leading to an average availability of
94.4%. Paths to broadband hosts are an order of mag-
nitude less available than paths to server hosts. This is
unsurprising, of course, since broadband hosts are less
well maintained, tend to be powered off, and likely have
worse quality last-hop network connections.

The median path availability is significantly better
than the average path availability, suggesting that the dis-
tribution of path availabilities is non-uniform. Figure 3
confirms this: for all three destination sets, more than
half of the paths experienced less than 15 minutes of
downtime over the week. As well as being generally less
available than server paths, a larger fraction broadband
paths suffer from high unavailability: more than 30% of
broadband paths are down for more than an hour, and
13% are down for more than a day (not shown in graph).

Table 2 also shows the average and median failure du-
rations. On paths to servers, the average failure lasted
for just under 11 minutes; in comparison, on paths to
broadband hosts, the average failure lasted for 84 min-
utes. For both destination sets, last-hop failures lasted
approximately an order of magnitude longer than non-
last-hop failures. Unfortunately, this reduces the poten-
tial effectiveness of one-hop source routing. Last-hop
failures can last for a long time, and they are also hard to
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Figure 3: Availability of paths (CDF). The cumulative
distribution of total downtime experienced by the paths
during our trace, for each of our three destination sets.
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Figure 4: Frequency of path failures. Paths are ordered
by the number of failures experienced. Most paths expe-
rience few failures, but a small number of paths experi-
ence many failures. Note that both axes are in log-scale.

route around. Like path availability, failure duration has
a non-uniform distribution – median failure durations are
significantly lower than average failure durations.

2.2.3 Frequency of failures

We can compute the number of failure-free paths by
subtracting the number of failed paths from the number
of paths probed (both shown in Table 1). This reveals
that only 22% of server paths, 12% of broadband paths,
and 15% of random paths were failure-free: most paths
in each destination set experienced at least one failure.

Figure 4 plots the number of failures each path expe-
rienced, using a log-scale on both axes. Each destina-
tion set is sorted in rank order from most-failing to least-
failing path. This graph demonstrates two points: (1) a
small number paths experience a very large number of
failures, and (2) most paths experienced a small but non-
zero number of failures. Additional analysis (not shown)
also demonstrates that for broadband hosts, the failure-
prone paths tend to fail on the last-hop, while for servers,
the failure-prone paths tend to fail uniformly across the
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Table 3: Potential effectiveness of one-hop source
routing. Source routing can help recover from 66% of all
failures on paths to servers, but fewer on paths to broad-
band hosts. Last-hop failures tend to confound recovery,
while core failures are more recoverable.

Internet, favoring neither the source-side, nor the core,
nor the destination-side.

2.3 The potential of one-hop source routing

As previously described, during a loss incident we
probed the destination indirectly through each of 39 in-
termediaries. If any of these indirect probes were suc-
cessful, we considered the path to be recoverable using
one-hop source routing. If not, we considered it to be
unrecoverable. Note that this definition of recoverable
provides an upper bound, since in practice an implemen-
tation is not likely to try such a large number of interme-
diaries when attempting to route around a failure.

The results of this experiment, shown in Table 3, in-
dicate that 66% of all failures to servers are potentially
recoverable through at least one intermediary. A smaller
fraction (39%) of broadband failures are potentially re-
coverable. For all destination sets, one-hop source rout-
ing is very effective for failures in the Internet core, but
it is less effective for source-side or destination-side fail-
ures. Somewhat surprisingly, some last-hop failures are
recoverable. In part, this is due to multi-homing: i.e.,
there may be a last-hop failure on the default path to a
destination, but a different last-hop link may be accessi-
ble on a different path through a destination. However,
this is also due in part to our failure definition. If a last-
hop link is not dead but merely “sputtering,” sometimes
probes along the default path will fail while an interme-
diary will be more “lucky” and succeed.

2.4 Summary

Our study examined failures of Internet paths from 67
vantage points to over 3,000 widely dispersed Internet
destinations, including popular servers, broadband hosts,
and randomly selected IP addresses. Overall, we found
that most Internet paths worked well: most paths only

experienced a handful of failures, and most paths experi-
enced less than 15 minutes of downtime over our week-
long trace. But failures do occur, and when they do, they
were widely distributed across paths and portions of the
network. However, broadband hosts tend to experience
significantly more last-hop failures than servers, and last-
hop failures tend to last long.

These failure characteristics have mixed implications
for the potential effectiveness of one-hop source routing.
Since server path failures are rarely on the last hop, there
should be plenty of opportunity to route around them. In-
deed, our initial results suggest that one-hop source rout-
ing should be able to recover from 66% of server path
failures. In contrast, since broadband path failures are
often on the last hop, there is less opportunity for al-
ternative routing. Our results show than one-hop source
routing will work less than 39% of the time in this case.

In the next section of the paper, we will examine one-
hop source routing in greater detail, focusing initially on
its potential for improving server path availability. Our
goal in the next section is to use our trace to hone in on
an effective, but practical, one-hop source routing policy.
By effective, we mean that it successfully routes around
recoverable failures. By practical, we mean that it suc-
ceeds quickly and with little overhead.

3 One-Hop Source Routing

We have seen that 66% of all popular server path fail-
ures and 39% of all broadband host path failures are po-
tentially recoverable through at least one of the 39 pre-
selected intermediary nodes. This section investigates
an obvious implication of this observation, namely, that
one-hop source routing is a potentially viable technique
for recovering from Internet path failures.

One-hop source routing is conceptually straightfor-
ward, as shown in Figure 5. After a node detects a path
failure, it selects one or more intermediaries and attempts
to reroute its packets through them. If the resulting indi-
rect path is sufficiently disjoint from the default route, the
packets will flow around the faulty components and suc-
cessfully arrive at the destination. Assuming that the re-
verse path through the intermediary also avoids the fault,
end-to-end communication is restored.

This approach raises several questions. Given a set of
potential intermediaries for a failed path, how many of
them on average will succeed at contacting the destina-
tion? What policy should the source node use to select
among the set of potential intermediaries? To what ex-
tent does the effectiveness of one-hop source routing de-
pend on the location of the failure along the path? Does
a priori knowledge of Internet topology or the ability to
maintain state about previous failures increase the effec-
tiveness of a policy? When should recovery be initiated
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Figure 5: One-hop source routing. (a) The source (src) experiences a path failure to destination dst1, but it suc-
cessfully routes through intermediary i5. (b) The source experiences a path failure to destination dst2. It uses a more
aggressive recovery policy by simultaneously routing to intermediaries i2, i3, i4, and i5. The path to intermediary i2
experiences a path failure of its own, as does the path from intermediary i3 to the destination. Fortunately, the source
is able reach dst2 through both i4 and i5.

and when should recovery attempts be abandoned? The
remainder of this section answers these questions.

3.1 Methodology

To answer these questions we rely on the data de-
scribed in Section 2. As previously noted, following
each failure we sent probe messages from the source to
39 PlanetLab intermediaries. The intermediaries then
probed the destination and returned the results. If the
source heard back from an intermediary before it heard
back directly from the (recovered) destination, then we
considered that intermediary to be successful. Thus, for
each default-path failure, we were able to determine how
many of the 39 PlanetLab intermediaries could have been
used to route around it.

From this data we can analyze the effectiveness of
policies that route through specific subsets of the inter-
mediaries. For example, one policy might route through
a single, randomly chosen intermediary; another policy
might route through two preselected intermediaries in
parallel, and so on. We can therefore compare various
policies by simulating their effect using the data from
our intermediate-node measurements.

3.2 What fraction of intermediaries help?

How many of the intermediaries succeed in routing
around a particular failure depends on a number of fac-
tors, including the positions of the source, the destina-
tion, and the intermediaries in the network. For example,
some intermediaries may not divert the packet flow suf-
ficiently, either failing to pull packets from the default
path before the fault or failing to return them to the de-
fault path after the fault. This can be seen in Figure 6a,
where the route from src to dst fails due to the failure
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Figure 6: Disjoint paths. (a) The default path to the des-
tination fails due to a faulty link. (b) Routing through
intermediary i2 would succeed, since the diverted path is
disjoint from the faulty link. (c) Routing through inter-
mediary i1 would fail, since the diverted path rejoins the
default path before the faulty link.

marked “X.” An attempt to re-route through intermediary
i2 would succeed (Figure 6b). However, routing through
i1 would fail (Figure 6c), because i1’s path to dst joins
src’s path to dst before the failure.

As described above, for each detected failure we
counted the number of “useful intermediaries” through
which the source node could recover. Note that we con-
tinue attempting to recover until either an intermediary
succeeds or the default path self-repairs, up to a maxi-
mum of 10 probe intervals. If the default path self-repairs
before any intermediary succeeds, we do not classify the
event as a recovered failure.

Figure 7(a) shows the results for popular servers,
grouped by the number of useful intermediaries on the
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Figure 7: The number of useful intermediaries. For
each failure, we measured the number of useful interme-
diaries in our candidate set of 39. (a) This histogram
shows the aggregated results for popular servers only.
For example, we observed 168 failures (165 non-last-hop
and 3 last-hop) for which there were exactly 21-25 use-
ful intermediaries. (b) A CDF of the same data for the
recoverable failures only.

x-axis. Out of the 1486 failures, 503 (34%) could not
recover through any intermediary, as shown by the left-
most bar. Last-hop failures accounted for 89 of those
unrecoverable failures.

Figure 7(b) presents a CDF of this data for the re-
maining 983 failures (66%) that were recoverable. The
figure shows that 798 (81%) of these failures could be
recovered through at least 21 of the 39 intermediaries.
It’s clear, then, that a significant fraction of failures are
recoverable through a large number of intermediaries.
However, there are also failures for which only a small
number of intermediaries are useful. For example, 55
(5.6%) of the 983 recoverable failures could be recov-
ered through only 1-5 nodes. Thus, some recoverable
failures require a careful choice of intermediary.

None of the failures were recoverable through more
than 36 of the 39 intermediaries. Investigating further,
we found that four PlanetLab intermediaries were subject
to a routing policy that prevented them from communi-
cating with the vast majority of our destinations. If we
exclude these nodes from consideration, many failures
would be recoverable through all 35 of the remaining in-
termediaries. However, in many cases, there were still a
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Figure 8: The effectiveness of random-k. This graph
shows the effectiveness of random-k at recovering from
failures as a function of k (the number of randomly se-
lected intermediaries the source tries concurrently).

few intermediaries that should be avoided.

3.3 Is random-k an effective policy?

The results in Figure 7 suggest that a very simple strat-
egy for selecting intermediaries may work well. Similar
in spirit to randomized load-balancing [15, 6], a source
should be able to avoid failures by randomly picking k
intermediaries through which to attempt recovery. The
source could send packets through all k intermediaries in
parallel and then route through the intermediary whose
response packet is first returned.

To evaluate this strategy, we examine a policy in
which the random selection is done once for each failure
instance. When a failure is detected, the source selects
a set of k random intermediaries. During the failure, if
none of the k intermediaries succeed on the first attempt,
the source continues to retry those same intermediaries.
At the next failure, the source selects a new set of k ran-
dom intermediaries. We call this policy random-k.

Since many intermediaries can be used to avoid
most recoverable faults, even a single random selec-
tion (random-1) should frequently succeed. By selecting
more than one random intermediary, the source ensures
that a single unlucky selection is not fatal. However, as
there are some failures for which only a few specific in-
termediaries are helpful, picking a small number of ran-
dom intermediaries will not always work.

Figure 8 shows the effectiveness of random-k as a
function of k. For popular servers, random-1 can route
around 43% of all failures we observed. By defini-
tion, random-39 can route around all recoverable failures
(66% of all failures for popular servers). The “knee in
the curve” is approximately k = 4: random-4 can route
around 61% of all failures (92% of all recoverable fail-
ures) for popular servers. From this, we conclude that
random-4 makes a reasonable tradeoff between effort
(the number of concurrent intermediaries invoked per re-
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Figure 9: Failures random-k can handle. This graph
breaks Figure 8 data down according to the classes
of failures from which random-k recovers, for servers.
Random-k can recover from most failures in the core,
and near the destination, but it is less capable at handle
failures near the source or on the last hop.

covery attempt) and the probability of success.

3.4 Which failures can random-k handle?

As we showed in Section 2, the location of a failure
has a significant impact on the likelihood that one-hop
source routing can recover. For example, last-hop fail-
ures are much harder to recover from than core failures.
To understand the impact of failure location on random-
k’s ability to recover, we classified recovery attempts ac-
cording to the failure location. Figure 9 shows the same
data as Figure 8 broken down according to this classifi-
cation, but for popular servers only.

Random-k recovers poorly from near-source and last-
hop failures, as shown in the figure. For example,
random-4 recovers from only 37% of last-hop failures
and 50% of near-source. However, random-4 is very
successful at coping with the other failure locations, re-
covering from 89% of middle core and 72% of near-
destination failures. Intuitively, the Internet core has sig-
nificant path diversity, therefore a failure in the core is
likely to leave alternative paths between many intermedi-
aries and the source and destination. However, the closer
the failure is to the source or the destination, the more
intermediaries it will render ineffective.

3.5 Are there better policies than random-k?

Figure 8 shows that random-k is a very effective pol-
icy: there is little room to improve above random-k be-
fore “hitting the ceiling” of recoverable failures. But can
we be smarter? This subsection explores two alternative
policies that use additional information or state to further
improve on random-k. These policies might not be prac-
tical to implement, as they require significant amounts of
prior knowledge of Internet topology or state. Nonethe-
less, an analysis of these policies offers additional insight
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Figure 10: Effectiveness of alternative policies. This
graph shows the effectiveness of our alternative policies
as a function of k. We include random-k for comparison.

into one-hop source routing. Like random-k, each of
the alternative policies selects k intermediaries through
which to route concurrently for each recovery attempt.
The two additional policies we consider are:

1. History-k. In this policy, we assume that the source
node remembers the intermediary that it most re-
cently used to recover from a path failure for each
destination. When the source experiences a path
failure, it selects k − 1 intermediaries at random,
but it chooses this recently successful intermediary
as the kth intermediary. If the source has never ex-
perienced a failure for the destination, this policy
reverts to random-k. The rationale for this policy is
that an intermediary that previously provided a suf-
ficiently disjoint path to a destination is likely to do
so again in the future.

2. BGP-paths-k. In this policy, we assume that the
source is able to discover the path of autonomous
systems (ASs) between it and the destination, and
between all intermediaries and the destination, as
seen by BGP. For each intermediary, the source cal-
culates how many ASs its path has in common with
the intermediary’s path. When the source experi-
ences a path failure to the destination, it orders the
intermediaries by their number of common ASs and
selects the k intermediaries with the smallest num-
ber in common. The rationale for this policy is that
the source wants to use the intermediary with the
“most disjoint” path to the destination in an attempt
to avoid the failure.

Figure 10 shows how effective these policies were in
recovering from failures. While there is some measur-
able difference between the policies for low values of k,
this difference diminishes quickly as k increases. There
is some benefit to using a more clever policy to pick
the “right” intermediary; however, slightly increasing the
number of intermediaries is more effective than using a
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Figure 11: The diminishing returns of repeated recov-
ery attempts. The probability that the next random-4
attempt will succeed, as a function of the number of pre-
viously failed attempts. After a single attempt, the prob-
ability of future success plummets.

smarter policy. For example, though BGP-paths-1 beats
random-1, it does not beat random-4. Furthermore, un-
like BGP-paths, random-4 requires no prior knowledge
and no overhead for acquiring that knowledge.

These more sophisticated policies do have some pos-
itive effect on the ability to recover from path failures.
They essentially attempt to bias their intermediary selec-
tion towards “better” intermediaries, and this biasing has
some value. However, the goal of path failure recover-
ability is to avoid bad choices, rather than finding the
best choice. Even with small k, random-k is extremely
unlikely to select only bad choices, which is why it is
competitive with these other strategies.

3.6 How persistent should random-4 be?

So far, we allow a source node recovering from a
path failure to continue issuing random-4 attempts every
5 seconds until: (1) one of the four randomly selected
intermediaries succeeds, (2) the path self-repairs, or (3)
ten attempts have failed. We now consider the question
of whether the source node should give up earlier, after
fewer attempts. To answer this, we calculated the proba-
bility that the next random-4 attempt would succeed but
the default path remains down, as a function of the num-
ber of previously failed random-4 attempts.

Figure 11 shows the results. Immediately after notic-
ing the failure, random-4 for popular servers has a 58%
chance of recovering before the path self-repairs; for
broadband hosts, this number is 28%. However, after a
single failed random-4 attempt, the chance that the next
attempt succeeds before the path self-repairs plummets
to 1.6% for servers and 0.8% for broadband hosts. There
is little reason to try many successive random-4 attempts;
the vast majority of the time, the default path will heal
before a future random-4 attempt succeeds.

In a sense, random-4 is an excellent failure detector:
if a random-4 attempt fails, it is extremely likely that
the destination truly is unreachable. To be conservative,
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Figure 12: The cost of being eager. Average number of
overhead packets per connection and per recovery invo-
cation, as a function of the number of consecutive packet
drops seen before random-4 recovery is invoked. Be-
cause failures happen rarely, recovery is inexpensive.

though, we allow four random-4 attempts before giving
up on intermediary-based recovery.

3.7 How eager should random-4 be?

Our methodology defines a failure to have occurred
after three consecutive packet drops and a failed tracer-
oute. There is nothing preventing a source from invoking
random-4 before making this determination, however.
For example, a source may choose to invoke random-4
after seeing only a single packet drop. However, this ap-
proach might potentially confuse short-term congestion
for failure and needlessly introduce recovery overhead.

To investigate this apparent tradeoff between recov-
ery time and overhead, we used our measurement data to
calculate the overhead of recovery relative to hypothet-
ical background HTTP traffic. To do this, we consider
each 15-second probe attempt to be a hypothetical HTTP
request. We estimate that the transfer of a 10KB Web
page, including TCP establishment and teardown, would
require 23 IP packets. Using this estimate, we can cal-
culate the amount of packet overhead due to random-4
recovery attempts.

Figure 12 shows this overhead as a function of how
eagerly recovery is invoked. The left-hand y-axis shows
the average number of additional packets sent per HTTP
transfer, and the right-hand y-axis shows the average
number of additional packets sent per transfer for which
recovery was invoked. As our previous results suggested,
we abandon after four repeated random-4 attempts.

Failures occur rarely and there is no overhead to pay
when the default path succeeds. Additionally, when fail-
ures do occur, random-4 usually succeeds after a single
attempt. For these two reasons, there is very little over-
head associated with the average connection: only 0.048
additional packets per connection on average (on top of
the estimated 23 IP packets), assuming recovery begins
immediately after a lost packet. Even when failures oc-
cur, there are only 4.1 additional packets on average.
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Figure 13: The benefit of being eager. This graph
compares the likelihood that the default-path, a single-
intermediary, and four intermediaries will succeed as a
function of the number of consecutive packet drops ob-
served. After just two observed packet drops, random-4
has a significantly higher probability of success than the
default path.

There is therefore little cost to being eager.
Figure 13 demonstrates why it is useful to recover ea-

gerly. We compare the probability that on the next at-
tempt (1) the default-path will succeed, (2) a single ran-
domly chosen intermediary will succeed, and (3) four
randomly chosen intermediaries will succeed, as a func-
tion of the number of previously observed consecutive
packet drops along the default path. After a single packet
drop, all three strategies have an equally high probability
of succeeding on the next attempt. But, with additional
packet drops, the probability that the default path suc-
ceeds quickly decays, while random-1 and random-4 are
more likely to work.

Note that random-1 has a slightly lower probability
of succeeding than the default path after only one packet
drop. For random-1, both the source to intermediary and
the intermediary to destination paths must work, while
for default-path, only the source to destination path must
work.

There is a benefit to recovering early, and as we pre-
viously showed, there is very little cost. Accordingly,
we believe random-4 should be invoked after having ob-
served just a single packet drop.

3.8 Putting it all together

Our results suggest that an effective one-hop source
routing policy is to begin recovery after a single packet
loss, to attempt to route through both the default path and
four randomly selected intermediaries, and to abandon
recovery after four attempts to each of the randomly se-
lected intermediaries fail, waiting instead for the default
path to recover itself. For the remainder of this paper, we
will refer to this set of policy decisions as “random-4.”

We now ask what the user experience will be when
using random-4. To answer this, we measured how long
the user must wait after experiencing a path failure for
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Figure 14: Recovery latency. This graph plots the cu-
mulative probability that a failed path has recovered –
due either to random-4 succeeding or self-repair of the
default path – as a function of time, for (a) popular
servers, (b) broadband hosts.

end-to-end connectivity to be re-established, due either
to the success of random-4 or path self-repair.

Figure 14 shows the results. For popular servers, we
see that 58.1% of failures recover after a single attempt
(five seconds). After four attempts (20 seconds), 75.3%
of path failures recovered. Random-4 recovered from
60.2% of the failures by that point, while the path self-
repaired from 15.1% of the failures. Since we aban-
don random-4 after four failed attempts, the fraction of
paths that recover due to random-4 peaks at 60.2%. For
broadband hosts, we see a similar pattern, except that
random-4 is much less successful at recovering from fail-
ures: after four attempts, random-4 recovery has peaked
at 29.4%.

Overall, we see that the major benefit of random-4
one-hop source routing is that it quickly finds alternative
paths for recoverable failures. However, many failures
are not recoverable with one-hop source routing. Bound-
ing repeated random-4 to four attempts restricts the effort
expended, instead allowing the path to self-repair.

3.9 Summary

This section examined specific policies for exploiting
the potential benefit of one-hop source routing. Our re-
sults show that a simple, stateless policy called random-
4 comes close to obtaining the maximum gain possible.
For example, from our trace data, random-4 found a suc-
cessful intermediary for 60% of popular server failures
(out of the 66% achievable shown previously in Sec-
tion 2). Furthermore, random-4 is scalable and requires



no overhead messages. In comparison, the alternative
knowledge-based policies we examined have higher cost
and only limited benefit, relative to random-4.

The crucial question, then, is whether one-hop source
routing can be implemented practically and can work ef-
fectively in a real system. We attempt to answer this
question in the next section.

4 An Implementation Study

The goals of this section are twofold: (1) to discuss
the pragmatic issues of integrating one-hop source rout-
ing into existing application and OS environments, and
(2) to evaluate how well it works in practice. To this end,
we developed a one-hop source routing prototype, which
we call SOSR (for scalable one-hop source routing), and
evaluate the prototype experimentally in the context of a
Web-browsing application for popular servers.

4.1 Prototype Implementation

The high-level SOSR architecture consists of two
major parts: one for the source-node and one for the
intermediary-node. The source-node component retries
failed communications from applications through one or
more intermediaries. For scalability, all decision making
rests with the source. The intermediate-node component
forwards the messages it receives to the destination, act-
ing as a proxy for the source. There is no destination-
node component; SOSR is transparent to the destination.

Our source-node component, shown in Figure 15a,
is implemented on top of the Linux netfilter frame-
work [16]. Netfilter/iptables is a standard feature of the
Linux kernel that simplifies construction of tools such as
NATs, firewalls, and our SOSR system. It consists of an
in-kernel module that forwards packets to a user-mode
module for analysis. After receiving and examining a
packet, the user-mode module can direct netfilter on how
to handle it, acting in essence as an intelligent IP-level
router.

We use the iptables rule-handling framework to in-
form netfilter about which packets to redirect to the user-
level SOSR code and which to pass through. Our rules
cause specific TCP flows (messages in both directions) to
be redirected, based on port numbers or IP addresses. As
well, they associate each flow with a SOSR policy mod-
ule to handle its messages. Each policy module consists
of failure detection code and intermediary selection code
that decides when and where to redirect a packet.

The SOSR intermediary node acts as a NAT proxy [9],
forwarding packets received from a source to the correct
destination, and transparently forwarding packets from
the destination back to the correct source. Figure 15b
shows the encapsulation of indirected messages flowing
through the intermediary. The source node encapsulates
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Figure 15: The SOSR architecture. (a) The source node
uses netfilter to redirect packets from the Linux kernel
to a user-level SOSR policy module, which encapsulates
the application packet and tunnels it to a chosen inter-
mediary. Note that the application is unmodified. (b)
The intermediary node decapsulates the packet, passes it
through a user-level NAT daemon, and transmits it to the
(unmodified) destination node.

a TCP segment and information identifying the destina-
tion, and tunnels it to the intermediary through UDP. On
receiving the UDP packet, the intermediary unwraps the
TCP segment, passes it through its NAT component, and
sends it to the destination using raw sockets. The NAT
component of the intermediary maintains a hash table as-
sociating the sending node, the destination node, and the
sending port it used to forward the segment. When a
packet arrives back from the destination, the intermedi-
ary finds the associated (original) source address in the
table, encapsulates the segment in a UDP packet along
with the destination address, and returns it to the original
source.

4.2 Evaluation Methodology

We evaluate our SOSR prototype by measuring its ef-
fectiveness in handling end-to-end Web-browsing fail-
ures for a set of popular Web servers. These failures
include path failures, end-host failures, and application-
level failures – anything that disrupts the browser from
successfully completing an HTTP server transaction.
The destination set consisted of 982 of the popular Web
servers we considered in our measurement trace.



For our experiments, we used the same 39 SOSR
intermediaries as in our earlier trace-based experiment.
We then used three client machines at the University of
Washington to repeatedly fetch Web pages from the des-
tination set. Each machine ran a different error-handling
protocol. The first simply ran the wget command-line
Web browser on an unmodified Linux kernel. The sec-
ond ran the same wget browser, but with the SOSR im-
plementation in place, implementing the random-4 pol-
icy described in Section 3. The third ran wget on a modi-
fied, aggressive TCP stack; in place of standard TCP ex-
ponential back-off, we sent five duplicate packets every
three seconds on a packet loss. This provides a balanced
comparison to SOSR, in that it sends packets in the same
number and frequency as random-4, but without the path
diversity provided by the intermediaries.

Each client machine fetched a Web page once per
second, rotating through the 982 Web servers a total of
279 times, ultimately issuing 273,978 requests. The ma-
chines fetched the same Web page at the same time, so
that a path failure that affected one would hopefully af-
fect the others as well. We ran our experiment for slightly
more than 72 hours.

4.2.1 Failure classification

We classified failures as either network-level failures
or application-level failures. If wget could not establish
a TCP connection to the remote server, we classified the
request as a network-level failure. However, if the desti-
nation returned a TCP RST packet to the source to refuse
the connection, we classified the request as a “TCP re-
fused” application-level failure, since the network path
was clearly working.

If wget successfully established a TCP connection,
but could not successfully complete an HTTP trans-
action within 15 minutes, we classified the request as
an application-level failure. We further sub-classify
application-level failures according to whether the HTTP
transaction timed out (“HTTP timeout”) or was dropped
by the server before completion (“HTTP refused”).
Though we do not consider them to be failures, we
also noted HTTP response that contained an HTTP er-
ror code, such as “HTTP/1.1 500 server error.”

4.3 Results

Table 4 summarizes our results. Overall, we observed
few failures in our 72-hour experiment. The default wget
client saw 481 failures in 273,978 requests, a failure rate
of only 0.18%. We classified 69% as network-level fail-
ures and 31% as application-level failures. Thus, the net-
work was responsible for approximately twice as many
failures as the Web servers. However, indirect routing
cannot recover from the Web server failures.

486
(0.18%)

383
(0.14%)

481
(0.18%)

failures

38
(0.01%)

37
(0.01%)

44
(0.02%)

HTTP 
error 
codes

88
(0.03%)

96
(0.04%)

35
(0.01%)

HTTP 
timeout

109
(0.04%)

101
(0.04%)

78
(0.03%)

HTTP 
refused

TCP 
refused

43
(0.02%)

41
(0.01%)

40
(0.01%)

application level failures

246
(0.09%)

145
(0.05%)

328
(0.12%)

network 
level 

failures
requests

273,978
wget

aggTCP

273,978
wget

SOSR

273,978wget

Table 4: Failures observed. Summary of our SOSR
prototype evaluation results, showing the number of
network-level and application-level failures each of our
three test clients observed.

In comparison, the wget-SOSR client experienced
20% fewer failures than the default wget client: 383 com-
pared to 481. Of these, 145 (38%) were network-level
failures and 238 (62%) were application-level failures.
wget-SOSR recovered from many of the network-level
failures that the default wget experienced. The network-
level recovery rate for wget-SOSR was 56%, slightly be-
low the 66% we measured in Section 3. However, since
application-level errors are unrecoverable, wget-SOSR’s
overall recovery rate was just 20%.

The wget-aggressiveTCP client experienced a
marginally higher number of failures than the default
wget: i.e., an aggressive TCP stack did not reduce the
overall failure rate. However, it did reduce the number of
network-level failures by 25%. The aggressive retrans-
missions were able to deal with some of the failures, but
not as many as wget-SOSR. This confirms that SOSR
derives its benefit in part because of path diversity, and
in part because of its more aggressive retransmission.

Interestingly, both wget-SOSR and wget-
aggressiveTCP observed a higher application-level
failure rate than the default wget, receiving a significant
increase in HTTP refused and timeout responses. While
we cannot confirm the reason, we suspect that this
is a result of the stress that the additional request
traffic of these protocols causes on already overloaded
servers. These additional application-level failures in
balance reduced (for wget-SOSR) or canceled (for wget-
aggressiveTCP) the benefits of the lower network-level
failure rate.

4.4 Summary

This section presented a Linux-based implementation
of one-hop source routing, called SOSR. SOSR builds on
existing Linux infrastructure (netfilter/iptables) to route
failures through a user-mode policy module on the source
and a user-mode NAT proxy on intermediaries.

Our SOSR implementation was able to reduce recov-
erable (network-level) failures by 56% – close to what
was predicted by our trace. However, with the Web-
browsing application, we saw a new class of failures



caused by the Web servers themselves rather than the
network; these application-level failures cannot be re-
covered using indirect network routing. Including these
non-recoverable failures, our SOSR implementation was
able to reduce the end-to-end failure rate experienced by
Web clients by only 20%.

Given the extremely low failure rate that non-SOSR
Web clients experience today, we do not believe that
SOSR would lead to any noticeable improvement in a
person’s Web browsing experience. However, this does
not imply that one-hop source routing is without value.
SOSR is very successful at routing around non-last-hop
network failures, and moreover, it has very little over-
head. An application that requires better path availabil-
ity than the Internet currently provides can achieve it us-
ing one-hop source routing, assuming that the paths it
communicates over have relatively few last-hop failures.
Finally, it is likely that SOSR achieves close to the max-
imum achievable benefit of alternative routing; overlay
schemes that attempt to improve reliability are unlikely
to better SOSR’s recovery rate, and have significant scal-
ability problems due to high message overhead as well.

5 Related Work

Internet reliability has been studied for at least a
decade. Paxson’s study of end-to-end paths found the
likelihood of encountering a routing pathology to be
1.5% in 1994 and 3.3% in 1995 [17]. Zhang con-
cluded that Internet routing had not improved five years
later [26]. Chandra observed an average wide-area fail-
ure rate of 1.5%, close to “two 9s” of availability [5].
Labovitz’s study of routing found path availability to
vary widely between “one 9” and “four 9s” [13]. These
studies all demonstrate that Internet reliability falls short
of that measured for the telephone network [11].

Feamster characterized path failures between overlay
nodes. He found wide variation in the quality of paths,
failures in all regions of the network, and many short fail-
ures [7]. Our work offers a more comprehensive study
of network failures that measures paths to a much larger
set of Internet-wide destinations. Our results are largely
consistent with these earlier findings.

Server availability may be improved using content
distribution networks (CDNs) [10] and clusters [8, 4].
This is common for high-end Web sites. However, unlike
our technique, it is applicable only to particular services,
such as the Web.

Akella uses measurements to confirm that multi-
homing has the potential to improve reliability as well
as performance [1]. However, a strategy is still needed
to select which path to use to obtain these benefits. Our
technique is one such strategy; it will take advantage of
multi-homing when it exists. There are also commercial

products that operate at the BGP routing level to select
paths [19, 22]. The advantage of operating at the packet
level, as we do, is more rapid response to failures. Con-
versely, it is known that BGP dynamics can result in a
relatively long fail-over period [12] and that BGP mis-
configurations are common [14].

Our work is most closely related to overlay rout-
ing systems that attempt to improve reliability and
performance. The Detour study suggested that this
could be accomplished by routing via intermediate end-
systems [21]. RON demonstrated this to be the case in
a small-scale overlay [2, 3]. Our work differs in two re-
spects. First, we target general communication patterns
rather than an overlay. This precludes background path
monitoring. Second, and more fundamentally, we show
that background monitoring is not necessary to achieve
reliability gains. This eliminates overhead in the com-
mon no failure case. Our finding is consistent with the
study by Teixeira [24] that observed a high-level of path
diversity that is not exploited by routing protocols. The
NATRON system [25] uses similar tunneling and NAT
mechanisms as SOSR to extend the reach of a RON over-
lay to external, RON-oblivious hosts.

6 Conclusions
This paper proposed a simple and effective approach

to recovering from Internet path failures. Our approach,
called one-hop source routing, attempts to recover from
path failures by routing indirectly through a small set
of randomly chosen intermediaries. In comparison to
related overlay-based solutions, one-hop source routing
performs no background path monitoring, thereby avoid-
ing scaling limits as well as overhead in the common case
of no failure.

The ability to recover from failures only matters if
failures occur in practice. We conducted a broad mea-
surement study of Internet path failures by monitoring
3,153 randomly selected Internet destinations from 67
PlanetLab vantage points over a seven day period. We
observed that paths have relatively high average avail-
ability (99.6% to popular servers, but only 94.4% for
broadband), and that most monitored paths experienced
at least one failure. However, 16% of failures on paths
to servers and 60% of failures on paths to broadband
hosts were located on the last-hop or end-host. It is im-
possible to route around such last-hop failures. Overall,
our measurement study demonstrated that a simple one-
hop source routing technique called “random-4” could
recover from 61% of path failures to popular servers, but
only 35% of path failures to broadband hosts.

We implemented and deployed a prototype one-hop
source routing infrastructure on PlanetLab. Over a 48
hour period, we repeatedly accessed 982 popular Web
servers and used one-hop source routing to attempt to



route around failures that we observed. Our prototype
was able to recover from 56% of network failures, but we
also observed a large number of server failures that can-
not be addressed through alternative routing techniques.
Including such application-level failures, our prototype
was able to recover from 20% of failures encountered.

In summary, one-hop source routing is easy to im-
plement, adds negligible overhead, and achieves close to
the maximum benefit available to any alternative routing
scheme, without the need for path monitoring, history, or
a-priori knowledge of any kind.
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