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ABSTRACT
Online social networks are now a popular way for users to
connect, express themselves, and share content. Users in to-
day’s online social networks often post a profile, consisting
of attributes like geographic location, interests, and schools
attended. Such profile information is used on the sites as
a basis for grouping users, for sharing content, and for sug-
gesting users who may benefit from interaction. However,
in practice, not all users provide these attributes.

In this paper, we ask the question: given attributes for
some fraction of the users in an online social network, can
we infer the attributes of the remaining users? In other
words, can the attributes of users, in combination with the
social network graph, be used to predict the attributes of
another user in the network? To answer this question, we
gather fine-grained data from two social networks and try to
infer user profile attributes. We find that users with com-
mon attributes are more likely to be friends and often form
dense communities, and we propose a method of inferring
user attributes that is inspired by previous approaches to
detecting communities in social networks. Our results show
that certain user attributes can be inferred with high accu-
racy when given information on as little as 20% of the users.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online In-
formation Services—Web-based services; J.4 [Computer
Applications]: Social and Behavioral Sciences—Sociology

General Terms
Human factors, Measurement

Keywords
Social networks, inferring attributes, communities

1. INTRODUCTION
Online social networks are now a popular way for users to

connect, express themselves, and share content. For exam-
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ple, MySpace (over 275 million users)1, Facebook (over 300
million users), Orkut (over 67 million users), and LinkedIn
(over 50 million “professionals”) are examples of wildly pop-
ular networks used to find and organize contacts. Some
networks such as Flickr, YouTube, and Picasa are used to
share multimedia content, and others like LiveJournal and
BlogSpot are popular networks for sharing blogs.

Users often post profiles to today’s online social networks,
consisting of attributes like geographic location, interests,
and schools attended. Such profile information is used as
a basis for grouping users, for sharing content, and for rec-
ommending or introducing people who would likely benefit
from direct interaction. Today’s online social networks rely
on users to manually input profile attributes, representing a
significant burden on users, especially when users are mem-
bers of multiple online social networks. Thus, in practice,
not all users provide these attributes, thereby reducing the
usefulness of the social networking applications.

In this paper, we ask the question: is it possible to infer

the missing attributes of a user in an online social network
from the attribute information provided by other users in the
network? In other words, can the attributes of other users in
the network, in combination with the social network graph,
be used to predict those of a given user? In offline social
networks, people often socialize with others who share the
same interests, geographic location, or alma mater. Thus,
it is natural to try to leverage the attributes provided by
users in order to predict those of their friends. The ability
to automatically predict user attributes could be useful for a
variety of social networking applications such as friend and
content recommendations, and scoped content sharing. On
the other hand, answering this question has important pri-
vacy implications, as a user’s privacy may no longer depend
only on what he or she reveals to the various social networks.

To answer this question, we collect two detailed social
network data sets. Our first data set covers the social net-
work of almost 4,000 students and alumni of Rice University
collected from Facebook [7]. For each student, we gather at-
tributes like major(s) of study, year of matriculation, and
dormitory, to see if these attributes can be inferred from
friends in the social network. Our second data set covers
over 63,000 users in the New Orleans Facebook regional net-
work. For each user in this data set, we also collected their
profile page, which lists a large number of user-provided at-
tributes. For both data sets, we find that users are sig-
nificantly more likely to be friends with users with similar

1The number of users refers to the number of identities as
published by the social networking sites in November 2009.



attributes, and that groups of users with common attributes
often form dense subgraphs.

We propose a new approach for inferring the attributes of
users. Inspired by existing work on community detection,
we start with a seed set of users with known attributes and
look for communities of users in the network based around
this seed set. As a community is generally defined as a
group of users who are more tightly interconnected than
the surrounding graph, detecting communities that are cen-
tered around users with a common attribute is a natural
approach to predicting other users that share the attribute.
Our results show that this approach works surprisingly well:
depending on the strength of the community in the net-
work, user attributes can often be inferred with high accu-
racy when given information about as few as 20% of the
users. For example, in our data set we can, with high ac-
curacy, predict user attributes such as matriculation year,
dormitory, and high school.

The rest of this paper is organized as follows. Section 2
describes the social network data we collected and its limi-
tations. Section 3 examines our collected data and demon-
strates that the structure of the social network correlates
well with user attributes. Section 4 details our approach
for inferring attributes, and presents an evaluation on real-
world social network data. Section 5 discusses related work
and Section 6 concludes.

2. DATA COLLECTED
In this section, we describe each of the data sets we col-

lected and their limitations.

2.1 Rice University data set
Our first data set is the Rice University Facebook network.

2.1.1 Measurement methodology
This data set was collected by crawling part of Face-

book [7] through the site’s public web interface. We crawled
the Rice University Facebook network, which consists of
Rice University students and alumni. We started by log-
ging into the Facebook user account of one of the authors,
who is a student at Rice University. We then conducted a
breadth-first-search (BFS) of all reachable users in the Rice
network, in the same manner as in previous work [15]. By
default, Facebook allows all users in the same network to
view each others’ friends, and we were thus able to crawl a
large portion of the Rice Facebook network.

The data collected for this paper is from a crawl conducted
over 9 hours on May 17th, 2008. In total, our crawl discov-
ered 6,156 users, who are connected together with 188,675
undirected links. This represents an average degree of 61.29.

2.1.2 User attributes
From the Facebook crawl, we were only able to collect

the name of the users and their list of friends. We collected
additional information about the users by querying the Rice
University Student Directory [22] and the Rice University
Alumni Directory [21]. From these two directories, we were
able to determine the users’ matriculation year, graduation
year, residential college2 , and major(s) or department.

2Rice University has nine residential colleges, to which in-
coming undergraduate students are randomly assigned. The
colleges serve as dormitories, cafeterias, and social circles;

To correlate the Facebook user list with the directories, we
first looked up each user’s name in the Student Directory,
and then the Alumni Directory. If a single entry was found in
either directory, the information from that entry was used.3

If multiple entries were found that exactly matched the stu-
dent’s name, we disregarded the student. We used a con-
servative matching policy: only exact name matches (with
allowances for common nicknames) were used.

Overall, we found matches for 1,781 students in the Stu-
dent Directory and 2,093 additional students in the Alumni
Directory.4 This left us with 2,282 Facebook users who
we were unable to match with a directory listing; we dis-
regarded these users. Of the 3,874 students we were able
to find records for, 1,220 (31.5%) were current undergrad-
uate students, 501 (12.9%) were current graduate students,
1,856 (47.9%) were undergraduate alumni, and 237 (6.11%)
were graduate alumni. The total number of current under-
graduate and graduate students at Rice is 3,001 and 2,144,
respectively [20]. Thus, we were able to locate 40.7% of the
current undergraduate and 23.4% of the current graduate
students in Facebook.

2.1.3 Data sets used
Throughout the next few sections, we consider two subsets

of the Rice data set representing different parts of the Rice
University network. The first subset we use is the current
undergraduates. This subset contains 1,220 users connected
with 43,208 undirected links, for an average degree of 70.8.5

The second subset we use is the current graduate students.
This subset contains 501 users connected with 3,255 undi-
rected links, for an average degree of 12.9. We examine these
two parts of the network separately, since we have different
attributes sets for the undergraduates and graduate students
and they represent largely distinct parts of the network. In
fact, only 1,395 links (2.9% of all links) are present between
the undergraduate and graduate networks.

2.2 New Orleans data set
Our second data set is the New Orleans Facebook network.

2.2.1 Measurement methodology
We collected this data set largely in the same manner as

the Rice data set, starting with a seed user and crawling
using a breadth-first search. Facebook allows any user to
join regional networks, so we were able to create multiple
accounts for crawling in the New Orleans network in parallel.
The data was collected over a five day period starting on
December 29th, 2008. In total, using the same crawling
methodology as above, we discovered 90,269 users connected
by 1,823,331 undirected links, for an average degree of 40.39.

students stay at the same college during their entire under-
graduate tenure.
3The only exception was for alumni who graduated before
1980; such users are unlikely to have Rice University email
accounts, and are therefore unlikely to have accounts in the
Rice University Facebook network. As a result, we disre-
garded these matches.
4Note that Rice students can elect to remove their informa-
tion from the online directory; in this case, we would not be
able to find corresponding entries in the directories.
5Our average user degree is lower than is cited by
Facebook at http://www.facebook.com/press/info.php?
statistics since we only have intra-Rice links. Links to
other accounts not in the Rice network are not included.



2.2.2 User attributes
In order to collect attributes for users in the New Orleans

network, we also collected the user profiles during the crawl.
Each profile consists of optional information provided by
the users themselves, such as educational information, tastes
and preferences, and geographic information. Since users are
allowed to mark their profiles as private, we were not able to
download profile information for all users. In total, we were
able to download profiles for 63,731 (70.6%) of the users,
and we consider only this subset in the following analysis.

Attribute Fraction revealed
high school 68.9%
university 58.3%
employer 42.3%
interests 35.5%
location 19.3%

Table 1: Fraction of users who provide various at-
tributes in the New Orleans Facebook network.

We also conducted a quick study to determine what frac-
tion of users provide various attributes in their Facebook
profiles. Table 1 lists the fraction of users who provide dif-
ferent attributes in their profile in the New Orleans network.
The rates for different attributes vary widely: for example,
almost 70% of users provide their high school, but only 20%
of users provide their current city of residence. This ob-
servation shows that automatically inferring user attributes
could be useful to today’s online social networks.

2.3 Limitations
Both of our Facebook crawls include only those users

who had not changed the default Facebook privacy settings,
which shares their profile and friend list with users in the
same network. During our crawls, we found that about 5%
of each network had changed their privacy settings so that
their friend list was inaccessible, and about 30% of the net-
work had made their profile inaccessible.

Additionally, we may have missed users who were not con-
nected to the large, strongly connected component of the so-
cial networks we crawled. Because Facebook does not pro-
vide a way to select random users, we are unable to estimate
the fraction of accounts that we were unable to crawl.

3. ATTRIBUTES IN THE NETWORK
Our approach to inferring user attributes is based on two

observations about how the structure of the social network
is correlated with the attributes of users. First, we note
that users are significantly more likely to be friends with
other users who share their attributes. In some cases, the
likelihood is as high as 53-fold more than what would be
expected if attributes were assigned randomly. Second, we
observe that this tendency for similar users to be linked of-
ten leads to communities of users in the network that are
centered around attributes. Each of these observations are
described in more detail below.

3.1 Friends with common attributes
Our first observation is that users are statistically much

more likely to be friends with other users who share their
attributes, when compared to users who have no attributes
in common. In order to show this, for each attribute a (such

as college, matriculation year, or high school), we calculated

Sa =
|{(i, j) ∈ E : s.t. ai = aj}|

|E|
(1)

where ai represents the value of attribute a for user i, and
E represents the set of all links. Sa therefore represents
the fraction of links for which users share the same value
of attribute a. We divided this by Ea, or what would be
expected if attributes were placed randomly,

Ea =

Pk

i=0
Ti(Ti − 1)

|U |(|U | − 1)
(2)

where Ti are the number of users with each of the possible
k attribute values and U =

Pk

i=0
Ti. The resulting value

Aa = Sa/Ea, which we call affinity6, ranges from 0 to ∞
and represents the ratio of the fraction of links between
attribute-sharing users, relative to what would be expected if
attributes were assigned randomly. Thus, an affinity greater
than 1 indicates that links are positively correlated with user
attributes.

Users Attribute Affinity

Rice undergrads
college 4.49
major 2.33
year 1.97

Rice grads
department 9.71

school 4.02
year 1.79

New Orleans
high school 53.2
hometown 2.87

political views 1.86

Table 2: Affinity values for various attributes. Links
are correlated with numerous user attributes.

Table 2 shows the affinity of the various attributes for our
crawled data sets. We observe that for a number of the
attributes, a significant affinity is observed, showing that
links are correlated with certain attributes. It is interesting
to note that certain attributes have stronger affinity than
others: for example, graduate students have a much strong
affinity for other students in the same department than to
other students in the same matriculation year. For some
attributes, the affinity is as high as 53, implying that users
connected by a link are 53 times more likely to share an
attribute than would be expected if attributes were random.
In summary, we have observed that links are correlated with
certain attributes, suggesting that our approach of inferring
attributes from the social network structure holds promise.

3.2 Attribute-based communities
Given that we have observed a correlation between user

attributes and links, it is natural to see if the users who
share a similar attribute form communities, or dense clus-
ters, in the network. Note that the previous observation is
a necessary, but not sufficient, condition for attribute-based
communities to exist. For example, users linked by a com-
mon attribute could form a long chain, having high affinity
but not forming a dense community. In order to investi-
gate whether attribute communities are present in our net-
work, we divide the network into communities based on user

6Affinity essentially represents the degree of homophily in
the network, with respect to a particular attribute.



attributes, and then quantify the strength of the resulting
communities using modularity [17].

3.2.1 Modularity
Consider a partitioning of a network into k distinct com-

munities. Let e be a symmetric k × k matrix, whose ele-
ment eij is the fraction of edges in the network that connect
vertices in community i to community j. Also, we define
ai =

P

j
eij as the fraction of edges that touch vertices in

community i. Then, the trace of the matrix Tr e =
P

i
eii

gives the fraction of edges in the network within the same
community. Hence, modularity is defined as

Q =
X

i

(eii − a2

i ) = Tr e − ||e2|| (3)

where ||y|| indicates the sum of the elements of matrix
y. Modularity is then a measure of the fraction of intra-
community edges minus the expected value of the same
quantity in a network with the same community divisions,
but with edges placed without regard to communities. Mod-
ularity therefore ranges from -1 to 1, with 0 representing no
more community structure than would be expected in a ran-
dom graph, and significantly positive values representing the
presence of strong community structure.

3.2.2 Rice undergraduates
Table 3 shows the modularity for the undergraduate pop-

ulation when partitioned according to residential college,
major, and matriculation year. Also shown is the modu-
larity of the partitionings that are obtained when multiple
attributes are used. The results show a significant modu-
larity for the communities defined by residential college and
matriculation year - a relatively high Q of 0.384 is observed
when partitioning by residential college, and a Q of 0.259
is seen when dividing by year. However, the modularity of
the communities defined by major is almost 0, indicating
that no community structure exists based on academic ma-
jor. Overall, these results indicate that undergraduates who
share the same college or matriculation year form tightly-
knit communities in the social network.

Attributes Communities Modularity
college, major, year 582 0.023
college, major 317 0.029
year, major 147 0.045
major 52 0.055
college, year 44 0.248
year 7 0.259
college 9 0.384

Table 3: Modularity values for attribute communi-
ties for undergraduates at Rice. College and matric-
ulation year reveal strong community structure.

With some knowledge of the actual social network at
Rice, the above results are not unexpected. Undergradu-
ate students are randomly assigned to a residential college
upon matriculation, and they generally remain members of
that college for the duration of their undergraduate studies.
Thus, it is natural that strong communities form around
residential colleges. Additionally, the strong communities
among undergraduate students of the same matriculation
year are not surprising. Incoming students attend an orien-
tation week together, are mostly assigned to share dormitory
rooms with students of their year, and tend to spend time in

courses with students of their year. Thus, it is also natural
that a community structure exists among undergraduates of
the same matriculation year. Finally, the lack of a strong
community structure around majors can be explained by the
fact that Rice undergraduates obtain a liberal arts education
(taking courses from many departments), and they often do
not choose majors until the end of their sophomore year.

3.2.3 Rice graduate students
We now turn our focus to the graduate student popula-

tion. Table 4 shows the modularity of the graduate student
population when partitioned according to department, aca-
demic school, and matriculation year.7 The results show
a significant modularity for the communities based on de-
partment – in fact, a Q of 0.587 is observed. A similar
modularity value is observed when partitioning according to
school – this is because each department is a member of ex-
actly one school, and the partitioning according to school
ends up being a coarser version of the communities defined
by department. Finally, a Q of 0.185 is seen for the commu-
nities defined by matriculation year. This indicates a very
strong community structure for the graduate students based
on department, and a weak community structure based on
matriculation year.

Attributes Communities Modularity
year 10 0.185
department, school, year 124 0.292
department, year 124 0.292
school, year 43 0.299
school 7 0.581
department, school 28 0.587
department 28 0.587

Table 4: Modularity values for attribute commu-
nities for graduate students at Rice. Departments
form strong communities.

The results for the graduate student population are also
not unexpected. Graduate students are accepted into a spe-
cific department at the beginning of their studies, and usu-
ally spend their entire tenure in the same department. Thus,
the very strong association with the department is not sur-
prising. Moreover, the variable length of graduate programs
and the greater tendency of graduate students to interact
across seniority levels explains why the partitioning accord-
ing to matriculation year has a weak community structure.

For brevity, we do not include results in this section for the
New Orleans network, however, we obtained similar results
for attributes like high school and hometown.

3.3 Summary
In all three of our data sets, we observe that users with

certain similar attributes tend to be friends in the social net-
work. Moreover, we observe strong communities, indicated
by a high modularity value, for the communities defined
by users who share certain attributes in the Rice networks.
We also observe that multiple overlapping community struc-
tures exist. For the undergraduates, we observe significant
modularity when partitioning according to residential col-
lege and matriculation year. For the graduate students, we
observe significant modularity when partitioning according

7Note that graduate students are not assigned to residential
colleges, so that attribute is disregarded here.



to department and weaker modularity when partitioning by
matriculation year.

4. INFERRING ATTRIBUTES
In the previous section, we used knowledge of all attributes

in the network to examine the communities defined by users
who share attributes. In this section, we examine the prob-
lem of detecting these communities even if we don’t know
all of the attributes. Our approach is based on the obser-
vation that strong community structures often exist around
users with common attributes. This observation suggests a
natural way of inferring user attributes if the attributes for
some users are not known: namely, to infer user attributes
by detecting communities in the network. In this section,
we describe our approach and results. We first describe re-
lated work on community detection that we leverage to infer
attributes, and then present an evaluation on our Rice and
New Orleans data sets.

4.1 Community detection
Community detection in large networks is a well-studied

problem with a number of notable approaches. At a high
level, algorithms for detecting communities can be divided
into global approaches, which assume knowledge of the entire
network, and local approaches, which only assume knowledge
of a local region. We briefly discuss each of these below.

4.1.1 Global community detection
One of the first community detection algorithms was pro-

posed by Girvan and Newman [18]. Their algorithm works
by iteratively removing edges until the social network graph
becomes partitioned, at which point the various partitions
are considered communities. In order to determine the edge
to be removed at each step, Girvan and Newman proposed
a metric known as betweenness centrality for each edge. To
compute this metric, it is necessary to compute the short-
est path between each pair of vertices in the network. The
number of shortest paths that contain an edge determine
the betweenness centrality of that edge. Follow-up work has
extended the approach taken by Girvan and Newman in var-
ious ways, with significant speed improvements [17,19,23].

The intuition behind this algorithm is simple. If we as-
sume that the social network is divided into densely con-
nected communities, the betweenness centrality metric looks
for links that bridge communities. Since communities are,
by definition, more dense than the graph as a whole, these
bridging links will naturally have a higher betweenness cen-
trality. Once they are removed from the graph, the under-
lying community structure emerges.

4.1.2 Local community detection
One potential downside of the global approaches to com-

munity detection is that the structure of the entire graph
must be known; as others have pointed out [4], this is often
prohibitively expensive (as many real-world graphs are ex-
tremely large) or hard to obtain (for example, the graph of
Web pages). As an alternative, a number of researchers have
looked at local approaches to detecting communities, which
use only local knowledge to build a community around a set
of source nodes. In contrast with the global approaches, lo-
cal approaches have the potential to be significantly more
scalable and applicable to much larger graphs.

Most of the local approaches work by starting with a sin-
gle (or multiple [2]) seed node and greedily adding neigh-
boring nodes until a sufficiently strong community is found.
For example, Clauset’s algorithm [4] at each step adds the
node that maximizes the ratio of intra-community edges to
inter-community edges for the nodes on the “fringe” of the
community. Bagrow’s algorithm [3] adds the node which has
the lowest “outwardness”, which is defined as the number of
neighbors outside the community minus the number within,
normalized by degree. Finally, Luo et al. [13] proposed an
algorithm similar to Clauset’s but with the metric based on
all the nodes in the community and not just the fringe. It
also performs iterative add and remove cycles, iterating un-
til adding or removing a single vertex can no longer result
in a better community.

4.2 Inferring attributes globally
The first scenario we examine is whether we can infer at-

tributes at a global scale. For example, if we know the ma-
triculation year for 10% of the users, how well can we infer
the matriculation year of the remaining 90%?

Our approach is to detect communities at a global level,
seeded with the partial information about user attributes. In
particular, we modified Clauset’s algorithm [5] to make use
of attributes of a subset of the users. Instead of starting with
every user in their own cluster, the algorithm pre-assigns
users with the same attribute value into the same cluster.
We then run the algorithm as normal, effectively “seeding”
it with the users who reveal their attributes. Finally, we
compare the resulting communities with the communities
based on the known attributes of all users.

To measure how similar these two community structures
are, we use the normalized mutual information metric [9].
This metric is calculated as

−2
P

i

P

j xij log(
xijN

xi.x.j
)

P

i
xi.log(xi.

N
) +

P

j
X.j log(

x.j

N
)

(4)

where x is a square matrix whose dimension is the number
of communities detected. Each element xij represents the
number of nodes in attribute-defined community i that ap-
peared in the detected community j. The quantities x.i and
xi. denote the sum over column i and row i respectively, and
N is the number of nodes in the graph. The metric ranges
between 0 and 1, with 0 representing no correlation between
the two community structures, and 1 representing a perfect
match.

Figure 1 plots the results of this experiment for the Rice
undergraduates, by showing the normalized mutual informa-
tion for each attribute. Separate lines are plotted for each
attribute, and the correlation value is with respect to the
attribute that users are revealing. Two trends can be seen
in this graph. First, we observe that both college and year
quickly lead to community structures with significant corre-
lation. In fact, when just 20% of users reveal their college
or year, we can infer the attributes for the remaining users
with over 80% accuracy. Second, this is not the case for
major of study. However, this result is not surprising, as we
observed in the previous section that communities are not
formed around users with common majors. Overall, this
experiment shows that multiple attributes can be inferred
globally when as few as 20% of the users reveal their at-
tribute information.

Similarly, Figure 2 plots the results of this experiment for



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

N
or

m
al

iz
ed

M
ut

ua
l I

nf
or

m
at

io
n

Fraction of Users Revealed

College Year

Major

Figure 1: Normalized mutual information versus the
fraction of users who reveal their community for
Rice undergraduates. Revealing more information
naturally leads to partitionings with higher correla-
tions, especially for the college and year attributes.
This result shows that different attributes can be
accurately inferred with as few as 20% of users re-
vealing their attributes.

the Rice graduate students. Similar to the undergrads, we
observe that certain attributes correspond to communities
that can be detected with high accuracy. For example, if as
few as 5% of the students reveal their department or school,
we can infer the department or school for the remaining stu-
dents with approximately 60% accuracy. However, this is
not the case for the matriculation year attribute. We ob-
served in the previous section that matriculation years form
only weak communities, so this result is not unexpected.

We were unable to conduct this experiment for the New
Orleans network, since the attributes in that network are
self-reported, and there are not any attribute types that are
known for all users.

4.3 Inferring attributes locally
We now look at detecting attributes on a local scale. This

is different from the problem in the previous section, where
we assumed that partial information is known about all at-
tribute values. Instead, for example, we may know that a
subset of five users all live in the same dormitory, and we
wish to determine the other users (for which we do not have
any information) who also live in that dormitory. To de-
tect these communities, we extend the previously proposed
approaches for local community detection to take a seed set.

While exploring local community detection, we found that
previous approaches performed well when detecting certain
attributes, but did not perform well on others. For exam-
ple, as we examine later, we found that the algorithm of
Luo et al. [13] could infer the undergraduate members of
a residential college at Rice, but was not able to infer the
members of weaker communities, such as all students in the
same matriculation year. Thus, we propose a new method
for detecting a single community, based on the metric of
normalized conductance. We first describe this new metric
below, then give a description of our algorithm, and finally
evaluate the algorithm on our data sets.

4.3.1 Normalized conductance
We first define a metric that rates the quality of a single

community (as opposed to modularity, which rates the com-
munity structure of a partitioning of a graph into a collection
of communities). To measure the quality of a community, we
propose a metric based on the widely adopted metric con-
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Figure 2: Normalized mutual information versus the
fraction of users who reveal their community for
Rice graduate students.

ductance [12]. Let G = (V, E) denote a graph, let A ⊂ V
be a subset of the vertices that forms a community, and let
B = V \ A. Let us also define eAB to be the number of
edges between A and B and eAA as the number of edges
within A. The conductance of A is then traditionally de-
fined as eAB/eAA. Therefore, a small value of conductance
denotes a strong community, as the community would be
tightly linked internally, with very few external links.

However, this definition of conductance is not a good mea-
sure for the quality of a community, as it is biased towards
large communities. For example, if we place all vertices in
a single community, the conductance would be 0, providing
little information about the community formed.

Hence, we propose a new metric called normalized con-

ductance. To derive normalized conductance, we first define
the value K of community A as

K =
eAA

eAA + eAB

(5)

This value is similar to conductance, except that it ranges
between 0 and 1. A measure close to zero indicates very
poor community structure, and a measure close to 1 indi-
cates very good community structure with many more links
within A than to the outside. However, this metric is still
not perfect, as very large communities are naturally biased
towards having many more edges within the graph (high
eAA). Thus, we define the normalized conductance C for
a community A as K minus the expected value of K for a
random graph divided into communities of sizes |A| and |B|.

To calculate the expected value of K for a random graph,
we need to calculate the expected values of eAA and eAB

for a graph with the same community division and degree
distribution, but with the links placed without regard to
the communities. We define eA = eAA + eAB and eB =
eBB +eAB , with eA denoting the number of edges that reach
vertices within A, and eB giving the same quantity for B. In
a random graph, we would expect that eXY = eXeY . Thus,
our normalized conductance metric C can be written as

C =
eAA

eAA + eAB

−
eAeA

eAeA + eAeB

(6)

The metric C ranges between -1 and 1. Similar to mod-
ularity, strongly positive values indicate significant commu-
nity structure in A, a value of 0 indicates no more com-
munity structure than a random graph, and strongly nega-
tive values indicate less community structure than a random
graph. One particularly useful property of this definition of
conductance is that it is comparable across graphs of differ-
ent sizes and densities.
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Figure 3: Average recall and precision of single community detection for Rice undergraduates for multiple
algorithms. Good performance is observed for our algorithm (Norm. Cond.) for college and year; detection of
users with the same major is poor due to the low correlation with communities in the network. The algorithm
of Luo et al. performs well at inferring college but does not perform well for inferring matriculation year.

4.3.2 Algorithm
We now describe our algorithm for detecting a single com-

munity, using the normalized conductance metric C. We as-
sume the algorithm is given as input a subset of users S in
a community and the social network graph G = (V, E). The
algorithm then returns the other members of the community.
Similar to the approach that was taken by Luo et al. [13], we
use a greedy approach to maximize the normalized conduc-
tance. We divide the graph into two components A and B,
with A = S initially. At each step, we select a user v ∈ V in
B that upon adding v to A yields the highest increase in the
normalized conductance C for A. We repeat this process,
adding users to A, until no remaining user would produce
an increase in the normalized conductance C for A. At this
point, we stop and return the community A as the result.

The primary difference between our method and the previ-
ous approaches is the use of a metric that is weighted against
a random graph. We found that the metrics used by previous
approaches are all biased towards large communities. For ex-
ample, the metric used by Luo et al. [13] is based on the ratio
between the number of intra-community links to the num-
ber of inter-community links. As a community grows larger,
this value naturally increases; in fact, it becomes infinite if
an entire connected component is viewed as a community.
Thus, these approaches often have trouble detecting large
communities in the network, as once the community is de-
tected the algorithm does not stop, but continues to add
nodes to the community until the community is defined as
the entire graph. By weighting our metric against a random
graph, we can detect both the small-scale and large-scale
communities that exist.

4.3.3 Evaluation
To see how well our algorithm and others perform, we eval-

uate the performance along two axes. Assume that each al-
gorithm takes as input a subset S of the set H of users with a
certain shared attribute, and the social network graph. The
algorithm then returns a set of users R, representing the
other members it believes also belong in H , based on the
community structure in the network. We define the recall
to be |R ∩ H |/|H \ S| representing the fraction of remain-
ing community members returned. Similarly, we define the
precision to be |R ∩ H |/|R| representing the fraction of the
returned users who are actually in the community. Thus, an

ideal algorithm would have a recall of 1 (returning all of the
remaining users) as well as a precision of 1 (only returning
users who are actually in the community).

We now evaluate our algorithm along with the algorithms
of Luo et al. [13], Bagrow [3], and Clauset [4]. First, we
examine how well they perform on the undergraduate popu-
lation by providing the algorithms with varying-size subsets
of the students with common attributes such as college, ma-
triculation year, and major. For each attribute (i.e., each
college, each major), we select 20 random subsets of users of
each size. We then evaluate how well the algorithms perform
when given each of these random subsets as input.

For fair comparison with the other algorithms, a few pa-
rameters and modifications were required. First, none of
the other algorithms accept as input a set of seed nodes;
we naturally extended them to start with a set of nodes
rather than a single node. Second, the algorithm proposed
by Clauset does not specify a stopping condition; instead, it
requires the user to specify the number of nodes to be added
to the community. Thus, we utilize the stopping condition
proposed by Bagrow [3] for the Clauset algorithm, based on
p-strong communities.8 We ran the algorithms of Clauset
and Bagrow with values of p = {0.75, 0.8, 0.85, .., 1.0}, as
suggested, and selected the one with the lowest number of
inter-community edges (representing the“best”community).
Third, the algorithm of Lou et al. performs iterative addi-
tions and deletions, and could therefore remove the original
seed nodes from the resulting community. In order to handle
this case, we imposed the constraint that we only consider
the algorithm of Luo to have found a community if 50% or
more of the original seed nodes were present in the resulting
community.

4.3.4 Inferring attributes for Rice undergrads
We now present the results for inferring different at-

tributes for the Rice undergraduate students. For these re-
sults, we average over all possible values of each attribute
(such as all colleges) in order to compute the recall and
precision data presented in Figure 3. Thus, we feed each
algorithm x% of every college and calculate the recall and
precision of the result. We repeat this experiment 20 times

8A community is p-strong when a fraction p of nodes within
the community satisfy the criteria that they have more
neighbors inside the community than outside
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Figure 4: Average recall and precision for single community detection for Rice graduate students. Good
performance is observed for department and school; much weaker performance is seen for year.
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Figure 5: Recall and precision for matriculation year
community detection for Rice undergraduates for
our algorithm. Individual lines are shown for each
matriculation year. Performance depends on the
matriculation year.

for each college and fraction revealed, and then average over
all colleges to obtain the data in Figure 3(a).

As a detailed example, Figure 5 presents the recall and
precision for each of the matriculation years as different
number of users are revealed. A number of interesting ob-
servations can be made about the results. First, the per-
formance varies across the different matriculation years; the
freshmen and sophomores appear to be the easiest to detect,
followed by the juniors and seniors. Second, detection per-
formance is good for all of the matriculation years once 20%
to 30% of the users are revealed. Third, note that the pre-
cision naturally deteriorates once very high fractions of the
users in each year are revealed. This is because the precision
is defined based on the number of unrevealed users, which
becomes much smaller as significant fractions are revealed.
We now turn back to Figure 3 and discuss each attribute in
detail.

Colleges: The results show that colleges can be inferred
with very high recall and precision by both our algorithm
and the algorithm of Luo et al. when as few as 20% of
the students in the college are known. For example, when
20% of the members of a single college are provided to the
algorithms, both our algorithm at that of Luo et al. can
infer over 80% of the remaining members of that college with

over 95% accuracy. The algorithms of Clauset and Bagrow
both perform rather poorly at detecting colleges: they each
often identify a large part of the network as belonging to the
college, resulting in a very low precision score.

Years: However, for inferring matriculation years, all al-
gorithms have high recall, but only our algorithm has good
precision. In fact, the other algorithms tend to detect the en-
tire graph as a community, which leads to the low precision.
Again, we believe that this poor performance is a function of
the metrics that the other algorithms use. Since they essen-
tially try to maximize the ratio of intra-community links to
inter-community links, they occasionally end up returning
the whole graph.

Majors: Finally, we observe that none of the algorithms
are able to infer major; all have extremely low precision.
This result is expected, though, since we observed in the
previous section that majors do not form significant com-
munities in the network.

4.3.5 Inferring attributes for Rice graduate students
We now evaluate our approach on the Rice graduate stu-

dent network. Figure 4 shows how the recall and precision
vary as different fractions of the department, school, and
matriculation year of graduate students are provided. All
algorithms perform well when inferring the department and
school, with the exception of Bagrow’s. (As we observed
with the undergraduates, the algorithm of Bagrow tended
to return a large portion of the network as a community.)
We find that knowing 20% of the user attributes is suffi-
cient to infer most of the remaining users with high accu-
racy. However, none of the algorithms perform well at in-
ferring matriculation year. Again, the poor performance at
detecting matriculation years can be explained by the data
in Section 3, which shows that the students with the same
matriculation year form weak communities in the social net-
work.

4.3.6 Inferring attributes for New Orleans users
In the last section, we evaluate our technique’s ability to

infer University-related attributes, obtained not from Face-
book from the Rice student directory. Here, we evaluate our
technique’s ability to infer self-reported, non-authoritative
attributes. To do so, we use our New Orleans Facebook
data set, which consists of the profiles and social network for
63,731 users in the New Orleans Facebook regional network.
For our evaluation, we use the largest connected component
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Figure 6: Average precision and recall for the 92
New Orleans groups with significant normalized con-
ductance (> 0.2).

in this network which includes 63,392 users connected by
816,886 undirected links. Since this data was derived from
user input, rather than an authoritative organization (as
with the Rice data), some attributes are missing and a sin-
gle attribute can be recorded in different ways by different
users. Regardless, this evaluation represents a challenging
environment in which to test our approach.

To evaluate how well community-based attribute inference
works, we focus our evaluation on two questions: First, how
many attribute-based groups represent strong communities
(and could therefore possibly be inferred)? And second, for
those groups, how well does our approach work? In order to
answer the first question, we extracted all attributes from
each user’s profile.9 In total, this resulted in 1,592,312 at-
tributes for 63,392 users. We then examined all groups of
users defined by a common attribute, looking for groups with
significant conductance. In order to have sufficient granu-
larity when selectively revealing users, we only considered
groups which contained at least 15 members; in total, this
represents 7,203 groups.

For each of these attribute-defined groups, we calculated
their normalized conductance. Clearly, groups with low con-
ductance are unable to be detected by our approach (as there
is not information in the social network about the group),
while groups with significant normalized conductance hold
the potential to be detected. While most of the groups show
almost no normalized conductance, there are a number of
groups with significant normalized conductance. In fact, 92
(1.2%) of the groups show normalized conductance over 0.2,
and 18 (0.24%) of the groups show normalized conductance
over 0.3. This may seem like a surprisingly small fraction of
the groups in the network, however, many of the groups with
low normalized conductance are ones that would not be ex-
pected to form dense communities (examples include groups
defined by common attributes like “sex: female”, “birthday:
december 15”, and “favorite movie: Where the Wild Things
Are”).

Next, we attempt to detect each of these groups when
given a subset of the membership. Figure 6 shows how the
recall and precision vary as different fractions of each group

9For attributes with multiple values, such as “favorite
books”, we treated each individual item as a separate at-
tribute.

are revealed. We were unable to run the Clauset algorithm,
as the size of the New Orleans network made this algorithm
computationally infeasible. While the results show worse
performance than the Rice data sets, our algorithm still
returns useful data. For example, with 25% of the users
revealed, the normalized conductance-based approach can
infer approximately 75% of the remaining users with 35%
precision. The underlying reason for the lower performance
is that these results essentially represent the least-favorable
evaluation for the algorithm: since many of the users do
not provide attributes, we are unable to tell whether the
algorithm is correct or not for many of the users that are
returned. To be conservative, we count such unknown users
as incorrect, even though they may share an attribute but
decline to list it in their profile. For example, if the group
represents a high school, the algorithm may return users
who do not have any high schools listed in their profile —
we count these users as incorrect, even though some of these
users may have attended the predicted high school.

4.4 Summary
We began this section by asking whether we can infer user

attributes if given a social network and partial information
about user attributes. We demonstrated that existing tech-
niques can be used to detect user attributes when given par-
tial information on all attribute values and extended to ac-
cept a “seed” set of users. In fact, we found that with as few
as 20% of users with known attributes, the remaining users’
attributes can be inferred with over 80% accuracy. More-
over, inspired by previous work on community detection, we
proposed a new algorithm to infer user attributes when pro-
vided a set of seed users who share a single attribute. In
our collected networks, we found that this algorithm is able
to infer multiple attributes with high accuracy when given
a few users with a common attribute.

5. RELATED WORK
Before concluding, we briefly describe related work. There

has been much work on automatic community detection - we
provided a survey of these techniques in Section 4.1. Below,
we detail other work that is related to inferring information
about users from a social network.

Other studies have found that people tend to befriend
others who share similar traits. In sociology, this tendency
is known as homophily [16]. A study by Fiore et al. [8] of
interactions of a large number of users in an online dating
system showed that users usually prefer to date people who
share similar attributes. Our data from Facebook agrees
with these observations. In fact, homophily has been ex-
ploited to build services, for example, Şimşek and Jensen
have proposed a technique [6] for navigating messages in a
network by exploiting homophily.

Additionally, there have been efforts to leverage the com-
munities formed by users who share attributes. Friendlen
and Jensen [10] have proposed a family of algorithms to de-
tect tribes or groups of individuals who are tightly linked
to each other in an anomalous way (meaning they share
uncommon attributes). They apply the algorithms to a re-
lational data set of employment records to identify tightly
knit groups of people who are at high risk for fraud. This
work can be classified as a relational knowledge discovery
scheme [11] that utilizes the relationship between individuals
and their attributes to infer patterns and make predictions.



This technique is widely used in the natural sciences; for
example, it is used to determine family structure in animal
groups based on animals sighted together [14].

Zheleva and Getoor [24] explored inferring user attributes
in a social network, using a number of different user profile
elements. When attempting to infer a user’s attributes from
the social network alone, they only consider the revealed
attributes of the user’s friends whereas we also consider the
attributes of users who are not directly connected to the
user in question. Moreover, the most successful approach
they find relies on having additional information about users
(such as group memberships). As a result, their method is
complementary to our approach (which requires information
about the social network and partial user attributes).

Researchers have also examined the opposite problem: us-
ing user attributes to predict social links. For example,
Adamic and Adar [1] used similarity in the text and links
on users’ web pages to predict the likelihood that users are
friends. This work is orthogonal to ours, as its goal is to
infer the social network graph, whereas we assume that this
graph is known.

6. CONCLUSION
In this paper, we examined the question: given attributes

for some fraction of the users in an online social network, can
we infer the attributes of the remaining users? Using fine-
grained data taken from two large online social networks,
we found that users are often friends with others who share
their attributes. Moreover, we found that communities form
in the network around users who share certain attributes.
These two observations lead to a natural approach for infer-
ring user attributes, namely, to leverage automatic commu-
nity detection in order to infer attributes.

However, we found that existing approaches were not able
to detect communities centered around common attributes
in all cases. Thus, inspired by previous work on commu-
nity detection, we proposed a new approach for detecting
communities that is able to detect communities for multi-
ple attributes in our data set. In fact, we found that, with
as little as 20% of the users providing attributes, we could
often infer the attributes for the remaining users with over
80% accuracy. We make our algorithm implementation and
data sets available to the community.

Our work has a number of implications and uses. For
example, many of the popular online social networks could
directly apply our algorithm in order to detect certain at-
tributes for users who do not provide them. This would en-
hance the user experience on the sites, as the attributes pro-
vided are often used for guiding search results, for suggest-
ing users who may benefit from interaction, and for grouping
users. Moreover, it could also be used to reduce the current
burden on users imposed by manual data entry.

However, our findings also raise interesting questions
about the nature of privacy in online social networks. In
particular, almost all privacy mechanisms available to users
today are based on access control: users can specify which
other users are able to view the content or information they
upload. Our results show, however, that even information
that is not provided by users can sometimes be inferred from
the user’s location in the network. Thus, it is not sufficient to
ensure privacy by making attributes private, instead, both
attributes and the list of a user’s friends must be marked
private to ensure that a user’s attributes cannot be inferred.
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