
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 1, FEBRUARY 2003 81

An Efficient Primary-Segmented Backup Scheme
for Dependable Real-Time Communication

in Multihop Networks
Krishna Phani Gummadi, Madhavarapu Jnana Pradeep, and C. Siva Ram Murthy, Senior Member, IEEE

Abstract—Several distributed real-time applications (e.g.,
medical imaging, air traffic control, and video conferencing)
demand hard guarantees on the message delivery latency and the
recovery delay from component failures. As these demands cannot
be met in traditional datagram services, special schemes have been
proposed to provide timely recovery for real-time communications
in multihop networks. These schemes reserve additional network
resources (spare resources)a priori along a backup channel
that is disjoint with the primary. Upon a failure in the primary
channel, its backup is activated, making the real-time connection
dependable. In this paper, we propose a new method of providing
backups called segmented backups, in which backup paths are
provided for partial segments of the primary path rather than for
its entire length, as is done in the existing schemes. We show that
our method offers: 1) improved network resource utilization; 2)
higher average call acceptance rate; 3) better quality-of-service
guarantees on propagation delays and failure-recovery times; and
4) increased flexibility to control the level of fault tolerance of
each connection separately. We provide an algorithm for routing
the segmented backups and prove its optimality with respect to
spare resource reservation. We detail necessary extensions to
resource reservation protocol (RSVP) to support our scheme and
argue that they increase the implementation complexity of RSVP
minimally. Our simulation studies on various network topologies
demonstrate that spare resource aggregation methods such as
backup multiplexing are more effective when applied to our
scheme than to earlier schemes.

Index Terms—Backup channel, backup multiplexing, depend-
able connection, multihop network, primary channel, quality-of-
service (QoS), real-time communication, resource reservation pro-
tocol (RSVP), segmented backup.

I. INTRODUCTION

T HE ADVENT of high-speed networking has introduced
opportunities for new applications such as real-time

distributed computation, remote control systems, digital con-
tinuous media (audio and motion video), video conferencing,
medical imaging, and scientific visualization. Such distributed

Manuscript received December 13, 2000; revised July 22, 2001; approved by
IEEE/ACM TRANSACTIONS ONNETWORKING Editor A. Orda. This work was
supported by the Department of Science and Technology, New Delhi, India.

K. P. Gummadi was with the Indian Institute of Technology, Madras
600036, India. He is now with the Department of Computer Science and
Engineering, University of Washington, Seattle, WA 98195 USA (e-mail:
gummadi@cs.washington.edu).

M. J. Pradeep was with the Indian Institute of Technology, Madras 600036,
India. He is now with Microsoft Corporation, Redmond, WA 98052 USA
(e-mail: pradeepm@microsoft.com).

C. S. R. Murthy is with the Department of Computer Science and En-
gineering, Indian Institute of Technology, Madras 600036, India (e-mail:
murthy@iitm.ernet.in).

Digital Object Identifier 10.1109/TNET.2002.808405

real-time applications demand quality-of-service (QoS) guar-
antees on timeliness of message delivery and failure-recovery
delay. These guarantees are agreed upon before setting up
the communication channel and must be met even in the
case of bursty network traffic, hardware failure (router and
switch crashes, physical cable cuts, etc.), or software bugs.
Applications using traditional best effort datagram services like
IP experience varying delays due to varying queue sizes and
packet drops at the routers. To ensure bounded message delays
for real-time applications, special schemes such as resource
reservation protocol (RSVP) [15] have been proposed. In
RSVP, resources (such as link bandwidths and router buffers)
are reserveda priori along the message transmission path from
the source to the destination for the duration of asession. While
RSVP can provide QoS guarantees on the packet transmission
latency, it lacks quick failure-recovery mechanisms. In RSVP,
when a channel fails, a new one is established. A successful
recovery cannot be guaranteed as sufficient resources might be
lacking at recovery time. Further, the channel re-establishment
time could take a long time, especially when there is contention
for resources among disrupted channels. Given that some of
these applications (such as commercial video on demand) last
for a long time, ranging from several minutes to hours, such
failures might not be uncommon during a single session.

The communications schemes designed to tolerate faults
can be broadly divided intoproactiveand reactiveschemes.
In the former, the failure-recovery process runs throughout
the duration of the message transmission in anticipation of
failures, while in the latter, the recovery process is initiated
after detecting failure. An example of a proactive scheme is the
forward recovery or forward error correction scheme [3], [10],
[20], in which multiple redundant copies of a message are sent
along disjoint paths. This scheme has a huge resource overhead
and is less desirable than lightweight reactive schemes, when
infrequent packet losses are tolerable. In a simple reactive
scheme, resources are reserveda priori along a path, called the
backuppath (or channel) [2], [5], [11], [28], which is disjoint
with the path along which messages are being transmitted,
which we shall refer to as theprimary path (or channel). The
spare resources reserved for a backup channel are activated only
when its primary channel fails, ensuring quick and guaranteed
recovery. When not in use, these spare resources can be used
for best effort and other nonreal-time traffic to achieve better
resource utilization than proactive schemes.

Two different reactive schemes have been analyzed for the
establishment of backup channels. In the first, spare resources

1063-6692/03$17.00 © 2003 IEEE

82 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 1, FEBRUARY 2003

in the vicinity of the failed component are used to reroute
the channel. This method oflocal detouring [5], [28] leads
to inefficient resource utilization, as after recovery the path
lengths usually get extended significantly. In the second
scheme,end-to-end detouring[2], [11] was proposed through
the use of an end-to-end backup channel, i.e., a backup channel
that extends from the source to the destination.

In this paper, we propose and evaluate a new scheme to
construct backup paths, which we callsegmented backups.
A segmented backup comprises multiple backup paths, each
spanning a contiguous portion of the primary path. This is
unlike an end-to-end backup where the backup spans the
entire length of the primary path. Using example scenarios
and simulation studies, we show that segmented backups have
numerous advantages over end-to-end backups.

• Higher call acceptance rate. This is due to primary paths
that have a segmented backup but no end-to-end backup.

• Improved network resource utilization. This is because
segmented backups are typically shorter than end-to-end
backups and need less spare resources. Moreover, shorter
backup paths lead to more efficient resource aggregation
throughbackup multiplexing[4], [6], [8].

• Better QoS guarantees. A segmented backup can comprise
multiple backups, each of which spans a part of the primary
path rather than its full length. This allows for faster failure
recovery and finer control of fault tolerance for long pri-
mary paths over components with varying reliability. Also,
the backups could be chosen so that they result in minimal
increases in end-to-end delays over primary paths.

It is possible to construct segmented backups optimized for
different goals such as better resource utilization versus better
failure-recovery delay. In this paper, we specifically provide
algorithms for: 1) minimizing spare resources reserved by mul-
tiplexing segmented backups; and 2) constructing segmented
backups that are optimal with respect to resource utilization.

The rest of the paper is organized as follows. In Section II, we
explain the concept of segmented backups and illustrate their ad-
vantage over end-to-end backups using examples. In Section III,
we give an algorithm for spare resource reservation and describe
why our approach achieves better spare resource utilization than
the existing methods. In Section IV, we present an algorithm for
backup route selection and prove that it is optimal in the amount
of spare resources reserved. In Section V, we extend RSVP with
a failure-recovery procedure that is specific to our scheme and
discuss the complexity of its implementation. We also explain
scenarios in today’s Internet where our scheme can be used. In
Section VI, we evaluate the performance of our approach and
demonstrate its superiority in terms of resource utilization (re-
source allocation efficiency) and call acceptance rate. We con-
clude the paper in Section VII.

II. PRIMARY-SEGMENTED BACKUP SCHEME

In this section, we explain our segmented backup scheme
[12] and its advantages over the end-to-end backup scheme. To
establish dependable connections (fault tolerant and real-time
connections), earlier schemes have used end-to-end backups,
i.e., backups that run from the source to the destination without

Fig. 1. Illustration of a primary channel with a segmented backup.

sharing any components with the primary path (other than the
source and the destination nodes themselves). In our approach
of segmented backups, we find backups for the primary path,
taken in parts. The primary path is viewed as made up of smaller
contiguous paths, which we callprimary segments. We find
a backup path foreachsegment, which we callbackup seg-
ment, independently. Bysegmented backupwe refer to these
backup segments taken together. We illustrate these terms in
Fig. 1 where a primary channel with intermediate nodes–
and links 1–9 is shown. The backup links areA–K. The pri-
mary channel has three primary segments, each with its own
backup segment. The primary segments span links 1–3, 3–6,
and 6–9, while their corresponding backup segments span links
A–C, D–G, andH–K, respectively. These three backup segments
together constitute the segmented backup for this primary path.
Note that successive primary segments of a primary path overlap
on at least one link.

In Fig. 2(a), the goal is to establish a reliable connection from
source node to destination node . Suppose
the primary channel is routed as shown in the figure, along one
of the many shortest paths between them (typically, the primary
path is chosen independently of the backup path). For this pri-
mary, it is impossible to find a backup path, while a segmented
backup can be found as marked by the dotted line in Fig. 2(a). In
fact, we can generalize the above observation into the following
important theorem that guarantees an improvedcall acceptance
rate (fraction of requested calls accepted at a given state of the
network) for our scheme.

Theorem 1: In any network topology, whenever two disjoint
paths exist between a pair of end nodes, backup segments are
guaranteed to exist for any choice of a primary path between
them. Similar guarantees cannot be provided on the existence
of end-to-end backup (proof given in Appendix I).

The advantage of using segmented backups for more effi-
cient resource utilization is illustrated in Fig. 2(b). There is a
dependable connection to be established between
and . The primary path, end-to-end backup, and
segmented backup are routed as shown. For simplicity, let
us assume that both primary and backup paths need one unit
of resource to be reserved per link. We can see that while
the end-to-end backup requires eight units of resource, the
segmented backup requires only seven units of resource (it has
two backup segments needing three and four units). Recall
our earlier observation that every end-to-end backup is also
a segmented backup. If we could find the segmented backup
that consumes minimum resources (referred to asminimum
segmented backup), we are assured of better than or equal

GUMMADI et al.: EFFICIENT PRIMARY-SEGMENTED BACKUP SCHEME FOR DEPENDABLE REAL-TIME COMMUNICATION 83

Fig. 2. Advantages of segmented backups over end-to-end backups. (a)Higher call acceptance ratefor primary paths with a segmented backup but no end-to-end
backup. (b)Improved resource utilization and QoS guaranteeswith segmented backups that are shorter than end-to-end backups.

resource consumption when compared with the end-to-end
backup scheme. In Section IV, we present an efficient algo-
rithm for finding the minimum segmented backup. Further,
in Fig. 2(b), a failure of a node or a link in the six-hop-long
primary channel results in a re-established path that is: 1) eight
hops long using end-to-end backups; and 2) six hops long using
segmented backups. The lesser hop counts translate to better
QoS guarantees on delay.

Let us see why resource sharing algorithms such as backup
multiplexing result in greater gains while using segmented
backups. (The model is explained in detail in Section III. If
unclear, we suggest revisiting this example after reading Sec-
tion III.) Using backup multiplexing, backup resources reserved
for primary channels that do not have any common components
can be shared. A shorter primary channel shares components
with fewer primary paths, leading to better multiplexing of its
backup path. In the case of segmented backups, two backup
segments can be multiplexed whenever their corresponding
primary segments do not share any components. As primary
segments are shorter than primary paths, backup segments tend
to multiplex more with other backup segments than end-to-end
backups, leading to greater gains in resource savings.

We illustrate the intuition through Fig. 3, where we try to
establish two dependable connections: – and

– . Suppose their primary paths, end-to-end
backups, and segmented backups are routed along the shortest
paths, as shown. The primary paths share a single shared node

. Assume that both primary and backup paths need one unit
of resource to be reserved per link. Their end-to-end backups
cannot be multiplexed on the links they share, i.e., links
from – and – . Hence, the total spare resources
reserved equals 19 units (nine units for the first channel plus ten
units for the second channel). In contrast, segmented backups
need only twelve units of reserved resources. This is because
the primary segment from – on the first channel and
the primary segment from – on the second channel
do not have any shared components. This allows their backup
segments to be multiplexed on links from – . So, the
total spare resources reserved equals twelve units (eight units
for channel 1 plus nine units for channel 2 minus five units for
the links on which backup segments are shared).

Fig. 3. Advantages of segmented backups over end-to-end backups:improved
resource aggregationas backup multiplexing is more effective using segmented
backups.

To summarize, we explained the concept of segmented
backup scheme and pointed out ways in which it is more effi-
cient over the end-to-end backup scheme. Perhaps the best thing
with our scheme is that it encompasses the end-to-end backup
scheme as well, and thus guarantees at least the performance of
the end-to-end backup scheme in the worst case. Of course, this
might require a few routers to store more state information and
perform more processing. In the rest of this paper, we provide
algorithms and describe methods to realize this concept and
quantify its potential through simulation studies.

III. EFFICIENT SPARE RESOURCEALLOCATION

The spare resources reserved lower the maximum throughput
of the system as the resources reserved for backup channels are
used only during component failures. So, minimizing spare re-
sourcesisanimportantmetricwhileevaluatingdifferentschemes.
Inthissection,webrieflyoutlineamethodtominimizetheamount
ofspareresourcesreservedbymultiplexing(sharing) thebackups
passing through the same link. The technique of backup multi-
plexing is discussed in detail in [4], [6] and [8], and we adapt it
here to our case of segmented backups.

We consider thesingle-link failure model for our analysis,
under the assumption that component (link) failure-recovery
time, i.e., time taken for the fault to be rectified, is much smaller

84 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 1, FEBRUARY 2003

than the network’s mean time to failure (MTTF). Using this
failure model, if 1) primary channels of two connections share
no common components and 2) their backup channels with
bandwidths and pass through link , it is sufficient to
reserve for both the backup channels on the link.
This is because, in this model, both of the backup channels will
never be activated simultaneously. This technique of sharing
backup resources is known as backup multiplexing or, more
specifically, deterministicbackup multiplexing, as recovery
is always guaranteed in this model even after multiplexing.
We discuss a different model calledprobabilistic backup
multiplexing later in this section.

An efficient algorithm to calculate the spare resourcesat
link under the single-link failure model is given below. Let
denote the set of all primary segments whose backups traverse

. Let denote the resource required at each link by the
primary segment .

Initialize
loop for each link
loop for each primary segment
if contains link then

endif
endloop

endloop

Note that to employ this algorithm, it is necessary for each
router to be aware of the primary segments for all backup
segments passing through it. This algorithm also provides
some rationale for our earlier observation that backup segments
tend to multiplex more than end-to-end backups. The primary
segments in our scheme are shorter than the primary channels
in the case of end-to-end backups. So, the condition for the
if statement in the innermost loop holds true fewer times for
segmented backups than for end-to-end backups, requiring
fewer resources to be reserved. To obtain greater improve-
ments in the backup segments’ multiplexing capability over
end-to-end backups’ multiplexing capability, one needs longer
primary paths with larger number of segments per backup.
Such scenarios are more likely to occur as the network size
increases. Hence, we expect our scheme to show increasing
gains with increases in the size of the network. Our simulation
studies reported in Section VI support this expectation.

Below, we briefly discuss how probabilistic backup mul-
tiplexing applies to our scheme. In this model, each network
component (link or node) fails with a certain probabilityand
two backup segments are multiplexed on a shared link only
if the probability of their simultaneous activation is less than
a threshold , called the multiplexing degree. For each link,
let denote the probability of simultaneous
activation of two backup segments, (the th segment of
backup) and (the th segment of backup). Let their
corresponding primary segments be denoted by (the th
segment of primary) and (the th segment of primary

). Then, backups and can be multiplexed only if

probability of no failure in shared components

between and

probability of no simultaneous failures in the rest

of the unshared components

The smaller the value of, the higher is the fault tolerance
for the connections. This multiplexing degreecan also be
made specific to each connection, with higher fault tolerance
for more critical connections or higher paying customers. In our
scheme, we can control fault tolerance at the granularity of the
segment of a primary path. Such fine control is useful as seg-
ments of the same primary path can differ in their reliabilities
(probably because they comprise a different number of compo-
nents with varying reliabilities). Yet another way of providing
higher fault tolerance for a connection is by establishing mul-
tiple backup paths. Often, a few links are more critical or error
prone than others. It is useful to have multiple backups for a
short primary segment spanning such links rather than for the
entire path. A detailed study of the extra flexibility offered by
segmented backups over end-to-end backups under probabilistic
multiplexing model is provided in [19]. In this paper, we restrict
our discussion to deterministic multiplexing.

IV. BACKUP ROUTE SELECTION

It is usually desirable to select a segmented backup with min-
imumbackupdelay increment(i.e., thedifferencebetweendelays
along the primary and backup paths) or minimum cost. Elaborate
routing methods that search for routes using various QoS metrics
havebeendiscussedin[14], [18], [19], [24], [26],and[27]. In[19],
we deal with construction of segmented backups that offer better
QoSguaranteesonreliability.However,werestrictourdiscussion
here to construction of segmented backups with minimum cost,
where cost can be a function of path delay or path length or path
resourcereservationrequirement.Thoughourgoal is todesignal-
gorithms to select minimum cost segmented backups, it follows
from Theorem 1 that such algorithms would also yield a higher
call acceptance rate.

The problem of optimal routing of backups is NP-hard as it
subsumes the following problem which is known to be NP-hard
[26]: Is there a feasible set of channel paths such that the sum
of traffic flows at each link is smaller than the link capability,
when traffic demands are given?The complexity of the problem
increases greatly if one considers backup multiplexing. So, we
resort to heuristics to select least cost backups to each indi-
vidual primary path, ignoring the additional savings offered by
multiplexing. Several greedy heuristics for selecting end-to-end
backup paths are discussed in [6]. A simple way to find a min-
imum-cost end-to-end backup for a primary path in a network
graph is to use some shortest path search algorithm such as
Dijkstra’s over a graph obtained from by removing the the
components along the primary path. The problem of selecting
minimum-cost segmented backups is, however, more difficult
as typically there are a larger number of segmented backups

GUMMADI et al.: EFFICIENT PRIMARY-SEGMENTED BACKUP SCHEME FOR DEPENDABLE REAL-TIME COMMUNICATION 85

Fig. 4. Modeling a network topology as a graph. (a) 3� 4 mesh topology with
link weights. (b) Weighted directed graphG representing the network topology
with a chosen primary path between two verticesS andD.

than end-to-end backups and we have to find intermediate nodes
where the backup segments meet the primary. Below, we pro-
vide an algorithm calledMin_SegBakthat solves this problem.

Algorithm Min_SegBak:We model the network topology as
a weighted directed graph . Every node in the network
is represented by a unique vertexin the vertex set , while
every link from node to with cost is repre-
sented by a directed edge from to with weight .
(A duplex link is replaced with two links in either direction with
the same cost.) Let and denote the source and destination
nodes, respectively, for a dependable connection and ,

, , a sequence of vertices along some primary path
between them. We define () to denote
that vertex that occurs after (before) vertexin sequence .
In Fig. 4(a) and (b), we show a 34 mesh topology with links
of unit cost and the corresponding weighted directed graph.

Our algorithm to find the shortest segmented backup forin
consists of three steps. In step 1, we generate a modified graph

from on the same set of vertices. In the step
2, we find the shortest path betweenand in graph and use
it instep3 toobtain thesegmentsof theminimum-costsegmented
backup in . We elaborate on this below and illustrate it in Fig. 5.

1) Generate modified graph from . The
following types of edges in graph are modified
in the order given below:

a) edges between successive vertices in the sequence
; the edges pointing in the direction from to
are removed while those pointing in the reverse

direction are assigned zero weight.
b) edges , ; replace

every such edge with where is the
immediate predecessor of in . In other words,
redirect every edge pointing to a vertex , to
point to its immediate predecessor vertex .

2) Find the shortest path betweenand in . Run
any least cost path algorithm for directed graphs (e.g.,
Dijkstra’s algorithm) between and in . Let the
path obtained be denoted by the vertex sequence ,

, .

3) Use the shortest path found in step 2 to find backup seg-
ments for in . Suppose the segmented backup consists
of backup segments , ordered by the
increasing position of their starting nodes in the sequence

. We describe a method to generate the vertex sequences
for thesebackupsegmentsoneafter theother(i.e., first
is generated, then , and so on until) as we traverse
the sequence , , (found in step 2).

Initialize all vertex sequences to empty. At
any stage of the traversal of, we use to denote the current
backup segment being generated andto denote the current
vertex. Initialize to . For every perform the first applicable
action indicated in steps a–d in that order. This process termi-
nates on reaching destination. We use the terms and

to denote the immediate predecessor and immediate
successor vertices of in . Similarly, denotes the
immediate successor of in .

a) If then and .
b) If then

i) If then append to andstop.
ii) If then , append

to andstop.

c) If for any , (i.e.,) then

i) If then append to and
.

ii) If then , append
to and .

d) If for some , (i.e.,) then

i) If then append to and
.

ii) If and then
, append to

and .
iii) If and then

.
The resulting vertex sequences define backup segments

which form the shortest segmented backup for the primary path
in .
We now illustrate the three steps above through an example

in Fig. 5. The weighted directed graph obtained from the
3 4 mesh topology is shown in Fig. 5(a), while the graph
obtained by modifying the graph using step 1 is shown in
Fig. 5(b). Edges along the primary path in the direction from

to (for example, the edge from to) are removed,
while those in the reverse direction (for example, the edge from

to) are assigned zero weight. Also, edges pointing to
the nodes on the primary path (for example, the edge from
to) are redirected to point to preceding vertices on the pri-
mary path (the edge from to is redirected to). The
shortest path in found in step 2 of the algorithm is also shown
in Fig. 5(b) with a dotted line. Finally, a segmented backup
consisting of two backup segments (and

) obtained from the shortest path using step 3 of
the algorithm is shown in Fig. 5(c).

Note that in step 1b we redirect the edges to ensure that suc-
cessive backup segments overlap on at least one link of the pri-
mary path. This overlap is necessary to recover from node fail-

86 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 1, FEBRUARY 2003

Fig. 5. Illustration ofMin_SegBakalgorithm. (a) Weighted directed graphG with a chosen primary path between two verticesS andD. (b) Modified graphG
obtained fromG along with a shortest path betweenS andD; these are obtained using steps 1 and 2 of the algorithm. (c) Directed graphG with the primary and
a segmented backup; the backup is obtained from the shortest path using step 3 of the algorithm.

ures. If, however, it is sufficient to recover from link failures and
not necessarily node failures, step 1b can be omitted from the al-
gorithm. We now state an important theorem of optimality of the
segmented backups generated. This theorem, coupled with the
fact that every end-to-end backup is also a segmented backup,
guarantees a more efficient resource reservation using our algo-
rithm.

Theorem 2: The segmented backup generated by the
Min_SegBakalgorithm is a minimum cost segmented backup
for the chosen primary path (proof given in Appendix II).

Complexity of the Min_SegBak algorithm: The complexity
of step 1 of the algorithm is at most the number of edges in

, which is . Step 2 involves finding the least
weight path in ; assuming one uses Dijkstra’s algo-
rithm, its complexity is . The complexity of step
3 is the cost of traversal of the shortest path in which
is . Since , the overall complexity of the al-
gorithm is which is the complexity of the least
weight path algorithm over . This is same as the com-
plexity of end-to-end backup. Thus, our algorithm offers im-
proved resource utilization without additional complexity.

V. IMPLEMENTATION OF PRIMARY-SEGMENTED

BACKUP SCHEME

In this section, we deal with the protocols required to im-
plement our scheme, their complexity, and their applicability
in the Internet as it exists today. We discuss three protocols: 1)
routing protocol, to determine the primary as well as the backup
paths; 2)reservation protocol, to reserve resources efficiently
along these paths; and 3)recovery protocol, to recover from any
failure. We present the recovery protocol as a simple extension
to the Internet Engineering Task Force (IETF)-recommended re-
source reservation protocol, RSVP [15], and show that its com-
plexity is comparable to that of RSVP. Finally, we reflect on the
relevance of these schemes in the rapidly evolving Internet.

A. Design and Analysis of Implementation Protocols

In order to implement our scheme we need two protocols,
namely, routing and reservation-recovery protocols.

Design of the Routing Protocol:The routing protocol de-
termines the primary and segmented backup paths using the
Min_SegBakalgorithm described in Section IV. To compute the
backup path, our algorithm assumes that every router has the
global knowledge of the network topology. To obtain informa-
tion about all routers and links in the network, our routing pro-
tocol can use any variant of link state protocol such as the Open
Shortest Path First (OSPF) [17] protocol (a popular intra-do-
main routing protocol). With this global knowledge of the net-
work, the primary path can be computed as the least weight path
using Dijkstra’s shortest path algorithm, while the backup path
could be decided later by running theMin_SegBakalgorithm at
the source node.

Analysis of the Routing Protocol:We showed in Section IV
that the complexity of theMin_SegBakalgorithm is same as that
of the complexity of the least weight path algorithm such as
Dijkstra’s algorithm, which is also the complexity of the widely
used OSPF routing protocol [16]. Thus, while our protocol does
require extra computations at routers for the backup paths com-
pared with OSPF, the increased computation is bounded by a
small constant factor. We feel that this should not be a problem
in these days when Moore’s law ensures that the computation
power of the router processors doubles every two years.

Further, note that using link state protocols could potentially
limit the scalability of our scheme to within a single autonomous
system. While we believe that our subsequent work [21] on a
distributed version of theMin_SegBakalgorithm could elimi-
nate this limitation (as it does not need global knowledge of any
kind), we do not explore it here as it is outside of the scope of
this paper. However, later in this section, we show that there are
interesting applications even with this scalability bottleneck.

GUMMADI et al.: EFFICIENT PRIMARY-SEGMENTED BACKUP SCHEME FOR DEPENDABLE REAL-TIME COMMUNICATION 87

Fig. 6. Illustration of resource reservation using setup messages. (a) Source initiates the process by sending aPrimPathmessage. (b) Destination responds with
a PrimResvmessage. (c) Source computes backup segments and sendsSegPathmessage. As it traverses, the start nodes of backup segments initiateBackSegPath
messages. (d) End nodes of backup reply withBackSegResvmessages.

Design of the Reservation Protocol:We propose simple ex-
tensions to RSVP [15] to design the reservation protocol. These
extensions are along the lines of extensions discussed in [4]. We
begin with a brief overview of RSVP.

RSVP is a protocol to reserve resources along the network
paths for unicast and multicast data flows in an integrated ser-
vices network. The protocol primarily consists of the following
three types of messages: 1)setup messagesto reserve resources
along paths; 2)maintainance messagesto notify the end nodes
of any failures along the path; and 3)teardown messagesto free
the resources reserved. We will discuss a few important mes-
sages of each type.

1) Setup messages. The source router initiates the reserva-
tion by sending aPathmessage to the destination along
a route selected by the routing protocol. On receiving
the message, the destination router sends aResvmessage
back to source in the reverse direction using the path state
set up by thePathmessage. Resources are reserved at the
routers along the path by theResvmessage.

2) Maintenance messages. Error messages such asPathErr
andResvErrare used to inform the end nodes of a failure
in establishing the path.

3) Teardown messages. Messages like PathTear and
ResvTearare propagated much like their setup message
counterparts to reclaim the resources reserved for the
data flow.

In our reservation protocol, we have additional messages to
reserve resources along the backup paths. We also add a few
objects to the messages discussed above.

1) Setup messages. We illustrate the connection setup
process in Fig. 6. The reservation is initiated by the
source with aPrimPath message to the destination as
shown in Fig. 6(a). The destination responds with aPrim-
Resvmessage back to the source. ThePrimResvmessage
contains an object calledPrimaryPath, which is filled up
with the routers along the primary path as the message
traverses it, as shown in Fig. 6(b). ThisPrimaryPath
object is used by the source to compute the primary and
backup segments usingMin_SegBakalgorithm. Each pair

of primary and backup segments is copied into a separate
SegmentPathobject. All the SegmentPathobjects are
copied into aSegmentPathListobject, which is sent in
a SegPathmessage from the source to the destination.
As the SegPathmessage traverses the primary path,
the SegmentPathListis used by routers to identify the
start nodes of backup segments. These nodes initiate a
BackSegPathmessage along the backup segment. This
message is tagged with theSegmentPathobject (contains
the corresponding primary and backup segments) to help
in backup multiplexing. This is illustrated in Fig. 6(c).
On receiving theBackSegPathmessage, the last node of
a backup segment replies with aBackSegResvmessage,
which traverses the backup segments in reverse direction
as shown in Fig. 6(d). Resources are reserved along the
backup segments by theBackSegResvmessage using
backup multiplexing.

2) Maintenance messages. Upon failure during the set up of
either primary path or any backup segment, error mes-
sages likePrimPathErr, PrimResvErr, BackSegPathErr,
andBackSegResvErrare generated. These messages also
initiate the corresponding reservation teardown messages
to free any resource reservations made prior to the routing
failure.

3) Teardown messages. The messagesPrimPathTear, Prim-
ResvTear, BackSegPathTear, and BackSegResvTearare
used to free the resources reserved. They are propagated
along the primary and backup paths.

Analysis of the Reservation Protocol:The reservation state
maintained by the routers is soft state and must be updated peri-
odically through refresh messages. If a periodic refresh message
is not received, a router can reallocate the reserved resources
for some other flow. Thus, the resources can be recovered even
when the source or destination nodes fail to generate explicit
Teardownmessages.

The amount of state maintained at the routers by the reser-
vation protocol is a very important concern for integrated
services. Below, we argue that the state stored in our scheme
is only marginally greater than the state maintained in the

88 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 1, FEBRUARY 2003

Fig. 7. Illustration of failure recovery usingPathFailedandBackupActivatemessages in (a) segmented backups and (b) end-to-end backups.

end-to-end backup schemes and is comparable to the state
required by RSVP.

Both in the end-to-end backup scheme and in our scheme, all
routers along the primary as well as the backup paths maintain
per-flow state. However, our scheme demands that extra state
be stored at a few intermediate routers responsible for initiating
failure recovery (describe later in this section). This is because,
unlike end-to-end backup schemes, where the recovery can be
initiated only by the source or destination nodes, in our scheme,
every router at which a backup segment is initiated or termi-
nated (e.g., , , , , , and in Fig. 1) can initiate
the recovery process. When the number of segments is, there
will be routers that store additional information about
the primary segment for which they are responsible. Assuming
an average path length of 201 and an average primary segment
length of 6 (with successive segments overlapping on one hop),
the expected number of backup segments is four. This translates
to six routers maintaining an additional state, which we believe
is a small overhead for the additional benefits using our scheme.

In RSVP-based real-time communication, routers store reser-
vation only for the primary path (note that RSVP does not offer
failure recovery), while in our scheme as well as in end-to-end
backup schemes, routers have to store state for both primary and
backup paths. Typically, the length of a segmented backup is of
the same order of magnitude as the primary path length. Thus,
our scheme as well as the end-to-end backup scheme maintains
about twice the amount of state as maintained by RSVP. We
believe that this is a practical tradeoff for the failure recovery
guarantees offered and that it would be feasible to deploy these
schemes wherever RSVP is deployed. Further, if backup mul-
tiplexing were to be employed to reduce the spare resources
reserved, routers along the backup segments need to maintain
additional state about their correponding primary segments. We
must acknowledge here that several researchers hold the opinion
that RSVP in the integrated services framework might never
be widely adopted given its demand for routers to maintain
per-flow state. While we remain optimistic that increasing de-
mand for applications such as video conferencing will eventu-
ally lead to adoption of schemes such as RSVP, we also explore
alternate application scenarios in the current Internet later in this
section.

Design of the Recovery Protocol:Failure recovery com-
prises three phases: detecting the fault, reporting the failure,
and activating the backup.

In our model, we assume that when a link fails, its end nodes
can detect the failure, and that when a node fails, all its neighbors
can detect the failure. For failure detection techniques and their

1We are making a qualitative observation here based on the fact that most
end-to-end path lengths in the Internet are less than 30.

evaluation, refer to [7]. We do not discuss them further here. The
nodes that detected the fault report it to the start and end nodes
of the corresponding backup segment, which then activate the
backup to recover from the failure. We now introduce a new
type of message, called thefailure-recovery message, to report
failures and to activate the backup.

Failure-Recovery Messages:The routers that detect the
failure send aPathFailed message toward the source router
and destination routers along the primary path. ThePathFailed
message contains the router(s) where the failure occurred (if a
link fails, both its neighboring routers are reported). This mes-
sage propagates, tearing down the resourcers reserved along the
primary path, until it reaches the routers at the start and the end
of the primary segment containing the faulty component. These
nodes start the activation of the backup segment by sending an
BackupActivatemessage along the backup segment. Both the
end nodes of a backup segment are involved for faster failure
recovery. We illustrate this failure-recovery process in Fig. 7.

Analysis of the Recovery Protocol:An important metric to
analyze the recovery protocol is failure-recovery delay, which
is the time taken to re-establish the service. This delay also de-
termines the number of lost messages and it is critical for many
real-time applications to minimize it. We compare the recovery
delay in our scheme with that in the end-to-end backup scheme.

In the end-to-end backup scheme, the failure reports, i.e., the
PathFailedmessages have to reach the source and destination
before the backup activation begins, while in our scheme the
backup activation starts as soon as the messages reach the end
nodes of the primary segment containing the fault. Similarly,
before the service is re-established, theBackupActivatemes-
sage needs to traverse the length of the end-to-end backup in
the former scheme and the length of a backup segment in the
latter (see Fig. 7). Thus, failures are handled more locally and
quickly in our scheme. To state it quantitatively, the failure-
recovery delay is proportional to the lengths of primary and
backup paths. If there aresegments in the backup, it results
in improvement. This could be a substantial improvement
for real-time applications over many hops, which cannot tolerate
long durations of service disruption. Though our routing algo-
rithm Min_SegBakdoes not share minimizing recovery delay as
one of its design goals, we believe that it is possible to design
heuristics that provide better failure-recovery time guarantees at
the cost of greater resource utilization.

B. Applications in the Current Internet

In today’s Internet, our primary-segmented backup scheme
can be implemented both at the network level in the routers and
at the application level among a set of end hosts forming an
application level overlay.

GUMMADI et al.: EFFICIENT PRIMARY-SEGMENTED BACKUP SCHEME FOR DEPENDABLE REAL-TIME COMMUNICATION 89

1) At the network level: It can be run within a single au-
tonomous system (AS) by Internet backbone providers
like UUNET [25] or Internet service providers to guar-
antee QoS to their customers. It is well known that In-
ternet backbone providers attempt to design their physical
networks to ensure that there are disjoint paths between
any two routers. Also, by confining the scheme to within
a single AS, one can ignore any sort of scalability con-
cerns.

2) At the application level: It can be run at the applica-
tion level among a set of routers forming a logical net-
work (overlay) over existing physical inter-network such
as in resilient overlay networks (RON) [1], detour [23],
or reliable backbone (RBONE) [4]. Recent studies on In-
ternet routing stability by Labovitzet al.[13] have shown
that in the current inter-domain routing protocol, Border
Gateway Protocol (BGP) [22], failure-recovery mecha-
nisms take on the order of tens of minutes to stabilize the
routing tables. This has resulted in a growing research in-
terest in providing QoS guarantees at the application layer
over an overlay network. For example, in RON, a set of
end hosts in the Internet run a custom routing protocol
(which can provide QoS guarantees) between themselves.
Our scheme can be applied in such scenarios for achieving
more efficient QoS guarantees. Employing our scheme at
the overlay level frees us from the deployability concerns
with resource reservation schemes such as RSVP in the
current Internet.

VI. PERFORMANCEEVALUATION

We evaluated the performance of our scheme by carrying out
simulation studies on regular network topologies such as meshes
of size 5 5, 7 7, 9 9, and 12 12, as well as real-world
network topologies like the USANET. These experiments are
similar to those used in [6] and [8] to evaluate the performance
of end-to-end backups. The network simulator was written in
C++ and run on a PC with a Pentium-II 400-MHz processor. We
also implemented the end-to-end backup scheme as described in
[6] and [8] to compare its performance with that of our scheme
in terms of the amount of spare resources reserved and the av-
erage call acceptance rate (ACAR) (this represents the fraction
of requested calls that are accepted when averaged over a long
duration of time) at various network loads.

In all our network topologies, neighbor nodes are connected
by two simplex links, one in each direction, and all links have
identical bandwidth and delays. The bandwidth of each link is
chosen as 40 units, while the delay is set to one unit. Thus, the
delay along any path is proportional to its length. The experi-
ments consist of establishing a large number of dependable con-
nections between pairs of nodes. For every connection, we route
the primary and backup channels as follows.

1) Primary channels are routed from source to destination
using Dijkstra’s shortest-path algorithm over links having
sufficient bandwidth as required by the connection. In the
case of multiple shortest paths, the primary is routed over
any one of the paths without any explicit preference given
to paths closest to the boundary of network topology, as

was done in [6]. The routing in [6] was designed specif-
ically to exploit the mesh network topology to find two
disjoint paths and cannot be used for topologies such as
the USANET.

2) We route the end-to-end and segmented backup paths as
follows.

a) For the end-to-end backup, all components of the
primary path (i.e., all the links and the intermediate
nodes) are removed and a shortest path search al-
gorithm is used to route over links having sufficient
bandwidth as required by the connection.

b) For the segmented backup, theMin_SegBakalgo-
rithm is used to route the backup segments over
links having sufficient bandwidth as required by the
connection.

When both the primary and the backup are routed success-
fully, resources are reserved along them using deterministic
backup multiplexing under single-link failure model (as de-
scribed in the spare resource aggregation algorithm given in
Section III).

When any component of a primary segment fails, its corre-
sponding backup segment is activated and the primary path is
minimally rerouted only around the failed primary segment. In
Fig. 1, we show the path after recovering from failure of link 4.
If the faulty component belongs to two successive primary
segments, any one of the two backup segments corresponding
to those segments is activated. Note thatevery end-to-end
backup is a special case of a segmented backup with one
backup segment. Below, we use simple illustrations over a
5 6 mesh topology to capture the intuitive advantages of
segmented backups that motivated our work. We chose the
mesh topology primarily for simplicity in presentation and the
scenarios discussed here can be shown to occur over more
realistic topologies such as the USANET (see Fig. 10). The
experiments are run for a large number of time units. One
connection is requested every time unit between a pair of nodes
chosen randomly from the set of all possible pairs of nodes.
The bandwidth requirement of all requested connections is set
to one unit. Further, every established connection is torn down
after a fixed number of time units calledCall Duration. The
network is allowed to reach a stable state before any results
are noted. When the network is at a stable state, the number
of active connections is proportional toCall Duration. Thus,
by varying the bandwidth of the links and theCall Duration,
we can subject the network to varying levels of load. The
graphs shown in this section are plotted for loads (measured as
percentage of total network bandwidth resource on all the links
reserved for both primary and backups taken together) varying
from 5% to 70%.

We use a metric calledaverage hopcountin all our plots to
compare the amounts of resources reserved for various paths.
The average hop count of primary paths is computed asthe sum
of the lengths of all the primary paths in the network divided by
the total number of active connections. Average hop counts for
end-to-end backups and segmented backups are calculated sim-
ilarly with the exception that whenever two backups requiring
one unit of bandwidth each are multiplexed on a link, only one
unit is added to the sum total. It is important to note that in

90 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 1, FEBRUARY 2003

Fig. 8. Comparing the amount of spare resources reserved by segmented backup and end-to-end backup schemes over mesh topologies of various sizes. (a)5� 5
mesh. (b) 7� 7 mesh. (c) 9� 9 mesh. (d) 12� 12 mesh.

Fig. 9. Comparing the ACAR for segmented backup and end-to-end backup schemes over mesh topologies of various sizes. (a) 5� 5 mesh. (b) 7� 7 mesh.
(c) 9� 9 mesh. (d) 12� 12 mesh.

our experiments, the average hop counts of primary and backup
paths are directly proportional to the amount of resources re-
served for the paths as every connection has the same one unit
of bandwidth requirement. For example, suppose that at 40%
network load, the average hop counts of primary and segmented
backup are 12 and 6, respectively. This implies that while 40%
of the total network resources are reserved, two-thirds (

) of the reserved resources are allocated for primary paths (i.e.,
27% of the total network resources) while one-third ()
of the reserved resources are allocated for backup paths (i.e.,
13% of the total network resources).

We expect the advantages of using our scheme over
end-to-end backup schemes to increase as the length of the
primary increases. This is because longer primary paths have
more backup segments and all of the advantages that go with
them. To capture this effect in our study, we introduced a pa-
rameter calledMin_Path_Lenand requested only connections
between nodes that have the length of the shortest path between
them greater thanMin_Path_Len. We choseMin_Path_Lende-
pending on the size and diameter of the network topology. For

square meshes of sizes 5, 7, 9, and 12, we choseMin_Path_Len
to be 3, 4, 6, and 8, respectively, while for USANET we chose it
to be 0. These values are reasonable as a significant percentage
(USANET—100%, 5 5 mesh—66%, 12 12–52%) of
node pairs in these network topologies have the length of the
shortest path between them greater than the chosen value of
Min_Path_Len.

In Fig. 8, we compare the resource reservation requirements
of our scheme with that of the end-to-end backup scheme for
meshes of varying sizes. Similarly, we compare the ACAR of
the two schemes in Fig. 9. Finally, in Fig. 11, we compare the
performance of the schemes over USANET. We now go into a
detailed analysis of the results in each of these figures.

Comparing the Amount of Spare Resources Reserved:The
graphs in Fig. 8(a)–(d) show the average hop counts of primary
path, end-to-end backup and segmented backup at various net-
work loads for meshes of sizes 55, 7 7, 9 9, and 12 12,
respectively. Note that for the average hop count of primary
paths, we plot a single curve rather than separate curves for the
two schemes. In our simulations, we found that the hop counts

GUMMADI et al.: EFFICIENT PRIMARY-SEGMENTED BACKUP SCHEME FOR DEPENDABLE REAL-TIME COMMUNICATION 91

TABLE I
AVERAGE NUMBER OFBACKUP SEGMENTS FORVARYING MESHSIZES

of primary paths for the schemes differ by as little as 4%. This
prompted us to plot only a single curve as it facilitates compar-
ison of the relative performances of the schemes. The following
characteristics can be easily spotted.

1) The spare resources required by either scheme are con-
siderably less than the resources required for the primary
path.

2) As the network load increases, the average hop count for
primary path varies very little, while it decreases steadily
for backups.

3) Our scheme always requires a lesser amount of spare re-
sources than the end-to-end scheme. This difference in
resources reserved is quite significant at low and interme-
diate loads (30%–45%) but decreases toward high loads.

4) As we go to larger networks, from 55 to 12 12:

a) The average hop count of the primary path increases
considerably and the number of backup segments
per segmented backup increases as shown in Table I

b) The hop count difference between end-to-end
backup and segmented backup increases.

We now attempt to explain the observed characteristics.
Observation 1 is a direct consequence of backup multiplexing,
which allows backups to share reserved resources. As the
network load increases, more backup paths are active simul-
taneously, which improves the chances for multiplexing. This
increased multiplexing explains the decrease in the average
hop count (proportional to resources reserved) for backups as
noted in observation 2. Also, increasing the network load alters
the number of primary paths that are active simultaneously
but not their length, so their average hop count hardly varies.
As we argued in Section III, backup segments are shorter
than end-to-end backup segments, which improves the chance
of multiplexing in the former over the latter. This explains
observation 3, where we notice increased savings in resources
reserved for our scheme. However, it is not possible to share
more and more resources by the way of multiplexing indefi-
nitely and these additional savings decrease at high loads, when
the network reaches saturation (The graphs showing ACAR in
Fig. 9 indicate that the networks saturate at 70%–75% load).

Observation 4(a) is expected as larger networks allow longer
connections to be established. With increasing primary path
lengths, it is natural to expect an increase in the number of
backup segments. This is shown in Table I, where there is a
steady increase in the average number of backup segments for
increasing mesh sizes at moderate network loads (40%–50%).2

We can explain our observation 4(b) as follows. As the average
number of backup segments increases, the backup segments
tend to be increasingly shorter compared to their end-to-end
counterparts. This improves the chance of multiplexing in seg-
mented backups over end-to-end backups, resulting in greater

2The average number of backup segments is less than two in all meshes due
to our choices of network topology and load for the simulations.

difference in hop counts and more savings in spare resources
reserved. This difference in resources reserved improves from
15% in 5 5 mesh to 25% in 12 12 mesh.

Comparing the ACAR:The graphs in Fig. 9(a), (b), (c),
and (d) show the ACAR curves for end-to-end backup and
segmented backup schemes at various network loads for
meshes of sizes 5 5, 7 7, 9 9, and 12 12, respectively.
The following characteristics can be observed.

1) The ACAR curves are stable and high for small network
loads and then drop suddenly and steeply.

2) The difference in the curves for 1212 mesh is negli-
gible, while the difference is noticeable (ours gives better
ACAR) for smaller networks especially 55 mesh; this
trend is exactly opposite to what was observed in spare
resource reservation.

3) While our scheme gives ACAR until the network
load increases to 50%-55%, the end-to-end scheme never
gives ACAR even when the network load is as
low as 5%.

4) Our scheme reaches saturation at slightly higher network
loads.

The high ACAR values noted in observation 1 for both
the schemes until the network is heavily loaded are expected,
as any mesh topology has a large number of alternate routes
between any two nodes. Almost all calls are accepted until
the network reaches saturation. This also accounts for the
negligible difference between the ACAR curves for segmented
and end-to-end backups in a 1212 mesh. Both schemes score
very high ACAR until they reach saturation at about 70% load.
However, the ACAR improvement in smaller networks comes
because of the scenario illustrated in Fig. 2(a) and generalized
in Theorem 1. There exist node pairs such that end-to-end
backups do not exist for a chosen primary path between them
but segmented backups do exist. The probability of encoun-
tering such a scenario decreases rapidly with the increase in
the size of the network. This explains our observations 2 and
3. Finally, a probable explanation for observation 4 is that our
scheme accepts more calls by reserving less resources, thereby
saturating at a higher load than the end-to-end scheme.

Comparing the Performance of Segmented Backup and
End-to-End Backup Schemes Over USANET:In Fig. 11(a) and
(b), we plot the relative performance of segmented backup and
end-to-end backup schemes over the USANET topology shown
in Fig. 10, using average hop count and ACAR as metrics. We
note the following.

1) The average hop count of the primary path of connections
established is very low (3–3.5).

2) The curves for spare resource reservation between the two
schemes are almost inseparable.

3) There is significant and uniform improvement in the call
acceptance rate. Even at very low loads, the ACAR for
end-to-end backup scheme never goes above 0.945.

Observation 1 is explained by the fact that the network is
small, with just 28 nodes, and thatMin_Path_Lenwas set to
0. With the small average primary path length (4), a vast
majority of the calls will have backups with only one segment
(same as end-to-end backup). Thus, the resource resevation by

92 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 1, FEBRUARY 2003

Fig. 10. The 28-node topology of the USANET.

Fig. 11. Comparing the performance of segmented backup and end-to-end
backup schemes over USANET topology.

both schemes is similar as pointed in observation 2. Finally, as
observation 3 points out, about 6% of the requested calls are
rejected because of lack of an end-to-end backup in scenarios
where a segmented backup can be found.

To summarize, our simulations demonstrate that our scheme
is capable of delivering better resource efficiency as well as
better call acceptance rate compared with existing end-to-end
backup schemes. However, the benefits of our scheme vary with
the network topology and load. Our scheme performs signifi-
cantly better for larger networks with low connectivity (more
nodes and less edges) at low and moderate loads.

VII. CONCLUSION

In this paper, we have proposed segmented backups: a failure-
recovery scheme for dependable real-time communication in
multihop networks. This mechanism not only improves resource
utilization and call acceptance rate but also can provide faster
failure recovery and better QoS guarantees on end-to-end delays
without compromising the level of fault tolerance provided. We

have also given an efficient backup route selection algorithm.
We evaluated the proposed scheme through extensive simula-
tions and demonstrated the superior performance of our method
compared to earlier schemes.

In order to realize the full potential of the method of
segmented backups, routing strategies must be developed for
backup segments to achieve better QoS guarantees on delay
and bounded time failure recovery.

APPENDIX I
PROOF OFTHEOREM 1

Theorem 1

Whenever two disjoint paths exist between a source and a
destination in a network, segmented backups are guaranteed to
exist for any choice of primary path between the end nodes.
However, there are no such guarantees for end-to-end backups.

Proof: In Fig. 2(a), we demonstrated a network topology
where disjoint paths exist between a pair of end nodes but
end-to-end backups do not exist for a chosen primary path.
Here, we prove that segmented backups exist whenever disjoint
paths exist. We start with a simple observation. We refer to
the backup segment spanning a primary segment that contains
an intermediate node as a backup segment covering.
For example, in Fig. 1, the three backup segments over links
A–C, D–G, andH–K cover the nodes – , – , and

– , respectively. Observe that a segmented backup for
a primary path can be constructed by taking the set of all
backup segments covering each of the intermediate nodes
in , as in Fig. 1. Below, we prove our claim of existence
of a segmented backup by showing the existence of backup
segments that cover every intermediate node.

In our graph , let the two disjoint paths between
source and destination be denoted by and , respec-
tively. Let be any chosen primary path between them and let

denote its length. Two cases arise:

Case 1) (i.e., has only one edge). This
is the special case with no intermediate nodes. One
of or is a segmented backup for, as edge
cannot be in both and .

Case 2) (i.e., has at least 1 intermediate
node). Let denote any intermediate node on.
We need to show the existence of a backup segment
that covers . Since and are disjoint, at least
one of them does not contain . Without loss of
generality let us assume that does not lie on .
We claim that since 1) and have the same end
points and , and 2) and , a seg-
ment (a contiguous subpath) of acts as a backup
segment covering . We prove it using recursion.

Base Case for Recursion: and are disjoint. Clearly,
is a suitable backup segment covering the primary segment

containing .
Recursive Step:We apply it when and are not dis-

joint. We show the existence of sub pathsand for paths
and (i.e., and) such
that 1) and have the same end points and 2) and

.

GUMMADI et al.: EFFICIENT PRIMARY-SEGMENTED BACKUP SCHEME FOR DEPENDABLE REAL-TIME COMMUNICATION 93

Let , and ,
, denote the nodes along the paths with

and representing theth and th vertices along the paths
and respectively. is the th intermediate node on the path

. As and are not disjoint, they must have some common
node such that for some , . As node

either or . In either case, we define and
as follows: If ,

and . If then, ,
and , .

Clearly, 1) paths and have same end points and 2)
and . Further, and

.
If and are disjoint the base case assures us of the exis-

tence of a backup segment covering. If not, this step is applied
recursively. Since the paths are of finite lengths and decrease in
each iteration, this process always terminates in the base case.
Thus, every node along the primary path is guaranteed a backup
segment that covers it and a segmented backup can be generated
by taking all the backup segments together.

APPENDIX II
PROOF OFTHEOREM 2

First, we state and prove two lemmas. We use them later to
prove the theorem.

Lemma 1

The weight (cost) of the segmented backup, i.e., the sum of
weights of all backup segments generated, is equal to the weight
of the shortest pathB found in step 2 of the algorithm.

Proof: Every directed edge in which does not point to a
vertex in is included in one of the backup segments
by steps 3b and 3c. We replaced every edge which starts from a
vertex not in but points to a vertex in with an edge of
equal weight in step 3d(i). This leaves us with the case of edges
between vertices along primary path. Edges from a vertex in

to its successor vertex are included in backup segments by
step 3d(ii), while edges from a vertex in to its predecessor
vertices are excluded. However, these excluded edges are of zero
weight and do not contribute to the weight of the path. Finally,
there are no extra edges added to the backup segments. This is
illustrated in Fig. 5(b) and (c), where both the shortest path
and segmented backup weigh six units. Thus, we conclude that
the weight of the segmented backup generated is equal to the
weight of pathB.

Lemma 2

Every segmented backup for primary pathbetween and
in can be mapped to a path between the same nodes in

that is of equal weight.
Proof: For any chosen segmented backup forin , we

show the existence of a path in between the same end nodes
that is of equal weight. Suppose the chosen backup consists of

backup segments . Denote the cor-
responding primary segments as . Let

, and denote the first, last, and penultimate
nodes of the th primary segment, respectively. Similarly, let

, and denote the first, last, and the penul-
timate nodes of theth backup segment, respectively. Clearly,

, . Also, note that the first and
the penultimate nodes of a segment with only a single link are
the same.

To show the existence of a path from to
in that is of equal weight, we claim that: 1) there ex-

ists a path from to that is of same weight as
; 2) there exists a path from to that is of

same weight as ; and 3) there exists a path from to
that is of zero weight .

All edges of the backup segments that do not point to any
vertex in are left unchanged while modifying into

by step 1 of the algorithm. Thus only the last edge in is
changed and no edge is changed in . For each
this last edge from to is redirected to
point to . Thus, in the modified graph the edges in

form a path from to and the edges in
form a path from to . This proves our claims 1

and 2 above. As successive primary segments overlap over at
least one edge of the primary path, either
or . From step 1a of the algorithm, we
know that there is zero weight path from any node on primary
path to its predecessors. This proves our claim 3 above.

By taking the edges of the paths in claims, and above,
we obtain a single path from to in
that is of same weight as the segmented backup.

We now use the Lemmas 1 and 2 to prove Theorem 2.

Theorem 2

The segmented backup generated by theMin_SegBakalgo-
rithm is a minimum cost segmented backup for any chosen pri-
mary path.

Proof: To prove the theorem we need to show that: 1) the
backup generated is a valid segmented backup; and 2) it is a
minimum-cost segmented backup. While we avoid formal ar-
guments for 1) here, one can easily prove it by establishing the
converse of Lemma 2, namely, every path betweenand in

can be mapped to a valid segmented backup inby fol-
lowing step 3 of the algorithm. Instead, we assume 1) holds and
prove 2). It follows from Lemma 2 that the weight of the shortest
path in between and is at most the weight of the min-
imum-cost segmented backup. However, Lemma 1 states that
the weight of the segmented backup generated by our algorithm
equals the weight of the shortest path betweenand in .
Thus, we conclude that the weight of the segmented backup gen-
erated byMin_SegBakis at most the weight of minimum-cost
segmented backup.

REFERENCES

[1] D. G. Andersonet al., “Resilient overlay networks,” inProc. 18th ACM
Symp. Operating System Principles, Banff, Canada, Oct. 2001, pp.
131–145.

[2] J. Anderson, B. Doshi, S. Dravida, and P. Harshavardhana, “Fast restora-
tion of ATM networks,” IEEE J. Select. Areas Commun., vol. 12, pp.
128–139, Jan. 1994.

[3] A. Banerjea, “Simulation study of the capacity effects of dispersity
routing for fault-tolerant real-time channels,” inProc. ACM SIGCOMM,
Aug. 1996, pp. 194–205.

94 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 1, FEBRUARY 2003

[4] C. Dovrolis and P. Ramanathan, “Resource aggregation for fault-tol-
erance in integrated services networks,” inProc. ACM SIGCOMM
Comput. Commun. Rev., Apr. 1998, pp. 39–53.

[5] W. Grover, “The self-healing network: A fast distributed restoration
technique for networks using digital crossconnect machines,” inProc.
IEEE GLOBECOM, 1987, pp. 1090–1095.

[6] S. Han and K. G. Shin, “Efficient spare-resource allocation for fast
restoration of real-time channels from network component failures,” in
Proc. IEEE Real-Time Systems Symp., 1997, pp. 99–108.

[7] , “Experimental evaluation of failure detection schemes in real-time
communication networks,” inIEEE Fault-Tolerant Computing Symp.
Dig. Papers, 1997, pp. 122–131.

[8] , “A primary-backup channel approach to dependable real-time
communication in multihop networks,”IEEE Trans. Comput., vol. 47,
pp. 46–61, Jan. 1998.

[9] K. Ishida, Y. Kakuda, T. Kikuno, and K. Amano, “A distributed routing
protocol for finding two node-disjoint paths in computer networks,”
IEICE Trans. Commun., vol. E82-B, no. 6, pp. 851–858, June 1999.

[10] B. Kao, H. Garcia-Molina, and D. Barbara, “Aggressive transmissions
of short messages over redundant paths,”IEEE Trans. Parallel Distrib.
Syst., vol. 5, pp. 102–109, Jan. 1994.

[11] R. Kawamura, K. Sato, and I. Tokizawa, “Self-healing ATM networks
based on virtual path concept,”IEEE J. Select. Areas Commun., vol. 12,
pp. 120–127, Jan. 1994.

[12] G. P. Krishna, M. J. Pradeep, and C. S. R. Murthy, “A segmented backup
scheme for dependable real-time communication in multihop networks,”
in Proc. 8th IEEE Workshop Parallel and Distributed Real-Time Sys-
tems, May 2000, pp. 678–684.

[13] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian, “Delayed internet
routing convergence,” inProc. ACM SIGCOMM, Aug. 2000, pp.
175–187.

[14] G. Manimaran, H. S. Rahul, and C. S. R. Murthy, “A new distributed
route selection approach for channel establishment in real-time net-
works,” IEEE/ACM Trans. Networking, vol. 7, pp. 698–709, Oct. 1999.

[15] A. Mankin et al., “Resource reservation protocol (RSVP),” IETF, RFC
2208, 1997.

[16] J. Moy, “OSPF protocol analysis,” IETF, RFC 1245, 1991.
[17] , “OSPF Version 2,” IETF, RFC 2328, 1998.
[18] C. Parris and D. Ferrari, “A dynamic connection management scheme

for guaranteed performance services in packet-switching integrated
services networks,” Univ. California, Berkeley, Tech. Rep. TR-93-005,
1993.

[19] M. J. Pradeep and C. S. R. Murthy, “Providing differentiated reliable
connections for real time communicaion in multihop networks,” in
Proc. Int. Conf. High Performance Computing (HiPC), Dec. 2000, pp.
459–468.

[20] P. Ramanathan and K. G. Shin, “Delivery of time-critical messages using
a multiple copy approach,”ACM Trans. Comput. Syst., vol. 10, no. 2, pp.
144–166, May 1992.

[21] G. Ranjith, G. P. Krishna, and C. S. R. Murthy, “A distributed primary-
segmented backup scheme for dependable real-time communication in
multihop networks,” inProc. IEEE Int. Parallel and Distributed Pro-
cessing Symp., Apr. 2002, pp. 139–146.

[22] Y. Rekhter and T. Li, “A Border Gateway Protocol 4 (BGP-4),” IETF,
RFC 1771, 1995.

[23] S. Savageet al., “Detour: A case for informed internet routing and trans-
port,” IEEE Micro, vol. 19, pp. 50–59, Jan. 1999.

[24] R. Sriram, G. Manimaran, and C. S. R. Murthy, “A rearrangeable algo-
rithm for the construction of delay-constrained dynamic multicast trees,”
IEEE/ACM Trans. Networking, vol. 7, pp. 514–529, Aug. 1999.

[25] (2001) Network Maps. UUNET Technologies. [Online]. Available:
http://www.uunet.com/network/maps

[26] R. Vogelet al., “QoS-based routing of multimedia streams in computer
networks,” IEEE J. Select. Areas Commun., vol. 14, pp. 1235–1244,
Sept. 1996.

[27] Z. Whang and J. Crowcroft, “Quality-of-service routing for supporting
multimedia applications,”IEEE J. Select. Areas Commun., vol. 14, pp.
1228–1234, Sept. 1996.

[28] Q. Zheng and K. G. Shin, “Fault-tolerant real-time communication in
distributed computing systems,” inIEEE Fault-Tolerant Computing
Symp. Dig. Papers, 1992, pp. 86–93.

Krishna Phani Gummadi received the B.Tech.
degree in computer science and engineering from
the Indian Institute of Technology, Madras, India,
in 2000. He is currently working toward the Ph.D.
degree in computer science and engineering at the
University of Washington, Seattle.

His research interests include Internet mea-
surement studies, design and analysis of scalable
systems, distributed systems, and real-time systems.

Mr. Gummadi is a student member of the Associa-
tion for Computing Machinery. He is a corecipient of

the Best Paper Award from the Multimedia Computing and Networking Con-
ference, San Jose, CA, in 2002.

Madhavarapu Jnana Pradeepreceived the B.Tech.
degree in computer science and engineering from
the Indian Institute of Technology, Madras, India,
in 2000 and the M.S. degree in computer science
and engineering from the University of Illinois,
Urbana-Champaign, in 2002.

He is currently a Software Design Engineer with
the Distributed Storage and File Systems Group, Mi-
crosoft Corporation, Redmond, WA. His research in-
terests include operating systems, real-time systems,
ubiquitous computing, and software engineering.

C. Siva Ram Murthy (M’97–SM’02) received the
B.Tech. degree in electronics and communications
engineering from Regional Engineering College,
Warangal, India, in 1982, the M.Tech. degree in
computer engineering from the Indian Institute of
Technology (IIT), Kharagpur, India, in 1984, and the
Ph.D. degree in computer science from the Indian
Institute of Science, Bangalore, India, in 1988.

He joined the Department of Computer Science
and Engineering, IIT, Madras, as a Lecturer in
September 1988, and became an Assistant Professor

in August 1989 and an Associate Professor in May 1995. He has been a
Professor with the same department since September 2000. He has held visiting
positions at the German National Research Center for Information Technology
(GMD), Sankt Augustin, Germany, the University of Washington, Seattle, the
University of Stuttgart, Germany, and the EPFL, Switzerland. He has published
over 150 research papers in international journals and conferences. He is a
coauthor of the textbooksParallel Computers: Architecture and Programming
(New Delhi, India: Prentice-Hall of India, 2000),New Parallel Algorithms
for Direct Solution of Linear Equations(New York: Wiley, 2001),Resource
Management in Real-Time Systems and Networks(Cambridge, MA: MIT
Press, 2001), andWDM Optical Networks: Concepts, Design and Algorithms
(Upper Saddle RIver, NJ: Prentice-Hall, 2002). His research interests include
parallel and distributed computing, real-time systems, lightwave networks, and
wireless networks.

Dr. Murthy is a recipient of the Best Ph.D. Thesis Award and the Indian Na-
tional Science Academy Medal for Young Scientists. He is a corecipient of Best
Paper Awards from the 5th IEEE International Workshop on Parallel and Dis-
tributed Real-Time Systems, Geneva, Switzerland, in 1997 and the 6th Interna-
tional Conference on High Performance Computing, Calcutta, India, in 1999.
He is a Fellow of the Indian National Academy of Engineering.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

