
Canon in G Major: Designing DHTs with Hierarchical Structure

Prasanna Ganesan
Stanford University

prasannag@cs.stanford.edu

Krishna Gummadi
University of Washington

gummadi@cs.washington.edu

Hector Garcia-Molina
Stanford University

hector@cs.stanford.edu

Abstract

Distributed Hash Tables have been proposed as flat, non-
hierarchical structures, in contrast to most scalable dis-
tributed systems of the past. We show how to construct hi-
erarchical DHTs while retaining the homogeneity of load
and functionality offered by flat designs. Our generic con-
struction, Canon, offers the same routing state v/s routing
hops trade-off provided by standard DHT designs. The
advantages of Canon include (but are not limited to) (a)
fault isolation, (b) efficient caching and effective band-
width usage for multicast, (c) adaptation to the underlying
physical network, (d) hierarchical storage of content, and
(e) hierarchical access control. Canon can be applied to
many different proposed DHTs to construct their Canoni-
cal versions. We show how four different DHTs—Chord,
Symphony, CAN and Kademlia—can be converted into
their Canonical versions that we call Crescendo, Ca-
cophony, Can-Can and Kandy respectively.

1 Introduction

A Distributed Hash Table (DHT) is simply a hash table
that is partitioned among a dynamic set of participating
nodes. There is no central directory describing which
node manages which partition. Instead, nodes are ar-
ranged in anoverlay network, so that queries for any key
can efficiently beroutedto the appropriate node.

DHTs have been proposed as a substrate for large-
scale distributed applications. The traditional approach
to building scalable distributed applications has almost
always revolved around exploiting a hierarchical struc-
ture. Applications ranging from overlay multicast and
distributed file systems to the current internet architecture
and the DNS system, all achieve scalability via hierarchi-
cal design. In stark contrast, all DHT solutions we know
of have been flat and non-hierarchical, which has both ad-
vantages and disadvantages. In this paper, we argue that
one can obtain the best of both worlds, without inherit-
ing the disadvantages of either, by designing hierarchi-
cally structured DHTs using a paradigm we callCanon.

Why flat design?The primary advantage of flat DHT
design is that there is a uniform distribution of function-

DB DS AI

CS

Stanford

EE

Figure 1: A portion of a hierarchy of nodes

ality and load among the participating nodes which also
ensures that there is no single point of failure.

Why hierarchical design?Herbert Simon, inThe Archi-
tecture of Complexity[1], argues that hierarchy emerges
inevitably in any complex system. Butler Lampson, when
describing the design of a global name system [2] ob-
serves: “Hierarchy is a fundamental method for accom-
modating growth and isolating faults”. In our DHT
context, hierarchical design offers the following advan-
tages: fault isolation and security, effective caching and
bandwidth utilization, adaptation to the underlying physi-
cal network, hierarchical storage, and hierarchical access
control.

Our proposed design, Canon, inherits the homogene-
ity of load and functionality offered by flat design, while
providing all the above advantages of hierarchical design.
The key idea behind Canon lies in its recursive routing
structure. Figure 1 depicts an example fragment of the
hierarchy of machines at Stanford University. The rect-
angular boxes stand for participant nodes in the DHT. We
refer to the internal nodes in the hierarchy asdomains, to
distinguish them from the actual system nodes. When we
refer to the “nodes in domainD”, we refer to all the sys-
tem nodes in the subtree rooted atD. The design of Canon
ensures that the nodes in any domain form a DHT routing
structure by themselves. Thus, for example, the nodes in
the “DB” domain would form a DHT structure by them-
selves, as will the set of all nodes in the CS domain, and
the entire set of nodes at Stanford.

The DHT corresponding to any domain is synthesized
by merging its children DHTs by the addition of some
links. Thus, the DHT for CS is constructed by starting
with the individual DHTs for domains DB, DS and AI,
and adding links carefully from each node in one domain

1

to some set of nodes in the other domains. The challenge
we face is to perform this merging in such a fashion that
thetotalnumber of links per node remains the same as in a
flat DHT design, and that global routing between any two
nodes can still be achieved as efficiently as in flat designs.

The Canon principle can be applied to transform many
different DHT designs into their Canonical versions.
Much of this paper will focus on Crescendo, the Canon-
ical version of the popular Chord [3] DHT. However, we
will also describe how to adapt other DHTs, including
nondeterministic Chord [4, 5], Symphony [6], CAN [7]
and Kademlia [8], a variant of Pastry [9].

The rest of this paper is organized as follows. In Sec-
tion 2, we discuss the design of the basic routing frame-
work for Canon, explaining how it is used to construct
Crescendo, and show how it provides fault isolation. In
Section 3, we explain how to construct Canonical versions
of other DHTs, and offer enhancements to provide sup-
port for physical-network proximity in all our construc-
tions. In Section 4, we discuss the usage of the hierar-
chy in content storage and retrieval, access control, and
caching policies. In Section 5, we validate our design and
quantify its advantages by means of experiments. Sec-
tion 6 discusses related work.

2 Crescendo: A Canonical version
of Chord

In this section, we discuss a hierarchical version of Chord
that we callCrescendo1. We first describe the “static”
structure of Crescendo, discuss how routing occurs in this
structure, and then explain how this structure is main-
tained dynamically.

2.1 The Routing Structure of Crescendo

Chord: Chord [3] is a distributed hash table storing key-
value pairs. Keys are hashed into a circular N-bit identifier
space[0; 2N). (Identifiers on the circle are imagined as
being arranged in increasing order clockwise.) Each node
is assigned a uniqueID drawn uniformly at random from
this space, and thedistancefrom a nodem to a nodem0 is
the clockwise distance on the circle fromm’s ID to m0’s.
Each nodem maintains a link to the closest nodem0 that
is at least distance2i away, for each0 � i < N . We
will refer to the set of nodes forming a Chord network as
a Chord ring.

Crescendo, our hierarchical DHT, requires all the nodes
in the system to form aconceptual hierarchyreflecting
their real-world organization, such as the one in Figure 1.
We note that no global information about the structure

1A sequence of ever-rising Chords

0

10

5

12

0

10

5

12

3

8

13

3

8

13

Ring BRing A The Merged Ring

2 2

Figure 2: Merging two Chord rings

of the hierarchy is necessary; it suffices for each node to
know its own position in the hierarchy, and for two nodes
to be able to compute their lowest common ancestor. (One
possible practical implementation is to assign each node a
hierarchical name as in the DNS system.) The hierarchy
may also evolve dynamically with the introduction of new
domains.

Each node in Crescendo is assigned a unique ID from
the circular N-bit space, just as in Chord. However, the
link structure in Crescendo is recursive in nature. Each
set of nodes in a leaf domain2(e.g., DB in Figure 1) forms
a Chord ring just as in Chord. At each internal domain, the
Crescendo ring, containing all nodes in that domain, is ob-
tained bymergingall the “children” Crescendo rings into
a single, larger Crescendo ring. Applying this construc-
tion recursively at higher levels of the hierarchy leads to
merging larger and larger rings to eventually produce the
global DHT containing all the nodes in the system.

We first use an example to show howtwo separate
Chord rings are merged into one Crescendo ring. Say
there are two Chord ringsA andB, each with four nodes
as shown in Figure 2. All nodes choose a globally unique
random integer ID in[0; 16). We will focus on the edges
created by two nodes: node0 in ring A and node8 in
ring B. Recall that node0 establishes its links in ringA
by finding, for each0 � k < 4, the closest node that is
at least distance2k away. Consequently, it creates links
to nodes5 (corresponding to distances1; 2 and4) and10
(distance8). Similarly, in ringB, node8 forms links to
nodes13 and2.

When the two rings are merged, nodes retain all their
original links. In addition, each nodem in one ring creates
a link to a nodem0 in the other ring if and only if:

(a) m0 is the closest node that is at least distance2k away
for some0 � k < N , and

(b) m0 is closer tom than any node inm’s ring.

Note that condition (a) is just the standard Chord rule
for creating links, applied on the union of the nodes in
the two rings. Condition (b), however, says that node
m should create only a subset of these links, specifically,

2Since our hierarchy is a “conceptual hierarchy”, nodes are assumed
to be hanging off the leafs rather than being leafs themselves.

2

only the links to nodes that are closer to it than any other
node in its own ring.

Returning to our example, let us consider the links to be
created by node0. Condition (a) suggests that node0 link
to node2 (for distances1 and2), and to node8 (for dis-
tance8Experiments suggest however that the average de-
gree of any node in Crescendo is at mostlog(n� 1) + 1,
irrespective of the number of levels in the hierarchy.).
However, condition (b) rules out node8, since it is fur-
ther away than the closest node in Ring A (node5). Thus,
node0 establishes an additional link only to node2. Note
that there is no link from node0 to node3. As another
example, consider node8 in Ring B. Condition (a) sug-
gests nodes10 (distances 1 and 2) ,12 (distance 4) and0
(distance 8) as candidates. We again use condition (b) to
rule out node 0.

Note that some nodes may not form any additional links
at all. For example, node2 has node3 in its own ring as
the closest node, due to which condition (b) is violated
for all other nodes. One may wonder whether our con-
struction leads to a skewed degree distribution among the
nodes. However, such is not the case. Our evaluation in
Section 5 will show the actual skew in degree distribution
compared to standard Chord.

The above approach for merging two rings naturally
generalizes to merging any number of rings rather than
just two. Each node once again forms links to nodesother
than those in its own ringif they satisfy conditions (a) and
(b). This algorithm for link creation is applied bottom-up
on the hierarchy, merging sibling rings to construct larger
and larger rings until all the nodes belong to the same ring.
We state the following theorems on node degrees in Chord
and Crescendo. (Note that the degree of a node refers to
its out-degree, and does not count incoming edges.)

Theorem 1. In a Chord ring ofn nodes, with nodes
choosing their ID uniformly at random, the expected de-
gree of a node is at mostlog(n� 1) + 1, for all n > 1.

Proof. Consider some nodem in the Chord ring, and let
Ii be an indicator random variable which is1 if there is at
least one node within a distanced 2 [2i; 2i+1) of m, and
zero otherwise. Observe that the degree ofm,D is simply
equal to

PN�1
k=0 Ik .

The expected value ofIk is simply the probability that
at least one of the nodes other thanm lie in an interval of
length2k on the circular ID space. The probability that
some specific node lies in this interval is2k=2N . There-
fore, by the union bound,

E(Ik) �
(n� 1)2k

2N
80 � k < N

Also, E(Ik) � 1 for all 0 � k < N . Let � = N �
dlog(n� 1)e (assumen > 2).

By linearity of expectation, the expected degree of a
node is given by

E(D) =

N�1X
k=0

E(Ik)

�

�X
k=0

(n� 1)2k

2N
+

N�1X
k=�+1

1

=
(n� 1)

2N
(2�+1 � 1) +N � �� 1 (for n > 2)

=
2(n� 1)

2dlog(n�1)e
�
n� 1

2N
+ dlog(n� 1)e � 1

< dlog(n� 1)e � 1 + 2 �
n� 1

2dlog(n�1)e

� log (n� 1) + 1

The last step may be deduced from the fact thatlog(1+
x) � x for all x 2 [0; 1]. Combined with the fact that
E(D) = 1 for n = 2, we getE(D) � log(n � 1) + 1.

The above theorem bounds the expected degree of a
node in Chord and our work appears to be the first to claim
it. The following theorem provides a somewhat weaker
bound on the expected degree for Crescendo. However,
our experiments in Section 5 show thatthe average de-
gree of a node in Crescendo is less than in Chord, and
that it decreases as the number of levels in the hierarchy
increases.

Theorem 2. In a Crescendo ring ofn nodes, with nodes
choosing their ID uniformly at random, the expected de-
gree of a node is at mostlog(n � 1) + min(l; logn) if
n > 1, wherel is the maximum number of levels in the
hierarchy.

Proof. We will first prove that the expected degree of a
node is at mostlog(n�1)+ l, by induction on the number
of levels in the hierarchy. The base case is true since a
one-level hierarchy simply corresponds to Chord, whose
nodes have expected degree less than or equal tolog(n�
1) + 1.

Assume, by the inductive hypothesis, that any
Crescendo ring withn nodes on a hierarchy withk or
fewer levels has nodes with expected degree less than
log(n� 1) + k, for all n > 0. We will now show that any
Crescendo ring withn nodes on ak+1 level hierarchy has
nodes with expected degree less thanlog(n� 1) + k +1,
for all n > 0.

LetD1; D2; ::::Db be theb different domains at the top
level of the hierarchy. Let the number of nodes inD1 be
p, and letq = n�p. Consider some nodem inD1, and let
its degree beX1 +X2, whereX1 is the number of links

3

to other nodes withinD1 andX2 is the number of links to
nodes outsideD1.

We define the following random variables:

� A: the distance from nodem to its successor in do-
mainD1.

� A1 andA2 are such thatA = A1+A2, andA1 is the
largest power of 2 less than or equal toA.

� B: the number of nodes outside domainD1 that are
within distanceA of m.

The expected value ofX2, the number of inter-domain
links created bym, when conditioned onA1, A2 andB,
can be bounded in a fashion very similar to that used in
the proof of Theorem 1. Specifically, we obtain:

E(X2jA1 = a1; A2 = a2; B = b)

=

�
0 if b = 0
1 if b = 1

� 1 + log b+

min(1; ba2=(a1 + a2))� log(1 + a2=a1)

otherwise

We can drop the conditioning onA1 andA2 to obtain a
weaker bound:E(X2jB = b) � 2 + log b, for all b > 1.
The expected value ofX2 is given by:

E(X2) � P (B = 1) +

nX
k=2

P (B = k)(2 + log k)

Let p0 = P (B = 0) andp1 = P (B = 1). Apply-
ing Jensen’s inequality, which states thatf(

P
wixi) �P

wif(xi) for all concave functionsf and with
P

wi =
1, we obtain:

E(X2) � 2� 2p0 � p1 + (1� p0) log
E(B)

1� p0

Using the facts thatp0 = (m � 1)=(m+ n� 1), p1 =
np0=(m+ n� 2), andE(B) = n=m, we obtain:

E(X2) �
n(n� 1)

m+ n� 2
�

n(n� 2)

m+ n� 1

+
n(n� 1)

(m+ n� 1)(m+ n� 2)
log

2m+ n� 2

m

Let the right-hand size of the above inequality be denoted
by f(m;n). By the inductive hypothesis, we know that
E(X1) � log(m � 1) + k. Therefore, the expected total
number of links for any node in ringD1 is bounded by
L(m;n) = log(m� q)+ k+ f(m;n), which we claim is
less than or equal tolog(m+n�1)+k+1, whenm > 1.

To prove the above claim, observe that it is clearly true
whenm > n, sincef(m;n) would be exactly equal to

n=m in this case, andlog(m � 1) + n=m < log(m +
n � 1) + 1. Therefore, we may assumem � n. In this
case, we observe that the partial derivative ofL(m;n) �
log(m + n � 1) with respect tom is negative, indicating
thatL(m;n)�log(m+n�1) is maximized whenm = 2.
Moreover, this maximum value is at most(k + 1), thus
completing the proof.

To see that the expected degree of a node is bounded
by log(n � 1) + min(l; logn), we note that there are at
most logn merges of rings where nodes in one ring are
merged with at least as many nodes outside that ring, as
was considered in the above proof. Say there arem nodes
in a ringA with expected degree at mostlog(m� 1) + k,
and that this ring is being merged with fewer thanm, say
n, nodes. The resulting average degree of nodes inA is
then at mostlog(m� 1)+ k+n=m which is bounded by
log(m + n � 1) + k, thus avoiding the additive constant
which arises whenn � m. This concludes the proof.

The following theorem shows that a node in Crescendo
has a logarithmic degree with high probability.

Theorem 3. The degree of any node in Crescendo is
O(logn) with high probability (w.h.p.) irrespective of the
structure of the hierarchy.

The proof of this theorem follows from the proof of
Theorem 2.

2.2 Routing in Crescendo

Routing in Crescendo is identical to routing in standard
Chord, namely, greedy clockwise routing. If a node
wishes to route a message to a destinationd, it simply
forwards the message to its neighbor that is closest tod
while not overshooting the destination.

Observe that greedy clockwise routing in Crescendo is
naturally hierarchical. In order to get to a destinationd, a
nodem initially attempts to take the largest possible steps
towards the destination, which implies that the node im-
plicitly routes to the closest predecessor ofd in the lowest-
level Crescendo ring it belongs to. In Figure 2, if node2
in ringB wished to route to node12, it would route along
ringB to node8. Node8 then switches to routing on the
merged ring, i.e., using the ring at the next level of the
hierarchy. It uses greedy, clockwise routing to forward to
node10, which in turn forwards to node12, completing
the route.

In general, when there are multiple levels of the hierar-
chy, greedy clockwise routing routes to the closest prede-
cessorp of the destination at each level, andp would then
be responsible for switching to the next higher Crescendo
ring and continue routing on that ring. We can now see
two crucial properties of this routing protocol.

4

Locality of intra-domain paths:The route from one
node to another never leaves the domain in the hierar-
chy, sayD, that contains both nodes. This is clearly true,
since routing uses progressively larger Crescendo rings,
and would be complete when the ring contains all nodes
in D.

Convergence of inter-domain paths:When different
nodes within a domainD (at any level of the hierarchy)
route to the same nodex outsideD, all the different routes
exit D through a common nodey. This node is, in fact,
the closest predecessor ofx within domainD.

The locality of intra-domain paths provides fault iso-
lation and security, since interactions between two nodes
in a domain cannot be interfered with by, or affected by
the failure of, nodes outside the domain. We discuss its
implications for hierarchical storage and access control
in Section 4. The convergence of inter-domain paths en-
ables efficient caching and multicast solutions layered on
Crescendo. We discuss caching in more detail in Sec-
tion 4. We now characterize the number of hops required
for routing in Chord and Crescendo. We refer the reader
to our technical report [10] for proofs.

Theorem 4. In a Chord ring ofn nodes, with nodes
choosing their integer ID uniformly at random from
[0; 2N), the expected number of routing hops between two
nodes is at most12 log(n� 1) + 1

2 , if n > 1.

Proof. We define the following random variables. LetH
be the number of hops required to route between two ran-
domly chosen nodes using Chord’s routing protocol. Let
S denote the starting node,T denote the destination node,
andD be the distance fromS to T along the ring. We
defineXd to bemax0�k�dE(H jD � d).

If 2i � D < 2i+1, Chord’s routing protocol ensures
that the next hop fromS covers at least a distance2i.
From this property, we deduce:

E(H jD � d) � 1 +E(H jD � d� 2i)

and therefore
Xd � 1 +Xd�2i

LetRi =
P2i�1

d=0 Xd=2
i. We then have:

Ri =
2i�1�1X
d=0

Xd=2
i +

2i�1X
d=2i�1

Xd=2
i

� Ri�1=2 +

2i�1X
d=2i�1

(1 +Xd�2i�1)=2
i

= Ri�1=2 + 1=2 +Ri�1=2

= Ri�1 + 1=2

Observe that the expected number of hops required,
E(H), is bounded byRN , since the probability distribu-
tion of the routing distanceD is uniform. Combining this
fact with the above inequality, we have

E(H) � RN � Rk + (N � k)=2 for any0 � k � N

Substitutingk = 0 tells us thatE(H) is at mostN=2.
However, we desire a tighter bound. In order to obtain
this bound, observe thatXd is bounded by the number
of nodes within a distanced of a given node. Therefore,
Xd � d(n� 1)=2N , and

Rk �
n� 1

2N

2k�1X
d=0

d=2k

=
n� 1

2N
�
2k � 1

2

In order to obtain a tight bound onH , we choose the
largest value ofk such thatRk is at most1. Substituting
k =

�
log(2N+1=(n� 1) + 1)

�
into our equation forH ,

we obtain:

E(H) � 1 +
N

2
�

1

2
(
�
log 2N+1=(n� 1)

�
)

� 1 +
N

2
�

1

2
(N + 1� blog(n� 1)c)

�
1

2
log(n� 1) +

1

2

The above theorem pertains to the routing cost in Chord
and, to the best of our knowledge, has not been proved
prior to this work. The following theorems offer a weak
upper bound on the expected number of routing hops in
Crescendo, and show that routing between any two nodes
takes onlyO(logn) hops with high probability. In Sec-
tion 5, we experimentally show that routing in Crescendo
is almost identical in efficiency to routing in Chord, irre-
spective of the structure of the hierarchy.

Theorem 5. In a Crescendo ring ofn nodes, withn >
1 and nodes choosing their ID uniformly at random, the
expected number of routing hops between two nodes is at
mostlog(n � 1) + 1, irrespective of the structure of the
hierarchy.

Proof. The proof of this theorem follows from a general-
ization of the corresponding theorem for Chord. Given
a Chord network ofn nodes with IDs chosen at ran-
dom from [0; 2N), the expected number of routing hops
between any two nodes that are within a distanced is
bounded by0:5 log(nd=2N) + 0:5. The proof of this fact

5

is almost identical to the proof described earlier for rout-
ing in Chord.

We first provide the intuition behind the theorem. Rout-
ing in Crescendo can be visualized as alternating between
sequences of intra- and inter-domain links. Routing from
any nodes initially starts out in the lowest-level Chord
ring thats belongs to. It uses a sequence of intra-domain
links until it reaches the closest predecessor, sayp1, of
the destination in that ring. Nodep1 then uses an inter-
domain link to forward to its neighbor that is closest to
the destination, says1. Nodes1 then uses the same pro-
tocol as the source nodes. That is,s1 attempts to route
in the lowest-level Chord ringthat it belongs to until it
reaches the closest predecessor of the destination in that
ring, and so on. (Note that this closest predecessor could
bes1 itself.)

Observe that the distance to the destination decreases
with every hop and, consequently, the number of intra-
domain links used decreases as the distance decreases.
We will separately bound the number of intra- and inter-
domain links used in routing.

First, note that each inter-domain hop is expected to
reduce the distance to the destination by at least a factor
of 2. Further, note that when completing intra-domain
routing in a domain withc nodes, the expected distance
remaining to the destination is at most2N=2c.

Consider a route proceeding a distanced, that starts
from a noden1 whose lowest-level domainD1 hasc1
nodes, and then follows an inter-domain link to a node
n2 whose lowest-level domainD2 containsc2 nodes.
The expected number ofD2 nodes betweenn2 and
the destination is bounded byc2=2N times the dis-
tance fromn2 to the destination, and is thus at most
(c2=2

N)(1=2)(2N=2c1) = c2=4c1.
The number of intra-domain hops required in domains

D1 andD2 combined is therefore at most0:5 log c1 +
0:5 log((c1 + c2)=4c1) + 1 = 0:5 log(c1 + c2). This for-
mula generalizes to any number of domains. In general,
when there are� different domains used in a routing path
over a random distance, the total number of intra-domain
hops is bounded by0:5 logn� �=2 + 1.

Combined with the fact that the number of inter-domain
hops is� � 1, and that the expected number of inter-
domain hops is at mostlogn (since each hop is expected
to reduce the remaining distance by a factor of 2), the total
number of routing hops is bounded by0:5 logn� �=2 +
1 + �� 1, which is at mostlog(n� 1) + 1.

Theorem 6. In a Crescendo ring ofn nodes, with nodes
choosing their IDs uniformly at random, the number of
routing hops to route between any two nodes isO(logn)
w.h.p.

The proof of this theorem follows from the proof of
Theorem 5.

2.3 Dynamic Maintenance in Crescendo

So far, we have discussed the Crescendo structure with-
out describing how it is constructed and maintained in the
face of node arrivals and departures. Dynamic mainte-
nance in Crescendo is a natural generalization of dynamic
maintenance in Chord. We describe only the protocol for
nodes joining the system. The protocol for nodes leaving
is similar.

When a new nodem joins the system, it is expected
to know at least one other existing node in its lowest-level
domain. (Ifm is the first node in this lowest-level domain,
thenm is expected to know an existing node in the lowest
domain ofm in which some other node exists in the sys-
tem.) This knowledge can be provided by many different
mechanisms. For example, a central server could maintain
a cache of live nodes in different portions of the hierarchy,
and new nodes could contact the server for this informa-
tion. Alternatively, each domain could have its own server
maintaining a list of nodes in the system. (For example,
the local DNS server could be modified to provide this in-
formation.) As a third alternative, this information can be
stored in the DHT itself, and a new node can simply query
the DHT for the requisite information if it knows any live
node in the system.

Let us say the new nodem knows an existing nodem0

in its lowest-level domain. Then, the new node “inserts”
itself using the standard Chord technique for insertion, ap-
plied at each level of the hierarchy. Specifically, nodem
routes a query throughm0 for its own ID, and the query
reaches the predecessor ofm’s ID at each level of the hi-
erarchy. At each such level, going successively from the
lowest-level domain to the top,m inserts itself after this
predecessor and sets up appropriate links to other nodes
in that domain. (As an optimization, it can use its prede-
cessor’s links in each domain as a hint for finding the list
of nodesm needs to link to in that domain.)

Oncem has established its links in all the domains,m
informs its successor in each domain of its joining. The
successor at each level, saysl, ensures that all nodes at
that level which now “erroneously” link tosl instead of
to m, are notified. This notification can either be done
eagerly, or can be done lazily when such an erroneous link
is used to reachsl for the first time. The total number of
messages necessary to ensure all links in the system are
set up correctly after a node insertion isO(logn) which
is the same as in normal Chord.

Leaf Sets:In Chord, each node needs to “remember” a
list of its successors on the ring, called the leaf set, to deal
with node deletions. In Crescendo, each node maintains
a list of successors at every level of the hierarchy. Note
that leaf sets are cheap to maintain since they can be up-
dated by passing a single message along the ring, and do
not cause state overhead since they do not correspond to

6

actual TCP links.

3 General Canon and Physical-
Network Proximity

Having seen how to construct a hierarchical version of the
Chord DHT, we now generalize our approach to create
other Canonical constructions. We then discuss how to
adapt all our constructions to optimize for the proximity
of different nodes in the physical network.

3.1 Canonical Symphony : Cacophony

Symphony [6] is a randomized version of Chord, where
each nodem creates O(logn) links (wheren is the num-
ber of nodes in the system) to other nodes, each chosen in-
dependently at random, such that the probability of choos-
ing a nodem0 as a neighbor is inversely proportional to the
distance fromm to m0. In addition, each node maintains
a link to its immediate successor on the ring.

The construction of Canonical Symphony, or Ca-
cophony, is similar to that of Crescendo. Each node cre-
ates links in its lowest-level domain just as in Symphony,
but choosing onlyblognlc random links, wherenl is the
number of nodes in that domain. At the next higher level,
it choosesblognl�1c links by the same random process,
wherenl�1 is the number of nodes in the domain at that
level, but retains only those links that are closer than its
successor at the lower level. In addition, it creates a link
to its successor at the new level.

This iterative process continues up to the top level of
the hierarchy. It is again possible to show that Cacophony
achieves logarithmic routing when each node has degree
O(log n). Note that both Symphony and Cacophony re-
quire the ability to estimate the number of nodes in a do-
main, and it is possible to perform this estimation cheaply
and accurately [6].

Greedy Routing with a Lookahead: It is actually pos-
sible to route in Symphony using onlyO(log n= log logn)
hops using a modification to greedy routing. A node, in-
stead of simply selecting the neighbor that is closest to
the destination,looks aheadto examine its neighbors’
neighbors and see which of them is closest to the desti-
nation. Having thus examined all possible pairs of rout-
ing steps, the node greedily chooses that pair of steps
which reduces the remaining distance to the destination
the most. This modified greedy protocol requires only
O(log n= log logn) hops for routing [6] which, in prac-
tice, translates into about 40% fewer hops for most net-
work sizes.

Cacophony also achieves the same performance im-
provements as Symphony, by the use of greedy routing

with lookahead, just as in Symphony. We do not prove
this assertion in this paper.

3.2 Canonical Nondeterministic Chord :
Nondeterministic Crescendo

Yet another variant of Chord is nondeterministic Chord [4,
5], where a node chooses to connect to any node with
distance in[2k�1; 2k) for each0 � k < N , instead of
connecting to the closest node that is at least distance
2k�1 away. Nondeterministic Chord has routing proper-
ties almost identical to Symphony. The construction of
nondeterministic Crescendo is very similar to Crescendo,
with the nondeterministic Chord rule for link selection in-
stead of the deterministic rule. However, when rings are
merged, a nodem can exercise its nondeterministic choice
only among those nodes that are closer to it than any other
node in its own ring.

For example, consider a nodem in some ringA and
say the node closest tom onA is m0 at distance12. Let
us say there are two nodesp andq belonging to the next
higher domain, which are distances10 and14 away from
m. Since nondeterministic Chord only requires a link to
any node between distances8 and15, nodem may decide
to consider nodeq to link to and not nodep. However,
sinceq is further away thanm0, nodem would conse-
quently decide not to link to eitherp or q which is erro-
neous. Instead, nodem is allowed to exercise its nonde-
terministic choice only to choose among nodes which are
between distances8 and12 away.

3.3 Canonical Pastry/Kademlia : Kandy

Pastry [9] and Kademlia [8] are hypercube versions of
nondeterministic Chord. We will describe Kademlia and
its Canonical version. Pastry is similar to Kademlia but
has a two-level structure that makes its adaptation more
complex. Kademlia defines the distance between two
nodes using the XOR metric rather than the clockwise dis-
tance on a ring. In other words, the distance between two
nodesm andm0 is defined to be the integer value of the
XOR of the two IDs. Just like in nondeterministic Chord,
each nodem is required to maintain a link to any node
with distance in[2k�1; 2k), for each0 � k < N . (For
resilience, Kademlia actually maintains multiple links for
each of these distances but we ignore them in this discus-
sion.) Routing is still greedy, but works by diminishing
this XOR distance rather than the clockwise distance.

Our Canon construction for nondeterministic
Crescendo carries over directly to Kademlia. Each
node creates its links in the lowest-level domain just as
dictated by Kademlia. At the next higher level, it again
uses the Kademlia policy and applies it over all the nodes
at that level to obtain a set of candidate links (with the

7

same caveat as in nondeterministic Crescendo). It then
throws away any candidate whose distance is larger than
the shortest distance link it possesses at the lower level.
The construction is repeated at successively higher levels
of the hierarchy, just as normal.

3.4 Canonical CAN : Can-Can

CAN [7] was originally proposed as a network with con-
stant expected degree, but can be generalized to a log-
arithmic degree network. The set of node identifiers in
CAN form a binary prefix tree, i.e., a binary tree with left
branches labeled 0 and right branches labeled 1. The path
from the root to a leaf determines the ID of a node corre-
sponding to that leaf.

Since leaf nodes may exist at multiple levels of the tree,
not all IDs are of the same length. We therefore make
IDs equal-length by treating a node with a shorter ID as
multiple virtual nodes, one corresponding to each padding
of this ID by different sequences of bits. For example, if
there are three nodes with IDs 0, 10 and 11, the first node
is treated as two virtual nodes with IDs 00 and 01. Edges
correspond exactly to hypercube edges: there is an edge
between two (virtual) nodes if and only if they differ in
exactly one bit. Routing is achieved by simple left-to-
right bit fixing, or equivalently, by greedy routing using
the XOR metric.

Canonical CAN, Can-Can, is constructed in a by-now-
familiar fashion. Again, traditional CAN edges are con-
structed at the lowest level of the hierarchy, and a node
creates a link at a higher level only if it is a valid CAN
edge and is shorter than the shortest link at the lower level.
Again, the properties of Can-Can are almost identical to
that of logarithmic-dimensional CAN constructed in the
fashion we have described here.

3.5 Further Generalizations

The use of hierarchical routing offers us even more flexi-
bility in choosing routing structure. We observe that there
is no explicit requirement that the routing structure cre-
ated, and the routing algorithm used, be the same at dif-
ferent levels of the hierarchy. For example, say the nodes
belonging to the same lowest level of the hierarchy are
all on the same LAN. In such a case, it may make sense
to use a routing structure other than Chord to link them
up. For example, there may be efficient broadcast primi-
tives available on the LAN which may allow setting up a
complete graph among the nodes. It may also be useful to
implement messaging via UDP rather than TCP to reduce
communication overhead. As another example, it may be
possible to leverage detailed information about the loca-
tion, availability, and capacity of nodes within an organi-

zation to build much more intelligent and efficient struc-
tures than a homogeneous Chord ring.

When “merging” different LANs at the next higher
level of the hierarchy, we could still use the same ap-
proaches as described earlier, for example, to construct
Crescendo. Each node creates links to some nodes out-
side its LAN, but ensuring that the distance covered by
the link is smaller than the distance to its closest neighbor
within the LAN (in the same ID space as earlier). Routing
takes place hierarchically. At the lowest level, the com-
plete graph is exploited to reach the appropriate node in
one hop. This node then forwards on the Crescendo ring
at the next level of the hierarchy using greedy, clockwise
routing.

3.6 Adapting to Physical-Network Proxim-
ity

All the constructions we have seen so far exploit the like-
lihood of nodes within a domain being physically close
to each other to produce natural adaptation to the physi-
cal network. For example, in our hierarchy of Figure 1,
a nodem in the DB domain creates many of its links to
other nodes in the DB domain, which are all expected to
be physically close tom. However, this natural adaptation
is likely to break down at the top levels of the hierarchy.
For example, the top level of the hierarchy could have
hundreds of children domains spread all over the world.
Some of these domains may be in North America while
others are in Europe, Africa and Asia. In such a case,
we would like to preferentially connect nodes in North
America to other nodes in North America, (and among
such nodes, nodes on the West coast to other nodes on the
West coast) and so on, without having to explicitly create
additional levels of hierarchy to capture such preferences.

In such a case, it is possible to introduce such prefer-
ential connections, oradaptation to the physical network,
in a transparent fashion that is independent of the DHT
structure being constructed. The prime insight behind our
solution is the following: If a node randomly sampless
other nodes in the system, and chooses the “best” of these
s to link to, the expected latency of the resulting link is
small. (Internet measurements show thats = 32 is suf-
ficient [5, 11].) Of course, in some systems, including
Crescendo, a node does not have achoicein determining
which other node it will link to. However, this choice can
be introduced in a simple fashion.

Recall that, in any DHT, all nodes have N-bit IDs that
reflect their position in the ring. Also recall that the rules
for edge creation are based on the IDs of the nodes. A sim-
ple idea is to conceptually group nodes on the basis of the
top Tbits of their ID, i.e., all nodes which share the same
T-bit prefix are considered as belonging to a group whose
ID is that prefix. Now, the rules for edge creation apply

8

only to this group ID rather than to the full IDs of nodes.
For example, assume 5-bit IDs, with 3-bit prefixes. Then,
a node wishing to connect to group010, can connect to
any one node among those with IDs01000,01001,01010,
or 01011 (if they exist).

The routing network of the DHT can be visualized sim-
ply as a network ongroups. For example, the Chord
rule for groups would simply require thateachnode in
groupx connect toany arbitrary nodein groupx+2k for
0 � k < T . (In the unlikely case that no node exists in
that group, it finds the next closest group that contains a
node, and connects to any node there.)

Nodes within a group are then connected in a separate,
dense network structure, which is necessary even other-
wise for replication and fault tolerance. Routing happens
in two stages: routing between groups to reach the des-
tination group, and routing within the destination group
to reach the destination node. The latter step often con-
sists of only one hop, the cost of which can be reduced, or
avoided altogether, by smart replication. The size of the
group prefixT is chosen such that there is some constant
expected number of nodes in each group irrespective of
the total number of nodes in the system. Each node can
independently computeT , and it is possible to use smart
ID selection to ensure that the variance in the resulting
group sizes is very small [11].

We can apply this idea of group-based construction to
both hierarchical and flat DHTs. In a flat DHT such as
Chord, we simply construct Chord on these groups of
nodes, rather than on individual nodes. In a hierarchi-
cal DHT such as Crescendo, we apply this group-based
construction to create linksat the top level of the hierar-
chy. (In general, we would apply group-based construc-
tion starting from whatever level does not reflect physical-
network proximity.) Thus, the Crescendo rings up to the
level below the root are constructed just as normal. At the
top level, however, a node is only required to connect to
some other node with a prescribedprefixrather than to the
first node with ID greater than a prescribed value.

We call this group-based constructionproximity adap-
tation, and we will refer to the versions of Chord and
Crescendo using proximity adaptation asChord (Prox.)
andCrescendo (Prox.)respectively.

4 Storing and Retrieving Content

In this section, we first discuss the basic mechanism for
storing and retrieving content in a hierarchical fashion.
We then discuss how caching may be exploited by the sys-
tem. Finally, we discuss how to achieve partition balance,
i.e., ensure that content is distributed across the nodes in
as even a fashion as possible.

4.1 Hierarchical Storage and Retrieval

DHTs are designed to store and retrieve content, consist-
ing of key-value pairs, by hashing the key into the space
[0; 2N). For convenience, we will refer to the hash value
of a key as the key itself. In a flat DHT, the hash space is
partitionedacross the different nodes, and the key-value
pair is stored at the unique node “responsible” for the par-
tition containing the key. The assignment of responsibil-
ity is simple. Each node is responsible for all keys greater
than or equal to its ID and less than the next larger existing
node ID on the ring3. Thus, there is no choice available
in determining where a key-value pair is stored. A query
for a specific key is answered simply by routing with the
key as the “destination”, which automatically results in
routing terminating at the node responsible for that key.

The hierarchical design of a DHT offers more alterna-
tives for content storage. When a noden wishes to insert
content, it can specify the content’sstorage domain, i.e.,
a domain containingn within which the content must be
stored. Noden can also specify the content’saccess do-
main, a superset of the storage domain, to all of whose
nodes the content is to be made accessible.

Say, noden requires a key-value pairhk; vi to be stored
within storage domainDs. In such a case, the key-value
pair is stored at the node inDs whose ID is closest to, but
smaller than,k, i.e., it is stored at the location dictated by
the DHT consisting solely of nodes inDs. If the content is
to be accessible within a larger access domainDa, rather
than only withinDs, an additionalpointer to the content
is stored at the node inDa whose ID is closest to, but
smaller than,k.

A search for a keyk occurs by hierarchical, greedy
routing just as described earlier, with two changes. The
first change is that a nodem along the path, which
switches routing from one level to the next, may have “lo-
cal” content that matches the query key. A key-value pair
hk; vi will be returned bym as a query answer if and only
if its access domain is no smaller than the domain defined
by the current routing level4.

If the application allows only one value for each key,
then search can terminate when the first node along the
path finds a hit for the key.Note that this implies that a
query for content stored locally in a domain never leaves
the domain.If the application requires a partial list of val-
ues (say one hundred results) for a given key, the routing
can stop when a sufficient number of values have been
found for the key.

3Chord actually inverts this definition to make a node responsible for
keys less than it and greater than the next smaller node ID. However, our
definition is an improvement on Chord’s both in terms of efficiency and
coding complexity.

4This routing level can either be maintained as a field in the query
message, or can be computed by finding the lowest common ancestor of
m and the query source.

9

The second change to the routing algorithm occurs be-
cause a nodemmay havepointersto content matching the
key, without having the content itself. In such a case, this
indirection is resolved and the actual content is fetched by
m (and possibly cached atm) before being returned to the
initiator of the query.

Greedy routing thus automatically supports both hier-
archical storage and access control. A query initiated by
a node automatically retrieves exactly that content that a
node is permitted to access, irrespective of whether parts
of this content are stored locally in a domain or globally.

4.2 Caching

The hierarchical routing of queries naturally extends to
take advantage of the caching of query answers. As we
have already seen, the convergence of inter-domain paths
imply that, in each domainD, a queryQ for the same
key initiated by any node inD exitsD through a com-
mon nodepQ;D which we call theproxy nodefor query
Q in domainD. (This nodepQ;D is also responsible for
storing content with the same key and storage domainD.)
Thus, answers toQ may be cached atpQ;D for any, or all,
choices of the level of domainD in the hierarchy.

We propose caching the answer to queryQ at the proxy
nodepQ;D at each level of the hierarchy encountered on
the path to the query’s answer. In our example of Figure 1,
say a node in domain DB issues a queryQ whose an-
swer is outside the CS domain, but within Stanford. Then,
the answer to a queryQ would be cached in all domains
encountered on the path, namely at nodespQ;DB , and at
pQ;CS . The cached content at each node is also annotated
by a level indicating the position in the hierarchy that the
node is serving for the query. So,pQ;CS would mark its
cached copy ofQ’s answer as being at level1, andpQ;DB

would mark its copy as being at level2. (If the same node
is the proxy node for both CS and DB, it labels itself with
the smaller value, i.e.,1.)

If nodes exhibit locality of access, it is likely that the
same key queried by a nodem would be queried by other
nodes close tom in the hierarchy. Say another nodem0

initiates a query for the key queried bym. The routing
algorithm ensures that the cached copy of the answer is
discovered at the lowest-level domain which contains both
m andm0.

Cache Replacement:Our hierarchical caching scheme
also suggests an interesting cache-replacement policy.
Observe that cached content is annotated with levels, and
that there is not much loss in efficiency if cached content
at the lower levels (i.e., larger level numbers) is thrown
away, since one is likely to find another cached copy at the
next higher level of the hierarchy. Therefore, the cache-
replacement policy can preferentially evict cached con-
tent annotated with larger level numbers. It is also possi-

ble to have coordinated cache-replacement policies where
caches at different levels interact in determining what con-
tent to replace.

Comparison with current caching solutions:
Caching solutions for flat DHT structures all require
that the query answer be cached all along the path used
to route the query. This implies that there needs to be
many copies made of each query answer, leading to
higher overhead. Moreover, the absence of guaranteed
local path convergence implies that these cached copies
cannot be exploited to the fullest extent. Thirdly, it is
not clear whether it would be possible to exploit locality
of access patterns to enable smart caching, or to devise
smart cache-replacement policies to exploit the presence
of multiple cached copies.

4.3 Partition Balance

So far, in all our DHT discussions, we have assumed that
each node selects an ID uniformly at random from the cir-
cular hash space. Such a random ID selection process can
result in a large skew in the size of the partitions, i.e., por-
tion of the hash space managed by each node, for both
flat and hierarchical DHTs. This skew may also lead to
a consequent skew in terms of routing load on the nodes.
If there aren nodes in the system, the ratio of the largest
to the smallest partition managed by nodes is�(log2 n)
with high probability (w.h.p.) when nodes select IDs ran-
domly [11].

We have recently shown a simple modification to ran-
dom ID selection which reduces this ratio to a constant of
4 w.h.p. [11] while ensuring that the number of messages
required for a node joining or leaving is stillO(logn).
The basic idea is simple. When a noden joins the system,
it continues to select an ID at random, and finds the node
n0 in the system “responsible” for that ID. Now, instead
of just settling for that ID and splitting the partition ofn0,
n locates thelargestpartition among the nodes that share
the same B-bit ID prefix asn0. (B is chosen such that there
are only a logarithmic number of nodes with that prefix.)
This largest partition isbisected, and the bisection point
is made the ID of the new noden. Such a scheme ensures
that the set of partitions and node IDs can be visualized as
a binary tree. Node deletions are handled similarly [11].

While the above scheme ensures that the partitioning
of theglobal hash space across the nodes is more or less
even, it does not ensure that the hash space is partitioned
evenly at other levels of the hierarchy. Even partitioning at
lower levels of the hierarchy provides both partition bal-
ance for local storage, and low variance in node degrees.
We can modify the above scheme to ensure partition bal-
ance at all levels of the hierarchy.

Intuitively, when a noden joins a domainD, it ensures
that it is as “far apart” from the other nodes in the domain

10

 9

 10

 11

 12

 13

 14

 15

 16

 17

 1024 2048 4096 8192 16384 32768 65536

A
vg

. #
 E

dg
es

/N
od

e

Number of Nodes

Chord
Levels=2
Levels=3
Levels=4
Levels=5

Figure 3: Average Number of Links per Node

as possible. For example, if the first node in the domain
chose an ID with the left-most bit being0, the second node
should ensure its ID begins with a1. When the third node
joins, it examines the two-bit prefixes of the previous two
nodes, say01 and10, and chooses its own prefix to be
one of00 or 11. Selecting the toplog logn bits of an ID
in this fashion, and thus achieving partition balance in the
lowest-level domains, proves sufficient to provide balance
all through the hierarchy. We omit further details and an
evaluation of this scheme due to space constraints.

5 Evaluation

We now present an experimental evaluation of the differ-
ent routing and path convergence properties of Crescendo.

5.1 Basic Routing Properties

Our first set of experiments evaluates the number of links
v/s number of routing hops tradeoff offered by Crescendo
and shows that Crescendo is very similar to Chord. All
our experiments for this subsection use a hierarchy with a
fan-out of10 at each internal node of the hierarchy. The
number of levels in the hierarchy is varied from 1 (a flat
structure) to 5. The number of nodes in the system is var-
ied from 1024 to 65536, and all nodes choose a random
32-bit ID.

We used two different distributions to assign nodes to
positions in the hierarchy: (a) uniformly random assign-
ment of each node to a leaf of the hierarchy (b) a Zipfian
distribution of nodes where the number of nodes in the
kth largest branch (within any domain) is proportional to
1=k1:25. The results obtained with the two distributions
were practically identical and here, we show graphs cor-
responding to the Zipfian distribution.

Figure 3 plots the average number of links per node, as
a function of the size of the network, for different numbers
of levels in the hierarchy. Note that Chord corresponds to

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

5 10 15 20 25

F
ra

ct
io

n
of

 N
od

es

Number of Links

Levels=1 (Chord)
Levels=2
Levels=3
Levels=4
Levels=5

Figure 4: PDF of #Links/Node for a 32K node network

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 1024 2048 4096 8192 16384 32768 65536

A
vg

. #
 R

ou
tin

g
H

op
s

Number of Nodes

Levels=1 (Chord)
Levels=2
Levels=3
Levels=4
Levels=5

Figure 5: Average Number of Routing Hops

a one-level hierarchy.We notice that the number of links
is extremely close tologn irrespective of the number of
levels. We also observe that the number of links decreases
slightly as the number of levels increases.(The reason for
this drop in edges lies in Jensen’s inequality. To illustrate,
consider the merging of two ringsA andB with m nodes
each. The expected number ofB nodes between two con-
secutiveA nodes is1. However, the expected number of
inter-domain links set up by anA node is less than1 be-
causeE(log(X + 1)) � log(E(X) + 1) for any random
variableX > 0.)

Figure 4 plots the distribution of the number of links for
a 32K-node network. We see that the distribution “flat-
tens out” to the left of the mean of15 links/node as the
number of levels in the hierarchy increases. This is again
explained by our earlier observation. We observe also that
the maximum number of links does not increase much at
all as the number of levels increases, which is good news.

Figure 5 depicts the average number of hops required
to route between two nodes, as a function of the net-
work size. We see that the number of routing hops is
0:5 logn + c, wherec is a small constant which depends
on the number of levels in the hierarchy. The number of

11

hops required increases slightly when the number of lev-
els in the hierarchy increases, which is explained by the
corresponding drop in the number of links created. We
note, however, that this increase is at most0:7 irrespec-
tive of the number of levels in the hierarchy (even beyond
what we have depicted on this graph).

5.2 Adaptation to Physical-Network Prox-
imity

We now evaluate routing in terms of actual physical-
network latency, rather than in terms of the number of
hops used. All experiments hereonin use the following
setup: We used the GT-ITM [12] topology generator to
produce a 2040-node graph structure modelling the in-
terconnection of routers on the internet. In this model,
routers are broken up into transit domains, with each tran-
sit domain consisting of transit nodes. A stub domain is
attached to each transit node, and the stub domain is it-
self composed of multiple stub nodes interconnected in a
graph structure. The latency of a link between two tran-
sit nodes is assigned to be100ms, with transit-stub links
being20ms and stub-stub links being5ms.

To construct a Crescendo network with a desired num-
ber of nodes, we uniformly attach an appropriate number
of Crescendo nodes to each stub node, and assume that the
latency of the link from a Crescendo node to its stub node
is 1ms. This GT-ITM structure induces a natural five-level
hierarchy describing the location of a node (root, transit
domain, transit node, stub domain, stub node).

We evaluate the performance of four different systems:
Chord and Crescendo, with and without proximity adap-
tation. Figure 6 depicts the performance of these four
systems using two different measures on the y-axis. The
right axis shows the average routing latency, while the left
axis shows thestretch, which is the same quantity normal-
ized by the average shortest-path latency between any two
nodes in our internet model. Thus, a stretch of1 implies
that routing on the overlay network is as fast as directly
routing between nodes on our model of the internet.

We observe that the routing latency of plain Chord is
again linearly related tologn, which is not too surpris-
ing. Plain Crescendo, on the other hand, fares much bet-
ter than Chord, and produces an almost constant stretch
of 2:7 even as the number of nodes increases. The reason
why the stretch is constant is that an increase in the num-
ber of nodes only results in the lowest-level domain under
each stub node increasing in size. Thus, the “additional
hop” induced by the number of nodes quadrupling is ef-
fectively a hop between two nodes attached to the same
stub, which costs only2ms in our model.

When proximity adaptation is used, the stretch for
Chord (Prox.) improves considerably but is still about2
on a 64K-node network. Again, we notice that the stretch

1

2

3

4

5

6

7

8

2048 4096 8192 16384 32768 65536
400

700

1000

1300

1600

1900

2200

2500

S
tr

et
ch

La
te

nc
y

(m
s)

Number of Nodes

Chord (No Prox.)

Crescendo (No. Prox.)

Chord (Prox.)
Crescendo (Prox.)

Figure 6: Latency and Stretch on Crescendo and Chord

 0

 150

 300

 450

 600

 750

 900

Top Level Level 1 Level 2 Level 3 Level 4

La
te

nc
y

(m
s)

Query Locality Level

Chord (Prox.)
Crescendo (No Prox.)

Crescendo (Prox.)

Figure 7: Latency as a function of query locality

is a linear function oflogn, albeit with a smaller mul-
tiplicative factor than earlier. Crescendo (Prox.), which
uses proximity adaptation at the top level of the hierar-
chy, again produces a constant stretch of1:3 for all net-
work sizes, and thus continues to be considerably better
than Chord (Prox.). These curves illustrate the important
scaling advantage of Crescendo-style bottom-up construc-
tion, which results in constant stretch, compared to ran-
dom sampling to find a nearby node, whose performance
is a function of the number of nodes in the system.

5.3 Locality of Intra-domain paths

We now illustrate the advantages of intra-domain path lo-
cality. Again using our GT-ITM models, we compare the
expected latency of a query as a function of its locality of
access. Thus, a “Top Level” query would be for content
present anywhere in the system, a “Level 1” query initi-
ated by a node would be for content within its own transit
domain, and so on. Figure 7 plots the latency as a function
of the locality of the query for three different systems: a
32K-node Chord network with proximity adaptation, and
a 32K-node Crescendo network with and without prox-

12

imity adaptation. We do not show plain Chord since its
performance is off by an order of magnitude. Also note
that the use of proximity adaptation in Crescendo only
improves the performance of top-level queries, since it ap-
plies only to the top level of the hierarchy.

The left end-points of the lines depict the query latency
for top-level queries and, as observed earlier in Figure 6,
Crescendo with proximity adaptation performs the best.
As the locality of queries increases, the latency drops
drastically in Crescendo and becomes virtually zero at
Level 3, where all queries are within the same stub do-
main. On the other hand, Chord, even with proximity
adaptation, shows very little improvement in latency as
query locality increases.

This graph establishes two points: (a) search for local
content is extremely efficient in Crescendo, from which
we deduce that local caching of query answers will im-
prove performance considerably, and (b) Chord does not
offer good locality of intra-domain paths.

5.4 Convergence of inter-domain paths

We now illustrate the advantages of inter-domain path
convergence for caching and multicast.

Caching: Say a random noder initiates a queryQ for
a random key. Letr belong to domainD, and let the path
taken by the query beP . Consider a second node chosen
at randomfrom D which issues the same queryQ, and let
P 0 be the path taken by the query from this node. We de-
fine thehop overlap fractionto be the fraction of the path
P 0 that overlaps with pathP . We define thelatency over-
lap fraction to be the ratio of the latency of the overlap-
ping portion ofP 0 to the latency of the entire pathP 0. The
expected values of these quantities can be viewed as sim-
ple metrics capturing the bandwidth and latency savings
respectively, obtained due to the first node’s query answer
being cached along the query path. (We note that practical
bandwidth savings would be much higher, because inter-
domain bandwidth is generally much more expensive than
intra-domain bandwidth.)

Figure 8 depicts the expected value of the hop over-
lap fraction and the latency overlap fraction for both
Crescendo and Chord (with proximity adaptation), as a
function of the level of the domain within which the nodes
are drawn. We see that the overlap fraction, for both hops
and latency, is extremely low for Chord, even for low-
level domains. On the other hand, the overlap fraction in-
creases considerably as the level of the domain increases
in Crescendo. As is only to be expected, the overlap frac-
tion is higher for latency, since the non-overlapping hops
have very low latency.

Multicast: To capture the improvement obtained in
terms of bandwidth savings for multicast, we use the fol-
lowing experiment. We choose 1000 random nodes from

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Top Level Level 1 Level 2 Level 3 Level 4

O
ve

rla
p

F
ra

ct
io

n

Domain Level

Crescendo (Latency)

Crescendo (Hops)

Chord (Latency) Chord (Hops)

Figure 8: Overlap Fraction as a function of domain level

Domain Level Crescendo Chord
1 19 884.9
2 39 1273.7
3 353.7 2502.7

Figure 9: Number of inter-domain links used

the 32K nodes in the Crescendo/Chord network, and route
a query from each of them to a single common randomly
chosen destination. The union of these 1000 different
paths form a multicast tree with the destination of the
query being the source of the multicast. (Thus, the ac-
tual multicast will transmit data along the reverse of the
query paths.) We then measure the expected number of
“inter-domain” links in this multicast tree (for different
definitions of “inter-domain”). This metric captures the
bandwidth savings obtained by path convergence, since
inter-domain links are likely to be both expensive and be
a bandwidth bottleneck.

The table in Figure 9 shows the expected number of
inter-domain links used by Crescendo and by Chord (with
proximity adaptation) when the domains are defined at the
first, second and third levels of the hierarchy. We see that,
for top-level domains, Crescendo uses only1=44 of the
links used by Chord. When domains are defined as be-
ing stub domains, Crescendo still uses only 15% as many
links as Chord.

6 Related Work

There have been many different Distributed Hash Table
designs that have been proposed recently [7, 3, 9, 13, 6,
14, 15, 16, 17] all of which use routing structures that are
variants of the hypercube. All of them can be viewed as
providing routing inO(logn) hops on ann-node network
when each node has degree�(logn). (Some of these con-
structions are for constant-degree networks but they may
be generalized to use baselogn, and thus have logarith-

13

mic number of links [15, 14].)
Some of these networks also use locality heuristics [9,

18, 13, 5, 11] to ensure that nodes nearby on the phys-
ical network are preferentially connected to each other.
In consequence, they achieve some convergence on inter-
domain paths due to this “clustering” effect. However,
such convergence is heuristic in nature and is dependent
on the number of nodes in the system, the characteristics
of the underlying physical network and the relative stabil-
ity of the different nodes.

Another recent system which provides some DHT func-
tionality is SkipNet [19]. SkipNet behaves just like a nor-
mal DHT when routing for content outside the local do-
main (and thus provides no, or heuristic, convergence for
inter-domain paths). However, SkipNet provides explicit
path locality when searching for content within the do-
main. This locality is achieved by using a separate rout-
ing protocol. Although SkipNet provides this path local-
ity only for a two-level hierarchy, it can be modified, us-
ing the Canon approach, to support hierarchies of arbi-
trary depth and also ensure a single routing protocol for
all queries irrespective of the locality of the query.

SkipNet also offers storage of content within an arbi-
trary storage domain, but at the expense of modifying the
key of the content. This may be acceptable, or desirable,
for some applications such as DNS. Our aim, on the other
hand, is to allow arbitrary storage domains without modi-
fying the key, which is necessary for true DHT functional-
ity. Finally, SkipNet offers the additional ability to query
in a namespace, a feature not present in other DHTs. It
is possible to inherit this feature by building a Canonical
version of SkipNet, the details of which we postpone to a
future work.

7 Conclusion

We have described Canon, a general technique for con-
structing hierarchically structured DHTs. We have shown
how this technique can be applied to construct different
DHTs, Crescendo, Cacophony, Can-Can and Kandy. We
demonstrated the advantages of hierarchical DHT con-
struction and routing in terms of fault isolation, and quan-
tified the advantages of our design in terms of caching,
bandwidth utilization, adaptation to the physical network,
hierarchical storage and hierarchical access control, by
means of experiments.

References
[1] H. Simon,The Sciences of the Artificial, MIT Press, 1996.

[2] B. Lampson, “Designing a global name service,” inProc.
4th ACM Symposium on Principles of Distributed Comput-
ing, Minaki, Ontario, 1986, pp. 1–10.

[3] I. Stoica, R. Morris, D. Karger, M. Frans Kaashoek, and
H. Balakrishnan, “Chord: A scalable peer-to-peer lookup
service for internet applications,” inProc. ACM SIG-
COMM 2001, 2001.

[4] Frank Dabek, M. Frans Kaashoek, David Karger, Robert
Morris, and Ion Stoica, “Wide-area cooperative storage
with CFS,” in Proc. 18th ACM Symposium on Operating
Systems Principles (SOSP 2001), 2001, pp. 202–215.

[5] K. Gummadi, R. Gummadi, S. Gribble, S.Ratnasamy,
S.Shenker, and I.Stoica, “The impact of DHT routing ge-
ometry on resilience and proximity,” inProc. ACM SIG-
COMM, 2003.

[6] G. S. Manku, M. Bawa, and P. Raghavan, “Symphony:
Distributed hashing in a small world,”Proc. 4th USENIX
Symposium on Internet Technologies and Systems (USITS),
2003.

[7] S. Ratnasamy, P. Francis, M. Handley, and R. M. Karp,
“A scalable content-addressable network,” inProc. ACM
SIGCOMM 2001, 2001, pp. 161–172.

[8] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-
peer information system based on the xor metric,” inProc.
1st Intl. Workshop on Peer-to-Peer Systems (IPTPS 2002),
2002.

[9] A. I. T. Rowstron and Peter Druschel, “Pastry: Scalable,
decentralized object location, and routing for large-scale
peer-to-peer systems,” inIFIP/ACM International Confer-
ence on Distributed Systems Platforms (Middleware 2001),
2001, pp. 329–350.

[10] P. Ganesan, K. Gummadi, and H. Garcia-Molina, “Canon
in g major: Designing DHTs with hierarchical structure,”
Tech. Rep., Stanford University, 2003.

[11] G. S. Manku and P. Ganesan, “DHT design: A modular
approach,” Submitted for publication. Available upon re-
quest.

[12] Ellen W. Zegura, Kenneth L. Calvert, and Samrat Bhat-
tacharjee, “How to model an internetwork,” inIEEE In-
focom, San Francisco, CA, March 1996, IEEE, vol. 2, pp.
594–602.

[13] Kirsten Hildrum, John D. Kubiatowicz, Satish Rao, and
Ben Y. Zhao, “Distributed object location in a dynamic
network,” inProc. 14th ACM SPAA, 2002, pp. 41–52.

[14] D. Malkhi, M. Naor, and D. Ratajczak, “Viceroy: A scal-
able and dynamic emulation of the butterfly,” inProc 21st
ACM Symposium on Principles of Distributed Computing
(PODC 2002), 2002, pp. 183–192.

[15] F. Kaashoek and D. R. Karger, “Koorde: A simple degree-
optimal hash table,” inProc. 2nd Intl. Workshop on Peer-
to-Peer Systems (IPTPS 2003), 2003.

[16] G. S. Manku, “Routing networks for distributed hash ta-
bles,” in Proc. 22nd ACM Symp. on Principles of Distri-
uted Systems (PODC 2003), Jul 2003.

[17] I. Abraham, B. Awerbuch, Y. Azar, Y. Bartal, D. Malkhi,
and E. Pavlov, “A generic scheme for building overlay
networks in adversarial scenarios,” inProc. Intl. Parallel
and Distributed Processing Symp., Apr 2003.

14

[18] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron,
“Topology-aware routing in structured peer-to-peer over-
lay networks,” inProc. Intl. Workshop on Future Direc-
tions in Distrib. Computing (FuDiCo 2002), 2002.

[19] N. J. A. Harvey, M. Jones, M. Theimer, and A. Wolman,
“Skipnet: A scalable overlay network with practical local-
ity properties,”Proc. 4th USENIX Symposium on Internet
Technologies and Systems (USITS), 2003.

15

