Canon in G Major: Designing DHTs with Hierarchical Structure

Prasanna Ganesan Krishna Gummadi Hector Garcia-Molina
Stanford University University of Washington Stanford University
prasannag@cs.stanford.edu gummadi@cs.washington.edu hector@cs.stanford.edu
Abstract Stanford
Distributed Hash Tables have been proposed as flat, non- ﬂCS\ EE
hierarchical structures, in contrast to most scalable dis- m
tributed systems of the past. We show how to construct hi- DB DS '
erarchical DHTs while retaining the homogeneity of load

and functionality offered by flat designs. Our generic con-

struction, Canon, offers the same routing state v/s routing Figure 1: A portion of a hierarchy of nodes

hops trade-off provided by standard DHT designs. The

advantages of Canon include (but are not limited to) (ality and load among the participating nodes which also
fault isolation, (b) efficient caching and effective bandensures that there is no single point of failure.

width usage for multicast, (c) adaptation to the underlying\yny hierarchical design®erbert Simon, iThe Archi-
physical network, (d) hierarchical storage of content, agghtyre of Complexityl], argues that hierarchy emerges
(e) hierarchical access control. Canon can be applieq,{g\,itamy in any complex system. Butler Lampson, when
many different proposed DHTSs to construct their Canorgjescribing the design of a global name system [2] ob-
cal versions. We show how four different DHTs—Chorderyes: “Hierarchy is a fundamental method for accom-
Symphony, CAN and Kademlia—can be converted inffogating growth and isolating faults”. In our DHT
their Canonical versions that we call Crescendo, C@sntext, hierarchical design offers the following advan-
cophony, Can-Can and Kandy respectively. tages: fault isolation and security, effective caching and
bandwidth utilization, adaptation to the underlying physi-
cal network, hierarchical storage, and hierarchical access

1 Introduction control.

A Distributed Hash Table (DHT) is simply a hash table OUr proposed design, Canon, inherits the homogene-
that is partitioned among a dynamic set of participatiﬁ(j of load and functionality offered by flat design, while
nodes There is no central directory describing whicRroviding all the above advantages of hierarchical design.
node manages which partition. Instead, nodes are Ehe key idea behind Canon lies in its recursive routing
ranged in aroverlay networkso that queries for any keystructure. Figure 1 depicts an example fragment of the
can efficiently beoutedto the appropriate node. hierarchy of machines at Stanford University. The rect-
DHTs have been proposed as a substrate for |ar§@gular box_es stand for pa_rticipan_tnodesinthe_DHT. We
scale distributed applications. The traditional approaffer to the internal nodes in the hierarchydasnains to
to building scalable distributed applications has almd#gtinguish them from the actual system nodes. When we
always revolved around exploiting a hierarchical stru€fer to the “nodes in domaip”, we refer to all the sys-
ture. Applications ranging from overlay multicast anfM nodes in the subtree rootedatThe design of Canon
distributed file systems to the current internet architect/gasures that the nodes in any domain form a DHT routing
and the DNSS system, all achieve scalability via hierarcitructure by themselves. Thus, for example, the nodes in
cal design. In stark contrast, all DHT solutions we knoif?€¢ “DB” domain would form a DHT structure by them-
of have been flat and non-hierarchical, which has both &§/ves, as will the set of all nodes in the CS domain, and
vantages and disadvantages. In this paper, we argue th@entire set of nodes at Stanford.
one can obtain the best of both worlds, without inherit- The DHT corresponding to any domain is synthesized
ing the disadvantages of either, by designing hierarchix mergingits children DHTs by the addition of some
cally structured DHTSs using a paradigm we da#inon. links. Thus, the DHT for CS is constructed by starting
Why flat design?The primary advantage of flat DHTwith the individual DHTs for domains DB, DS and Al,
design is that there is a uniform distribution of functiorand adding links carefully from each node in one domain

to some set of nodes in the other domains. The challenge 5
we face is to perform this merging in such a fashion that
thetotal number of links per node remains the same asin & 8
flat DHT design, and that global routing between any two 10
nodes can still be achieved as efficiently as in flat designs. |3 13

The Canon principle can be applied to transform many
different DHT designs into their Canonical versions.
Much of this paper will focus on Crescendo, the Canon-
ical version of the popular Chord [3] DHT. However, we

will also describe how to adapt other DHTS, includingt iq hierarchy is necessary: it suffices for each node to
nondeterministic Chord [4, 5], Symphony [6], CAN [7} o\ its own position in the hierarchy, and for two nodes

and Kademlia [8], a variant of Pastry [9]. to be able to compute their lowest common ancestor. (One
~ The rest of this paper is organized as follows. In SeGassiple practical implementation is to assign each node a
tion 2, we discuss the design of the basic routing framMggrarchical name as in the DNS system.) The hierarchy

work for Canon, explaining how it is used to construgh,y 4150 evolve dynamically with the introduction of new
Crescendo, and show how it provides fault isolation. Wymains.

Section 3, we explain how to construct Canonical versionsEaCh node in Crescendo is assigned a unique ID from

of other DHTS, and offer enhancements to provide SYgg circular N-bit space, just as in Chord. However, the
port for physical-network proximity in all our construcyjn sirycture in Crescendo is recursive in nature. Each
tions_. In Section 4, we discuss_, the usage of the hiergfy o¢ nodes in a leaf domaie.g., DB in Figure 1) forms

chy in content storage and retrieval, access control, D@y, ring just as in Chord. At each internal domain, the
caching policies. In Section 5, we validate our design a@fegcendo ring, containing all nodes in that domain, is ob-

quantify its advantages by means of experiments. SgGieq hymergingall the “children” Crescendo rings into

tion 6 discusses related work. a single, larger Crescendo ring. Applying this construc-
tion recursively at higher levels of the hierarchy leads to
) . . merging larger and larger rings to eventually produce the
2 Crescendo: A Canonical version global DHT containing all the nodes in the system.
of Chord We first use an example to show hawo separate
Chord rings are merged into one Crescendo ring. Say
In this section, we discuss a hierarchical version of Chatltere are two Chord ringd and B, each with four nodes
that we callCrescendd. We first describe the “static” as shown in Figure 2. All nodes choose a globally unique
structure of Crescendo, discuss how routing occurs in thégdom integer ID irf0, 16). We will focus on the edges
structure, and then explain how this structure is maioreated by two nodes: nodgein ring A and node8 in
tained dynamically. ring B. Recall that nodé establishes its links in ringl
by finding, for eact) < k < 4, the closest node that is
at least distance* away. Consequently, it creates links
to nodess (corresponding to distancés2 and4) and10

Chord: Chord [3] is a distributed hash table storing keytdistances). Similarly, in ring B, node8 forms links to
value pairs. Keys are hashed into a circular N-bit identifispdesl3 and2.

space]0,2"). (Identifiers on the circle are imagined as When the two rings are merged, nodes retain all their
being arranged in increasing order clockwise.) Each ndféginallinks. In addition, each node in one ring creates

is assigned a uniqu® drawn uniformly at random from @ link to a noden' in the other ring if and only if:

this space, and thistancefrom a noden to a noden' is
the clockwise distance on the circle franis ID to m'’s.
Each noden maintains a link to the closest nod€ that

is at least distanc®’ away, for eactd < i < N. We
will refer to the set of nodes forming a Chord network a

aChord ring _ _ _ Note that condition (a) is just the standard Chord rule
~ Crescendo, our hierarchical DHT, requires all the nodgyg creating links, applied on the union of the nodes in
in the system to form @onceptual hierarchyeflecting the two rings. Condition (b), however, says that node

their real-world organization, such as the one in Figure 4, should create only a subset of these links, specifically,
We note that no global information about the structure

Ring A Ring B The Merged Ring

Figure 2: Merging two Chord rings

2.1 The Routing Structure of Crescendo

(a) m' is the closest node that is at least dista2fcaway
forsomed < k < N, and

éb) m/' is closer tom than any node im’s ring.

2Since our hierarchy is a “conceptual hierarchy”, nodes are assumed
1A sequence of ever-rising Chords to be hanging off the leafs rather than being leafs themselves.

only the links to nodes that are closer to it than any otherBy linearity of expectation, the expected degree of a
node in its own ring. node is given by
Returning to our example, let us consider the links to be

created by nod@. Condition (a) suggests that no@lénk =
to node2 (for distanced and2), and to nodes (for dis- E(D) = Z E(I)
tance8Experiments suggest however that the average de- k=0 Nt
gree of any node in Crescendo is at mog{n — 1) + 1, < 2"‘: (n —1)2k N 2_: 1
irrespective of the number of levels in the hierarchy.). = 9N
However, condition (b) rules out nodge since it is fur- k=0 k=t
ther away thgn the cIoses’F _node i_n Ring A (n6dleThus, - (n 7\[1) (20t 1)+ N —a —1(forn > 2)
node0 establishes an additional link only to noleNote 2
that there is no link from node to node3. As another _ 2n=-1) n-1 + Mog(n —1)] — 1
example, consider nodein Ring B. Condition (a) sug- 2[log(n—1)] 2N
gests node30 (distances 1 and 2)1.2 (distance 4) and _ _ L n- 1
g : \ © [log(n —1)] —1+2
(distance 8) as candidates. We again use condition (b) to 2[log(n—1)]
rule out node 0. < log(n—1)+1

Note that some nodes may not form any additional links
at all. For example, nod2 has node in its own ring as
the closest node, due to which condition (b) is violated The last step may be deduced from the fact ibgfl +
for all other nodes. One may wonder whether our com} > z for all z € [0,1]. Combined with the fact that
struction leads to a skewed degree distribution among théD) = 1 for n = 2, we getE(D) < log(n — 1) + 1.
nodes. However, such is not the case. Our evaluatiorgin
Section 5 will show the actual skew in degree distribution
compared to standard Chord. The above theorem bounds the expected degree of a

The above approach for merging two rings naturalfjede in Chord and our work appears to be the first to claim
generalizes to merging any number of rings rather thiin The following theorem provides a somewhat weaker
just two. Each node once again forms links to nookber bound on the expected degree for Crescendo. However,
than those in its own ring they satisfy conditions (a) andoUr experiments in Section 5 show tfthe average de-

(b). This algorithm for link creation is applied bottom-ugree of a node in Crescendo is less than in Chamld

on the hierarchy, merging sibling rings to construct Iargg}at it decreases as the number of levels in the hierarchy
and larger rings until all the nodes belong to the same rifigcreases.

We state the following theorems on node degrees in Chqrrq

and Crescendo. (Note that the degree of a node refers tgorem 2.In a Crescendo ring ok nodes, with nodes

its out-degree, and does not count incoming edges.) choosing their ID uniformly at random, the expected de-

gree, g edges. gree of a node is at mosvg(n — 1) + min(l,logn) if
Theorem 1. In a Chord ring ofn nodes, with nodes” > 1, wherel is the maximum number of levels in the
choosing their ID uniformly at random, the expected d8ierarchy.

gree of anode is atmobig(n — 1) + L foralln > 1. 510t \we will first prove that the expected degree of a

Proof. Consider some node in the Chord ring, and let "0d€ iS at mosibg(n —1) +/, by induction on the number
I; be an indicator random variable whichiigf there is at ©f IeVels in the hierarchy. The base case is true since a
least one node within a distandes [27, 2+1) of m, and one-level hierarchy simply corresponds to Chord, whose
zero otherwise. Observe that the degremoD is simply "°des have expected degree less than or eqiaito —
equal toy"p ' Iy.)+ 1. _ _ _

The expected value df, is simply the probability that _ ASSume, by the inductive hypothesis, that any
at least one of the nodes other tharfie in an interval of Crescendo ring witm nodes on a hierarchy with or

length2* on the circular ID space. The probability thaf€Wer levels has nodes with expected degree less than
some specific node lies in this intervaldé/2V. There- log(n —1) + k, for alln > 0. We will now show that any
fore, by the union bound, Crescendo ring with nodes on & + 1 level hierarchy has

nodes with expected degree less thag{n — 1) + k£ + 1,
(n —1)2* foralln > 0.
N VOSk<N Let Dy, D,D, be theb different domains at the top
level of the hierarchy. Let the number of nodes/m be
Also, E(I;) < 1forall0 < k < N. Leta = N — p, andlety = n—p. Consider some node in D, and let
[log(n — 1)] (assumer > 2). its degree be\; + X,, whereX; is the number of links

E(Iy) <

to other nodes withiD; andX, is the number of links to n/m in this case, andog(m — 1) + n/m < log(m +
nodes outsid®; . n — 1) + 1. Therefore, we may assume < n. In this
We define the following random variables: case, we observe that the partial derivativd ¢in, n) —
og(m + n — 1) with respect tan is negative, indicating
hatL(m,n)—log(m+n—1) is maximized whem = 2.
Moreover, this maximum value is at magt + 1), thus
e A; andA, are suchthatl = A; + A,, andA4, isthe COMPpleting the proof. _
largest power of 2 less than or equal4o To see that the expected degree of a node is bounded
by log(n — 1) + min(/,logn), we note that there are at
e B: the number of nodes outside domdm that are mostlogn merges of rings where nodes in one ring are
within distance4 of m. merged with at least as many nodes outside that ring, as
The expected value of», the number of inter—domain;’xa; r(i:r? gj%vei'iﬁde;(nptehci ezbgggr%fg{’igg;?ﬁrﬁﬁd]is

Imksbcrebateddby(;@: Wh?” Egndmoneq OTl’tAQtr?ntdB’ dand that this ring is being merged with fewer thansay
can be bounced In a fashion very simiiar 1o .a use 7'{,1 nodes. The resulting average degree of node$ is
the proof of Theorem 1. Specifically, we obtain:

then at mostog(m — 1) 4+ k +n/m which is bounded by
BE(Xo|A; = a1, As = az, B = b) log'(m +n - 1) + k, thus avpiding the additive constant
{ 0ifb=0 which arises when > m. This concludes the proof. J

1
e A: the distance from node: to its successor in do-t
mainD;.

Lifb=1 The following theorem shows that a node in Crescendo
< 1+4logh+ has a logarithmic degree with high probability.
min(l, ba2/(a1 + 0,2)) — IOg(l + a2/a1)

Theorem 3. The degree of any node in Crescendo is
O(log n) with high probability (w.h.p.) irrespective of the
We can drop the conditioning oA; and A, to obtain a Structure of the hierarchy.

weaker boundE(X,|B = b) < 2+ logb, forall b > 1.
The expected value oY, is given by:

otherwise

The proof of this theorem follows from the proof of
Theorem 2.

E(X;) <P(B=1)+Y_ P(B=Fk)2+logk)
k=2 2.2 Routing in Crescendo

Letpo = P(B = 0) andp; = P(B = 1). Apply- Routing in Crescendo is identical to routing in standard
ing Jensen’s inequality, which states thdd " w;z;) Chord, namely, greedy clockwise routing. If a node
> w; f(x;) for all concave functiong and with_ w; wishes to route a message to a destinatipiit simply
1, we obtain: forwards the message to its neighbor that is closest to

while not overshooting the destination.
M Observe that greedy clockwise routing in Crescendo is
L =po naturally hierarchical. In order to get to a destinatibm

Using the facts thaty = (m — 1)/(m +n — 1), p = nodem initially at'Fem_pts to tqke 'Fhe I{irgest possible st(_aps
npo/(m +n — 2), andE(B) = n/m, we obtain: toyv_ards the destination, which implies that the node im-

plicitly routes to the closest predecessoddf the lowest-

v

E(Xs) <2-2py —p1 + (1 —po)log

n(n —1) n(n — 2) level Crescendo ring it belongs.tén Figure 2, if node
BE(X2) < m+n—2 m4+n—1 in ring B wished to route to nod&2, it would route along
n(n —1) 2m + n — 2 1ing B to node8. Nodes then switches to routing on the
+(m Yn—1)(m+n—2) log m merged ring i.e., using the ring at the next level of the

hierarchy. It uses greedy, clockwise routing to forward to

Let the right-hand size of the above inequality be denotedde10, which in turn forwards to nodé&2, completing

by f(m,n). By the inductive hypothesis, we know thathe route.

E(X;) <log(m — 1) + k. Therefore, the expected total In general, when there are multiple levels of the hierar-

number of links for any node in rin@, is bounded by chy, greedy clockwise routing routes to the closest prede-

L(m,n) =log(m —q) +k+ f(m,n), which we claim is cessop of the destination at each level, apavould then

less than or equal log(m +n—1)+k+ 1, whenm > 1. be responsible for switching to the next higher Crescendo
To prove the above claim, observe that it is clearly truang and continue routing on that ring. We can now see

whenm > n, since f(m,n) would be exactly equal totwo crucial properties of this routing protocol.

Locality of intra-domain paths:The route from one Observe that the expected number of hops required,
node to another never leaves the domain in the hier&itH), is bounded byR , since the probability distribu-
chy, sayD, that contains both nodes. This is clearly tru¢ipn of the routing distanc® is uniform. Combining this
since routing uses progressively larger Crescendo rinfggt with the above inequality, we have
and would be complete when the ring contains all nodes
in D. E(H) <Ry <Rp+(N—-k)/2forany0 <k <N

Convergence of inter-domain path&vhen different
nodes within a domai® (at any level of the hierarchy)
route to the same nodeoutsideD, all the different routes
exit D through a common nodg This node is, in fact,

Substitutingk = 0 tells us thatE'(H) is at mostN/2.
However, we desire a tighter bound. In order to obtain
this bound, observe that; is bounded by the number
the closest predecessorefvithin domainD. of nodes within a distance of a given node. Therefore,

_ N
The locality of intra-domain paths provides fault isog(d < d(n-1)/2%, and
lation and security, since interactions between two nodes

2k 1
in a domain cannot be interfered with by, or affected by R, < n—1 Z /2"
the failure of, nodes outside the domain. We discuss its - 2N =
implications for hierarchical storage and access control &
. X ; . n—1 2¥—-1
in Section 4. The convergence of inter-domain paths en- = S¥ 3

ables efficient caching and multicast solutions layered on
Crescendo. We discuss caching in more detail in Sec-
tion 4. We now characterize the number of hops requiredin order to obtain a tight bound oH, we choose the
for routing in Chord and Crescendo. We refer the readargest value ok such thatRy, is at mostl. Substituting
to our technical report [10] for proofs. k= Uog(gNH/(n —-1)+ 1)J into our equation forH,

. . we obtain:
Theorem 4. In a Chord ring ofn nodes, with nodes

choosing their integer ID uniformly at random from E(H)

N 1
1+ = — =([log2¥*/(n -1
[0,2), the expected number of routing hops between two 2 2 (L o8 /(n)J)

nodes is at mos} log(n — 1) + 1, ifn > 1. < 12N _Lnviion 1
< 145 =5V 1= [log(n - 1)))

Proof. We define the following random variables. Lt < 1 1 1 1

be the number of hops required to route between two ran- = 9 og(n —1) + 9

domly chosen nodes using Chord’s routing protocol. Let
S denote the starting nod€&,denote the destination node,
and D be the distance fron§ to T along the ring. We

define.X to bemaxo<i<a E(H|D < d). The above theorem pertains to the routing cost in Chord

If 2¢ < D < 2%, Chord's routing protocol ensuresyng, to the best of our knowledge, has not been proved
that the next hop fronf' covers at least a distan@. prior to this work. The following theorems offer a weak
From this property, we deduce: upper bound on the expected number of routing hops in
Crescendo, and show that routing between any two nodes
takes onlyO(logn) hops with high probability. In Sec-
tion 5, we experimentally show that routing in Crescendo
is almost identical in efficiency to routing in Chord, irre-

E(H|D <d) <1+ E(H|D <d-2"

and therefore

Xa <1+ Xg_oi spective of the structure of the hierarchy.

LetR; = 3;‘01 X4/2%. We then have: Theorem 5. In a Crescendo ring of nodes, withn >

1 and nodes choosing their ID uniformly at random, the
2i7-1 o2 , expected number of routing hops between two nodes is at
Ri = > Xa/2'+ > Xq/2 mostlog(n — 1) + 1, irrespective of the structure of the
d=0 d=2i-1 hierarchy.
21

i Proof. The proof of this theorem follows from a general-

< R; 1/2 1+ X, 9i-1)/2 . . .
- 12+ Z (14 Xgiz)/ ization of the corresponding theorem for Chord. Given

d=2i-1 .

a Chord network ofn nodes with IDs chosen at ran-
= Bia1/2+1/2+ Ria/2 dom from|[0, 2V), the expected number of routing hops
= Ri1+1/2 between any two nodes that are within a distadds

bounded by).5 log(nd/2") + 0.5. The proof of this fact

is almost identical to the proof described earlier for rou2.3 Dynamic Maintenance in Crescendo
ing in Chord.

We first provide the intuition behind the theorem. Rouf0 far, we have discussed the Crescendo structure with-
ing in Crescendo can be visualized as alternating betwd&f describing how it is constructed and maintained in the
sequences of intra- and inter-domain links. Routing frofdce of node arrivals and departures. Dynamic mainte-
any nodes initially starts out in the lowest-level Chordnance in Crescendo is a natural generalization of dynamic
ring thats belongs to. It uses a sequence of intra-domditaintenance in Chord. We describe only the protocol for
links until it reaches the closest predecessor, sayf Nnodes joining the system. The protocol for nodes leaving
the destination in that ring. Nodg then uses an inter-is similar.
domain link to forward to its neighbor that is closest to When a new noden joins the system, it is expected
the destination, say,;. Nodes; then uses the same proto know at least one other existing node in its lowest-level
tocol as the source node That is,s; attempts to route domain. (Ifm is the first node in this lowest-level domain,
in the lowest-level Chord ringhat it belongs to until it thenm is expected to know an existing node in the lowest
reaches the closest predecessor of the destination in thahain ofm in which some other node exists in the sys-
ring, and so on. (Note that this closest predecessor cotdth.) This knowledge can be provided by many different
be s, itself.) mechanisms. For example, a central server could maintain

Observe that the distance to the destination decreagesiche of live nodes in different portions of the hierarchy,
with every hop and, consequently, the number of intrand new nodes could contact the server for this informa-
domain links used decreases as the distance decred&®s.Alternatively, each domain could have its own server
We will separately bound the number of intra- and interaaintaining a list of nodes in the system. (For example,
domain links used in routing. the local DNS server could be modified to provide this in-

First, note that each inter-domain hop is expected flrmation.) As a third alternative, this information can be
reduce the distance to the destination by at least a facttored in the DHT itself, and a new node can simply query
of 2. Further, note that when completing intra-domaitie DHT for the requisite information if it knows any live
routing in a domain withe nodes, the expected distanceode in the system.
remaining to the destination is at mast /2c. Let us say the new node knows an existing node:’

Consider a route proceeding a distanktethat starts in its lowest-level domain. Then, the new node “inserts”
from a noden; whose lowest-level domai; hasc; itself using the standard Chord technique for insertion, ap-
nodes, and then follows an inter-domain link to a nogsied at each level of the hierarchy. Specifically, nade
nz Whose lowest-level domai, containsc, nodes. routes a query through' for its own ID, and the query
The expected number oD, nodes betweem and reaches the predecessonoes ID at each level of the hi-
the destination is bounded by /2" times the dis- erarchy. At each such level, going successively from the
tance fromn, to the destination, and is thus at mogbwest-level domain to the topy inserts itself after this
(e2/2MN)(1/2)(2N /2¢1) = o /4cy. predecessor and sets up appropriate links to other nodes

The number of intra-domain hops required in domaiits that domain. (As an optimization, it can use its prede-
D; and D, combined is therefore at mo8t5logc: + cessor’s links in each domain as a hint for finding the list
0.5log((c1 + c2)/4c1) +1 = 0.5log(c1 + ¢2). This for- of nodesn needs to link to in that domain.)
mula generalizes to any number of domains. In generaloncey, has established its links in all the domains,
when there are different domains used in a routing pathhforms its successor in each domain of its joining. The
over a random distance, the total number of intra-domajficcessor at each level, say ensures that all nodes at
hops is bounded by.5logn — a/2 + 1. that level which now “erroneously” link te; instead of

Combined with the fact that the number of inter-domatg 1, are notified. This notification can either be done
hops isa — 1, and that the expected number of integagerly, or can be done lazily when such an erroneous link
domain hops is at mosig n (since each hop is expectegs ysed to reach; for the first time. The total number of
to reduce the remaining distance by a factor of 2), the tofabssages necessary to ensure all links in the system are
number of routing hops is bounded By logn — /2 + set up correctly after a node insertion@§log n) which
1+« —1,whichis atmostog(n — 1) +1. | is the same as in normal Chord.

Theorem 6. In a Crescendo ring of nodes, with nodes Leaf Sets:In Chord, each node needs to “remember” a

choosing their IDs uniformly at random, the number dist of its successors on the ring, called the leaf set, to deal

routing hops to route between any two node®{gog n) with node deletions. In Crescendo, each node maintains
w.h.p. a list of successors at every level of the hierarchy. Note

that leaf sets are cheap to maintain since they can be up-
The proof of this theorem follows from the proof oflated by passing a single message along the ring, and do
Theorem 5. not cause state overhead since they do not correspond to

actual TCP links. with lookahead, just as in Symphony. We do not prove
this assertion in this paper.

3 General Canon and Physical-35 canonical Nondeterministic Chord
Network Proximity Nondeterministic Crescendo

Having seen how to construct a hierarchical version of t
Chord DHT, we now generalize our approach to cred
other Canonical constructions. We then discuss how
adapt all our constructions to optimize for the proximitg
of different nodes in the physical network.

K t another variant of Chord is nondeterministic Chord [4,
E where a node chooses to connect to any node with
[stance in[2~,2*) for each0 < k < N, instead of
onnecting to the closest node that is at least distance
k=1 away. Nondeterministic Chord has routing proper-
ties almost identical to Symphony. The construction of
nondeterministic Crescendo is very similar to Crescendo,
3.1 Canonical Symphony : Cacophony with the nondeterministic Chord rule for link selection in-
stead of the deterministic rule. However, when rings are
Symphony [6] is a randomized version of Chord, whefgerged, a node: can exercise its nondeterministic choice
each noden creates Qpgn) links (wheren is the num- only among those nodes that are closer to it than any other
ber of nodes in the system) to other nodes, each chosemigide in its own ring.
dependently at random, such that the probability of choos+or example, consider a node in some ring4 and
ing a noden' as aneighboris inversely proportional to thgay the node closest ta on A is m’ at distancel2. Let
distance fromm to m/. In addition, each node maintaing;s say there are two nodpsandq belonging to the next
a link to its immediate successor on the ring. higher domain, which are distancé&and14 away from
The construction of Canonical Symphony, or Can. Since nondeterministic Chord only requires a link to
cophony, is similar to that of Crescendo. Each node cemy node between distandeand15, nodem may decide
ates links in its lowest-level domain just as in Symphony consider node to link to and not node. However,
but choosing onlylogn;] random links, wherey; is the sinceq is further away thann', nodem would conse-
number of nodes in that domain. At the next higher levejuently decide not to link to either or ¢ which is erro-
it chooses/logn;_;] links by the same random processieous. Instead, node is allowed to exercise its nonde-
wheren,;_; is the number of nodes in the domain at thaérministic choice only to choose among nodes which are
level, but retains only those links that are closer than kigtween distancesand12 away.
successor at the lower level. In addition, it creates a link
to its successor at the new level. 3
This iterative process continues up to the top level of
the hierarchy. Itis again possible to show that Cacophopygstry [9] and Kademlia [8] are hypercube versions of
achieves logarithmic routing when each node has degrggdeterministic Chord. We will describe Kademlia and
O(logn). Note that both Symphony and Cacophony réts Canonical version. Pastry is similar to Kademlia but
quire the ability to estimate the number of nodes in a das a two-level structure that makes its adaptation more
main, and it is possible to perform this estimation cheapdymplex. Kademlia defines the distance between two
and accurately [6]. nodes using the XOR metric rather than the clockwise dis-
Greedy Routing with a Lookahead: It is actually pos- tance on aring. In other words, the distance between two
sible to route in Symphony using onfy(log n/ loglogn) nodesm andm/’ is defined to be the integer value of the
hops using a modification to greedy routing. A node, iXOR of the two IDs. Just like in nondeterministic Chord,
stead of simply selecting the neighbor that is closestdach noden is required to maintain a link to any node
the destinationjooks aheadto examine its neighbors’with distance in[2*~!, 2¥), for each0 < k& < N. (For
neighbors and see which of them is closest to the des#isilience, Kademlia actually maintains multiple links for
nation. Having thus examined all possible pairs of routach of these distances but we ignore them in this discus-
ing steps, the node greedily chooses that pair of steisn.) Routing is still greedy, but works by diminishing
which reduces the remaining distance to the destinatigiis XOR distance rather than the clockwise distance.
the most. This modified greedy protocol requires only Our Canon construction for nondeterministic
O(logn/loglogn) hops for routing [6] which, in prac- Crescendo carries over directly to Kademlia. Each
tice, translates into about 40% fewer hops for most neede creates its links in the lowest-level domain just as
work sizes. dictated by Kademlia. At the next higher level, it again
Cacophony also achieves the same performance imes the Kademlia policy and applies it over all the nodes
provements as Symphony, by the use of greedy routiagthat level to obtain a set of candidate links (with the

3 Canonical Pastry/Kademlia : Kandy

same caveat as in nondeterministic Crescendo). It theation to build much more intelligent and efficient struc-
throws away any candidate whose distance is larger thares than a homogeneous Chord ring.
the shortest distance link it possesses at the lower leveMWhen “merging” different LANs at the next higher
The construction is repeated at successively higher levelgel of the hierarchy, we could still use the same ap-
of the hierarchy, just as normal. proaches as described earlier, for example, to construct
Crescendo. Each node creates links to some nodes out-
] side its LAN, but ensuring that the distance covered by
3.4 Canonical CAN : Can-Can the link is smaller than the distance to its closest neighbor
. . within the LAN (in the same ID space as earlier). Routin
CAN [7] was originally proposed as a network with COMrakes place hie(rarchically. At thF:a lowest Ievel,) the comg—
stant expected degree, but can be generalized to a | te graph is exploited to reach the appropriate node in

arithmic degree network. The set of node identifiers e hop. This node then forwards on the Crescendo ring

CAN form a binary prefix tree, i.e., a binary tree with lef h level of the hi h . lockwi
branches labeled 0 and right branches labeled 1. The Lt iﬁgnext evel of the hierarchy using greedy, clockwise

from the root to a leaf determines the ID of a node corre-
sponding to that leaf.

Since leaf nodes may exist at multiple levels of the tred;,6 Adapting to Physical-Network Proxim-
not all IDs are of the same length. We therefore make ity

IDs equal-length by treating a node with a shorter ID as h) h ¢ loit the lik
multiple virtual nodes, one corresponding to each paddifig) (€ constructions we have seen so far exploit the like-
ood of nodes within a domain being physically close

of this ID by different sequences of bits. For example, i) :
there are three nodes with IDs 0, 10 and 11, the first nd§e€ach other to produce natural adaptation to the physi-
is treated as two virtual nodes with IDs 00 and 01. Edg&&! neétwork. For example, in our hierarchy of Figure 1,
correspond exactly to hypercube edges: there is an efidgdem in the DB domain creates many of its links to

between two (virtual) nodes if and only if they differ iPl€r nodes in the DB domain, which are all expected to
exactly one bit. Routing is achieved by simple Ieft-tcpe physically close ten. However, this natural adaptation

right bit fixing, or equivalently, by greedy routing usin s likely to break down at the top Ievc_als of the hierarchy.
the XOR metric. or example, the top level of the hierarchy could have

hundreds of children domains spread all over the world.

Canonical CAN, Can-Can, is constructed in a by—novg th q . be in North Ameri hil
familiar fashion. Again, traditional CAN edges are conz0Me ot these domains may be in Nor merica whiie
glers are in Europe, Africa and Asia. In such a case,

structed at the lowest level of the hierarchy, and a nogd . ; .
y e would like to preferentially connect nodes in North

creates a link at a higher level only if it is a valid caNY

edge and is shorter than the shortest link at the lower Ie\/érlr.éﬁr'nc: dfeos Or':ggreggiiﬁé%ﬁg{tgo’:;]g'g?ﬁeﬁ?g dirsng:\]%he
Again, the properties of Can-Can are almost identical '

that of logarithmic-dimensional CAN constructed in th es_t_coast) and so on, without having to explicitly create
fashion we have described here. additional levels of _hl_erarchy to cap_ture such preferences.
In such a case, it is possible to introduce such prefer-
ential connections, axdaptation to the physical netwark
3.5 Further Generalizations in a transparent fashion that is independent of the DHT
structure being constructed. The prime insight behind our
The use of hierarchical routing offers us even more flexdelution is the following: If a node randomly samples
bility in choosing routing structure. We observe that theogher nodes in the system, and chooses the “best” of these
is no explicit requirement that the routing structure cre-to link to, the expected latency of the resulting link is
ated, and the routing algorithm used, be the same at difrall. (Internet measurements show that 32 is suf-
ferent levels of the hierarchy. For example, say the nodigent [5, 11].) Of course, in some systems, including
belonging to the same lowest level of the hierarchy aBaescendo, a node does not hawghaicein determining
all on the same LAN. In such a case, it may make sensbich other node it will link to. However, this choice can
to use a routing structure other than Chord to link thebe introduced in a simple fashion.
up. For example, there may be efficient broadcast primi-Recall that, in any DHT, all nodes have N-bit IDs that
tives available on the LAN which may allow setting up eeflect their position in the ring. Also recall that the rules
complete graph among the nodes. It may also be usefuldoedge creation are based on the IDs of the nodes. A sim-
implement messaging via UDP rather than TCP to redyue idea is to conceptually group nodes on the basis of the
communication overhead. As another example, it may top Tbits of their ID, i.e., all nodes which share the same
possible to leverage detailed information about the lockbit prefix are considered as belonging to a group whose
tion, availability, and capacity of nodes within an organlb is that prefix. Now, the rules for edge creation apply

only to this group ID rather than to the full IDs of nodes4.1 Hierarchical Storage and Retrieval
For example, assume 5-bit IDs, with 3-bit prefixes. Then,

a node wishing to connect to gro@po, can connect to DHTs are designed to store and retrieve content, consist-

any one node among those with ID§)00,01001,01010, N9 of key-value pairs, by hashing the key into the space
or 01011 (if they exist). [0,2Y). For convenience, we will refer to the hash value

of a key as the key itself. In a flat DHT, the hash space is

The routing network of the DHT can be visualized sim-_ . . .
ply as a network orgroups For example, the Chordpartltlonedacross the different nodes, and the key-value

rule for groups would simply require thaachnode in pair is stored at the unique node “responsible” for the par-
groupa connect taany arbitrary noden groupz + 2* for tition containing the key. The assignment of responsibil-

0 < k < T (In the unlikely case that no node exists i|ty is simple. Each node is responsible for all keys greater

N) rt}'nan or equal toits ID and less than the next larger existing
that group, it finds the next closest group that contains a

node ID on the ring Thus, there is no choice available
node, and connects to any node there.)

in determining where a key-value pair is stored. A query

Nodes within a group are then_connected ina separgig., specific key is answered simply by routing with the
dense network structure, which is necessary even othely o the “destination”, which automatically results in
wise for replication and fault tolerance. Routing happepsing terminating at the node responsible for that key.
in two stages: routing between groups to reach the des=I'he hierarchical design of a DHT offers more alterna-

tination group, and routing within the destination 9rOUR/es for content storage. When a nad&ishes to insert
to reach the destination node. The latter step often cQiy;

. . ntent, it can specify the contenstorage domaini.e.,
sists of only one hop, the cost of which can be reduced, 0 pecify g $

. L : Homain containing within which the content must be
avoided altogether, by smart replication. The size of t B red. Nodes can also specify the contentgcess do-
group prefixI" is chosen such that there is some const '

ted ber of nodes i h : i "’m%in, a superset of the storage domain, to all of whose
eXpected number of nodes In €ach group IIMESPECIVEJlyas the content is to be made accessible.

the total number of nodes in the system. Each node ca .
independently comput€, and it is possible to use smart %ay, node: requires a key-value pajk, v) to be stored

. . . -Wwithin storage domaiD;. In such a case, the key-value
ID selection to ensure that the variance in the resulting. . .
. . pair is stored at the node in; whose ID is closest to, but
group sizes is very small [11].

o . smaller thang, i.e., it is stored at the location dictated by
We can apply this idea of group-based construction §o. pHT consisting solely of nodes . If the content s

both hierarchical and flat DHTs. In a flat DHT such &% pe accessible within a larger access doniajn rather

Chord, we simply construct Chord on these groups @fan only withinD,, an additionapointerto the content

nodes, rather than on individual nodes. In a hierarchi-ciqred at the node i, whose ID is closest to, but
cal DHT such as Crescendo, we apply this 9r°“p'ba§$ﬁallerthank. '

construction to create linkat the top level of the hierar- A search for a keyk occurs by hierarchical, greedy

chy. (In general, we would apply group-based construgs, iing just as described earlier, with two changes. The
tion starting from whatever level does not reflect physmr#r-St change is that a node: along the path, which
network proximity.) Thus, the Cresqendo rings up to “}ﬁvitches routing from one level to the next, may have “lo-
level below the root are con_structed just_ as normal. At tEEI” content that matches the query key. A key-value pair
top level, however,_a node is (_)nly r_equwed to connect {B, v) will be returned byn as a query answer if and only
some other node with a prescribgefixrather than to the j¢ 1 4 ccess domain is no smaller than the domain defined
first node with ID greater than a prescribed value. by the current routing levél
We call this group-based constructiproximity adap- i the application allows only one value for each key,
tation, and we will refer to the versions of Chord anghen search can terminate when the first node along the
Crescendo using proximity adaptation @sord (Prox.) path finds a hit for the keyNote that this implies that a
andCrescendo (Prox.jespectively. query for content stored locally in a domain never leaves
the domainlf the application requires a partial list of val-
ues (say one hundred results) for a given key, the routing

4 Storing and Retrieving Content can stop when a sufficient number of values have been
found for the key.

In this section, we first discuss the basic mechanism forschorg actually inverts this definition to make a node responsible for
storing and retrieving content in a hierarchical fashioReys less than it and greater than the next smaller node ID. However, our
We then discuss how caching may be exploited by the sgfinition is an improvement on Chord's both in terms of efficiency and
tem. Finally, we discuss how to achieve partition balan&@ding complexiy. . . o

. L. '“This routing level can either be maintained as a field in the query
i.e., ensure that content is distributed across the nodeg,#3sage, or can be computed by finding the lowest common ancestor of

as even a fashion as possible. m and the query source.

The second change to the routing algorithm occurs b#e to have coordinated cache-replacement policies where
cause a hodex may havepointersto content matching the caches at different levels interact in determining what con-
key, without having the content itself. In such a case, thent to replace.
indirection is resolved and the actual content is fetched byComparison with current caching solutions:

m (and possibly cached at) before being returned to theCaching solutions for flat DHT structures all require
initiator of the query. that the query answer be cached all along the path used
Greedy routing thus automatically supports both hiege route the query. This implies that there needs to be
archical storage and access control. A query initiated tmany copies made of each query answer, leading to
a node automatically retrieves exactly that content thah@her overhead. Moreover, the absence of guaranteed
node is permitted to access, irrespective of whether pddsal path convergence implies that these cached copies

of this content are stored locally in a domain or globallycannot be exploited to the fullest extent. Thirdly, it is

not clear whether it would be possible to exploit locality

42 Cachi of access patterns to enable smart caching, or to devise
) aching smart cache-replacement policies to exploit the presence

The hierarchical routing of queries naturally extends & multiple cached copies.
take advantage of the caching of query answers. As we
have aIready seen, the convergence of inter-domain pagrhg Partition Balance
imply that, in each domaiD, a query@ for the same
key initiated by any node iD exits D through a com- So far, in all our DHT discussions, we have assumed that
mon nodepg, p which we call theproxy nodefor query each node selects an ID uniformly at random from the cir-
() in domainD. (This nodepg p is also responsible for cular hash space. Such a random ID selection process can
storing content with the same key and storage domia)n result in a large skew in the size of the patrtitions, i.e., por-
Thus, answers t) may be cached ai, p for any, or all, tion of the hash space managed by each node, for both
choices of the level of domaib in the hierarchy. flat and hierarchical DHTs. This skew may also lead to
We propose caching the answer to qu@rgit the proxy a consequent skew in terms of routing load on the nodes.
nodepg p at each level of the hierarchy encountered dhthere aren nodes in the system, the ratio of the largest
the path to the query’s answer. In our example of Figuret®, the smallest partition managed by node®igog” n)
say a node in domain DB issues a quéyywhose an- with high probability (w.h.p.) when nodes select IDs ran-
swer is outside the CS domain, but within Stanford. Theshomly [11].
the answer to a quer§ would be cached in all domains We have recently shown a simple modification to ran-
encountered on the path, namely at noplgs) s, and at dom ID selection which reduces this ratio to a constant of
po,cs- The cached content at each node is also annotateslh.p. [11] while ensuring that the number of messages
by alevelindicating the position in the hierarchy that theequired for a node joining or leaving is stil}(logn).
node is serving for the query. Spg cs would mark its The basic idea is simple. When a noedpins the system,
cached copy of)’s answer as being at leveé] andpg pp it continues to select an ID at random, and finds the node
would mark its copy as being at levl (If the same node n’ in the system “responsible” for that ID. Now, instead
is the proxy node for both CS and DB, it labels itself witbf just settling for that ID and splitting the partition of,
the smaller value, i.el,.) n locates thdargestpartition among the nodes that share
If nodes exhibit locality of access, it is likely that théhe same B-bit ID prefix as'. (B is chosen such that there
same key queried by a nodewould be queried by otherare only a logarithmic number of nodes with that prefix.)
nodes close tan in the hierarchy. Say another nodé This largest partition i®isected and the bisection point
initiates a query for the key queried by. The routing is made the ID of the new node Such a scheme ensures
algorithm ensures that the cached copy of the answethat the set of partitions and node IDs can be visualized as
discovered at the lowest-level domain which contains battbinary tree. Node deletions are handled similarly [11].
m andm/'. While the above scheme ensures that the partitioning
Cache ReplacementOur hierarchical caching schemef the global hash space across the nodes is more or less
also suggests an interesting cache-replacement poléssen, it does not ensure that the hash space is partitioned
Observe that cached content is annotated with levels, @&wenly at other levels of the hierarchy. Even partitioning at
that there is not much loss in efficiency if cached conteotver levels of the hierarchy provides both partition bal-
at the lower levels (i.e., larger level numbers) is throwance for local storage, and low variance in node degrees.
away, since one is likely to find another cached copy at thiée can modify the above scheme to ensure partition bal-
next higher level of the hierarchy. Therefore, the cachaace at all levels of the hierarchy.
replacement policy can preferentially evict cached con-Intuitively, when a node: joins a domainD, it ensures
tent annotated with larger level numbers. It is also pos#iat it is as “far apart” from the other nodes in the domain

10

Avg. # Edges/Node

17
16
15
14
13
12

11

10 E7

Fraction of Nodes

0.35 T
03
0.25 |-
0.2
0.15 |-
0.1 [

0.05 -

) 0) B ﬂ!:./,'/,

9
1024 2048 4096 8192 16384 32768 65536 5

Number of Nodes Number of Links

Figure 3: Average Number of Links per Node Figure 4: PDF of #Links/Node for a 32K node network

as possible. For example, if the first node in the domain
chose an ID with the left-most bit beiigthe second node
should ensure its ID begins withla When the third node
joins, it examines the two-bit prefixes of the previous two
nodes, say)1 and 10, and chooses its own prefix to be
one of00 or 11. Selecting the tofoglogn bits of an ID

in this fashion, and thus achieving partition balance in theg
lowest-level domains, proves sufficient to provide balance?,

all through the hierarchy. We omit further details and an <
evaluation of this scheme due to space constraints.

Levlels=1 (Chord) —

0
Q
<]

I
=)
=
=
>
<]

4.5
1024 2048 4096 8192 16384 32768 65536

5 Eval ua“on Number of Nodes

We now present an experimental evaluation of the differ- Figure 5: Average Number of Routing Hops

ent routing and path convergence properties of Crescendo.

a one-level hierarchywe notice that the number of links

is extremely close ting n irrespective of the number of

levels. We also observe that the number of links decreases

Our first set of experiments evaluates the number of linkéghtly as the number of levels increas€Bhe reason for

v/s number of routing hops tradeoff offered by Crescendlais drop in edges lies in Jensen’s inequality. To illustrate,

and shows that Crescendo is very similar to Chord. Alpnsider the merging of two ring$ and B with m nodes

our experiments for this subsection use a hierarchy witieach. The expected number®iodes between two con-

fan-out of 10 at each internal node of the hierarchy. ThgecutiveA nodes isl. However, the expected number of

number of levels in the hierarchy is varied from 1 (a flanter-domain links set up by aA node is less thai be-

structure) to 5. The number of nodes in the system is vaguseE (log(X + 1)) < log(E(X) + 1) for any random

ied from 1024 to 65536, and all nodes choose a randariableX > 0.)

32-bit ID. Figure 4 plots the distribution of the number of links for
We used two different distributions to assign nodes t32K-node network. We see that the distribution “flat-

positions in the hierarchy: (a) uniformly random assigtiens out” to the left of the mean db links/node as the

ment of each node to a leaf of the hierarchy (b) a Zipfiamumber of levels in the hierarchy increases. This is again

distribution of nodes where the number of nodes in tlexplained by our earlier observation. We observe also that

kt" largest branch (within any domain) is proportional tthe maximum number of links does not increase much at

1/k*-25. The results obtained with the two distributionall as the number of levels increases, which is good news.

were practically identical and here, we show graphs cor-Figure 5 depicts the average number of hops required

responding to the Zipfian distribution. to route between two nodes, as a function of the net-
Figure 3 plots the average number of links per node,aerk size. We see that the number of routing hops is

a function of the size of the network, for different numbefs5 logn + ¢, wherec is a small constant which depends

of levels in the hierarchy. Note that Chord correspondsda the number of levels in the hierarchy. The number of

5.1 Basic Routing Properties

11

hops required increases slightly when the number of lev- s . . . :

els in the hierarchy increases, which is explained by the 4 2500
corresponding drop in the number of links created. We r Chord (No Prox) | o
note, however, that this increase is at m@stirrespec- 6
tive of the number of levels in the hierarchy (even beyond 12
what we have depicted on this graph). g 11000 3
a4 {100 £
5.2 Adaptation to Physical-Network Prox- 3r Crescendo (No. ProxJ| 1000
imity 2 | ~Chord (Prox.) -~ 700
[- T " Crescendo (Prox.)
We now evaluate routing in terms of actual physical- 1 i i : i - 400

2048 4096 8192 16384 32768 65536

network latency, rather than in terms of the number of
Number of Nodes

hops used. All experiments hereonin use the following
setup: We used the GT-ITM [12] topology generator tGjq re 6: | atency and Stretch on Crescendo and Chord
produce a 2040-node graph structure modelling the in-
terconnection of routers on the internet. In this model,
routers are broken up into transit domains, with each tran- Chord (Prox.) ——
sit domain consisting of transit nodes. A stub domainis 90 X o 1) 2
attached to each transit node, and the stub domain is it- 750 | 4
self composed of multiple stub nodes interconnected inga W
graph structure. The latency of a link between two tranS 6%]
sit nodes is assigned to B60ms, with transit-stub links £ 450 L x i
being20ms and stub-stub links beirigns. g R
To construct a Crescendo network with a desired num-

Li

300 - i

ber of nodes, we uniformly attach an appropriate number 150 | R \ N

of Crescendo nodes to each stub node, and assume that the T

latency of the link from a Crescendo node toits stubnode © T\ o Tovei1 Lovelz Levels Levela
is1ms. This GT-ITM structure induces a natural five-level Query Locality Level

hierarchy describing the location of a node (root, transit

domain, transit node, stub domain, stub node). Figure 7: Latency as a function of query locality

We evaluate the performance of four different systems:
Chord and Crescendo, with and without proximity adaj$ & linear function oflog n, albeit with a smaller mul-
tation. Figure 6 depicts the performance of these fdiiplicative factor than earlier. Crescendo (Prox.), which
systems using two different measures on the y-axis. T#geS proximity adaptation at the top level of the hierar-
right axis shows the average routing latency, while the I6fty, again produces a constant stretch gffor all net-
axis shows thstretch which is the same quantity normalwork sizes, and thus continues to be considerably better
ized by the average shortest-path latency between any @n Chord (Prox.). These curves illustrate the important
nodes in our internet model. Thus, a stretcH @fplies scaling advantage of Crescendo-style bottom-up construc-
that routing on the overlay network is as fast as directln, which results in constant stretch, compared to ran-
routing between nodes on our model of the internet. ~ dom sampling to find a nearby node, whose performance
We observe that the routing latency of plain Chord i§ a function of the number of nodes in the system.
again linearly related tdogn, which is not too surpris-
ing. Plain Crescendo, on the other hand, fares much t§t3 Locality of Intra-domain paths
ter than Chord, and produces an almost constant stretch
of 2.7 even as the number of nodes increases. The reagémnow illustrate the advantages of intra-domain path lo-
why the stretch is constant is that an increase in the nueality. Again using our GT-ITM models, we compare the
ber of nodes only results in the lowest-level domain undexpected latency of a query as a function of its locality of
each stub node increasing in size. Thus, the “additioraicess. Thus, a “Top Level” query would be for content
hop” induced by the number of nodes quadrupling is gfresent anywhere in the system, a “Level 1" query initi-
fectively a hop between two nodes attached to the saated by a node would be for content within its own transit
stub, which costs onlgms in our model. domain, and so on. Figure 7 plots the latency as a function
When proximity adaptation is used, the stretch faf the locality of the query for three different systems: a
Chord (Prox.) improves considerably but is still ab@ut 32K-node Chord network with proximity adaptation, and
on a 64K-node network. Again, we notice that the streteh32K-node Crescendo network with and without prox-

12

imity adaptation. We do not show plain Chord since its 1 ; ; ; —— -
performance is off by an order of magnitude. Also note o9 | X g
that the use of proximity adaptation in Crescendo only g [-escen® (Lateney) R
improves the performance of top-level queries, since it ap- 0.7 F X N
plies only to the top level of the hierarchy. 06 | N
The left end-points of the lines depict the query Iatencyt 05 | e 4
for top-level queries and, as observed earlier in Figure 65 o4 - " Crescendo (Hops) |
Crescendo with proximity adaptation performs the best.3 3 ’ -
As the locality of queries increases, the latency drops >

raction

=

- <~ Chord (Latency) Chord (Hops)
drastically in Crescendo and becomes virtually zero at 4, L j i
Level 3, where all queries are within the same stub do- 0 L. L. A . L
main. On the other hand, Chord, even with proximity TopLevel Levell Level2 Level3 Level4
adaptation, shows very little improvement in latency as Domain Level

query locality increases.
This graph establishes two points: (a) search for Ioca|
content is extremely efficient in Crescendo, from which

gure 8: Overlap Fraction as a function of domain level

we deduce that local caching of query answers will im- Doma|ln Level Crei(;endo ggzrg
prove performance considerably, and (b) Chord does not 5 39 1273' .
ff locality of intra- i ths. :
offer good locality of intra-domain paths 3 3537 2502.7
5.4 Convergence of inter-domain paths Figure 9: Number of inter-domain links used

We now illustrate the advantages of inter-domain patte 32K nodes in the Crescendo/Chord network, and route
convergence for caching and multicast. a query from each of them to a single common randomly
Caching: Say a random nodeinitiates a queryy for chosen destination. The union of these 1000 different
arandom key. Let belong to domairD, and let the path paths form a multicast tree with the destination of the
taken by the query b&. Consider a second node chosequery being the source of the multicast. (Thus, the ac-
at randonfrom D which issues the same quepy and let tual multicast will transmit data along the reverse of the
P’ be the path taken by the query from this node. We dguery paths.) We then measure the expected number of
fine thehop overlap fractiono be the fraction of the path“inter-domain” links in this multicast tree (for different
P’ that overlaps with patt?. We define théatency over- definitions of “inter-domain”). This metric captures the
lap fractionto be the ratio of the latency of the overlapbandwidth savings obtained by path convergence, since
ping portion of P’ to the latency of the entire paf. The inter-domain links are likely to be both expensive and be
expected values of these quantities can be viewed as sinbandwidth bottleneck.
ple metrics capturing the bandwidth and latency savingsThe table in Figure 9 shows the expected number of
respectively, obtained due to the first node’s query ansvitstier-domain links used by Crescendo and by Chord (with
being cached along the query path. (We note that practipedximity adaptation) when the domains are defined at the
bandwidth savings would be much higher, because intfirst, second and third levels of the hierarchy. We see that,
domain bandwidth is generally much more expensive thign top-level domains, Crescendo uses ohfy4 of the
intra-domain bandwidth.) links used by Chord. When domains are defined as be-
Figure 8 depicts the expected value of the hop ovémg stub domains, Crescendo still uses only 15% as many
lap fraction and the latency overlap fraction for botlinks as Chord.
Crescendo and Chord (with proximity adaptation), as a
function of the level of the domain within which the nodes
are drawn. We see that the overlap fraction, for both hops Related Work
and latency, is extremely low for Chord, even for low-
level domains. On the other hand, the overlap fraction ihere have been many different Distributed Hash Table
creases considerably as the level of the domain increagesigns that have been proposed recently [7, 3, 9, 13, 6,
in Crescendo. As is only to be expected, the overlap fra, 15, 16, 17] all of which use routing structures that are
tion is higher for latency, since the non-overlapping hopariants of the hypercube. All of them can be viewed as
have very low latency. providing routing inO(log n) hops on am-node network
Multicast: To capture the improvement obtained imhen each node has deg@€fog n). (Some of these con-
terms of bandwidth savings for multicast, we use the fadtructions are for constant-degree networks but they may
lowing experiment. We choose 1000 random nodes frdm generalized to use balsg n, and thus have logarith-

13

mic number of links [15, 14].) [3] I. Stoica, R. Morris, D. Karger, M. Frans Kaashoek, and
Some of these networks also use locality heuristics [9, H. Balakrishnan, “Chord: A scalable peer-to-peer lookup

18, 13, 5, 11] to ensure that nodes nearby on the phys- service for internet applications,” iRroc. ACM SIG-

ical network are preferentially connected to each other. COMM 2001 2001.

In consequence, they achieve some convergence on intg# Frank Dabek, M. Frans Kaashoek, David Karger, Robert

domain paths due to this “clustering” effect. However, ~Morris, and lon Stoica, “Wide-area cooperative storage

such convergence is heuristic in nature and is dependent With CFS,” inProc. 18th ACM Symposium on Operating

on the number of nodes in the system, the characteristics SYStems Principles (SOSP 2002001, pp. 202-215.

of the underlying physical network and the relative stabilf5] K. Gummadi, R. Gummadi, S. Gribble, S.Ratnasamy,

ity of the different nodes. S.Shenker, and 1.Stoica, “The impact of DHT routing ge-
Another recent system which provides some DHT func- ©metry on resilience and proximity,” iRroc. ACM SIG-

tionality is SkipNet [19]. SkipNet behaves just like a nor- COMM, 2003.

mal DHT when routing for content outside the local do{6] G- S. Manku, M. Bawa, and P. Raghavan, “Symphony:

main (and thus provides no, or heuristic, convergence for Distributed hashing in a small worldProc. 4th USENIX

inter-domain paths). However, SkipNet provides explicit ~ SYMPOsium on Internet Technologies and Systems (USITS)

path locality when searching for content within the do- 2003. _

main. This locality is achieved by using a separate rout/] S. Ratnasamy, P. Francis, M. Handley, and R. M. Karp,

ing protocol. Although SkipNet provides this path local- A scalable gomez“t'addressab'e ”;twork' Hroc. ACM

ity only for a two-level hierarchy, it can be modified, us- SIGCOMM 20012001, pp. 1§1_17 : _

ing the Canon approach, to support hierarchies of arbig] P- Maymounkov and D. Mazieres, “Kademlia: A peer-to-

trary depth and also ensure a single routing protocol for Peer information system based on the xor metricPfoc.

all queries irrespective of the locality of the query. 1st Intl. Workshop on Peer-to-Peer Systems (IPTPS 2002)
SkipNet also offers storage of content within an arbi- 2002.)

trary storage domain, but at the expense of modifying th€] A- |- T. Rowstron and Peter Druschel, “Pastry: Scalable,

key of the content. This may be acceptable, or desirable, decentralized object location, and routlng for large-scale

for some applications such as DNS. Our aim, on the other PEe'-to-peer systems,” IRIP/ACM Intemational Confer-

hand. is to allow arbitrary storage domains V\;ithout modi- ence on Distributed Systems Platforms (Middleware 2001)
And, arbitrary storag _ 2001, pp. 329-350.

fying the key, which is necessary for true DHTfunctlonaI—10 PG K G di. and H. Garcia-Molina. “C

ity. Finally, SkipNet offers the additional ability to query:0] P Ganesan, K. Gummadi, and H. Garcia-Molina, “Canon

in a namespace. a feature not present in other DHTS. It in g major: Designing DHTs with hierarchical structure,

. . P RN P - o Tech. Rep., Stanford University, 2003.

is possible to inherit this feature by building a Canonical

version of SkipNet, the details of which we postpone tolyt] - S: Manku and P. Ganesan, "DHT design: A modular
future work. approach,” Submitted for publication. Available upon re-

quest.
[12] Ellen W. Zegura, Kenneth L. Calvert, and Samrat Bhat-
7 Conclusion tacharjee, “How to model an internetwork,” IREE In-
focom San Francisco, CA, March 1996, IEEE, vol. 2, pp.

We have described Canon, a general technique for con- 594-602.

structing hierarchically structured DHTs. We have show#3] Kirsten Hildrum, John D. Kubiatowicz, Satish Rao, and
how this technique can be applied to construct different Ben Y. Zhao, “Distributed object location in a dynamic
DHTs, Crescendo, Cacophony, Can-Can and Kandy. We Network,” inProc. 14th ACM SPAA2002, pp. 41-52.
demonstrated the advantages of hierarchical DHT cd¥é] D. Malkhi, M. Naor, and D. Ratajczak, “Viceroy: A scal-
struction and routing in terms of fault isolation, and quan- @ble and dynamic emulation of the butterfly,"fnoc 21st
tified the advantages of our design in terms of caching, ACM Symposium on Principles of Distributed Computing
bandwidth utilization, adaptation to the physical network, (PODC 2002) 2002, pp. 183-192.

hierarchical storage and hierarchical access control, [b§] F.Kaashoek and D. R. Karger, “Koorde: A simple degree-
means of experiments. optimal hash table,” iProc. 2nd Intl. Workshop on Peer-

to-Peer Systems (IPTPS 2003D03.

[16] G. S. Manku, “Routing networks for distributed hash ta-
References bles,” inProc. 22nd ACM Symp. on Principles of Distri-
uted Systems (PODC 2003l 2003.

[1] H. Simon, The Sciences of the ArtificiaMIT Press, 1996. [17] 1. Abraham, B. Awerbuch, Y. Azar, Y. Bartal, D. Malkhi,

[2] B. Lampson, “Designing a global name service,"Hroc. and E. Pavlov, “A generic scheme for building overlay
4th ACM Symposium on Principles of Distributed Comput- networks in adversarial scenarios,” Broc. Intl. Parallel
ing, Minaki, Ontario, 1986, pp. 1-10. and Distributed Processing Symppr 2003.

14

[18] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron,
“Topology-aware routing in structured peer-to-peer over-
lay networks,” inProc. Intl. Workshop on Future Direc-
tions in Distrib. Computing (FuDiCo 20022002.

[19] N. J. A. Harvey, M. Jones, M. Theimer, and A. Wolman,
“Skipnet: A scalable overlay network with practical local-
ity properties,” Proc. 4th USENIX Symposium on Internet
Technologies and Systems (USITZ)03.

15

