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ABSTRACT

Recently, there has been much excitement in the research
community over using social networks to mitigate multiple
identity, or Sybil, attacks. A number of schemes have been
proposed, but they differ greatly in the algorithms they use
and in the networks upon which they are evaluated. As a
result, the research community lacks a clear understanding
of how these schemes compare against each other, how well
they would work on real-world social networks with different
structural properties, or whether there exist other (poten-
tially better) ways of Sybil defense.

In this paper, we show that, despite their considerable dif-
ferences, existing Sybil defense schemes work by detecting
local communities (i.e., clusters of nodes more tightly knit
than the rest of the graph) around a trusted node. Our
finding has important implications for both existing and fu-
ture designs of Sybil defense schemes. First, we show that
there is an opportunity to leverage the substantial amount
of prior work on general community detection algorithms in
order to defend against Sybils. Second, our analysis reveals
the fundamental limits of current social network-based Sybil
defenses: We demonstrate that networks with well-defined
community structure are inherently more vulnerable to Sybil
attacks, and that, in such networks, Sybils can carefully tar-
get their links in order make their attacks more effective.
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1. INTRODUCTION

Avoiding multiple identity, or Sybil, attacks is known to
be a fundamental problem in the design of distributed sys-
tems [8]. Malicious attackers can create multiple identities
and influence the working of systems that rely upon open
membership. Examples of such systems range from commu-
nication systems like email and instant messaging to collabo-
rative content rating, recommendation, and delivery systems
such as Digg and BitTorrent. Traditional defenses against
Sybil attacks rely on trusted identities provided by a cer-
tification authority. But requiring users to present trusted
identities runs counter to the open membership that under-
lies the success of these distributed systems in the first place.

Recently, there has been excitement in the research com-
munity about applying social networks to mitigate Sybil at-
tacks. A number of schemes have been proposed that at-
tempt to defend against Sybils in a social network by us-
ing properties of the social network’s structure [7,29,32,33].
Unlike traditional solutions, these schemes require no cen-
tral trusted identities, and instead rely on the trust that is
embodied in existing social relationships between users.

All social network-based Sybil defense schemes make the
assumption that, although an attacker can create arbitrary
Sybil identities in social networks, he or she cannot establish
an arbitrarily large number of social connections to non-
Sybil nodes. As a result, Sybil nodes tend to be poorly
connected to the rest of the network, compared to the non-
Sybil nodes. Sybil defense schemes leverage this observation
to identify Sybils. They use various graph analysis tech-
niques to search for topological features resulting from the
limited capacity of Sybils to establish social links.

Our focus in this paper is on the graph analysis algorithms
behind the schemes. The literature on Sybil defense schemes
is still in its early stages; most papers describe new algo-
rithms, but none provide a common insight that explains
how all of these schemes are able to detect Sybils. Each
algorithm has been shown to work well under its own as-
sumptions about the structure of the social network and the
links connecting non-Sybil and Sybil nodes. However, it is
unclear how these algorithms would compare against each
other, on more general topologies, or under different attack
strategies. As a result, it is not known if there exist other
(potentially better) ways to mitigate Sybil attacks or if there
are fundamental limits to using only the structure of the so-
cial network to defend against Sybils.

In this paper, we take a first, but important, step towards
answering these questions. We decompose existing Sybil de-
fense schemes and demonstrate that at their core, the var-



ious algorithms work by implicitly ranking nodes based on
how well the nodes are connected to a trusted node. Nodes
that have better connectivity to the trusted node are ranked
higher and are deemed to be more trustworthy. We show
that, despite their considerable differences, all Sybil defense
schemes rank nodes similarly—nodes within local communi-
ties (i.e., clusters of nodes more tightly knit than the rest
of the network) around the trusted node are ranked higher
than nodes in the rest of the network. Thus, Sybil defense
schemes work by effectively detecting local communities.
The above insight has important implications for both ex-
isting and future designs of social network-based Sybil de-
fense schemes. First, it motivates us to investigate whether
a class of algorithms, known as community detection algo-
rithms [10], that attempt to find such clusters of nodes di-
rectly, could be used for Sybil defense. We find that it is
possible to use off-the-shelf community detection algorithms
to find Sybils. Unlike Sybil defense, community detection is
a well-studied and mature field, implying that our findings
open the door for researchers to exploit a variety of tech-
niques from a rich body of community detection literature.
Second, our insight also hints at the limitations of relying
on communities for finding Sybils. For Sybil defense schemes
to work well, all non-Sybil nodes need to form a single
community that is distinguishable from the group of Sybil
nodes.! In reality, however, users in many social networks
form multiple communities that are interconnected rather
sparsely. We show that, in these networks, it is hard for a
trusted node to distinguish Sybils from non-Sybils outside
its local community. Further, we demonstrate how Sybils
can launch extremely effective attacks by establishing just
a small number of links to carefully targeted nodes within
such networks. As systems are beginning to be built on top
of Sybil defense schemes [17,18,27], our findings question
the wisdom of building these systems without a thorough
understanding of the limitations of Sybil defense.

2. UNDERSTANDING SYBIL DEFENSE

As noted before, a variety of Sybil defense schemes have been
proposed, but each has been evaluated using different social
networks and attack strategies by the Sybils. Therefore, it
is not well understood how these different schemes compare
against each other, or how a potential user of these schemes,
such as a real-world social networking site, would select one
scheme over another.

2.1 The core of Sybil defense schemes

Given the problem of comparing competing Sybil defense
schemes, one approach would be to view the schemes as
complete coherent proposals (i.e., treat them as black boxes,
and compare them in real-world settings). Such an approach
is straight-forward and would provide useful performance
comparisons between a fized configuration of schemes over
a given set of social networks and attack strategies by the
Sybils. However, it would not yield conclusive information
on how a particular scheme would perform if either the given
social network or the behavior of the attacker should change.
It also does not allow us to derive any fundamental insights

'Many Sybil defense schemes impose this requirement im-
plicitly by assuming that the non-Sybil region of the net-
work is fast mizing [22], meaning a random walk of length
O(log N) reaches a stationary distribution of nodes.

into how these schemes work, which might enable us to build
upon and improve them.

An alternative approach is to find a core insight common
to all the schemes that would explain their performance in
any setting. Gaining such a fundamental insight, while dif-
ficult, not only provides guidance on improving future de-
signs, but also sheds light on the limits of social network-
based Sybil defense. However, we cannot gain such an in-
sight by treating each of these schemes as a black box, with
each carrying its own set of algorithms, optimizations, and
assumptions. Instead, we need to reduce the schemes to
their core task before analyzing them.

At a high level, all existing schemes attempt to isolate
Sybils embedded within a social network topology. Every
scheme declares nodes in the network as either Sybils or
non-Sybils from the perspective of a trusted node, effectively
partitioning the nodes in the social network into two distinct
regions (non-Sybils and Sybils). Hence, each Sybil defense
scheme can actually be viewed as a graph partitioning algo-
rithm, where the graph is the social network. However, the
quality and performance of the algorithm depends on the
inputs, namely, the network topology and the trusted node.

Most Sybil defense schemes include a number of use-
ful and practical optimizations that enhance their perfor-
mance in specific application scenarios. For example, Sybil-
Guard [33] and SybilLimit [32] have a number of design
features that facilitate their use in decentralized systems.
Similarly, SumUp [29] has optimizations specific to online
content voting systems. However, because our goal is to un-
cover the core graph partitioning algorithm, we study these
schemes independent of the assumptions about their appli-
cation environments as well as the optimizations that are
specific to those environments. Later in the paper, we show
that this approach not only offers hints for the designers of
future Sybil defense schemes, but also helps us understand
the characteristics of real-world social networks that make
them vulnerable to Sybil attacks.

2.2 Converting partitions to rankings

Even when viewing the schemes as graph partitioning al-
gorithms, comparing the different Sybil defense schemes is
not entirely straightforward. The output of each scheme de-
pends on the setting of numerous parameters. At a high
level, these parameters can be seen as making the partition-
ing between Sybils and non-Sybils either more restrictive or
permissive, thereby trading false positives for false negatives.
While the designers of the schemes offer rough guidelines
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Figure 1: Diagram of converting partitionings into a
ranking of nodes. Different parameter settings («, 3,
v) cause increasingly large partitions to be marked
as Sybils, thereby inducing a ranking.



Assumptions

Algorithm

Ranking

Cutoff

Evaluation

SybilGuard [33]

SybilLimit [32]

SybilInfer [7]

SumUp [29]

Non-Sybil region is
fast mixing [22]

Non-Sybil region is
fast mixing

Non-Sybil region is
fast mixing,
modified walks are
fast mixing

Non-Sybil region is
fast mixing, no
small cut between
collector and
non-Sybil region

Random walk
performed by each
node

Multiple random
walks performed
by each node

Bayesian inference
on the results of
the random walks

Creation of voting
envelope with
appropriate link
capacities around
collector

Varying random
walk length

Varying number of
random walks and
walk length

Probability of
node being
non-Sybil from
Bayesian inference

Varying the size of
the voting
envelope

Whether or not
walk intersection
occurs

Whether or not
tails of random
walks intersect

Threshold on the
probability that a
given node is
non-Sybil

‘Whether or not
nodes are within
the voting
envelope

Kleinberg
network [12]

Friendster,
LiveJournal,
DBLP, Kleinberg

Power-law
network [24],
LiveJournal

YouTube, Flickr,
Digg

Table 1: Overview of the properties and evaluation of social network-based Sybil defense schemes.

for choosing the parameter values (e.g., set a parameter to
O(log N) where N is the number of network nodes), there
can be considerable variation in the output from different
parameter settings that follow the guidelines. Given the dif-
ficulty in selecting the right parameter settings, we would
like to compare the schemes independent of the choice of
their respective parameters.

We studied the impact of changing parameters on the out-
put of the Sybil and non-Sybil partitions. We observed that
as the Sybil partition grows or shrinks in response to pa-
rameter changes, an ordering can be imposed on the nodes
added or removed.? That is, when the Sybil partition grows
larger, new nodes are added to the partition without remov-
ing nodes previously classified as Sybils. Similarly, when the
Sybil partition grows smaller, some nodes are removed from
the partition without adding any nodes previously classified
as non-Sybils. Figure 1 illustrates how different partition-
ings obtained by changing parameters can be converted into
an ordering or ranking of nodes.

Our observation suggests that one can view the Sybil de-
fense schemes as implicitly ordering or ranking nodes in the
network, while the parameter settings determine where the
boundary between the partitions, called the cutoff point,
lies. Changing the parameters slides the cutoff point along
the ranking, but the resulting partitions uphold the ob-
served ranking of nodes. Thus, we can compare the dif-
ferent schemes independently of their parameters by simply
comparing their relative rankings of the nodes.

2.3 Reduction of existing schemes

We reduce each Sybil defense scheme into its component
processes using the model presented in Figure 2. At its core,
each scheme contains an algorithm, which, given a trusted
node and a network, produces a ranking of the nodes in the
network relative to the trusted node. Then, depending on
the setting of various parameter values, the scheme creates
a cutoff, which is applied to the ranking and produces a
Sybil/non-Sybil partitioning.

The schemes that we examine in this paper are Sybil-
Guard [33], SybilLimit [32], Sybillnfer [7], and SumUp [29].
For each of these Sybil defense schemes, Table 1 identifies

While we do not formally prove that all parameters of any
Sybil defense scheme must induce an ordering, it is the case
for all schemes, environments, and parameters we analyzed.

the partitioning algorithm, how this partitioning induces a
ranking of nodes, and how the algorithm parameters deter-
mine a cutoff. We also describe the assumptions the schemes
make about their input environment (i.e., the structure of
non-Sybil and Sybil topologies), and briefly describe the net-
works that these schemes were evaluated upon. A more de-
tailed description of how these schemes map into our model
is included in the Appendices.

Although we only show how our model applies to four
well-known schemes, we believe that it could be applied to
other schemes as well. For example, a recent work pro-
poses a Sybil-resilient distributed hash table routing pro-
tocol [17, 18], by using social connections between users to
build routing tables. The protocol relies on random walks
much in the same manner as SybilGuard and SybilLimit, so
we believe our analysis would apply to it as well. Similarly,
Quercia et al. [27] recently proposed a Sybil defense scheme
that relies on a graph-theoretic metric called betweenness
centrality to calculate the likelihood of a node being a Sybil.
To apply our analysis, the centrality measure can be used
directly to induce a ranking of the nodes.

2.4 Rest of the paper

In this section, we have shown that existing Sybil defense
schemes all work by inducing an implicit ranking of the
nodes. We now take a closer look at these rankings, us-
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Figure 2: Diagram showing the processes involved in
a Sybil defense scheme. In brief, the scheme itself
can be split into an algorithm, which when given
a social network and a trusted node, produces a
ranking. The parameters to the scheme are used
to create a cutoff, which defines a Sybil/non-Sybil
partitioning from the ranking.



Figure 3: The synthetic network used in Section 3.1
for exploring the rankings. Each of the two commu-
nities contains 256 nodes.

ing them to compare the schemes across a wide range of
conditions. Our goal in the remaining sections is to better
understand the ranking algorithms underlying existing Sybil
defense schemes, and through this understanding, to provide
a basis for answering the following questions:

e Are the different Sybil defense schemes performing the
core task of ranking nodes in the same way, or is each
ranking unique? (Section 3)

e Are there other (potentially better) ways to obtain
these node rankings? (Section 4)

e What structural properties of the social network de-
termine how well the schemes work? (Section 5.1)

e Are the schemes robust against the different possible
Sybil attack strategies? (Section 5.2)

3. RANKINGS AND SYBIL DEFENSE

In this section, we develop a better understanding of the pro-
cess by which Sybil defense schemes compute node rankings
by comparing the rankings of the different schemes.

3.1 Rankings in synthetic networks

We start by examining the node rankings generated by the
schemes when run over a synthetic network topology, taken
from [3] and shown in Figure 3. In brief, this network is con-
structed using the Barabasi-Albert preferential attachment
model [4], and then rewired® to have two densely connected
communities of 256 nodes each, connected by a small num-
ber of edges.

3.1.1 Comparing node rankings

We randomly selected a node in one of the communities
as the trusted node and calculated the node rankings on
this synthetic network for the four Sybil defense schemes
previously discussed. We then examined how closely the
various rankings matched. To compare the rankings, we
use mutual information [28], which measures the similarity
of two partitionings of a set. In brief, mutual information
ranges between 0 and 1, where 0 represents no correlation
between the partitionings, and 1 represents a perfect match.

3In brief, the rewiring works as follows: Nodes are first ran-
domly assigned to two communities. Then, rewiring works
by selecting two links A < B and C <+ D where A and C are
in the same community and B and D are in the same com-
munity. These two links are replaced with the links A «— C
and B < D, thereby increasing the intra-community links
without changing the degree distribution or link count.

The results of this experiment are shown in the top graph
of Figure 4. For clarity, we only show the mutual infor-
mation between partitionings of SybilGuard and each of the
other three schemes (the other pairs are similar). The z-axis
denotes the size of the partition containing non-Sybils. For
example, the x-axis value of 10 divides the ranking into two
parts, one with the first 10 nodes in the ranking (marked as
non-Sybils) and the other with the rest of the nodes (marked
as Sybils). Thus, Figure 4 shows the mutual information be-
tween pairs of rankings at all possible cutoff points.

Figure 4 shows that the mutual information metric is max-
imized at a partitioning of size 256. Interestingly, it falls off
sharply before and after this cutoff value. To understand
this plot better, we investigated the strong correlation be-
tween the different node rankings at the partitioning size
of 256 and found that the 256 members that each scheme
assigned to the non-Sybil partition strongly corresponded
to the half of the network in Figure 4 that contained the
trusted node. This indicates that all schemes are biased
towards ranking nodes in the local community around the
trusted node higher than nodes outside of the community.
However, there is little correlation between the ordering of
nodes within the community, or the nodes outside of it, as
the mutual information is low between pairs of rankings be-
fore and after this point.

3.1.2 The common factor behind the rankings

One hypothesis that could explain our above observations is
that the nodes are being ranked such that nodes well con-
nected to the trusted node are more likely to be higher in the
rankings. Since there are several nodes within the local com-
munity of the trusted node that are equally well connected,
the ranking amongst these nodes is not strictly enforced,
i.e., the different schemes rank these nodes differently. Sim-
ilarly, several nodes outside the local community are equally
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Figure 4: Mutual information between pairs of rank-
ings and conductance of each ranking plotted for
various partitions for the synthetic network, using
schemes SybilGuard (SG), SybilLimit (SL), SumUp
(SU), and Sybillnfer (SI). A strong correlation is
observed at 256 nodes, indicating a high degree of
overlap between the partitionings, and a strong com-
munity structure in the non-Sybils, at this point.
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Figure 5: Mutual information between pairs of rank-
ings and conductance of each ranking plotted for
various partitions of the four schemes when run on
the Facebook network.

poorly connected and so their relative ranking is not con-
sistent across the different Sybil schemes. However, there
is a sharp distinction between the connectivity of nodes in-
side and outside the local community, and so the former are
ranked before the latter.

To confirm this hypothesis, we used a well known metric
called conductance [16] for determining how closely a sub-
set of nodes within a network are connected among them-
selves relative to the rest of the network. Conductance is
a widely used metric for evaluating the quality of commu-
nities within large networks. In brief, the conductance of a
set of nodes ranges between 0 and 1, with lower numbers
indicating stronger communities.

We plot the conductance of the non-Sybil subset in the
bottom of Figure 4 and notice that there is a sharp inflec-
tion point in the conductance at 256 nodes for all schemes.
This corresponds to the boundary between the two com-
munities in our synthetic network topology. Adding nodes
from another community sharply increases the conductance,
so all schemes assign higher rankings to nodes from within
the community around the trusted node than to nodes from
outside the community. This helps explain why the parti-
tions obtained from the rankings match very well when the
cutoff is set at the inflection point.

3.2 Rankings in real-world networks

In this section, we verify that the results we found for our
synthetic network also hold in real-world networks. First, we
wish to check that nodes are ranked in a biased manner, such
that nodes from the trusted node’s local community rank
higher than any other nodes. Second, we wish to test if the
point at which all Sybil defense schemes agree corresponds to
a trough in the conductance value, indicating the boundary
of the community around the trusted node.

To do show this, we repeat the experiment above for
two real world networks: Facebook, consisting of the social
network between Rice University graduate students taken
from Facebook [21], and Astrophysics, consisting of the co-
authorship network between astrophysicists [25]. Details on
these datasets are provided in Table 2.
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Figure 6: Mutual information between pairs of rank-
ings and conductance of each ranking plotted for
various partitions of the four schemes when run on
the Astrophysics network.

As we can see in Figures 5 and 6, the mutual informa-
tion reveals a local cutoff where all rankings have strong
correlation, and this cutoff is also characterized by a low
conductance value. Taken together, our experiments show
that all Sybil defense schemes are identifying a local commu-
nity that surrounds the trusted node, but that the ranking
of nodes they use to reach the local community (and that
they use after this point) is not strongly correlated.

3.3 Summary of observations

We now summarize the findings from our comparison of the
way in which various algorithms rank nodes:

e The ranking of nodes is biased towards those which
decrease conductance. Thus, nodes that are tightly
connected around a trusted node (i.e., those that form
subsets with lower conductance) are more likely to be
ranked higher.

e When there are multiple nodes that are similarly well
connected to the trusted node (i.e., they form subsets
with similar conductance) they are often ordered dif-
ferently in different algorithms.

e When the trusted node is located in a densely con-
nected community of nodes, with a clear boundary be-
tween this community and the rest of the network, the
nodes in the local community around the trusted node
are ranked before others.

4. APPLYING COMMUNITY DETECTION

In the previous section, we observed that all Sybil defense
schemes work by identifying nodes in the local commu-
nity around a given trusted node and ranking them as
more trustworthy than those outside. In this section, we
examine whether algorithms that are explicitly designed
to detect communities, called community detection algo-
rithms [2,3,6,19], can be used for Sybil defense in the same
manner as existing schemes. Our goal is to investigate the



potential for leveraging existing literature in community de-
tection to defend against Sybils. To this end, we first select
an off-the-shelf community detection algorithm and gener-
ate a node ranking from the algorithm. We then compare its
node ranking with those of existing Sybil defense schemes,
to determine if it is able to defend against Sybils with similar
accuracy.

4.1 Community detection

Community detection in networks is a well studied and ma-
ture field. There are numerous approaches that use differ-
ent mechanisms in order to detect communities and different
metrics to evaluate the quality of communities. Below, we
give a brief overview of how community detection schemes
work.

In this paper, we focus on local community detection
schemes [3], which do not require a global view of the net-
work.? Most of the local approaches work by starting with
one (or more [2]) seed nodes and greedily adding neighboring
nodes until a sufficiently strong community is found. For ex-
ample, Mislove’s algorithm [21] iteratively adds nodes that
improve the the normalized conductance (a metric closely re-
lated to conductance) at each step, and stops when the con-
ductance metric reaches an inflection point. For a detailed
survey of local community detection algorithms, we refer the
reader to the recent survey paper by Fortunato [10], which
discusses numerous algorithms for community detection.

As there is a large body of work on community detec-
tion, we could theoretically utilize any of these algorithms
as the ranking algorithm. For the evaluation presented in
this section, we selected Mislove’s algorithm [21], but with
the conductance metric from Section 3.1.2. We chose this
algorithm as it is conceptually easy to understand, since it
greedily minimizes conductance. However, our decision is
not fundamental, and there may be other algorithms that
perform better (especially since different community detec-
tion algorithms have been shown to perform better on dif-
ferent networks [15]). Rather, our goal here is simply to
investigate how well off-the-shelf community detection algo-
rithms are able to find Sybils.

In order to use community detection to find Sybils, we
need to generate a node ranking in the same manner as the
other schemes. To do so, we run Mislove’s community detec-
tion algorithm and record the node that it iteratively adds
at each step to minimize conductance. Note that we modify
the algorithm to not stop once a local trough is found; in-
stead we allow it to continue running until all of the nodes
have been added. This results in a node ranking that we
can use to compare against the other schemes.

4.2 Evaluating Sybil detection

We now evaluate the community detection algorithm against
our existing Sybil defense schemes. When comparing against
each of the Sybil defense schemes, we used experimental set-
tings similar to those described in the paper in which the

40ur decision to focus on local community detection algo-
rithms, as opposed to global ones, is due to the fact that they
work in a similar manner as existing Sybil defense schemes
by not assuming a global view. However, it has been shown
that different global community detection algorithms have
many of the same properties as local ones [15], indicating
that our results would likely hold for global algorithms as
well. We leave this to future work.

Network | Nodes | Links | Avg. degree

YouTube [20] 446,181 | 1,728,938 7.7
Astrophysicists [25] 14,845 119,652 16
Advogato [1] 5,264 43,027 16
Facebook [21] 514 3,313 13

Table 2: Statistics of datasets used in our evaluation.

scheme was proposed. This required us to split our evalu-
ation results in two separate sections; one for SybilGuard,
SybilLimit, and Sybillnfer and another for SumUp. The
split is necessary because SumUp was originally evaluated
for its ability to limit the number of votes Sybil identities can
place, and not for its ability to accurately detect Sybil nodes.
Thus, the experimental settings for evaluating SumUp are
quite different from those of the other schemes, necessitating
a separate evaluation.

A summary of the data sets that we use in the evaluation
is shown in Table 2. In addition to the datasets from the pre-
vious section, we examine YouTube, consisting of the social
network of users in YouTube [20], and Advogato, consisting
of the trust network between free software developers [1].

4.2.1 Measuring Sybil detection accuracy

In order to measure the accuracy of the various schemes at
identifying Sybils, we need a way to compute how often a
scheme ranks Sybil nodes towards the bottom of the ranking.
To do so, we use the metric Area under the Receiver Operat-
ing Characteristic (ROC) curve or A’. In brief, this metric
represents the probability that a Sybil defense scheme ranks
a randomly selected Sybil node lower than a randomly se-
lected non-Sybil node [9]. Therefore, the A" metric takes on
values between 0 and 1: A value of 0.5 represents a random
ranking, with higher values indicating a better ranking and
1 representing a perfect non-Sybil/Sybil ranking. Values be-
low 0.5 indicate an inverse ranking, or one where Sybils tend
to be ranked higher than non-Sybils. A very useful property
of this metric is that it is defined independent of the num-
ber of Sybil and non-Sybil nodes, as well as the cutoff value,
so it is comparable across different experimental setups and
schemes.

4.2.2  SybilGuard, SybilLimit, and Sybillnfer

For comparing SybilGuard, SybilLimit, and Sybillnfer to
the community detection algorithm, we use the same experi-
mental methodology as the most recent proposal, Sybillnfer.
Specifically, we use a 1,000 node scale-free topology [4] for
the non-Sybil part of the network. Among this set of non-
Sybil nodes, a small fraction (10%) of the nodes are com-
promised by an adversary and become Sybil nodes. These
100 malicious nodes are chosen uniformly at random. These
nodes then introduce additional Sybil identities into the net-
work, which form a scale free topology among themselves us-
ing the same parameters as non-Sybil region. We vary the
number of introduced nodes from 30 to 1,000, and average
the results over 100 experimental runs.

We present the results of this experiment in Figure 7.
We make two important observations: First, Sybillnfer and
community detection perform well, with improving accuracy
as more Sybils are added. The reason for this increase is that
the Sybil region becomes larger and, therefore, easier distin-
guish from the non-Sybil region. Second, both SybilGuard
and SybilLimit perform less well than the other two schemes.
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Figure 7: Accuracy for Sybil defense schemes, as
well as community detection (CD), on the synthetic
topology as we vary the number of additional Sybil
identities introduced by colluding entities.

This effect is because the number of Sybil nodes added is
lower than the bound enforced by these two schemes, as was
observed in the evaluation on Sybillnfer [7]. In more detail,
the Sybil region is connected to the non-Sybil region by 789
attack edges on the average; SybilGuard and SybilLimit en-
sure that no more that O(log N) nodes will be accepted per
attack edge, where N is the number of nodes in the network.
Since we only add a maximum of 1,000 Sybil nodes, neither
of these schemes marks many nodes as Sybils.

We now evaluate these schemes on a real-world social net-
work. Specifically, we repeat this experiment on the Face-
book graduate student network from before. This network
has similar density as the synthetic network, but is only half
the size. The results of this experiment are presented in Fig-
ure 8. As we can see, the community detection algorithm
performs favorably compared to the explicit Sybil defense
schemes, and all become more accurate as more Sybils are
added. A careful reader may note that the absolute accu-
racy of all schemes (community detection included) is sig-
nificantly lower than that observed above in Figure 7. The
underlying reason for this lower performance is a structural
characteristic of the Facebook network that makes it inher-
ently harder to distinguish Sybils from non-Sybils. We ex-
plore this limitation in greater detail in Section 5.

4.2.3 SumUp

Recall that SumUp provides a Sybil-resilient voting service.
To do so, SumUp defines a voting envelope wherein the links
are assigned a capacity so that all votes from within the enve-
lope can be collected. Outside this envelope, votes are only
collected if the voter can find an path with capacity to the
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Figure 8: Accuracy in the Facebook network as we
vary the number of additional Sybil identities intro-
duced by colluding entities.

vote collector (i.e., the trusted node). In order to apply com-
munity detection, we replace the process that determines the
voting envelope with a community detection algorithm, pick
the community with the lowest conductance value to be the
envelope, and unconditionally accept all votes from nodes
within this envelope. For nodes outside the envelope, we
assign all other links to have capacity one, and we collect
their votes if they can find a path with weight to any node
within the envelope. This difference is necessary since we
don’t assign weights to links within the envelope, as SumUp
does.

We evaluate and compare the community detection
scheme against SumUp on three different datasets: Ad-
vogato, Astrophysics, and YouTube. We follow the same
methodology used in the original SumUp evaluation [29]:
for each network, we inject 100 attack edges by inserting 10
Sybil nodes with links to 10 other uniformly randomly cho-
sen non-Sybil nodes. In order to cast bogus votes, each Sybil
node is further attached to a large number of Sybil identities
by a single link each. As in the original evaluation, we ran-
domly select a vote collector and randomly choose a subset
of non-Sybils as voters. We plot the average statistics over
five experimental runs for both SumUp and the community
detection algorithm.

To evaluate the accuracy of these schemes, we must define
a new metric. This is because SumUp does not classify all
nodes as Sybil or non-Sybil (needed for A’), but rather, only
those nodes which issue votes. Since subsets of both the non-
Sybil and Sybil nodes are issuing votes, ideally, the scheme
would only count the non-Sybil votes. Thus, our metric
should penalize the under counting of non-Sybil votes, as
well as the counting of any Sybil votes. The metric we define,
vote accuracy, is expressed as the number of non-Sybil votes
counted divided by the sum of the number of non-Sybil votes
issued and the number of Sybil votes counted. Vote accuracy
ranges between 0 and 1, where higher values represent better
performance.

Figure 9 presents the results of this experiment, as we
vary the number of non-Sybil voters (Sybils try to vote as
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Figure 9: Vote accuracy of SumUp and community
detection on three networks.



often as they can). The most salient result is that the ac-
curacy for SumUp varies widely across the three networks;
this is a direct result of using the envelope technique. In
certain networks, one or more of the Sybil nodes is accepted
into the envelope, and a large number of malicious votes are
cast. The results for the community detection algorithm are
significantly more stable, producing useful results once the
number of non-Sybil voters rises above 1%.

4.3 Implications

We began this section by observing that, since all Sybil de-
fense schemes appeared to be identifying local communities,
explicit community detection algorithms may be able to de-
fend against Sybils as well. It is interesting to note—even
without changing the experimental setup under which exist-
ing schemes were evaluated—our simple community detec-
tion algorithm gives comparable results to existing schemes.
Our results have both positive and negative implications for
future designers of Sybil defense schemes.

On the positive side, our results demonstrate that there is
a opportunity to leverage the large body of existing work on
community detection algorithms for Sybil defense [10]. Prior
work on community detection provides a readily available
source of sophisticated graph analysis algorithms around
which researchers could improve existing schemes and design
new approaches. On the negative side, relying on commu-
nity detection for performing Sybil defense fundamentally
limits the ability of these schemes to find Sybils in many
real-world graphs. We explore these limitations in the next
section.

S. LIMITATIONS OF SYBIL DEFENSE

In the previous sections, we showed that Sybil defense
schemes work by effectively identifying nodes within tightly-
knit communities around a given trusted node as more trust-
worthy than those farther away. In this section, we investi-
gate the limitations of relying on community structure of the
social network to find Sybils. More specifically, we explore
how the structure of the social network impacts the per-
formance of Sybil defense schemes and how attackers with
knowledge of the structure of the social network can leverage
it to launch more efficient Sybil attacks.

Since social network-based Sybil defense schemes use the
structure of social networks to distinguish the Sybil nodes
from the non-Sybil nodes, we begin by asking the following
question: Are there networks where it is hard to tell these
two types of nodes apart? In other words, could there be net-
works where the non-Sybil nodes look like Sybils or where it
would be easy for Sybil nodes to masquerade as non-Sybils?

Intuitively, one would expect networks where the non-
Sybil region is comprised of multiple, small, tightly-knit
communities that are interconnected sparsely to be more
vulnerable to Sybil attacks. In such networks, nodes within
one community might mistake non-Sybil nodes in another
community for Sybils, due to limited connectivity between
the communities. Furthermore, an attacker can easily dis-
guise Sybil nodes as just another community in the network
by establishing a small number of carefully targeted links
to the community containing the trusted node. Next, we
verify this intuition using experiments over synthetic and
real-world social networks where the non-Sybil nodes have
different community structures and the Sybil nodes use dif-
ferent attack strategies.

(a) Initial

(b) Intermediate (c) Final
Figure 10: Illustrations of the synthetic networks
used in Section 5.1 (the actual networks are much
larger). Non-Sybils are dark green and Sybils light
orange. While the non-Sybil regions of (a), (b), and
(c¢) show increasing amounts of community struc-
ture, all non-Sybil regions have the same number of
nodes and links, and degree distribution.

5.1 Impact of social network structure

We first examine the sensitivity of Sybil defense schemes to
the structure of the non-Sybil region. As in Sections 3 and
4, we analyze synthetic networks and then show that the
results from these simple cases apply to real-world networks
as well.

We first generate a Barabasi-Albert random synthetic net-
work [4] with 512 nodes and initial degree m = 8. This
results in a random power-law network with approximately
3,900 links, and without any community structure. We then
iteratively generate a series of networks by rewiring [3] five
links in same manner as in Section 3 (resulting in a network),
then rewiring five more links (resulting in another network),
and so on, until only five links remain between the two com-
munities of 256 nodes each (resulting in a final network).
The output is a series of networks that all have the same
number of nodes, number of links, and degree distribution,
but are increasing in the level of community structure that
they exhibit. Figure 10 gives a illustration of the initial,
intermediate, and final networks.

We use this series of networks to evaluate how well
Sybil defense schemes perform on networks with increasing
amounts of community structure. To do so, we treat each
of these networks as the non-Sybil region, and we randomly
attach a Sybil region of 256 nodes using 40 links. We then
evaluate how well the existing schemes are able to detect
Sybils by using the A" metric. The result of this experi-
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Figure 11: Accuracy of Sybil defense schemes

on synthetic networks with increasing community
structure induced by rewiring. With high levels of
community structure, the accuracy of all schemes
eventually falls to close to random.



Network Nodes | Links | Modularity
Facebook undergrad [21] 1,208 43,043 0.278
Advogato [1] 5,264 43,027 0.318
Wikipedia votes [13] 7,066 100,736 0.350
URV email [11] 1,133 | 5451 0.504
Astrophysicists [25] 14,845 | 119,652 0.621
Facebook grad [21] 514 3,313 0.644
High-energy physics [14] 8,638 24,806 0.690
Relativity [14] 4,158 | 13,422 0.790
Table 3: Size and modularity of the real-world

datasets used in our evaluation. We assume all the
graphs to be undirected and use the largest con-
nected component.

ment for the final 16 networks are shown in Figure 11. It
can clearly be seen that the Sybil defense schemes perform
much better in the networks with less community structure
than in those with more community structure. In fact, when
there is a high level of community structure, the Sybil de-
fense schemes perform close to what would be expected with
a random ranking (indicated by a A’ value of 0.5). Thus, the
effectiveness of these schemes is very sensitive to the level of
community structure present in the non-Sybil region of the
network.

Next, we examine whether this observation holds in real-
world networks. To do so, we collected a set of real-world
networks that have varying levels of community structure,
shown in Table 3. In order to measure the level of com-
munity structure present in the networks, we use the well-
known metric modularity [26]. In brief, modularity ranges
between -1 and 1, with 0 representing no more community
structure than a random graph. Strongly positive values
indicate significant community structure and strongly nega-
tive values indicate less community structure than a random
graph. As can be observed in the table, these eight networks
have modularity value ranging from 0.28 to 0.79, indicating
moderate to strong levels of community structure.

We conducted a similar experiment to the one above,
treating these networks as the non-Sybil region, attaching
a Sybil region, and evaluating the accuracy of Sybil defense.
However, since these networks are of very different scales, we
created a power-law Sybil region for each network with one-
quarter the number of Sybils as there are non-Sybils, and at-
tached these Sybil regions to the non-Sybils randomly with
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Figure 12: Accuracy of Sybil defense schemes on
real-world networks from Table 3 with various levels
of community structure. Significantly worse perfor-
mance is observed as the level of community struc-
ture increases.
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Figure 13: Illustrations of the synthetic networks
used in Section 5.2 (the actual networks are much
larger). Non-Sybils are dark green and Sybils light
orange. With decreasing k, the Sybil nodes place
their links closer to the trusted node.

a number links equal to 5% of the links between non-Sybil
nodes.

The results of this experiment are shown in Figure 12. We
observe a clear trend: As the level of community structure
increases, evidenced by increasing modularity, the perfor-
mance of the Sybil defense schemes falls close to random.
In fact, a correlation coefficient of -0.81 is observed between
the modularity value and the A’ metric, demonstrating that
increasing levels of community structure are strongly anti-
correlated with the ability to distinguish Sybils. This poor
accuracy also corresponds well with recent work [23] that
has suggested that many real-world networks may not be as
fast-mixing as was previously thought. Thus, as observed
above for synthetic networks, Sybil defense schemes are ex-
tremely sensitive to the level of community structure present
in real-world networks as well.

5.2 Resilience to targeted Sybil attacks

We now examine the sensitivity of Sybil defense schemes to
Sybil attacks that leverage knowledge of the structure of the
social network to establish links to a targeted subset of nodes
in the network. Recall that all schemes assume that the Sybil
nodes are allowed to create only a bounded number of links
to non-Sybils. When evaluating the schemes, the authors
of these schemes assume that the attacker establishes these
links to random nodes in the network. We now explore how
this one aspect of the attack model (random link placement
to non-Sybils) can affect the performance of Sybil defense
schemes by allowing the Sybils a level of control over where
those links are placed. As before, we first examine the be-
havior using synthetic networks and then examine real-world
networks.

To create the synthetic network, we use the methodology
from Section 5.1, with rewiring done until only 40 links re-
main between the two communities of 256 nodes each. We
then create a series of scenarios where we increasingly allow
the Sybils more control over where their links to non-Sybils
are placed. Specifically, instead of requiring the Sybil links
to be placed randomly over the entire non-Sybil region, we
allow the Sybils to place these links randomly among the k
nodes closest to the trusted node, where closeness is defined
by the ranking given by the community detection algorithm
used in Section 4. In all cases, the number of Sybil-to-non-
Sybil links remains the same. Thus, as k is reduced, the
Sybils are allowed to target their links closer to the trusted
node. We then calculate the accuracy of the Sybil defense
schemes. An illustration of these networks is shown in Fig-
ure 13.



Figure 14 presents the results of this experiment. We see a
decrease in accuracy as the Sybils are allowed to place their
links closer to the trusted node. This is a result of the Sybil
nodes being placed higher in the Sybil defense scheme’s rank-
ing, and therefore being less likely to be detected. From this
simple experiment, it is clear that the performance of Sybil
defense schemes is highly dependent on the attack model,
depending (for example) on not just upon the number of
links the attacker can form, but on how well those links can
be targeted.

We then repeat the same experiment using the Facebook
graduate student network. The results of this experiment
are shown in Figure 15, and are even more striking than the
previous experiment. As the attackers are allowed more con-
trol over link placement (i.e., as k is reduced), the accuracy
first falls to no better than random, before dropping sig-
nificantly below 0.5. This indicates that the Sybil defense
schemes are ranking Sybils significantly higher than non-
Sybils, meaning the schemes are admitting Sybils and block-
ing non-Sybils. The reason for this is the strong community
structure present in the Facebook network combined with
the stronger attack model: as the Sybils target their links
more carefully, they appear as part of the trusted node’s
local community and are therefore more highly ranked.

5.3 Implications

In this section, we explored how the performance of Sybil
defense schemes is affected by the structure of the social
network and by the ability of the attacker to exploit the
structure of the social network to launch targeted attacks.
Based on our understanding of how Sybil defense schemes
work, we hypothesized that networks with well-defined com-
munity structure would be more vulnerable to Sybil attacks.
We verified our hypothesis by demonstrating that, as the
non-Sybil region contains more significant community struc-
ture, the detection accuracy of all schemes falls significantly
and the schemes are vulnerable to targeted Sybil attacks.
Our analysis reveals fundamental limitations of existing
Sybil defense schemes that arise out of their reliance on com-
munity structure in the network. Our list of limitations is
by no means exhaustive; other vulnerabilities of relying on
community detection exist. For example, a recent study has
shown that identifying communities reliably in a wide range
of real-world networks is a notoriously difficult task [15].
‘We hope that, by pointing out these limitations, we moti-

Area under ROC curve (A)

Figure 14: Accuracy of Sybil defense schemes on
synthetic networks when Sybils are allowed to target
their links among the closest k£ nodes to the trusted
node. As the Sybils place their links closer (lower
k), the accuracy of all schemes falls.

Area under ROC curve (A)

Figure 15: Accuracy of Sybil defense schemes on
the Facebook network when Sybils are allowed to
target their links among the closest £ nodes to the
trusted node. As the Sybils place their links closer,
all schemes begin ranking Sybil nodes higher than
non-Sybils (as evidenced by the A’ below 0.5).

vate the need for Sybil defense schemes to be evaluated on a
wider range of social networks and attack models. Our find-
ings also point to a need to develop Sybil defense schemes
that work by leveraging different network features (or addi-
tional information beyond the network structure) than ex-
isting schemes, allowing Sybil defense to be effective where
now it is not.

6. CONCLUDING DISCUSSION

In this paper, we have taken the first steps towards develop-
ing a deeper understanding of how the numerous proposed
social network-based Sybil defense schemes work. We found
that, despite their considerable differences, all Sybil defense
schemes rely on identifying communities in the social net-
work. Unfortunately, we also discovered that this reliance
on community detection makes the schemes fundamentally
vulnerable to Sybil attacks when operating over networks
where the non-Sybil nodes form strong communities.

In light of these negative results, we look for alternative
approaches to Sybil defense that could be deployed in prac-
tice. In this section, we first focus our discussion on addi-
tional challenges that arise when deploying social network-
based Sybil defense schemes in practice. We then discuss
two ways to improve Sybil defenses moving forward. We
present our discussion points as questions and answers.

Are links in social networks hard to form? All the
Sybil defense schemes discussed in this paper make the as-
sumption that Sybils can only form a certain number of
links to non-Sybils. However, it remains an open question
whether this is true in any online social network of today; it
is clear that, at least in some social networks, the assump-
tion does not hold [5].

Are Sybils necessarily bad? In all of the Sybil defense
schemes, it is assumed that the presence of Sybils is evi-
dence of misbehavior, and as such, no non-Sybil should in-
teract with a Sybil. However, there are legitimate reasons
why a user might wish to create multiple identities. For ex-
ample, users may wish to partition their identity into one
that is used to interact with co-workers, and another that is
used to interact with friends and family (e.g., the multiple
email addresses that many people use today). Users posting
videos to YouTube may wish to post under pseudonyms in
order to avoid revealing their real-world identity while still
using a personal account to rate videos and post comments.



Since the mere presence of users with multiple accounts is
not necessarily indicative of misbehavior, what we should
be concerned with is not necessarily the presence of Sybils,
but, rather, the use of Sybils for misbehavior. Detecting
Sybils and simply excluding them from a system is only one
particularly draconian way of accomplishing this.

Should Sybil defenses move towards Sybil toler-
ance? Instead of explicitly identifying Sybils like Sybil-
Guard, SybilLimit, and Sybillnfer, a system could aim to
instead just prevent Sybils from gaining access to extra privi-
leges. SumUp, for example, attempts to limit the votes com-
ing from Sybil nodes by limiting the effect of votes from po-
tential Sybil regions. Instead of explicitly identifying nodes,
the protocol seeks to limit their ability to disproportionally
affect the resulting vote count. As a result, the system does
not try to prevent users from creating multiple identities, but
rather, ensures that by doing so, they are unable to gain any
additional privileges. We believe that building Sybil toler-
ance into applications may require more effort, and is clearly
less general than identifying Sybils, but allows application
designers to sidestep the arms race of locating Sybils in the
social network.

Should Sybil defenses leverage more information?
Given the inherent limitations of relying solely on the so-
cial network in order to defend against Sybils, an attractive
way to improve on these schemes is to give Sybil defense
schemes additional information. As a simple example, sup-
pose a Sybil defense scheme were given a list of nodes, one in
each of the different communities within the network, who
were either known to be Sybils, or known to be non-Sybils.
In this case, it is clear that this additional information could
be used by community detection algorithms to accurately
differentiate between communities containing Sybil and non-
Sybil nodes. In contrast, current Sybil defense schemes are
given only a single trusted node as input and consequently,
they perform poorly.

As another example, recent work has suggested that activ-
ity between users may be a better predictor of the strength
of the social link between them [30,31]. These studies indi-
cate that even in networks where users accept friend requests
from arbitrary sources, users engage in shared activity (e.g.,
exchanging messages) with only a limited subset of their
friends. Thus, having additional information about user ac-
tivity could help weed out weak social connections, including
links from Sybil nodes.

Finally, for all of the work that has focused on social
network-based Sybil defenses, it is unclear how far we are
from having these ideas applied to actual deployed systems.
However, as digital identities become more important, it is
clear that the potential for fraud, deception, and other mis-
behavior will increase, thereby necessitating Sybil defenses.
Understanding the benefits, limitations, and tradeoffs as-
sociated with alternative approaches to Sybil defense is an
important step towards making this happen.
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APPENDIX

A. ANALYSIS OF SYBILGUARD

Assumed social network topology: SybilGuard [33] as-
sumes that the non-Sybil region is fast mixing [22], meaning
that after O(logn) hops (where n is the number of non-
Sybils), the probability distribution of the last node on a ran-
dom walk reaches the stationary distribution. SybilGuard
assumes that the entire network (the Sybil region combined
with the non-Sybil region) is not fast mixing.
Partitioning algorithm: SybilGuard uses constrained
random walk for marking nodes as non-Sybil or Sybil. It
marks a suspect node as non-Sybil if the random walk from
the trusted node and the suspect intersect, otherwise the
suspect is marked as a Sybil.

Node ranking by partitioning algorithm: In order
to generate a ranking, we conduct random walks from the
trusted node. We start with a walk length 1 and increase it
to k, where k is the length of the random walk such that all
nodes in the network are marked as non-Sybil. The order
in which nodes are marked as non-Sybil in these increas-
ingly long random walks imposes a ranking. In the rare case
when all the nodes in the network are not marked as non-
Sybil using a single random seed and a long walk length,
we conduct a series of random walks with different random
seeds to induce a ranking for the remaining nodes.
Determining cutoff: SybilGuard uses O(y/nlogn) ran-
dom walks to gather samples from the non-Sybil region of
n nodes. For a social network with O(logn) mixing time,
based on the birthday paradox, two non-Sybil nodes with
v/n samples from the non-Sybil region will have an intersec-
tion with high probability. SybilGuard relies on an estima-
tion procedure for determining the appropriate length of the
random walk, and consequently, the cutoff value.

B. ANALYSIS OF SYBILLIMIT
Assumed social network topology: SybilLimit [32]

makes the same assumptions about the network as Sybil-
Guard.

Partitioning algorithm: SybilLimit performs O(y/m) in-
dependent random walks of length O(logn) from each node.
Two conditions must be satisfied for the trusted node to
mark a suspect as a non-Sybil. The first condition—called
the intersection condition—requires that the last edge of one
of the random walks of the trusted node and the suspect
must intersect. The second condition—called the balance
condition—limits the number of non-Sybils per attack edge.
Each tail of a random walk is assigned a “load” that is not
allowed to exceed a given threshold; the load is incremented
each time the trusted node marks another suspect as a non-
Sybil.

Node ranking by partitioning algorithm: SybilLimit
has two primary parameters for controlling the number of
nodes marked as non-Sybil in the network—the number of
random walks from each node and the length of these walks.
As these parameters are increased, greater numbers of nodes
are marked as non-Sybil. Similar to SybilGuard, we infer a
ranking based on the order in which nodes are marked as
non-Sybil.

Determining cutoff: Similar to SybilGuard, SybilLimit
relies on an estimation procedure to find length of random
walk and the number of random walk required. These two
parameters impose a cutoff.

C. ANALYSIS OF SYBILINFER

Assumed social network topology: Sybillnfer [7] makes
the same assumption as SybilGuard. Sybillnfer also makes
a further assumption that the modified random walks are
fast mixing in real social networks.

Partitioning algorithm: Sybillnfer performs multiple
random walks from each node to sample nodes from the
non-Sybil region. It further uses a Bayesian inference tech-
nique to determine the probability of any node in the system
being marked as non-Sybil.

Node ranking by partitioning algorithm: Since Sybil-
Infer assigns each node a probability of being a non-Sybil,
the nodes can be ranked based on this probability. We con-
duct 30 runs of Sybillnfer with different random seeds, and
use the average probability over all the runs to determine
the final ranking of the nodes.

Determining cutoff: Sybillnfer partitions the nodes based
on a threshold value for the probability of a node being non-
Sybil.

D. ANALYSIS OF SUMUP

Assumed social network topology: SumUp assumes
that the min-cut between the vote collector (i.e., the trusted
node) and non-Sybil nodes occurs at the collector, and that
the min-cut between Sybils and the non-Sybils occurs at the
attack edges.

Partitioning algorithm: SumUp partitions nodes based
on whether their vote is accepted or not. Nodes whose
votes are accepted are treated as non-Sybils, whereas nodes
whose votes are subject to capacity constraints are treated
as Sybils.

Node ranking by partitioning algorithm: SumUp de-
cides whether a vote will be collected or not by defining a
voting envelope within which all votes are collected and out-
side of which votes are constrained to one per link out of
the envelope. The size of the voting envelope is controlled
by the parameter C),q., which is the maximum number of
votes that can be collected by the trusted node. In order
to rank nodes, we increase Ciqex from 1 to k, where k is
the value for which the voting envelope contains the entire
network. The order in which these nodes are added to the
voting envelope induces a ranking.

Determining cutoff: C),,, determines the size of the vot-
ing envelope and serves as the cut-off parameter.



