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Abstract

Cooperative peer-to-peerapplicationsare designedto
share theresourcesof each computerin an overlaynet-
work for thecommongoodof everyone. However, users
do not necessarilyhavean incentiveto donateresources
to the systemif they can get the system’s resourcesfor
free. This paperpresentsarchitecturesfor fair sharing
of storage resourcesthat are robust against collusions
amongnodes. We showhow requiring nodesto pub-
lish auditablerecordsof their usagecangivenodeseco-
nomicincentivesto report their usage truthfully, andwe
presentsimulationresultsthat showthe communication
overheadof auditing is small and scaleswell to large
networks.

1 Intr oduction

A large number of peer-to-peer (p2p) systems
have beendevelopedrecently, providing a general-
purposenetwork substrate[10, 11,13, 14, 16] suit-
able for sharing files [6, 7], among other appli-
cations. In practice,particularly with widespread
p2p systemssuchas Napster, Gnutella,or Kazaa,
many usersmay chooseto consumethe p2p sys-
tem’s resourceswithout providing any of their own
resourcesfor the useof others[1]. Usershave no
naturalincentiveto provideservicesto theirpeersif
it is not somehow requiredof them.

This paperconsidersmethodsto designsuch re-
quirementsdirectly into the p2p system. While
we could take a traditional quotaenforcementap-
proach,requiringsomekind of trustedauthorityto
give a user“permission”to storefiles, suchnotions
arehardto createin anetwork of peers.Why should
somepeersbeplacedin apositionof authorityover
others?If all nodeswereto publishtheir resource
usagerecords,directly, whereothernodesareaudit-
ing thoserecordsasapartof thenormalfunctioning
of thesystem,we might be ableto createa system
wherenodeshavenaturalincentivesto publishtheir
recordsaccurately. Ideally, we would like to design

a systemwherenodes,actingselfishly, behave col-
lectively to maximizethe commonwelfare. When
sucha systemhasno centralizedauthoritywith to-
tal knowledgeof thesystemmakingdecisions,this
becomesa distributed algorithmic mechanismde-
sign (DAMD) problem[9], a currentareaof study
which combinescomputationaltractability in theo-
retical computersciencewith incentive-compatible
mechanismdesignin theeconomicsliterature.

To illustrate the power of sucheconomicsystems,
we focuson thespecificproblemof fair sharingin
p2p storagesystems,althoughour techniquescan
potentiallybeextendedto discussfairnessin band-
width consumptionandotherresources.Section2
discussesadversarialmodelsthat a storagesystem
must be designedto address.Section3 discusses
differentapproachesto implementingfairnesspoli-
cies in p2p storagesystems. Section4 presents
some simulation results. Finally, Section 5 dis-
cussesrelatedwork andSection6 concludes.

2 Models

Our goal is to supporta notionof fair sharingsuch
as limiting any given node to only consumingas
muchof the network’s storageasit providesspace
for othersonits localdisk. A centralizedbroker that
monitoredall transactionscouldaccomplishsucha
feat,but it would not easilyscaleto large numbers
of nodes,andit wouldform asinglepointof failure;
if thebroker wasoffline, all file storageoperations
wouldbeunableto proceed.

We will discussseveral possibledecentralizedde-
signsin Section3, wherenodesin thep2pnetwork
keeptrackof eachothers’usage,but first weneedto
understandthe threatssucha designmustaddress.
It is possiblethat somenodesmay wish to collude
to corruptthesystem,perhapsgainingmorestorage
for eachotherthanthey collectively provide to the
network. Weconsiderthreeadversarialmodels:
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collusion Nodes,actingon their own, wish to
gainanunfair advantageover thenetwork, but
they have no peerswith which to collude.

Minority collusion A subsetof thep2pnetwork is
willing to form a conspiracy to lie abouttheir
resourceusage. However, it is assumedthat
mostnodesin thep2pnetwork areuninterested
in joining theconspiracy.

Minority bribery Theadversarymaychoosespe-
cific nodesto join the conspiracy, perhapsof-
fering thema bribe in the form of unfairly in-
creasedresourceusage.

Thispaperfocusesprimarilyonminority collusions.
While briberyis perfectlyfeasible,andwemaywell
even be able to build mechanismsthat are robust
againstbribery, it is entirelyunclearthat thelower-
level p2p routing and messagingsystemscan be
equallyrobust. In studyingroutingsecurityfor p2p
systems,Castroet al. [3] focusedonly on minority
collusions.Minority briberywouldallow verysmall
conspiraciesof nodesto defeatthe securerouting
primitives. For the remainderof this paper, we as-
sumethecorrectnessof theunderlyingp2psystem.

We notethattheability to consumeresources,such
asremotediskstorage,is a form of currency, where
remoteresourceshave more value to a nodethan
its local storage.Whennodesexchangetheir local
storagefor others’remotestorage,thetradebenefits
bothparties,giving anincentive for themto cooper-
ate.As such,thereis noneedfor cashor otherforms
of money to exchangehands;thestorageeconomy
canbeexpressedstrictly asabartereconomy.

3 Designs

In this section,we describethreepossibledesigns
for storageaccountingsystems.For all of thesede-
signs,we assumethe existenceof a public key in-
frastructure,allowing any nodeto digitally sign a
documentsuchthatany othernodecanverify it, yet
it is computationallyinfeasiblefor othersto forge.

Likewise, for any of thesedesigns,it is imperative
to ensurethat nodesare actually storing the files
they claim to store. This is guaranteedby the fol-
lowing challenge mechanism.For eachfile a node
is storing,it periodicallypicks a nodethat storesa
replicaof the samefile asa target, andnotifiesall
otherreplicasholdersof thefile thatit is challenging

thattarget.Thenit randomlyselectsafew blocksof
the file andqueriesthe target for the hashof those
blocks.Thetargetcananswercorrectlyonly if it has
the file. The target may askanotherreplicaholder
for a copy of thefile, but any suchrequestduringa
challengewouldcausethechallengerto benotified,
andthusableto restartthechallengefor anotherfile.

3.1 Smart cards

The original PAST paper[7] suggestedthe useof
smartcardsto enforcestoragequotas. The smart
cardproducessignedendorsementsof a node’s re-
queststo consumeremotestorage,while charging
that spaceto an internalcounter. Whenstorageis
reclaimed,the remotenodereturnsa signedmes-
sagethat thesmartcardcanverify beforecrediting
its internalcounter.

Smartcardsavoid the bandwidthoverheadsof the
decentralizeddesignsdiscussedin thispaper. How-
ever, smartcardsmustbeissuedby atrustedorgani-
zation,andperiodicallyre-issuedto invalidatecom-
promisedcards.This requiresabusinessmodelthat
generatesrevenuesto cover thecostof runningthe
organization.Thus,smartcardsappearto beunsuit-
ablefor grassrootsp2psystems.

3.2 Quota managers

If eachsmartcardwasreplacedby a collectionof
nodesin the p2p network, the samedesignwould
still be applicable.We candefinethe manager set
for a node to be a set of nodesadjacentto that
nodein theoverlaysnodeindentifier(nodeId)space,
making them easyfor other partiesin the overlay
to discover andverify. Eachmanagermustremem-
ber the amountof storageconsumedby the nodes
it managesandmustendorseall requestsfrom the
managednodesto store new files. To be robust
againstminority collusion,a remotenodewould in-
sist thata majority of themanagernodesagreethat
agivenrequestis authorized,requiringthemanager
setto performaByzantineagreementprotocol[4].

Thedrawbackof thisdesignis thatrequestapproval
hasarelatively highlatency andthenumberof mali-
cousnodesin any managersetmustbelessthanone
third of thesetsize. Furthermore,managerssuffer
no direct penaltyif they grant requeststhat would
becorrectlydenied,andthuscouldbevulnerableto
briberyattacks.
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Auditing

While the smart card and quotamanagerdesigns
arefocusedon enforcingquotas,an alternative ap-
proachis to require nodesto maintain their own
recordsandpublishthem,suchthatothernodescan
auditthoserecords.Of course,nodeshavenoinher-
ent reasonto publishtheir recordsaccurately. This
subsectiondescribeshow wecancreatenaturaleco-
nomicdisincentivesto nodeslying in their records.

3.3.1 Usagefiles

Every nodemaintainsa usage file, digitally signed,
which is availablefor any othernodeto read. The
usagefile hasthreesections:

� the advertisedcapacitythis nodeis providing
to thesystem;� a local list of (nodeId,fileId) pairs,containing
theidentifiersandsizesof all filesthatthenode
is storinglocally onbehalfof othernodes;and� a remotelist of fileIdsof all thefilespublished
by thisnode(storedremotely),with theirsizes.

Together, the local andremotelists describeall the
creditsand debits to a node’s account. Note that
the nodeIdsfor the peersstoring the files are not
storedin the remotelist, sincethis informationcan
be found using mechanismsin the storagesystem
(e.g.,PAST). We saya nodeis “under quota,” and
thus allowed to write new files into the network,
when its advertisedcapacityminus the sum of its
remotelist, charging for eachreplica,is positive.

Whena nodeA wishesto storea file F1 on another
nodeB, firstB mustfetchA’susagefile to verify that
A is underquota.Then,two recordsarecreated:A
addsF1 to its remotelist andB adds � A � F1 � to its
local list. This is illustratedin Figure1. Of course,
A might fabricatethe contentsof its usagefile to
convinceB to improperlyacceptits files.

We mustprovide incentives for A to tell the truth.
To gamethe system,A might normally attemptto
either inflate its advertisedcapacityor deflatethe
sumof its remotelist. If A wereto increaseits ad-
vertisedcapacitybeyond the amountof disk it ac-
tually has,this might attractstoragerequeststhatA
cannothonor, assumingthe p2p storagesystemis
operatingat or nearcapacity, which is probablya
safeassumption.A might compensateby creating
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Figure1: A p2pnetwork with local/remotelists.

fraudulententriesin its local list, to claim thestor-
ageis beingused. To prevent fraudulententriesin
either list, we definean auditingprocedurethat B,
or any othernode,mayperformonA.

If B detectsthatF1 is missingfrom A’s remotelist,
then B can feel free to deletethe file. After all,
A is no longer “paying” for it. Becausean audit
could be gamedif A knew the identity of its au-
ditor, anonymouscommunicationis required,and
can be accomplishedusing a techniquesimilar to
Crowds [12]. So long asevery nodethat hasa re-
lationshipwith A is auditingit at randomlychosen
intervals, A cannotdistinguishwhetherit is being
auditedby B or any othernodewith files in its re-
motelist. Wereferto thisprocessasanormalaudit.

Normalauditing,alone,doesnotprovideadisincen-
tive to inflation of the local list. For every entry in
A’s local list, thereshouldexist anentryfor thatfile
in anothernode’sremotelist. An auditorcouldfetch
theusagefile from A andthenconnectto everynode
mentionedin A’s local list to testfor matchingen-
tries.Thiswoulddetectinconsistenciesin A’susage
file, but A couldcolludewith othernodesto pushits
debtsoff its own books. To fully audit A, the au-
ditor would needto audit thenodesreachablefrom
A’s local list, andrecursively auditthenodesreach-
able from thoselocal lists. Eventually, the audit
would discover a cheatinganchor wherethebooks
did not balance(seeFigure2). Implementingsuch
a recursive audit would beprohibitively expensive.
Instead,we requireall nodesin the p2p overlay to
performrandomauditing. With a lower frequency
thantheir normalaudits,eachnodeshouldchoose
a nodeat randomfrom thep2p overlay. The audi-
tor fetchestheusagefile, andverifiesit againstthe
nodesmentionedin that file’s local list. Assuming
all nodesperformtheserandomauditson a regular
schedule,every nodewill be audited,on a regular
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Figure 2: A cheatingchain, wherenodeA is the
cheatinganchor.

basis,with highprobability.

How high?Consideranetwork with n nodes,where
c � n nodesareconspiring.Theprobabilitythatthe
cheatinganchoris not randomauditedby any node
in oneperiod is 
 n � 2

n � 1 � n� c �
1� e � 0 � 368, and the

cheatinganchorwould bediscoveredin threeperi-
odswith probabilityhigherthan95%.

Recall that usagefiles aredigitally signedby their
node.Oncea cheatinganchorhasbeendiscovered,
its usagefile is effectively asignedconfessionof its
misbehavior! This confessioncanbe presentedas
evidencetoward ejectingthe cheaterfrom the p2p
network. With the cheatinganchorejected,other
cheaterswho dependedon thecheatinganchorwill
now beexposedandsubjectto ejection,themselves.

We note that this design is robust even against
bribery attacks,becausethe collusion will still be
discoveredand the cheatersejected. We alsonote
that since everybody, including auditors,benefits
whencheatersarediscoveredandejectedfrom the
p2pnetwork, nodesdohaveanincentive to perform
theserandomaudits[8].

3.3.2 Extensions

Selling overcapacity As describedabove, a node
cannotconsumemore resourcesfrom the network
thanit providesitself. However, it is easyto imag-
ine nodeswho want to consumemore resources
than they provide, and, likewise, nodeswho pro-
vide more resourcesthan they wish to consume.
Naturally, this overcapacitycould be sold, perhaps
throughanonlinebiddingsystem[5], for real-world
money. Thesetradescould bedirectly indicatedin
the local andremotelists. For example,if D sells
1GB to E, D canwrite (E, 1GB trade)in its remote
list, andE writes(D, 1GBtrade)in its local list. All

theauditingmechanismscontinueto function.

Reducing communication Another issueis that
fetchingusagelogs repeatedlycould result in seri-
ouscommunicationoverhead,particularlyfor nodes
with slow netconnections.To addressthis, we im-
plementedthree optimizations. First, rather than
sendingthe usagelogs through the overlay route
used to reach it, they can be sent directly over
the Internet: one hop from the target nodeto the
anonymizing relay, and one hop to the auditing
node.Second,sinceanentryin a remotelist would
be auditedby all nodesreplicatingthe logs, those
replicascanalternatelyaudit thatnodeto sharethe
costof auditing.Third, we canreducecommunica-
tion by only transmittingdiffs of usagelogs, since
thelogschangeslowly. Wemustbecarefulthatthe
anonymity of auditorsisn’t compromised,perhaps
usingversionnumbersto actascookiesto trackau-
ditors. To addressthis, the auditor needsto, with
someprobability, requestthecompleteusagelogs.

4 Experiments

In this section,we presentsomesimulationresults
of the communicationcostsof the quotamanagers
andtheauditingsystem.For oursimulations,weas-
sumeall nodesarefollowing therulesandnonodes
arecheating.Both storagespaceandfile sizesare
chosenfrom truncatednormal distributions1. The
storagespaceof eachnode is chosenfrom 2 to
200GB, with an averageof 48GB. We varied the
averagefile size acrossexperiments. In eachday
of simulatedtime,1%of thefilesarereclaimedand
republished. Two challengesaremadeto random
replicasperfile anodeis storingperday.

For quotamanagers,we implementedCastroetal.’s
BFT algorithm[4]. With a managersetsizeof ten,
theprotocolcantoleratethreenodeswith byzantine
faultsin any managerset. For auditing,normalau-
dits areperformedon averagefour timesdaily on
eachentryin anode’s remotelist andrandomaudits
aredoneonceperday. We simulatedbothwith and
without theappend-onlylog optimization.

Our simulations include per-node overhead for

1Thebandwidthconsumedfor auditingis dependenton the
number, rather than the size, of files being stored. We also
performedsimulationsusingheavy-tailedfile sizedistributions
andobtainedsimilar results.
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astry-stylerouting lookups as well as choosing
one node, at random, to createone level of in-
direction on audit requests. The latter provides
weakanonymity sufficient for our purposes.Note
thatwe only measurethecommunicationoverhead
due to storageaccounting. In particular, we ex-
cludethecostof p2poverlaymaintenanceandstor-
ing/fetchingof files, sinceit is not relevant to our
comparison.Unlessotherwisespecified,all simula-
tions aredonewith 10,000nodes,285 files stored
pernodes,andanaveragenodelifetime of 14days.

4.1 Results

Figure3 shows theaverageupstreambandwidthre-
quired per node, as a function of the numberof
nodes(theaveragerequireddownstreambandwidth
is identical). The per-nodebandwidthrequirement
is almostconstant,thusall systemsscalewell with
thesizeof theoverlaynetwork.

Figure 4 shows the bandwidth requirementas a
functionof thenumberof filesstoredpernode.The
overheadsgrow linearly with the numberof files,
but for auditing without caching, it grows nearly
twice as fast as the other two designs. Sincep2p
storagesystemsare typically used to store large
files, this overheadis not a concern.Also, thesys-
tem could charge for an appropriateminimum file
sizeto giveusersanincentive to combinesmallfiles
into largerarchivesprior to storingthem.

Figure5 shown the overheadversusaveragenode
lifetime. The overheadfor quotamanagersgrows
rapidly whenthenodelifetime getsshorter, mostly
from the cost in joining and leaving managersets
andfrom voting for file insertionsfor new nodes.

Our simulationshave also shown that quotaman-
agersaremoreaffectedby thefile turnover rate,due
to thehighercostfor voting. Also, thesizeof man-
agersetsdeterminesthe vulnerability of the quota
managerdesign.To toleratemoremaliciousnodes,
we needto increasethesizeof managersets,which
would resultin ahighercost.

In summary, auditingwith cachinghasperformance
comparableto quotamanagers,but is not subjectto
briberyattacksandis lesssensitive to thefractionof
maliciousnodes.Furthermore,in a variety of con-
ditions,theauditingoverheadis quitelow — only a
fractionof a typicalp2pnode’s bandwidth.
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5 RelatedWork

Tangler [15] is designedto provide censorship-
resistantpublicationoverasmallnumberof servers
(i.e., � 30), exchangingdatafrequentlywith onean-
other. To maintainfairness,Tanglerrequiresservers
to obtain“certificates”from otherserverswhichcan
be redeemedto publishfiles for a limited time. A
new servercanonly obtainthesecertificatesby pro-
viding storagefor theuseof otherserversandis not
allowed to publishanything for its first monthon-
line. As such,new serversmusthave demonstrated
good serviceto the p2p network beforebeing al-
lowedto consumeany network services.

TheEternityService[2] includesanexplicit notion
of electroniccash,with which userscan purchase
storagespace.Oncepublished,a documentcannot
bedeleted,evenif requestedby thepublisher.

Fehr andGachter’s study consideredan economic
gamewhereselfishnesswasfeasiblebut couldeas-
ily bedetected[8]. Whentheir humantestsubjects
weregiventheopportunityto spendtheir money to
punishselfishpeers,they did so,resultingin a sys-
tem with lessselfishbehaviors. This result helps
justify thatuserswill bewilling to pay thecostsof
randomaudits.

6 Conclusions

This paper has presentedtwo architecturesfor
achieving fair sharingof resourcesin p2pnetworks.
Experimentalresultsindicatesmall overheadsand
scalability to large numbersof files andnodes. In
practice,auditingprovides incentives, allowing us
to benefitfrom its increasedresistanceto collusion
andbriberyattacks.
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