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Abstract

This paper presents a resource management framework for providing predictable quality of service in Web servers.
The framework allows Web server and proxy operators to ensure a minimal quality of service, expressed as an average
request rate or average response time, for a certain class of requests (called a service), irrespective of the load imposed
by other requests. A measurement-based admission control framework determines whether a service can be hosted
on a given server or proxy, based on the measured statistics of the resource consumptions and the desired QoS levels
of all the co-located services. In addition, we present a feedback-based resource scheduling framework that ensures
that QoS levels are maintained among admitted, co-located services. Experimental results obtained with a prototype
implementation of our framework on trace-based workloads show its effectiveness in providing desired QoS levels
with high confidence, while achieving high average utilization of the hardware.

1 Introduction
As the World Wide Web experiences increasing commercial and mission-critical use, users and content providers
expect high availability and predictable performance. Towards this end, work is being done in scalable Web in-
frastructure [15, 2], Web content caching [21, 12], provision of differentiated services in the Internet [23, 17], and
differentiated services in Web servers and proxies [4, 6, 19, 10, 8].

This paper focuses on the latter of these problems, namely providing predictable and differentiated services in
Web servers and proxies. Web site and proxy operators often wish to ensure that requests for certain Web pages or
requests from certain clients receive a minimal level of quality of service, regardless of the load imposed by other
requests. We present a feedback-based resource scheduling framework that is able to ensure a specified QoS level
(e.g., average throughput or average response time) for a class of requests, despite varying resource demands (CPU,
memory, disk and network bandwidth) and competing requests, as long as the collective resource requirements do not
exceed the available resources in the system.

A closely related problem arises in Web hosting sites and content distribution networks [1] who wish to provide
predictable QoS levels to multiple virtual sites hosted on the same system. The problem for the hosting server or
proxy operator is to co-locate virtual sites in such a way that (1) the contracted QoS levels are maintained with high
probability, and (2) the average hardware utilization is high. To address this problem, we present a novel framework
for measurement-based admission control of Web services that allows proxy and Web hosting operators to decide if
a given service (virtual site) can be co-located with other sites on the same machine or cluster (capacity planning),
while maintaining service contracts for each site and achieving high hardware utilization.

With our approach, a new service with unknown load and resource demand characteristics is first operated in
“trial” (best effort) mode, and on a server node with plenty of available resources. During this phase, the site is
exposed to its regular live workload, and both its load characteristics (average throughput and response time) as well
as its demand for various resources (CPU, memory, disk and network bandwidth) are recorded by the system. Using
this data, the system calculates a statistical envelope of load as well as demand for server resources over a period of
time.

Based on this statistical envelope and using our framework, the hosting server or proxy operator can predict the
resource demands (and thus the cost) needed to guarantee a certain QoS level, and can offer the content provider an
appropriate contract (service level agreement). Once the content provider has contracted for a given QoS level (which
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can vary based on time of day, day of week, etc.), the hosting server/proxy operator can use the service’s measured
statistical envelope to decide which services can be co-located on a given server node or cluster.

Once a set of services have been co-located on a given server node, our resource scheduling framework guarantees
that (1) all service contracts are satisfied, as long as the total resource requirements do not exceed the capacity of the
hardware, and (2) unused resources are allocated to services whose current load exceeds the contracted service rate.
All the while, load and resource demands of each service are continually monitored to detect changes in a site’s
workload and resource demands, which may require relocation of the service or a change in contract.

In this paper, we describe the design and implementation of our measurement-based admission control and
scheduling framework. We present results of a performance evaluation based on synthetic and trace-based work-
loads including both static and dynamic content requests. The results suggest that our framework is able to predict
which sites can be co-located with high confidence and that it can satisfy service contracts while maintaining high
resource utilization.

The rest of this paper is organized as follows. Section 2 presents some background on resource management
and quality of service in Web servers. The design of our framework is presented in Section 3, and our prototype
implementation is briefly described in Section 4. Section 5 presents experimental results obtained with the prototype.
Related work is covered in Section 6 and Section 7 offers some conclusions.

2 Background
Providing predictable and differentiated quality of service to Web users on an end-to-end basis requires appropriate
resource management in the Internet, in the Web server or proxy that provides the requested resource, and in some
cases (e.g., when using streaming media) in the client’s browser and operating system. In this paper, we focus on the
provision of predictable services in the Web server or proxy. Solving the problem in the server/proxy is an important
part of the overall solution, because user-perceived Web performance (i.e., response time) is increasingly dominated
by server delays, especially when contacting busy servers [7].

The framework presented in this paper builds on prior work in mechanisms for performance isolation in operating
systems [18, 11, 24, 6, 10] and in proportional share scheduling policies for CPU and disk bandwidth [16, 9]. Mech-
anisms like Resource Containers [6] allow fine-grained resource accounting and scheduling for individual services
in a Web server. When combined with proportional resource schedulers, they enable the provision of differentiated
services, where a predetermined fraction of the server’s resources is guaranteed to be available to each service. This
paper extends this prior work by presenting a complete framework for the provision of predictable services, that is,
the ability to meet a predetermined average throughput or average response time for each service.

For the purposes of this paper, we define “provision of predictable quality of service” as the ability of a Web
server or proxy to guarantee, with high probability, that the server is able to either (1) handle a given minimal average
request rate, or (2) ensure a given maximal average response time, for a given set of URLs (a virtual site) and/or a
given client community during a certain period of time. Request rate and average response time are measured here
as averages over an interval that is much larger than the time it takes to handle a single request. A related problem in
Web server QoS is to ensure a maximal response time or a minimal data rate for individual Web requests. We do not
consider the latter problem in this paper.

3 A framework for measurement-based QoS
In this section, we present our framework for providing measurement-based quality of service in server systems. The
framework consists of (i) an admission control framework for admitting services into the system and determining their
contracts, and (ii) a resource scheduling framework that ensures contracts are met despite varying resource demands.

We begin by defining some terminology. A system consists of the hardware and software resources necessary for
hosting services. A service defines a set of requests, such that the resources used in serving the requests are accounted
for and scheduled separately from resources used to serve requests in different services. Thus, a service constitutes a
resource principal in the system. The set of requests belonging to a service is typically defined by the requested URL
and/or or the identity of the client issuing the request.

CPU time, memory pages, disk and network bandwidths each define a resource class. An operator operates
systems (servers and proxies) that are used for hosting services on behalf of one or more content providers. The
content provider provides the software and data necessary to process requests to a service.

A QoS metric is a service specific metric that measures the service’s performance and hence the quality of service
it is providing to its users. Example QoS metrics are average number of requests per second or average response time.
A contractual target is a specific value of the QoS metric agreed upon between the operator and the content provider.
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The contract between operator and content provider is said to be in violation if, despite sufficient load on the service,
the system is unable to provide sufficient resources to the service in order for it to meet its contractual target.

The service type determines the strength of a contract. For guaranteed services, a system must always provide
sufficient resources to a service in order to meet its contract. Predictive services allow a weaker contract where
probabilistic contract violations are acceptable. Best-effort services do not have contractual targets and are only
allocated remaining resources once the contractual targets of guaranteed and predictive services are met.

The rest of this section describes the admission control framework, the resource monitor, and the feedback-based
scheduling framework which form the basis of our approach for providing capacity planning and predictable quality
of service.

3.1 Admission Control Framework
Prior to settling on a contract for a service, the operator must determine the resource needs required in order to meet
its contractual target. The goal is to ensure that the system remains capable of meeting the contractual targets of
guaranteed services, while those of predictive services should still be met with sufficiently high probability. Services
of type best-effort do not need to go through the admission control phase; the resource scheduling framework ensures
that the contractual targets for guaranteed and predictive services are met before any resources are given to best-effort
services.

The problem of determining resource needs is complicated by (i) varying client load (measured in requests per
second) on the service over time, and (ii) varying resource demands to sustain a given load. For example, the load
during a 24-hour period in our trace from IBM’s main Web site (www.ibm.com) varies by a factor of five. Resource
demands can vary for a given load when, for example, the average size of the requested content differs at various
times, when changing request locality causes different amounts of disk traffic per request, or when different amounts
of processing are required for generating dynamic content.

Before admitting a service into the system, the service goes through a trial phase where its resource requirements
are determined. For this purpose, the service is hosted on a trial system, which has plenty of uncommitted resources.
(The trial system may be a special server node set aside for this purpose, or it may be a normal live system that hosts
other services under contract). The trial system is assumed to have the same hardware characteristics as the system in
which the service is to be admitted. The resource usages and the QoS metric (e.g., throughput or response time) for
the service are monitored for a period of time that is deemed long enough to determine the service’s resource needs
with high confidence. The required contractual target can either be already specified by the content provider, or the
operator can determine the feasible targets that can be supported.

The load on many Web sites tends to follow a periodic pattern, with a fixed period
�

(e.g., 24 hours). Let �
denote one of � discrete, fixed length intervals in the period

�
. The length of the interval and the period are tunable

depending upon the characteristics of the client load. We describe the average resource need during the interval � of
service � for resource class � by a family of random variables ���	��
��� .

The QoS metric can exceed the contractual target when there are available resources in the system after the
contractual targets of all services are met. However, the recorded resource need does not include excess resources
consumed when the QoS metric exceeds the contractual target.

The random variables ���	��
��� are continuously sampled based on usage reports by the resource scheduling frame-
work. For this purpose, samples are collected for each interval. Let ��������� ��� 
��� denote the resource usage for service� for resource class � during interval � expressed as a percentage of the total resources in class � . Let ��������
��� denote
the QoS metric during interval � and let ��� �!������� denote the contractual target for service � . Without loss of generality,
we assume higher values of �"���#�$
��� to be more desirable1. Then, at any time interval, the value of the random variable� �	� 
��� is sampled as follows:

�%�	��
����&
' ��������� �	� 
��� �"��� � 
���)(*��� �!���#� ����������"�	��
���,+��-� �"�������/.!�����#��
���0�!��12�!�"34�-�#�

Intuitively, the above estimates the resource need by linearly scaling the reported usage when the value of the QoS
metric exceeds the contractual target. Note that our framework makes the simplifying assumption that ��������
��� and
resource consumption are approximately linearly related.

Our results indicate that this linearity assumption is reasonable for CPU time, disk and network bandwidth, but
not for the main memory resource. The amount of memory required for the service to operate is determined by
increasing the memory allocated to the service in a step-wise fashion until a knee is observed in the disk utilization
when plotted as a function of the allocated memory. An equivalent amount of main memory is then reserved for the
service when it is admitted into the live system. If no knee is observed before allocating all the available memory, the
default amount of memory allocated at the start of admission control is reserved.

1For QoS metrics such as response time, 576#8 ��9;:=< can be computed by reciprocating the value of the QoS metric
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Estimating the disk resource needs during the trial phase also requires some care. Experimental results indicate
that the combined disk needs of a set of services may exceed the sum of their individual disk needs, as measured by
running them stand-alone on an idle system. This is because the interleaving of disk requests from different services
increases the disk seek times and rotational latency overheads. To account for this, our disk scheduler implements a
feature that does not permit trial services to occupy disk resources continuously for more than 50 milliseconds. If disk
requests from other services under contract are not pending after 50 milliseconds of disk usage by the trial service,
a disk request for a random disk block is injected into the disk queue. This approximates the likely interference
from other services when the trial service is admitted into the live system. Experimental results show that disk needs
measured for the trial service using this method reflect those observed when hosted on the live system.

Let
�

be the set of predictive services and � be the set of guaranteed services currently admitted in the system.
The admission control decision is made as follows:
Predictive service: Admit the trial service � if for all intervals � the following holds:

� � � 
 �
�����
	��
	����� � �	� 
���)(*��12�����#1 ���� (1)

That is, the probability that the sum of the resource needs during any interval � over all admitted services plus the trial
service sums to less than a threshold ��1 ���"�#1 must remain high (higher than a confidence value � where ��������� ).

The above equation ensures that the contracts of all predictive services shall be met with high probability after the
service under trial is admitted into the system.
Guaranteed service: Admit the trial service � if the following equation holds for all intervals � in addition to
equation 1. � ��� �"!# $�%� ��
���'&)( � (*�+�,� (2)

where $� ��� 
��� is the maximal observed resource need of service � for resource class � during interval � , and

( � & � ����� � �"!# $���	��
��� (3)

Equation 2 ensures that the system has sufficient resources to cover the worst case resource needs of � . Equation 1
ensures that contracts for existing predictive services are met with high probability after � is admitted.

If the above conditions are satisfied, then resources corresponding to � �"! # $�%����
��� are reserved for every resource
class � and the service is admitted into the live system under contract.

The threshold ��12���"�#1 used in equation 1 is a fraction of the total resources available in the system, and is intended
to provide a safety margin of available resources. It allows the resource scheduling framework to (i) to discover and
measure minor increases in resource needs of any service under contract, and (ii) to reduce contract violations of
predictive services. The choice of the value of ��1 ���"�#1 involves a tradeoff; a high value is desirable for attaining high
utilization, while a low value is desirable for providing a large safety margin. Experimental results with our prototype
indicate that a value of 90% for ��12���"�!1 works well in practice.

The probability in equation 1 is estimated by approximating the probability distribution of the random variable� � 
��� &*- � � �	� 
��� by the distribution of the observed samples of � � 
��� . For example, the probability
� 
 � � 
��� (. �0/  is estimated by computing the fraction of samples that are all less than 90%.

3.2 Resource Monitor
The resource requirements of services hosted on a live system can change over time. This can result from either
changing patterns of load on the services, or from changing resource requirements to maintain the same contractual
target. The former can cause contract violations only for predictive services while the latter can cause contract
violations even for guaranteed services. The resource monitor serves to warn the operator to take corrective action
when the system is in danger of violating contracts. Corrective actions may consist of adding more resources to the
system (e.g., by upgrading the hardware or by adding more nodes to a cluster), moving some services to other servers
or proxies, or renegotiating the contracts of some services.

The resource monitor detects when the system is in danger of violating contracts by checking equation 1 for every
time interval � in the period

�
. That is:

� � � 
 ��1�0�2	�� �%�	��
��� ( ��12���"�#1 ��3� (4)

The probability in equation 4 is estimated from the relative frequency2 of the event when the sum total of the
resource needs are less than ��1 ���"�#1 . If during any interval � , equation 4 is violated, the system is considered to be

2An event A that occurs 465 times in 4 repetitions of an experiment is said to have a relative frequency of 475%894 .
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in danger of violating contracts. The operator of the system can choose to take corrective action after one or more
violations of equation 4.

Our resource scheduling framework trusts the services hosted on the system to report the correct value of the QoS
metric. This is reasonable in environments such as Web hosting where the servers for the individual services hosted
on the system are provided by the operator.

3.3 Feedback-based resource schedulers
Existing proportional schedulers (like SFQ [16], Lottery [25], SMART [20], BVT [14], etc.) are capable of propor-
tional allocation of resources among resource principals, but they do not consider application level progress when
scheduling resources.

Proportional schedulers assign each resource principal a fraction of the total available resource (e.g., a fraction of
the available CPU cycles, or disk bandwidth). These schedulers allocate resources to a demanding principal as long
as that principal’s resource usage is at or below its assigned share. In addition, a demanding principal is allocated
resources that are unused because other principals currently demand less than their share.

Our resource schedulers extend the proportional allocation model by taking application feedback into account.
Each principal is assigned a target QoS metric that is reported by the application. In addition, a fraction of the total
resources can also optionally be reserved for any principal (as with proportional schedulers). For each resource class� , resources are scheduled between principals based on the following rules given in order of decreasing priority:

1. All principals � such that 
 ����� � 
��� � ��� �!����� � � ��� ��������� ��� 
�����*���"�#�!���������/� � �	� 
2. All principals � such that 
 ����� � 
��� � ��� �!����� � 
3. All remaining principals in round-robin order

The schedulers allocate resources to a demanding principal as long as that principal’s reported QoS metric is
below target. Therefore, resource allocation is primarily driven by application feedback and allowing a principal to
meet its contract is the primary concern. Among these, priority is given to those principals whose resource usage
falls below its reservation. This guarantees principals with reservations a minimum system capacity on occasions
when the system is incapable of meeting the target of every principal (such a condition would ultimately be detected
by the resource monitor). On the other hand, reserved but unneeded resources are made available to meet contracts
of other demanding principals. Experiments described in Section 5.1 illustrate the operation and performance of our
scheduling framework.

4 Prototype Implementation
In this section, we briefly describe a prototype implementation of our resource management framework for Web
server QoS.

A modified version of the FreeBSD-4.0 operating system was used to support the prototype. Resource contain-
ers [6] were added to the kernel, and were used to associate separate resource principals with the various services
hosted on the system. The prototype supports resource management for the CPU, disk and memory resource classes.

As mentioned in Section 3.1, the main memory resource is partitioned among the services. A fixed number of
memory pages can be assigned to a principal (service). Page replacements for a principal only affect the memory
pages assigned to it. However, unused memory pages are made available to demanding principals until needed by
principals to which they are assigned.

Scheduling of network bandwidth is not supported by our prototype. In our experimental setup, available network
resources were never a limiting factor; therefore, network bandwidth allocation was not needed. Adding support for
managing network bandwidth on the server’s interfaces would be straightforward and similar to the way the CPU and
disk bandwidth resources are managed.

Resource containers [6] add about 6k lines of code to FreeBSD-4.0 kernel. This code includes the proportional-
share schedulers for CPU and disk as well as support for memory partitioning. Implementing admission control
and resource monitoring required 1k lines while implementing the feedback-based CPU and disk schedulers added
another 700 lines of code.

The Apache-1.3.12 [3] webserver was used to host the Web services. We modified Apache slightly to report its
QoS metric to the kernel periodically using a new system call. The QoS metric used in all experiments was average
throughput measured in requests per second. While we have not experimented with average response time as a QoS
metric, we are confident that only modest additions to our implementation are required to support it, mainly to enable
the trial system to vary resource allocations and measure their effect on the response time.

5



4.1 Implementation of feedback-based schedulers
Our implementation of the feedback-based CPU scheduler is based on lottery scheduling [25]. This proportional share
policy was extended so that application feedback is used to maintain contractual QoS targets. The scheduler allocates
the CPU among resource containers, which represent the different services hosted on the system. In implementing the
feedback-based disk scheduler, we similarly extended the start-time fair queuing (SFQ) [16] policy. This scheduler
was used to schedule disk requests from various resource containers in the system.

Our implementation of feedback-based CPU and disk schedulers supports hosting services in trial mode on a
live system with other services already under contract. The service being considered for admission control runs in
best-effort mode, i.e., resources are only allocated to it once the contractual targets of all other services have been
met.

4.2 Implementation of the Resource Monitor
The resource monitor is implemented as a Unix application process. It periodically uses a system call to sample the
average resource consumption of each service for every resource class. A 24-hour period is divided into fixed length
intervals (1 minute in our prototype) and samples are maintained for each interval. During each interval, the average
resource needs per service for every resource class are recorded. The sampled resource needs for the past 5 days are
maintained for each interval. Thus, about 58 KB of memory space is needed for a service to store samples for the CPU
and disk resource classes (the implementation does not sample other resource classes). The memory requirements
for storing the samples are, therefore, reasonably small. Based upon the stored samples, for each interval the monitor
determines the danger of contractual violations using equation 4. As discussed in Section 3.2, the probability is
estimated from the relative frequency of the event when the sum total of the resource needs are less than 90%.

While we implemented our prototype on a single-node server for simplicity, the concepts presented in Section 3
are applicable to any system that supports the notion of a resource principal. For example, our work could be applied
to a system based on a cluster of workstations where the resource principals are Cluster Reserves [4].

5 Experimental Results
In this section, we present performance results obtained with our prototype implementation. Our results are based
on both synthetic as well as real traces derived from Web server logs. In all experiments, throughput as measured in
connections per second (same as requests per second for HTTP/1.0) was the QoS metric.

As mentioned in Section 4, a slightly modified Apache-1.3.12 Web server was used, running on a FreeBSD-4.0
kernel, extended with resource containers and with our framework for measurement-based QoS. All experiments were
performed on a 500MHz Pentium III machine configured with 1 GB of main memory and a HP SCSI-II disk. The
Web requests were generated by a HTTP client program designed for Web server benchmarking [5]. The program
can generate HTTP requests from synthetic or real logs either as fast as the Web server can handle them or at a rate
dictated by timestamps in the log. Seven 166 MHz Pentium Pro machines were used to run the client program.

The server machine and the seven client machines were networked via a 100Mbps Ethernet switch. Available
network bandwidth was not a limiting factor in any of the experiments reported in this section.

5.1 Feedback-based schedulers
The first experiment demonstrates the operation of our CPU scheduler. Three services were hosted on our prototype
and CPU reservations of 40%, 20% and 40% were made for them, respectively. The client programs generated
requests for the first two services, while service 3 did not have any load. A synthetic workload was used where all
requests are for a single file of size 6KB. The rate of request generation matched the capacity of the server.

Figure 1 shows the throughput and CPU usage of both services over time. For the first 20 seconds of the ex-
periment, no contractual targets were set for the services. In this phase, our scheduler behaves like a conventional
proportional scheduler and distributes CPU resources between services 1 and 2 in proportion to their reservations, i.e.
2:1.

After 20 seconds, contractual targets of 1000 conn/s and 200 conn/s were set for service 1 and 2, respectively.
This results in an allocation of 80% and 20% to the respective services. The reason is that service 2 can meet its
contractual target with its reservation of 20%, while service 1 needs additional resources. The scheduler realizes that
the 40% resources reserved for service 3 are available, and provides them to service 1. Even at a 80% CPU allocation,
service 1 remains unable to meet its contractual target of 1000 conn/s. Since no more resources are available, the
throughput of service 1 gets limited to 800 conn/s.

At 40 seconds into the experiment, the contractual targets of services 1 and 2 are reversed – i.e., they are assigned
values of 200 conn/s and 1000 conn/s, respectively. The scheduler reacts accordingly and as a result, the CPU
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Figure 1: Feedback-based CPU scheduling

allocations of services 1 and 2 become 20% and 80%, respectively. This is because service 1 can meet its contractual
target of 200 conn/s with 20% of the CPU resources. The remainder of the 40% reserved for service 1 and the 40%
reserved for service 3 are considered available. Therefore, service 2 receives these 60% of the CPU resources and its
effective allocation becomes 80%.
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Figure 2: Feedback-based disk scheduling

Figure 2 presents results from a similar experiment designed to demonstrate the operation of the disk scheduler. A
trace-based workload was used in this experiment (i.e., requests to distinct files selected from the IBM trace described
below). Reservations of 40% and 20% were made for two active services that both generate a significant disk load.
Targets of 40 conn/s and 5 conn/s were assigned after 2 minutes and reversed after 4 minutes of experimental time.
Like the CPU scheduler in the previous experiment, our disk scheduler adjusts the disk allocation in order to meet the
respective targets. The relatively high variability in the throughput is due to large variations in the sizes of requested
files.

5.2 Admission control
The next set of experiments is designed to evaluate our admission control framework. Trace-based workloads were
used in these experiments. Our traces were derived from logs of four Web servers: (i) the Anonymous Computer
Science departmental server; (ii) the server for the 1998 Soccer World Cup; (iii) IBM corporation’s main server
(www.ibm.com); and, (iv) Google’s main server (www.google.com). The Anonymous trace spans a period of 15 days
in March 2000 and contains requests for 15000 distinct files with a dataset of 1.13 GB and an average request size of
34 KB. The trace from the Soccer World Cup covers 6 days and contains requests for 5163 distinct files with a dataset
of 89 MB and an average request size of 6 KB. The IBM trace spans a period of 6 days and contains requests for
38500 distinct files with an average request size of 3 KB. While the above traces consist mainly of requests for static
documents, the trace from Google consists solely of CGI requests for dynamic content. This trace spans a period of
6 days with an average response size of 12 Kbytes and an average response time of 0.721 seconds. More information
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about these traces can be found in the Appendix.
To generate suitable values of load on the server and also to reduce experimental runtime, we modified the times-

tamps in the original traces in such a way that the load was scaled in the various traces by different factors, while
simultaneously preserving the synchronization between the traces with respect to the daily load variations. Our client
program played requests from the processed traces based upon the modified timestamps.

To achieve this compression of the workload in time, one can take several approaches, such as taking future
requests in the original trace or repeating requests in the same period to supplement the load in the processed trace.
All of these approaches change the characteristics of the original trace in subtle ways. However, we explored both
approaches and found that the results of our experiments were virtually unaffected by this choice.

A large number of experiments were performed to test the admission control framework. Due to space limitations,
we are only able to present a selection of results.

5.2.1 CPU as bottleneck resource

In the first experiment, services corresponding the the World Cup trace and the IBM trace are hosted on the live system
as predictive services with contractual targets of 200 conn/s and 450 conn/s, respectively. The service corresponding
to the Anonymous trace is considered for admission in this system and is made to operate in trial mode for this purpose
as a prospective predictive service. The resources on the server were configured so as to make CPU the bottleneck
resource. That is, the memory was partitioned so as to comfortably fit the working sets of each of the services in
memory.

Admission control
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Figure 3: CPU:
���������	��
�

= 200,
�����	�����������

= 450,
�����	��������������������� �

= 100

We first consider a contractual target of 100 conn/s for the Anonymous trace. Based on the resource usage on the
idle machine, and on the collective usage of services on the live system, our admission control framework computes
the probability from equation 1 at one second time intervals (the value of ��12���"�#1 is 90% and the value of � is chosen
to be ��! "	# ). The left plot in Figure 3 shows results from the admission control framework indicating that the service
cannot be admitted into the live system with a contractual target of 100 conn/s (as there are times when the probability
is less than � & ��! "�# ). The right plot in Figure 3 shows results from the resource monitor when that service was
admitted despite the rejection of our admission control framework. It plots the relative frequency of the event when
the collective resource needs of all services are less than 90%. The close agreement between the plots shows the
predictive power of our admission control framework.

We next consider admitting the service corresponding to the Anonymous trace with a reduced contractual target
of 24 conn/s. The left plot in Figure 4 shows the probability as computed by our admission control framework and
indicates that the service can be admitted into the live system. The right plot in Figure 4 shows results produced by
the resource monitor while hosting the service on the system. The two plots closely agree with each other, as before.

Next we consider whether the three services could be hosted jointly on the server as guaranteed services. From
the CPU usage and throughput on the idle prototype, we computed the maximum CPU resources required for meeting
the contractual targets for each of the three services. These were 66.50%, 42.68% and 55.66%, respectively, for the
Anonymous, World Cup and IBM traces. As these total up to more than 100%, this implies that not all three services
can be hosted on our prototype as guaranteed services. This demonstrates that the weaker contracts of predictive
services allow higher system utilization, while still maintaining contracts with high probability.
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Figure 4: CPU:
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Figure 5: CPU:
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5.2.2 CPU and Disk as bottleneck resources

We next performed an experiment where the server was configured so as to render both the CPU as well as disk
resources limiting factors in the achieved throughput. Also, serving dynamic content requests involves the execution
of arbitrary server applications and often involves database queries and updates. Therefore, both the amount and the
variance of resource consumption per request tends to be much larger for dynamic than for static content. To ensure
that our resource management framework is effective under such conditions, we used a workloads that contains CGI
requests.

The Google trace consists of dynamic content requests. In our experiment, requests for the Google service were
handled by a synthetic CGI program. For each request, the CGI program responds with content of a size corresponding
to the size specified in the trace. Moreover, for each request, the program consumes CPU time corresponding to the
response time specified in the Google trace, and for requests with response times larger than 10 milliseconds, the
program additionally performs an 8 KB disk access.

The services corresponding to the Anonymous trace and the World Cup trace were hosted on the live system as
predictive services with contractual targets of 100 conn/s and 250 conn/. The service corresponding to the Google
trace is considered for admission into this system. In order to stress the disk subsystem, the memory was partitioned
so as to allocate an amount of memory that is only slightly larger than the working set of each of the static services.
Thus, 30 MB and 20 MB were assigned to the Anonymous and World Cup services, respectively. 60 MB of memory
were assigned to the service corresponding to the Google trace.

A contractual target of 50 conn/s was first considered for the Google trace. The probability plots produced by
our admission control framework are shown in Figures 5 and 6 for the CPU and the disk resource class, respectively.
As the probability falls below � &)��! "	# several times in each case, the service cannot be admitted into the live
system with a target of 50 conn/s. Figures 5 and 6 also contain results from the resource monitor when the service is
admitted despite rejection by the admission control framework. These depict the relative frequency of the event when
the collective resource needs are less than 90%. Again, the close agreement between the plots from the admission
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Figure 6: Disk:
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control and the resource monitor shows that the admission control framework is capable of accurately characterizing
the live system under this diverse workload.
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Figure 7: CPU:
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The service corresponding to the Google trace was then reconsidered for admission with a target of 5 conn/s.
Figures 7 and 8 show the results for the CPU and the disk resource, respectively. The plots from the admission control
framework indicate that the service can be admitted into the live system. (The value of the probability remains above
� & ��! "�# at all times). Again, the results produced by the resource monitor after hosting the services on the live
system closely agree with those from the admission control framework.

5.3 Resource Monitor
We next present an experiment to demonstrate the operation of our resource monitor (Section 3.2). With the help
of artificially varying load patterns introduced in synthetic traces, we show the detection of situations that lead to
contract violations.

We hosted two services on the server, one predictive and the second guaranteed. The traces containing the requests
for the services were produced by synthetically generating timestamps to resemble the load characteristics typical of
real Web servers.

The trace for service 1 was such that after two days, the peak load increases unexpectedly and significantly
(enough to consume all available CPU resources). The contractual target for the first service (predictive) was set
to 1000 conn/s. The contractual target for the second service (guaranteed) was 500 conn/s and it was given a CPU
reservation of 55%, which was sufficient to meet its peak demand.

The first two plots in Figure 9 show the variation of throughput and CPU usage with time. The last plot in Figure 9
depicts the relative frequency of the event where the measured collective resource needs of all services are less than��12�����#1 (as computed by equation equation 4). This value is computed from samples of resource needs taken every
second in the experiment. The values for ��12���"�#1 and � were chosen to be 90% and ��! "�# , respectively.
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Figure 9: CPU:
��� �	���	� � = 1000,
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The results from Figure 9 indicate that for the first two days of the experiment, the relative frequency of samples
where the collective resource needs are less than 90% of the total CPU resources remains high. However, once the
load on service 1 increases, the relative frequency drops down in the corresponding time intervals, indicating that the
contract for service 1 can no longer be maintained. Figure 9 also shows that despite the increased load on service 1,
the performance of the guaranteed service remains unaffected. This confirms that the contracts of guaranteed services
cannot be affected by load variations of other services. On the other hand, contract violations of predictive services
can occur, but our resource monitor is capable of reporting this early, so that corrective action can be taken.

6 Related Work
Banga et al. [6] proposed the resource container abstraction that separates the notion of a resource principal from
threads or processes and provides support for fine-grained resource management in the operating system. Coupled
with LRP [13], resource containers are capable of affording performance isolation on a single node. Other related
abstractions are Activities [18] in the Rialto real-time operating system, software performance units (SPU) [24] pro-
posed in the context of shared-memory multiprocessors, reservation domains in the Eclipse operating system [11, 10]
and paths in Scout [22]. Cluster Reserves [4] extend resource containers to enable global resource management in a
cluster of workstations.

Various scheduling policies for proportional share resource allocation can be found in the literature, including
Lottery scheduling [25] and STFQ [16]. The SMART [20] multimedia scheduler integrates priorities and weighted
fair queuing to meet real-time constraints while simultaneously supporting non real-time applications. Our feedback-
based resource schedulers extends proportional schedulers to achieve performance targets using application feedback.

Jamin et al. [17] describe a measurement-based admission control algorithm for predictive services in packet
networks. Our work applies similar concepts to Web server systems. We use measurements to translate application
level performance targets into resource allocations in the system and perform admission control for both guaranteed
as well as predictive services.

Li and Jamin [19] use a measurement-based approach to provide proportional bandwidth allocation to Web clients
by scheduling requests within a Web server. Their approach is not able to guarantee a given request rate or response
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time, it may be suitable only for static content and has not been evaluated on trace-based workloads. Moreover, the
system cannot be used for capacity planning, i.e., to predict which services can be co-located on a given system.

Bhatti and Friedrich [8] describe modifications to the Apache webserver in order to support differentiated QoS
between service classes. Request processing is performed based on a classification of HTTP requests into priorities at
the server application. The method is strictly priority-based and proportional allocation of server resources between
service classes is not supported.

OS mechanisms such as the resource containers [6] address the problem of proportional resource allocation more
generally by fully accounting for all kernel processing. Our work extends and complements this prior work. It seeks
to provide both proportional as well as predictable quality of service in Web servers, and provides QoS in terms of
application-level metrics such as request rate and average response time.

7 Conclusions
We have presented a measurement-based resource management framework for providing predictable and differenti-
ated quality of service in Web servers. The framework allows Web servers and proxy operators to co-locate virtual
sites and Web services, while providing predictable quality of service, in terms of average request rate or average
response time.

The framework consists of a measurement-based admission control process that allows operators to determine
whether a set of sites can be co-located on the same server system, based on the measured statistics of the sites’
resource consumption under its live workload, and its desired quality of service and service class (guaranteed, pre-
dictive, or best effort). Once a set of services has been admitted, feedback-based resource schedulers ensure that all
sites achieve their QoS targets, while being allowed to use excess resources not currently claimed by other sites.

An empirical evaluation of a prototype implementation shows that the system is able to predict with high confi-
dence if sites can be co-located on a system; that it is able to maintain the target QoS levels of admitted sites with
high probability; and, that it is able to achieve high average hardware utilization on the server system.

We expect that the framework will stimulate further research in algorithms for admission control, capacity plan-
ning, scheduling and generally, approaches to capacity planning and QoS in Web servers.
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Figure 10: Anonymous trace
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Figure 11: 1998 Soccer World Cup trace
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Figure 12: IBM trace
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Figure 13: Google trace
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