
Oblivion: Mitigating Privacy Leaks by

Controlling the Discoverability of Online

Information

Milivoj Simeonovski1, Fabian Bendun1, Muhammad Rizwan Asghar2⋆,
Michael Backes1,3, Ninja Marnau1, and Peter Druschel3

1 CISPA, Saarland University, Germany
2 The University of Auckland, New Zealand

3 Max Planck Institute for Software Systems (MPI-SWS), Germany

Abstract. Search engines are the prevalently used tools to collect infor-
mation about individuals on the Internet. Search results typically com-
prise a variety of sources that contain personal information — either
intentionally released by the person herself, or unintentionally leaked or
published by third parties without being noticed, often with detrimen-
tal effects on the individual’s privacy. To grant individuals the ability
to regain control over their disseminated personal information, the Eu-
ropean Court of Justice recently ruled that EU citizens have a right to

be forgotten in the sense that indexing systems, such as Google, must
offer them technical means to request removal of links from search re-
sults that point to sources violating their data protection rights. As of
now, these technical means consist of a web form that requires a user
to manually identify all relevant links herself upfront and to insert them
into the web form, followed by a manual evaluation by employees of the
indexing system to assess if the request to remove those links is eligible
and lawful.
In this work, we propose a universal framework Oblivion to support
the automation of the right to be forgotten in a scalable, provable and
privacy-preserving manner. First, Oblivion enables a user to automati-
cally find and tag her disseminated personal information using natural
language processing (NLP) and image recognition techniques and file a
request in a privacy-preserving manner. Second, Oblivion provides in-
dexing systems with an automated and provable eligibility mechanism,
asserting that the author of a request is indeed affected by an online
resource. The automated eligibility proof ensures censorship-resistance
so that only legitimately affected individuals can request the removal of
corresponding links from search results. We have conducted comprehen-
sive evaluations of Oblivion, showing that the framework is capable of
handling 278 removal requests per second on a standard notebook (2.5
GHz dual core), and is hence suitable for large-scale deployment.

Keywords: Right to be forgotten, privacy, EU legislation, data protection, in-
formation discoverability, search engines.

⋆ This work was done when the author was at CISPA, Saarland University, Germany.

2 Simeonovski, Bendun, Asghar, Backes, Marnau and Druschel

1 Introduction

The Internet has undergone dramatic changes in the last two decades, evolving
from a mere communication network to a global multimedia platform in which
billions of users not only actively exchange information, but also increasingly
carry out their daily personal activities. While this transformation has brought
tremendous benefits to society, it has also created new threats to online privacy
that existing technology is failing to keep pace with. In fact, protecting privacy
on the Internet remains a widely unsolved challenge for users, providers, and
legislators alike. Users tend to reveal personal information without considering
the widespread, easy accessibility, potential linkage and permanent nature of
online data. Many cases reported in the press indicate the resulting risks, which
range from public embarrassment and loss of prospective opportunities (e.g.,
when applying for jobs or insurance), to personal safety and property risks (e.g.,
when stalkers, sexual offenders or burglars learn users’ whereabouts).

Legislators have responded by tightening privacy regulations. The European
Court of Justice recently ruled in Google Spain v. Mario Costeja González [9]
that EU citizens have a fundamental right to be forgotten for digital content
on the Internet, in the sense that indexing systems such as Google (or other
search engines, as well as systems that make data easily discoverable, such as
Facebook and Twitter) must offer users technical means to request removal of
links in search results that point to sources containing their personal information
and violating their data protection rights.4 While a comprehensive expiration
mechanism for digital data has often been postulated by privacy advocates in the
past, this court decision, for the first time, imposes a legal constraint for indexing
systems that operate in the EU to develop and deploy suitable enforcement
techniques. As of now, the solution deployed by leading search engines, such as
Google, Microsoft and Yahoo, consists of a simple web form that requires a user
to manually identify all relevant links herself upfront and to insert them into the
web form, followed by a manual evaluation by the search engine’s employees to
assess whether the author of the request is eligible and the request itself is lawful,
i.e., the data subject’s right to privacy overrides the interests of the indexing
operator and the freedom of speech and information.

According to the Google transparency report [16], the number of removal
requests that have been submitted to Google since the court decision in May
2014 has already exceeded 1/5 of a million and the number of URLs that Google
has evaluated for removal are approximately 3/4 of a million. Clearly, in or-
der to enable efficient enforcement, it is essential to develop techniques that at
least partly automate this process and are scalable to Internet size, while being

4 In the court’s case, the plaintiff requested the removal of the link to a 12-year old news
article that listed his real-estate auction connected with social security debts from
the Google search results about him. The court ruled that the indexing by a search
engine of the plaintiff’s personal data is “prejudicial to him and his fundamental
rights to the protection of those data and to privacy — which encompass the right

to be forgotten — [and overrides] the legitimate interests of the operator of the search
engine and the general interest in freedom of information.”

Oblivion: A Framework for Enforcing the Right to be Forgotten 3

censorship-resistant by ensuring that malicious users cannot effectively blacklist
links to Internet sources that do not affect them.

Our Contribution. We propose a universal framework, called Oblivion, pro-
viding the foundation to support the enforcement of the right to be forgotten in
a scalable and automated manner. Technically, Oblivion provides means for a
user to prove her eligibility5 to request the removal of a link from search results
based on trusted third party-issued digital credentials, such as her passport or
electronic ID card.

Oblivion then leverages the trust imposed by these credentials to generate
eligible removal requests. More specifically, the officially-generated signatures
contained in such credentials comprise personally-identifiable information of the
card owner, such as her signed passport picture, address, etc. These so-called
signed attributes are subsequently automatically compared with publicly avail-
able data whose removal should be requested, in order to determine if a source
indeed contains information about a given entity. In Oblivion, we use state-of-
the-art natural language processing (NLP) and image recognition techniques,
in order to cover textual and visually identifiable information about a user, re-
spectively. Further modalities can be seamlessly integrated into Oblivion. These
techniques in particular automate the task for a user to determine if she is
actually affected by an online source in the first place. The outcome of these
comparisons, based on the signed attributes, is then used to provide proof to the
indexing system that a user is eligibly affected by a source. To avoid creating
further privacy concerns, Oblivion lets the user prove her eligibility to request
data removal without disclosing any further personal information beyond what
is already available at the link. This approach applies to a variety of different
indexing systems, and in particular goes beyond the concept of search engines
that we refer to throughout the paper for reasons of concreteness. Moreover,
Oblivion exploits the homomorphic properties of RSA [29] in order to verify
the eligibility of an arbitrarily large set of user credentials using only a single
exponentiation, and is thus capable of handling 278 requests per second on a
standard notebook (2.5 GHz dual core and 8 GB RAM). We consider this suit-
able for large-scale deployment.

Outline. This paper is structured as follows. We review related work in Sec-
tion 2. The conceptual overview of Oblivion and its detailed realization are pre-
sented in Sections 3 and 4, respectively. Section 5 provides performance analysis
of Oblivion. Section 6 discusses various aspects of Oblivion. Next, we conclude

5 With our framework we allow for the automation of the eligibility proof of the user.
Eligibility in our framework describes the user being personally affected by an online
source, or in legal terms being the data subject. The right to be forgotten additionally
requires that the user’s data protection rights override the legitimate interests of
the search engine operator and the freedom of information. This assessment of the
lawfulness of the request is a purely legal task, which is in the domain of courts.
Hence the technical assessment of lawfulness is out of scope for our framework. If
courts and regulators agree on guidelines for this assessment, Oblivion could be
extended to a partly automated assessment of these guidelines in future work.

4 Simeonovski, Bendun, Asghar, Backes, Marnau and Druschel

and outline future work in Section 7. Appendix A formally states and proves the
security properties of Oblivion.

2 Related work

The most common way to prevent web robots (or web crawlers) [24] from index-
ing web content is the Robots Exclusion Protocol (a.k.a. robots.txt protocol) [2],
a standard for controlling how web pages are indexed. Basically, robots.txt is a
simple text file that allows site owners to specify and define whether and how
indexing services access their web sites. The use of this protocol for privacy en-
forcement is limited, since the file that defines the protocol can only be placed
and modified by the administrator of the web site. The individual whose per-
sonal data is being published is hardly capable of contacting and persuading
all administrators of these sources to remove the data or modify the robots.txt
file. There are many attempts to approach this privacy enforcement problem
in an orthogonal fashion, by adding an expiration date to information at the
time of its first dissemination [5, 7, 15, 22, 27, 28]. The basic idea is to encrypt
images and make the corresponding decryption key unavailable after a certain
period of time. This requires the decryption key to be stored on a trusted server,
which takes care of deleting the key after the expiration date has been reached.
Although some of the approaches utilize CAPTCHAs to prevent crawling the
images easily, there is no fundamental protection against archiving images and
corresponding keys while they are still openly available, even though first suc-
cesses using trusted hardware to mitigate this data duplication problem have
been achieved [5]. Another approach in this direction is the concept of sticky
policies [6, 8, 21, 26]. The concept was originally introduced by Mont et al. [21]
and requires a machine-readable access policy to be bound to the data before
it is disseminated. The policy then ensures that the recipient of the data acts
in accordance with the policy definition. However, enforcement of such policies
has to be backed by additional underlying hardware and software infrastructure.
In addition to these shortcomings, a user needs to take care to augment data
with expiration dates before the data is disseminated in all these approaches.
Thus these approaches are inherently unsuited to cope with data that is already
openly available on the Internet or gets published by third parties. Finally, to
implement the European Court of Justice’s decision, Google, Microsoft and Ya-
hoo recently launched dedicated web forms [17, 20, 34] for submitting removal
requests. Users have to manually identify all relevant links and insert them into
this form. Subsequently, the request is evaluated manually by the employees of
the indexing system to assess first, weather the author is eligible to file that
request and second, whether the link to the source needs to be deleted for a
specific search. To this end, users have to additionally hand over a legible copy
of an ID document. The necessity of handing over a user’s full identity to use the
service comes with additional privacy implications that one would like to avoid.
Oblivion constitutes a technical follow-up to this solution, with a dedicated fo-

Oblivion: A Framework for Enforcing the Right to be Forgotten 5

cus on censorship-resistance, while additionally avoiding the detrimental effect
of having to disseminate further personal information.

Certification

Authority

Trust

Indexing System

Incident Handler

Reporting

Mechanism

Ownership Certification Party

Data Ownership

Certifier

User

Registration Phase

Ownership Claiming Phase

Reporting Phase

Fig. 1. Conceptual Overview of Oblivion.

3 Conceptual Overview of Oblivion

In this paper, we propose a framework laying the foundation for a privacy-
preserving automation of the right to be forgotten in a scalable manner. The
basic idea is that users automatically identify online sources that contain their
personal data and can automatically request its removal from indexing systems,
if it violates their data protection rights. Upon receiving the request, we enable
the indexing service to automatically verify if the author of the request is prov-
ably affected by the source in question. Our framework is sufficiently generic to
incorporate any type of data, such as text, pictures, voice and video. For brevity
reasons, in this paper, we mainly focus on two data types: text and pictures.

3.1 Motivating Scenario and System Model

We start with a motivating scenario to explain the required functionality of
the framework and the different parties involved. We assume that a user, Alice,
discovers that an indexing service, say Google, returns certain query requests
with links pointing to a document that contains her personal information and
violates her privacy. In the next step, Alice contacts an Ownership Certification
Party (OCP) in order to receive validation that this source indeed contains
her personal information. Such an OCP could be a third party or the Google
helpdesk. Along with the relevant links, she hands over publicly verifiable ID
documents such as driver’s license, passport or national ID card to the OCP.
If the provided documents and the content of the article in question indeed
match (which will be automatically checked by Oblivion), the OCP hands back
a corresponding certificate. Alice then contacts Google to request removal of

6 Simeonovski, Bendun, Asghar, Backes, Marnau and Druschel

these links, providing an additional explanation, and proves her eligibility to do
so based on the certificate of the OCP. Upon receiving this information, Google
checks if the considered document is indeed indexed by Google, and if the OCP
certificate is valid for this specific document and user. In this case, the requested
article will be removed from the indexing system.

Based on this use case scenario, we consider the following entities in our
proposed framework designed for automating the process of handling removal
requests.

User: An authorized user who issues the request to remove her personal data.
Indexing system: This system is capable of removing links to sources con-

taining a user’s personal data from its indexing system, based on a removal
request of the user.

Ownership Certification Party (OCP): It is responsible for verifying if the
user is the eligible data subject of the source under consideration.6

Certification Authority (CA): It issues publicly verifiable credentials to the
users.

3.2 Threat Model and Security Objectives

We assume that all entities in the system fully trust the CA. However, a CA
does not need to be online because the issuance of credentials to the users takes
place out of band, typically for a longer period of time, say a couple of years.

Unlike the CA, the OCP is an entity that is not fully trusted from the user’s
perspective because it can try to learn the user’s keying material and additional
user credentials not required for the ownership verification; moreover, it might
want to forge removal requests. The OCP is the only entity that is not part of
the traditional system. The OCP can be run by the organization (e.g., Google)
that manages the indexing system, or it can be a third-party service. The OCP
is assumed to be online during the execution of a request.

The indexing system is an entity inherently present in the traditional system.
The indexing system and the OCP mutually trust each other; in practice, this is
often trivially the case since the OCP and the indexing system are often managed
by the same organization. If the OCP is an independent third party, this trust
would typically be established via the CA using appropriate certificates.

We assume that users protect their private keys or at least, if their private
keys are lost or stolen, a key revocation mechanism is installed and the user
generates new keys. During the ownership verification, we do not assume any
interaction between the users and the OCP. A user can present the OCP-signed
proof to remove links to the data from multiple indexing systems, such as Google
and Yahoo. We also consider an external adversary that could harm credibility
of the user through replay attacks with the intention to make the service unavail-
able. For providing confidentiality over the communication network, we assume

6 Ownership in this context should not be confused with the legal term. Legally, the
OCP can only assess and certify the individual’s eligibility since, at least in EU
context, legal ownership is not applicable to the right to be forgotten.

Oblivion: A Framework for Enforcing the Right to be Forgotten 7

the presence of secure channels (such as SSL/TLS [11]) between a user, the OCP
and the indexing system.

Based on these assumptions, we intend to achieve the following security ob-
jectives:

• Minimal Disclosure: An indexing system should not learn anything beyond
what is required for eligibility checking and assessment of lawfulness. The
court decision ruled that the right has to be judged on a case-by-case decision.
Hereby, the right of the individual has to be balanced with the public right
of information. Our system handles removal requests that prove eligibility
but do not reveal any further information beyond what can be found in the
online source in question.7

• Request Unforgeability: The system should be designed such that an index-
ing system can only verify user requests without any possibility of forging
existing or generating new requests on behalf of the user.

• Censorship-Resistance: The system should prevent censorship in the sense
that only requests from provably affected users should be taken into account.

In addition to ensuring these security properties, the system should satisfy
the following system properties in order to be suitable for large-scale deploy-
ment. It should be scalable in order to be able to process a large amount of
queries simultaneously, while at the same time ensuring a thorough treatment
of each individual query. It should blend seamlessly into existing infrastructures,
to enable adoption by current indexing systems and certification authorities;
moreover, the solution should be conceptually independent of the device and the
operating system used. Finally, it should be easy to understand and use even for
the general public.

3.3 Key Ideas of the Protocol

Oblivion is built on top of already available infrastructure (as explained in Sec-
tion 3.1) that includes users, an indexing system and a CA. For the automatic
verification of ownership, we introduce only a single new entity, the OCP, thus
making our framework deployable in practice. In the framework, we distinguish
three main phases: registration, ownership claim and reporting phases. Figure 1
presents the overall architecture for achieving the goals defined in Section 3.2.

Registration Phase. During the registration phase, each user registers with
the CA as shown in Figure 1. For the registration, a user presents (in Step 1) her
attributes (along with evidence) and her verification key. The verification key
should, for privacy reasons, be generated by the user herself before contacting
the CA, but the generation of the key is orthogonal to our framework. The CA

7 Although Oblivion provides for minimal disclosure, the indexing system might re-
quest additional information, such as an author’s name, for liability reasons in a
real-world deployment of Oblivion. Moreover, the assessment of lawfulness could in
some cases also require additional personal information.

8 Simeonovski, Bendun, Asghar, Backes, Marnau and Druschel

checks the validity of the attributes presented, certifies them and returns (in
Step 2) a list of signed attributes, where each signed attribute is bound with
the user’s verification key. Typical examples of attributes are the date of birth,
name or a user’s profile picture.

Ownership Claim Phase. Once a registered user finds leakage of her personal
data through the indexing system, she can contact the OCP claiming eligibility
(in Step 3). This is the core phase in which the OCP expects justification of why
the given piece of data affects the user. To make such a justification, the user can
put tags on the given data that consist of her attributes which were signed by
the CA. In order to improve usability, we automate the tagging and verification.
One trivial automation method is to simply check if any user attribute appears
anywhere in the article; if this happens, the matched item could be tagged with
that attribute. The name attribute, say Alice, could be matched in this way.

The exact matching can semi-automate the tagging process but it cannot
work in general because it may not return the correct results for all user at-
tributes. Let us consider a user attribute in the form of a tuple: 〈Nationality,
German〉 (as explained in Section 4.1). In order to match this attribute, the
OCP has to check if the user attribute or its synonym has appeared in the arti-
cle. This includes semantically linkable formulations, such as being a citizen of
Germany and having German nationality.

Letting the user manually deploy this solution, i.e., forcing the user to find
synonyms of each possible word in the article, is an exhaustive task. Therefore,
we employ an NLP-based technique — the named entity recognizer (NER) [14]
in our case — for efficiently collecting all possible candidates in the article.
The NER detects and classifies the data into various categories, such as person,
organization, location, date and time, and it thus helps to identify if a user
has attributes belonging to the category identified by the NER. If yes, we can
perform exact matching or run a synonym checker [23] on identified categories.
Articles containing a user’s picture are tagged in a corresponding manner.

After the attributes are matched, the user has to generate a proof by prepar-
ing a message that contains a list of signed attributes that are required for the
verification, the tagged article and her verification key. The user signs this mes-
sage and sends it to the OCP (in Step 3) as an eligibility claim.

The OCP first verifies the message signature and the signed attributes used
in the tagging. If the claim relates to text attributes, the OCP runs an entity
disambiguator to identify whether the article is about the user. If the claim in-
cludes a picture, the OCP runs a corresponding face recognition algorithm. Upon
successful evaluations of all steps, the OCP presents to the user an ownership
token (in Step 4).

Reporting Phase. After receiving the ownership token from the OCP, the
user sends a request for removal to the indexing system (in Step 5). The indexing
system automatically validates the ownership token and then assesses whether
to remove the links pointing to the user’s personal information from its system.
Finally, it sends (in Step 6) an acknowledgment to the user, which could be a
success or failure message.

Oblivion: A Framework for Enforcing the Right to be Forgotten 9

4 Realization Details of Oblivion

In this section, we provide details of each phase of our framework and explain
the communication protocol to show interaction between different components.
An indexing system and a user are denoted with IS and U, respectively. The
communication protocol steps, described in this section, correspond to the flow
illustrated in Figure 1. After that, we provide details on how to securely and
efficiently realize the proposed protocols using cryptographic primitives.

4.1 Registration Phase

As we can see in the communication protocol, a user sends (in Step 1) her
attributes, A = {a1, a2, . . . , an}, which characterize her, with supporting proofs
and the verification key vkU to the CA. Each user attribute ai ∈ A is a name
and value key pair 〈NAME, VALUE〉, representing name of the attribute and
value specific to each user, respectively. For instance, an attribute name could
be National, and if say, a user is national of Germany, then the value will be
German. Some general user attribute names include, but are not limited to, Full
Name, Date of Birth, Place of Birth, Current Residence and ID Picture.

Upon a successful verification of the provided data, the CA issues a list of
signed attributes σUA

= {σUa1
, σUa2

, . . . , σUan
} and sends it back to the user (in

Step 2). Our attribute signing scheme binds every user’s attribute with her ver-
ification key. Note that one of the attributes ai is a profile picture that uniquely
identifies the user.

Steps 1 and 2 constitute the registration phase that takes place securely and
out of the band. The concept of digital signature together with user attributes
(signed by the government) is already present in some EU countries [12, 13, 32].

4.2 Ownership Claim Phase

In order to make an ownership claim to the OCP, we consider a user client, say a
browser plugin. The plugin sends the claim to the OCP and receives an ownership
token from the OCP in the case the claim can be verified, cf. Figure 1. In order
to do so, the first step is that the user client has to formulate the claim, then it
has to identify personal information and finally the actual removal request has
to be generated. In the next step, the OCP has to verify the request. This is
done by first verifying the authenticity of the request and second verifying the
relationship to the data. The latter verification depends on the type of data,
e.g., face recognition can be used for pictures. The last step is to generate the
ownership token that is then transferred from the OCP to the user. In the
following, we present the details of all these tasks.

Identifying Personal Information. For identifying user’s personal informa-
tion in an article (as illustrated in Figure 2), a user client may run the NER
algorithm locally (assuming it is delivered as a part of the user client) to extract
all possible candidates. The NER algorithm could also be run as a third-party

10 Simeonovski, Bendun, Asghar, Backes, Marnau and Druschel

Fig. 2. An article illustrating personal information of Alice Schmidt who has an ID
card with digital credentials issued by the German government.

service (e.g., a web service), called by the user client. After running the NER
algorithm, a user client picks each of the candidates and matches them with the
user attributes (see Figure 2).

If the match is not successful, a user client runs a synonym checker. If both
words are synonyms then they are considered matched; otherwise, the next can-
didate is picked from the queue for the comparison. The synonym checker could
be delivered as a part of the user client. To make the user client lightweight,
we can assume a third party service (e.g., a web service). In either case, the
synonym checker should be very specific to the attributes issued by the CA.8

Face Detection. Besides the textual description, an article could also contain
a user’s picture, either as a solo or a group picture. Like textual attributes,
the user client can run the face detection algorithm to automatically detect the
user’s face. On successful detection, a user client can automatically include the
CA-signed user picture in the removal request, which is explained next.

Generating Removal Request. After identifying personal information, a user
client prepares a removal request. During the preparation, it chooses all signed
attributes required for the ownership claim. Next, it packs them as PσU

A∗

so
that the OCP can verify the signed user attributes using a single exponentiation
operation using the CA verification key. This would also require a user client
to include in the message a subset of her attributes A∗ corresponding to the
packed ones, i.e., PσU

A∗

. Since a user client signs the message using the user’s
signing key, the user’s verification key vkU is also included in the message to let

8 For instance, the user’s date of birth might appear differently in an article, i.e., in
the form of her age as shown in Figure 2. If this happens, the age could be compared
with the difference of the user’s date of birth and publication date of the article, if
present. As we can see in the example, 30 years old will be compared with 20.10.2014

- 29.07.1984. Further tests for checking syntactic equivalence are conceivable, but
are postponed to future work.

Oblivion: A Framework for Enforcing the Right to be Forgotten 11

the OCP verify the message. For preventing replay attacks, a timestamp TS is
also included in the message. The user client sends to the OCP (in Step 3) the
message M = (TS, vkU , A

∗, PσU
A∗

, D) along with the signature σM .

Verifying Removal Request. Upon receiving a removal request, an OCP
verifies it before issuing any ownership token. As a first step, the signature σM

over the messageM is verified. Next, the OCP checks the timestamp and verifies
the packed version of the user attributes signed by the CA. Then, the OCP checks
if all tagged attributes are valid. This step comprises the exact matching and/or
synonym checking.

Face Recognition. Optionally, the face recognition algorithm could be run
provided there is a user picture in the article. As we explained earlier in this
section, faces are pre-identified by the user client, in order to ease the job of the
OCP. The OCP compares the user-tagged face with one provided as a signed
user attribute in the request (see Figure 2). If the face recognition algorithm
discovers similarity with a certain confidence, the user’s picture in the article is
considered matched with her profile picture.

Entity Disambiguation. When the given article contains text, the OCP can
execute the disambiguation algorithm (e.g., AIDA [18]) for ensuring the eligi-
bility goal, i.e., checking whether the article is about the user. The outcome of
this algorithm is the relation between the user attributes, her name in particular,
and the context of the text. The outcome, say satisfying the predefined threshold
value, would help the OCP to mark the user as being affected by the data in the
article. Figure 2 illustrates an example article about Alice Schmidt.

Issuing Ownership Token. On successful evaluations of all the steps per-
formed by the OCP, the user is issued an ownership token. This is accomplished
by the OCP by sending (in Step 4) an ownership token DU to the user. It is
important to note that the OCP verification protocol is non-interactive.

4.3 Reporting Phase

Once the user receives the ownership token, she can report to the indexing
system. In this phase, a user reports by sending (in Step 5) the ownership token
DU (corresponding to D) to the indexing system. The indexing system verifies
the token, fires the incident and sends (in Step 6) an acknowledgment Ack to
the user. If the OCP is a third-party service, the ownership token is signed by
the OCP and could be sent to multiple indexing systems simultaneously.

4.4 Efficient Cryptographic Realization

The cryptographic instantiation relies on RSA-full-domain hashing as the un-
derlying signature scheme. We briefly recall the definition of this signature
scheme. The scheme assumes a given collision-resistant family of hash func-
tions Hk : {0, 1}∗ → {0, 1}k. In the following, we omit the security parameter
k for readability. The key generation KeyGen computes a key pair (sk, vk) by

12 Simeonovski, Bendun, Asghar, Backes, Marnau and Druschel

first computing an RSA modulus N = p · q, where p and q are two random
primes, and then computing e and d such that e · d = 1 mod (p− 1)(q− 1). The
keys are sk = (d, vk) and vk = (e,N). The signing function Sign(sk, M) com-
putes σM := H(M)d mod N . Finally, the verification function Verify(vk,σ,M)
outputs accept if H(M) = σe mod N and reject otherwise.

Using this cryptographic primitive, we finally describe the construction that
we propose for our framework to achieve goals defined in Section 3.2. The
censorship-resistance and eligibility checking goals could be achieved using X.509
based schemes [19]; however, those schemes are not able to achieve goals includ-
ing minimal disclosure (i.e., disclosing only those attributes required for the
ownership claim) and scalability (i.e., reducing computational overhead on the
OCP end). Using our construction, the user can provide a minimal set of her
attributes required for the ownership claim, and we are able to delegate some
computation to the user client so that the OCP could be offloaded. Our construc-
tion allows an OCP to verify all user attributes with just a single exponentiation.

Init(k): The system is initialized by running
RSA-Sig.Init(k), which returns H(.).

KeyGen(1λ): It runs RSA-Sig.KeyGen(1λ).
For the certification authority CA, it re-
turns 〈skCA, vkCA〉. For each user U , it re-
turns 〈skU , vkU 〉.

CA.SignA(skCA, vkU , A): Given the CA’s
signing key skCA, the user’s verification
key vkU and a list of user attributes A =
{a1, a2, . . . , an}, the certification author-
ity CA returns the list of signed attributes
σUA

= {σUa1
, σUa2

, . . . , σUan
}, which rep-

resents a list of signed attributes that be-
long to the user U . For each attribute
ai ∈ A, it computes σUai

by running RSA-
Sig.Sign(skCA, ai||vkU), where || denotes
concatenation.

U.SignM(skU , M): Given the user’s signing
key skU and the message M , it runs RSA-
Sig.Sign(skU , M) and returns the signature
σM = M(D)dU .

OCP.VerifyM(vkU , σM , M): Given the
user’s verification key vkU , the signature
σM and the message M , it runs RSA-
Sig.Verify(vkU , σM , M) and returns either
accept or reject.

U.PackA(vkCA, σUA∗
): Given the CA’s ver-

ification key vkCA and the list of signed at-
tributes σUA∗

⊆ σUA
, it returns the packed

signature PσU
A∗

. It calculates:

PσU
A∗

=
l∏

i=1

σUai
mod NCA

where σUai
∈ σUA∗

and l = |σUA∗
|.

OCP.VerifyA(vkCA, vkU , PσU
A∗

, A∗): Given
the CA’s verification key vkCA, the user’s
verification key vkU , the packed signature
PσU

A∗
and the list of attributes A∗ ⊆ A, it

returns either accept or reject. It checks if
l∏

i=1

H(ai||vkU)
?

≡ (PσU
A∗

)eCA mod NCA

where ai ∈ A∗ and l = |A∗|.

Fig. 3. Details on the algorithms of the data ownership scheme.

Oblivion: A Framework for Enforcing the Right to be Forgotten 13

Definition 1 (Data ownership scheme). The data ownership scheme DATA-
OWN is a tuple of algorithms 〈Init, KeyGen, CA.SignA, U.SignM, OCP.VerifyM,
U.PackA, OCP.VerifyA〉. The definition of the algorithms can be found in Figure 3.

Lemma 1 (Correctness). Informally speaking, OCP.VerifyA(vkCA, vkU , PσU
A∗

,

A∗) will always return accept if the list of signed attributes that are packed by the
user are the same as the list of attributes A∗ provided by the user to the OCP.
More formally,

Pr[OCP.VerifyA(vkCA, vkU , PσU
A∗

, A∗) = accept] = 1

The claim easily follows from the homomorphic property of exponentiation
modulo N . We analyze the security properties of Oblivion in Appendix A.

5 Performance Analysis

In this section, we provide implementation details for all components that we
newly developed for Oblivion and name libraries that this implementation relies
on. We subsequently evaluate the performance overhead of this implementation
for each involved component (CA, user client, and OCP).

5.1 Implementation Details and Evaluation Parameters

Components of the Implementation. The implementation prototype is
written in Java. To reflect the different involved participants, the implementation
consists of three components: a module for the CA (CA-module), a module for
the OCP (OCP-module) and a module for the user client (user-module). For
the sake of simplicity, the prototypical implementation assumes that the OCP
and the indexing system are managed by the same organization; this avoids an
additional trust level between these institutions and allows us to concentrate
on the performance measurements. The size of each of these modules (without
included libraries; see below) is below 5 KB.

Libraries Used. Our prototypical implementation relies on several existing
open source libraries. First, we include the Stanford NER library [1] for identify-
ing personal information in the textual article. The NER library is of size 3.2 MB
and the NER classifier, for covering seven distinct classes of data, requires 16.6
MB. Second, we rely on OpenCV (Open Source Computer Vision Library), an
open source computer vision and machine learning library [25], for face detection
and recognition. Finally, we include the AIDA (Accurate Online Disambiguation
of Named Entities) framework [18] to achieve ownership disambiguation. In our
experiments, we used the AIDA framework itself and its corresponding web
service, which works with entities registered in the DBpedia [3] or YAGO [30]
knowledge base.

Evaluation Parameters. We have evaluated the performance of the imple-
mentation on a dataset of 150 news articles that we randomly crawled from the

14 Simeonovski, Bendun, Asghar, Backes, Marnau and Druschel

international news agency Reuters9, using the Java-based web crawler crawler4j [10].
These articles cover different topics and range from 1 K to about 10 K words; the
average length is 1.9 K words per article. The actual experiments were run on a
standard notebook with 2.5 GHz dual-core processor and 8 GB RAM. The ex-
perimental results described below constitute the average over 100 independent
executions. Network latency was not considered in the experiments.

5.2 Evaluating the CA-Module

Evaluating the performance of the CA-module consists of measuring the over-
head of attribute certification.

 0

 1

 2

 3

 4

 5

 6

 7

 5 10 15 20 25 30 35 40 45 50
T

im
e

(in
 s

ec
on

ds
)

Number of attributes certified

512-bit Key
1024-bit Key
2048-bit Key
4096-bit Key

Fig. 4. Evaluation of the CA-module: Perfor-
mance overhead for certifying user attributes.

Attribute Certification. Fig-
ure 4 illustrates the computational
overhead for certifying user at-
tributes. In our experiment, we
generated up to 50 attributes and
considered CA’s signing keys of
varying size, ranging from 512 to
4096 bits. As we expected, certi-
fication time grows linearly in the
number of attributes. For the most
complex cases under consideration
— the CA signing 50 attributes,
and thus far more than what a user
would typically maintain, using a
signing key of size 4096 bits — the attribute certification took 7.5 seconds. For
smaller numbers of attributes, or for all smaller key sizes, this certification takes
less than a second. Since attributes are typically certified only once per user,
this computational overhead should be acceptable as a one-time upfront effort.

5.3 Evaluating the User-Module

Evaluating the user-module is performed in two steps: identifying suitable at-
tributes in the given sample texts, and pre-processing these attributes for the
subsequent ownership-proof phase.

Identifying Attributes. As explained in Section 3.3, the user-module pre-
processes the article using NER techniques and appropriately selects all entities
that are necessary for the identification process. We evaluate the performance
of the user-module on the aforementioned 150 news articles from Reuters, and
measure the time required to identify and extract all entities. The results are
depicted in Figure 5(a). The performance overhead varies from 77 to 814 millisec-
ond (ms), with an average of 174 ms per article. The number of unique entities in

9 http://www.reuters.com/

Oblivion: A Framework for Enforcing the Right to be Forgotten 15

 0

100

200

300

400

 0 100 200 300 400
T

im
e

(in
 m

ill
is

ec
on

ds
)

Number of unique entities

NER Time

(a) NER overhead

0

1

2

3

4

 10 20 30 40 50

T
im

e
(in

 m
ill

is
ec

on
ds

)

Number of attributes packed

512-bit Key
1024-bit Key
2048-bit Key
4096-bit Key

(b) Packing overhead

Fig. 5. Evaluation of the user-module: Performance overhead of (a) identifying personal
information and (b) for packing user attributes.

the articles ranges from 43 to 590, where the average number of unique entities
per article is 135.

Attribute Packing. After identifying all personal attributes in a given news
article, the user-module pre-processes a set of signed attributes as required for
the ownership proof. This pre-processing in particular reduces the number of
exponentiations that are required to verify the attributes for the OCP, and
thereby avoids a potential bottleneck. In the performance measurement, we again
considered up to 50 attributes and varying key sizes. As shown in Figure 5(b), the
time for this pre-processing increases linearly in the number of attributes, with
an additional overhead for larger key sizes. For the maximum of 50 attributes,
the pre-processing only took between 0.1 ms (for a 512-bit key) and 4.1 ms (for
a 4096-bit key).

Message Signing. The user client signs the message using her signing key. For
this experiment, we considered the aforementioned 150 news articles. Consider
the overhead of signing a message with a signing key of size 1024 bits. Depending
on the size of the article, the signing took between 2.8 and 3.8 ms, with an average
of 2.9 ms per article.

5.4 Evaluating the OCP-Module

We split the performance evaluation of the OCP-module into two parts: First,
we evaluate the time required to verify the validity of requests for varying pa-
rameters: for varying numbers of articles, for varying number of attributes, and
for varying verification requests. Second, we evaluate the time required to decide
whether the request is legitimate, i.e., whether the document under consider-
ation affects the user’s data, either by means of entity disambiguation or face
recognition.

Validating the User Request. Upon receiving a signed message from a user,
the OCP verifies the validity of the signature using the user’s verification key.
This verification time (with a 1024-bit key) ranges from 2.9 to 4.3 ms with an

16 Simeonovski, Bendun, Asghar, Backes, Marnau and Druschel

 0

100

200

300

400

 0 20 40 60 80 100 120 140

T
im

e
(in

 m
ill

is
ec

on
ds

)

Number of articles

Cumulative Verification Time

(a) Overhead of message verification

0

2

4

6

8

10

 5 10 15 20 25 30 35 40 45 50

T
im

e
(in

 m
ill

is
ec

on
ds

)

Number of attributes verified

512-bit Key
1024-bit Key
2048-bit Key
4096-bit Key

(b) Overhead of attribute verifi-
cation

 0
 1
 2
 3
 4
 5
 6
 7
 8

 4000 8000 12000 16000 20000

T
im

e
(in

 s
ec

on
ds

)

Number of verification requests

20 Attributes per Request

(c) Overhead of request verifica-
tion

 0

 50

100

150

200

250

 1 2 3 4 5 6 7 8 9 10

T
im

e
(in

 m
ill

is
ec

on
ds

)

Number of entities

AIDA Complexity

(d) Overhead of entity disambigua-
tion

Fig. 6. Evaluation of the OCP-module: Performance overhead of (a) verifying the mes-
sages, (b) verifying user attributes signed by the CA, (c) verifying user requests and
(d) running entity disambiguation.

average of 3.2 ms per article. Figure 6(a) illustrates the cumulative verification
time to verify up to 150 articles. It grows linearly, so verifying message validity
for 150 articles takes the OCP less than 0.72 seconds.

Similarly, Figure 6(b) displays the time required to verify a certain number of
signed user attributes. Recall that the user sends a packed version of her signed
attributes to ease the verification task of the OCP. Still, the OCP needs to
calculate the hash of each individual attribute and multiply all hashes together
before being able to verify the signature based on the packed version. Verifying
50 user attributes takes 0.37 ms (for a 512-bit key) and 10 ms (for a 4096-bit key),
respectively. For l attributes, the packed version is at least l− 2 exponentiations
faster than verifying each attribute individually.

Finally, Figure 6(c) shows the performance overhead for verifying a certain
number of user requests. In our experimentation, we assumed that every request
requires the verification of 20 attributes, each one signed with a key of size 1024
bits. To measure the performance overhead, we gradually increased the number of
user requests from 2000 to 20,000 and observed an (essentially linearly-growing)
overhead from 0.824 to 7.96 seconds. Processing a single verification request with
20 attributes took less than 0.4 ms on average.

Oblivion: A Framework for Enforcing the Right to be Forgotten 17

The overall computational overhead of the OCP-module is a combination of
the message verification and the attribute request verification, each one incur-
ring on average 3.2 ms and 0.4 ms, respectively. Therefore, our implementation
manages to process a removal request within 3.6 ms. In summary, it allows the
OCP to handle 278 requests per second (using the standard laptop that we based
these experiments on).

Eligibility of the User Request. Identifying whether the requested article
indeed contains personal data of the requesting user relies on appropriate en-
tity disambiguation. Figure 6(d) illustrates the performance overhead for entity
disambiguation with up to 10 entities.

Recall that we require the user client to run the face detection algorithm
and select the appropriate face and send it the OCP along with the standard
request. The performance overhead of the face recognition algorithm depends
on multiple factors such as the picture resolution and the face position in the
picture. In our experiments, we have chosen pictures with well-defined frontal
faces. The resolution of the pictures is up to 3072 x 4608 pixels with an average
size of 4 MB. Having all these predefined conditions, the runtime of the face
recognition algorithm stays in the range of 150 to 300 ms.

The overall performance overhead, comprising both entity disambiguation
and image recognition, currently constitutes the bottleneck for verifying the
validity of removal requests in the OCP-module. Currently, we are exploring
further optimization here.

6 Discussion

Deployability and Usability. In order to deploy our solution, Oblivion re-
quires a national or local government-wide CA that issues credentials to citizens.
We argue that this requirement does not limit practicality of our approach be-
cause the issuance of such credentials is already part of an EU standard [12],
implemented by some member states and meant to be adopted by all the EU
member states [13,32]. The European EID standards also enable the use of digi-
tal credentials for Internet communication (e.g., for online shopping) [13] which
also strengthens usability for Oblivion’s developers as well as end-users.

Scope of Eligibility. First, it is a hard problem to decide on the eligibility of
an ownership claim if two persons have the same attributes, e.g., name. Oblivion

addresses this issue by using attributes that in combination should be sufficiently
unique for most people. Second, our framework cannot decide whether a piece of
content is of public interest (such information falls into the category of freedom
of the press) and outweighs the privacy interest of an individual. This decision
is a legal assessment. This is outside of the scope of Oblivion and subject to
ongoing research about the automation of legal assessments [4].

Privacy and Availability. The OCP could be a third-party service or man-
aged by the search engine provider. From a privacy point of view, the latter

18 Simeonovski, Bendun, Asghar, Backes, Marnau and Druschel

setup may reveal personal information about citizens. However, we argue that a
search engine provider does not learn more than what is already available in the
article. This is because Oblivion follows a principle of least privilege, where only
those particular attributes that are present in the article are sent to the OCP.
The collection of information and verification makes the OCP a key component
of Oblivion. The availability of the OCP becomes essential in the long-run suc-
cess of Oblivion. Therefore, to prevent a single point of failure, we can consider
deploying multiple instances of the OCP.

Robustness. Oblivion relies on NLP and image recognition techniques. The
NLP technique we use in our framework is simple and sufficiently robust in prac-
tice. Concerning robustness of the image recognition technique, recent research
has shown that automated face recognition is almost comparable to human face
recognition accuracy [31]. Therefore, when the removal request includes a picture
that uniquely identifies the user with a certain confidence (part of the deployed
policy), our framework can easily approve the removal request.

7 Conclusion

In this work, we have introduced a universal framework, called Oblivion, pro-
viding the foundation to support the enforcement of the right to be forgotten
in a scalable and automated manner both for users and indexing systems. The
framework enables a user to automatically identify personal information in a
given article and the indexing system to automatically verify the user’s eligibil-
ity. The framework also achieves censorship-resistance, i.e., users cannot blacklist
a piece of data unless it affects them personally. This is accomplished using the
government-issued digital credentials as well as applying the entity disambigua-
tor technique. We have conducted comprehensive evaluations of Oblivion on
existing articles, showing that the framework incurs only minimal overhead and
is capable of handling 278 removal requests per second on a standard notebook
(2.5 GHz dual core). In these evaluations, we have observed that the remaining
performance bottleneck on the OCP is caused by the entity disambiguator (i.e.,
AIDA) and the face recognition (i.e., OpenCV) algorithms. We believe that op-
timized versions of both could help in significantly improving the performance.

For future work, we plan to improve Oblivion’s accuracy and overall coverage
for proving affectedness. Following the principle of reCAPTCHA digitizing books
[33], improving the accuracy of NER by taking into account the user client
tagging constitutes a promising approach. Another promising research direction
is to analyze the assessment of lawfulness and automate the application of future
guidelines for the right to be forgotten. Staying close to the precedent, this would
also require semantically analyzing the article to determine if its content violates
privacy rights, e.g., by being outdated or by containing sensitive information for
the entity requesting removal.

Oblivion: A Framework for Enforcing the Right to be Forgotten 19

References

1. Stanford Named Entity Recognizer (NER). http://nlp.stanford.edu/software/
CRF-NER.shtml, last accessed: October 11, 2014

2. The web robots pages. http://www.robotstxt.org/, last accessed: October 10,
2014

3. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: Dbpedia:
A nucleus for a web of open data. In: Proceedings of the 6th International The
Semantic Web and 2nd Asian Conference on Asian Semantic Web Conference.
ISWC’07/ASWC’07 (2007)

4. Backes, M., Bendun, F., Hoffman, J., Marnau, N.: PriCL: Creating a Precedent.
A Framework for Reasoning about Privacy Case Law [Extended Version] (2015),
http://arxiv.org/abs/1501.03353

5. Backes, M., Gerling, S., Lorenz, S., Lukas, S.: X-pire 2.0 - a user-controlled ex-
piration date and copy protection mechanism. In: Proceedings of the 29th ACM
Symposium on Applied Computing (SAC 2014). ACM (2014)

6. Bandhakavi, S., Zhang, C.C., Winslett, M.: Super-sticky and declassifiable release
policies for flexible information dissemination control. In: WPES. pp. 51–58 (2006)

7. Castelluccia, C., De Cristofaro, E., Francillon, A., Kaafar, M.A.: EphPub: Toward
robust ephemeral publishing. In: Network Protocols (ICNP), 2011 19th IEEE In-
ternational Conference on. pp. 165–175 (October 2011)

8. Chadwick, D.W., Lievens, S.F.: Enforcing ”sticky” security policies throughout a
distributed application. In: Middleware Security. pp. 1–6 (2008)

9. Court of Justice of the European Union: Judgment of the court (grand cham-
ber). http://curia.europa.eu/juris/celex.jsf?celex=62012CJ0131, last ac-
cessed: October 10, 2014

10. crawler4j: Open source web crawler for Java. https://code.google.com/p/

crawler4j/, last accessed: October 9, 2014
11. Dierks, T.: The Transport Layer Security (TLS) protocol version 1.2 (2008)
12. European Parliament, Council of the European Union: Regulation (EU) No

910/2014 of the European Parliament and of the Council of 23 July 2014 on elec-
tronic identification and trust services for electronic transactions in the internal
market and repealing Directive 1999/93/EC. http://eur-lex.europa.eu/legal-
content/EN/TXT/?uri=CELEX:32014R0910, last accessed: October 10, 2014

13. Federal Ministry of the Interior: German national identity card.
http://www.personalausweisportal.de/EN/Citizens/The-New-Identity-

Card/The_New_Identity_Card_node.html, last accessed: October 10, 2014
14. Finkel, J.R., Grenager, T., Manning, C.D.: Incorporating non-local information

into information extraction systems by gibbs sampling. In: ACL 2005, 43rd An-
nual Meeting of the Association for Computational Linguistics, Proceedings of the
Conference, 25-30 June 2005, University of Michigan, USA (2005)

15. Geambasu, R., Kohno, T., Levy, A.A., Levy, H.M.: Vanish: Increasing data pri-
vacy with self-destructing data. In: 18th USENIX Security Symposium, Montreal,
Canada, August 10-14, 2009, Proceedings. pp. 299–316 (2009)

16. Google: European privacy requests for search removals. https://www.google.

com/transparencyreport/removals/europeprivacy/?hl=en, last accessed: Jan-
uary 23, 2015

17. Google Inc.: Search removal request under European Data Protection law. https:
//support.google.com/legal/contact/lr_eudpa?product=websearch, last ac-
cessed: October 10, 2014

20 Simeonovski, Bendun, Asghar, Backes, Marnau and Druschel

18. Hoffart, J., Yosef, M.A., Bordino, I., Fürstenau, H., Pinkal, M., Spaniol, M.,
Taneva, B., Thater, S., Weikum, G.: Robust disambiguation of named entities
in text. In: Proceedings of the 2011 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2011, 27-31 July 2011, John McIntyre Conference
Centre, Edinburgh, UK, A meeting of SIGDAT, a Special Interest Group of the
ACL. pp. 782–792 (2011)

19. Housley, R., Polk, W., Ford, W., Solo, D.: Internet X.509 Public Key Infrastruc-
ture Certificate and Certificate Revocation List (CRL) Profile. RFC 3280 (Pro-
posed Standard) (April 2002), http://www.ietf.org/rfc/rfc3280.txt, obsoleted
by RFC 5280, updated by RFCs 4325, 4630

20. Microsoft: Request to block bing search results in europe. https://www.bing.com/
webmaster/tools/eu-privacy-request, last accessed: October 10, 2014

21. Mont, M.C., Pearson, S., Bramhall, P.: Towards accountable management of iden-
tity and privacy: Sticky policies and enforceable tracing services. In: DEXA Work-
shops. pp. 377–382 (2003)

22. Nair, S., Dashti, M., Crispo, B., Tanenbaum, A.: A hybrid PKI-IBC based ephemer-
izer system. In: Venter, H., Eloff, M., Labuschagne, L., Eloff, J., von Solms, R.
(eds.) New Approaches for Security, Privacy and Trust in Complex Environments,
IFIP International Federation for Information Processing, vol. 232, pp. 241–252.
Springer US (2007)

23. NLTK: WordNet Interface. http://www.nltk.org/howto/wordnet.html, last ac-
cessed: September 29, 2014

24. Olston, C., Najork, M.: Web crawling. Foundations and Trends in Information
Retrieval 4(3), 175–246 (2010)

25. OpenCV: Open source computer vision. http://opencv.org/, last accessed: Oc-
tober 10, 2014

26. Pearson, S., Mont, M.C.: Sticky policies: An approach for managing privacy across
multiple parties. Computer 44(9), 60–68 (September 2011)

27. Perlman, R.: The ephemerizer: Making data disappear. Journal of Information
System Security 1, 51–68 (2005)

28. Reimann, S., Dürmuth, M.: Timed revocation of user data: Long expiration times
from existing infrastructure. In: WPES. pp. 65–74 (2012)

29. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (February 1978)

30. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: A core of semantic knowledge.
In: Proceedings of the 16th International Conference on World Wide Web. pp.
697–706. WWW ’07 (2007)

31. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: Closing the gap to human-
level performance in face verification. In: 2014 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2014, Columbus, OH, USA, June 23-28,
2014. pp. 1701–1708 (2014)

32. The Council of the European Union: Residence permits for third-country nationals.
http://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX:32008R0380,
last accessed: October 10, 2014

33. Von Ahn, L., Maurer, B., McMillen, C., Abraham, D., Blum, M.: reCAPTCHA:
Human-based character recognition via web security measures. Science 321(5895),
1465–1468 (2008)

34. Yahoo: Requests to block search results in yahoo search: Resource for european
residents. http://bit.ly/185Lije, last accessed: January 20, 2015

Oblivion: A Framework for Enforcing the Right to be Forgotten 21

A Security Analysis

The framework is supposed to achieve three security objectives: minimal disclo-
sure, request unforgeability and censorship-resistance (cf. Section 3.2). In the
following, we show that we achieved these goals.

Minimal disclosure. Minimal disclosure in this context is the minimization
of knowledge increase for the indexing system in order to verify eligibility of a
request. In the case that OCP and IS are separate, this is given since the IS only
receives a token from the OCP through the user. This token does not need to
contain any information about the user. However, if the OCP and the IS collide,
it has to receive the input to run OCP.VerifyA.

A user who wants to hide her verification key or credentials could potentially
use interactive zero-knowledge proofs on top of our construction. This, however,
would sacrifice efficiency and would not improve the disclosure of information.
The reason is that the verification key is basically a pseudonym, i.e., it is only
linked to the attributes that we send. Thus, the only need to minimize is the
sending of attributes. In Oblivion, we only send those attributes that are indeed
necessary for proving that the user is affected, i.e., that already occur in the link
we report. We implement this by sending only subsets.10

Request Unforgeability. For unforgeability we show that even the user cannot
construct a message that verifies without having a signature on every single
attribute. As a consequence, the user cannot show that she is affected by content
concerning other users’ attributes.

Theorem 1 (Request Unforgeability). If OCP.VerifyA returns accept then
the packed attributes correspond to the set A∗. More formally, every A that has
access to a signing oracle S with public key vk can only generate P for subsets
A∗ of all signatures A requested from S.

Proof. Let A be the set of queried attributed signatures of the adversary

A for a given execution. Assume there is a set (B,P)
$
← AS(vku) such that

OCP.VerifyA(vk, vkU , P , B) = accept and B 6⊆ A. So there exists b∗ ∈ B such
that b∗ 6∈ A. Then there also exists an adversary A∗ that queries A ∪ B\{b∗},
i.e., b∗ is the only unqueried attributed in B. Since OCP.VerifyA(vk, vkU , P ,
B) = accept, it follows that P eCA ≡

∏
b∈BH(b||vkU) by construction. Since we

queried all b except b∗ in B, we can compute σ := P/
∏

b6=b∗∈BH(bi||vkU)
dCA .

For this σ, we have σeCA = H(b∗||vkU). However, this contradicts the Chosen
Message Attack (CMA) security of the underlying signature scheme. Thus, the
adversary A cannot exist. �

Censorship-Resistance. Finally, we have to ensure that the overall system
does not enable any user to censor, i.e., to successfully report data that she is

10 We stress again that we only show affectedness of the user. Arguing about the legal
implications and whether this minimization of data is sufficient in order to apply
them is beyond the scope of this (and all existing) work.

22 Simeonovski, Bendun, Asghar, Backes, Marnau and Druschel

not affected by. There are two possible approaches. First, we could do a reduc-
tion proof to the CMA-security of the signature scheme as done for the request
unforgeability.11 Second, we can formulate the protocol in the applied π-calculus
and automatically verify the properties of interest using tool support. The out-
come can then be leveraged from the protocol to the implementation by using
computational soundness which links symbolic execution traces to computational
execution traces. Thus, we can use tools for symbolic verification and the out-
come transfers to the implementation. In what follows, we pursue the second
approach since the protocol is easy to express and verify using state-of-the-art
verification tools.

The applied π-calculus defines a way of modeling processes (P,Q).
Thereby, the calculus gives constructs for parallel execution of processes
(P|Q), for repetition of processes (!P), for communication between processes
(in(chan,msg),out(chan,x)) and for restricted computation. The restric-
tion is that only symbolic constructors (let x=sig(sk,msg)) and destructors
(let m=verify(vk,sig)) can be used to modify terms which consist of sym-
bols. The difference is that constructors create symbolically larger symbols, i.e.,
in the example x will be handled as the symbol sig(sk,msg)whereas destructors
can give reduction rules to remove or replace constructors. Finally, for symbols,
there are two classes, publicly known symbols and freshly introduced symbols
(new N; P) which are unequal to all other symbols.

For the sake of exposition, we briefly describe the process for the indexing
system. The system receives a message and verifies it with the corresponding
key (computational soundness requires the key to be part of the signature). We
then verify the first part of the signed message with the verification key of the
OCP. This message must be the user’s verification key and the requested data,
i.e., we check for equality before the IS is convinced that the signer is affected.

let IS = in(ch,x); let tmpkey = vkof(x);

let (c,reportData) = verifySig(tmpKey, x) in

let (sigKey, sigData) = verifySig(vkOCP, c) in

if reqData==sigData then if tmpKey==sigKey then

event affected(sigKey,reqData).

11 Such a proof would look like this: Assume censorship is possible. That means there
is an execution that ends with a successful report at the indexing system without the
user reporting the data. Therefore, there was a DU sent to the IS that verifies with
the key of the OCP. Either the OCP signed DU or there is a contradiction to the
signature scheme’s CMA-property. Consequently, the OCP signed DU and since we
assume the OCP to be trustworthy, it means that the OCP received an M,σM from
a user and verified it. Here, either the user’s signature σM was forged (contradicting
the CMA-property of the signature scheme) or the user forged a message M that
verifies (contradicting the request unforgeability proven before). It follows that the
user could not have generated such a request, proving censorship-resistance.
While this argumentation sounds plausible, it does not consider every possible in-
terleaving or repetition of executions. In contrast, tool support offers a trustworthy
guarantee that we did not overlook any execution generated by these processes.

Oblivion: A Framework for Enforcing the Right to be Forgotten 23

The end of the process is a so-called event. These events have no semantic
meaning in the calculus, but can be used by the model checker to prove certain
properties of the protocol. In our example, the event symbolizes the belief of the
IS that the user with verification key sigKey is affected by the data reqData.
The model checker answers queries such as query ev:affected(k,d). which
formalizes that the model checker can prove that this event can be reached in
the protocol execution.

Censorship-resistance can be formulated as a sequence of events that has
to occur whenever the IS thinks a user is affected, i.e., whenever a request is
considered to affect the requesting user, the OCP has verified that this data
belongs to the user that sends the request. This can be done by two queries of
the form query ev:affected(key,d) ==> ev:VerifiedOw(x,key,d). mean-
ing that whenever the event affected occurs there has to be a corresponding
event verifying the ownership beforehand. Analogously, we prove that the own-
ership verification is preceded by the attribute verification of the CA.

The complete formalization in the applied π-calculus can be found online at
the project website12. The protocol verification takes 8 ms.

Other Security Goals. In order to prevent a replay attack, the user includes
the timestamp in her request. One can argue that a replay attack is not an
issue because it is a legitimate request by the authorized user. However, we
consider that a replay attack could harm the credibility of the user if an adversary
launches it to mount a Denial-of-Service (DoS) attack on the OCP.

12 https://infsec.cs.uni-saarland.de/projects/oblivion/

