
PodBase: Transparent storage management for
personal devices

Ansley Post†‡ Petr Kuznetsov† Peter Druschel†

†Max Planck Institute for Software Systems ‡Rice University

1. INTRODUCTION
Personal electronic devices that include a large
amount of storage are increasingly common. Al-
ready, many households use multiple mobile
phones, digital cameras, MP3 players and gam-
ing devices, in addition to desktop and notebook
computers. Today, users must individually manage
these devices to ensure the durability and availabil-
ity of the data they store.

Ensuring that data is durable, or regularly
backed up, is an onerous task even for a single home
computer. As the number of devices increases, it is
difficult for the user to ensure that no data is lost
in the event of a loss or failure of any one device.
Even with the help of device-specific maintenance
software, the user must keep track of all devices
that need to be backed up and perform the appro-
priate actions on a regular basis. Anecdotal evi-
dence suggests that many users fail to ensure the
durability of their data [5, 6]. Thus, users face the
risk of data loss as they are increasingly dependent
on digital information.

Making sure that data is available on the de-
vices where it is needed is equally difficult. A user
must regularly connect and synchronize devices to
ensure, for instance, that changes to her address
book are propagated to all communications devices
and additions to her music library eventually is
present on all devices capable of playing music.
Currently, keeping devices synchronized is an in-
convenient and error-prone task.

In this paper, we sketch the design of PodBase,
a system that automatically manages the data and
storage across a household’s personal devices and
frees users from the responsibility of manual data
management. Data is automatically replicated to
ensure both durability of data and availability of
the latest data on relevant devices. The system op-
erates transparently and takes advantage of avail-
able storage space and incidental connectivity that
occurs among the devices.

Once a household’s devices are introduced to
PodBase, metadata is gossiped whenever devices
are connected via a network, Bluetooth or USB.

Moreover, during periods of connectivity, each de-
vice makes autonomous decisions about data repli-
cation. Through pairwise exchanges of data and
metadata, the system makes progress towards en-
suring availability and durability of data.

PodBase is self-managing and requires no over-
sight or input from the user during normal oper-
ation. It is completely decentralized and does not
rely on the presence of any single device. Given
sufficient storage space, the data stored on any de-
vice can be recovered automatically in the case of
device loss or storage failure. For example, if a user
loses his laptop, a recent snapshot of the data that
was stored on it can be recovered. Replicated data
stored on a device can also be accessed by the user,
which provides additional availability.

We present evidence for the feasibility of our de-
sign using a storage trace gathered in 11 house-
holds, including over 40 storage devices, over a pe-
riod of several months. The trace captures the in-
teraction of storage devices as well as information
such as storage device sizes, available capacity, and
rate of data generation. Overall, the trace indi-
cates that, relative to the rate at which new data
tends to be generated, the design is feasible. That
is, there is sufficient available storage space and
devices are connected often enough to allow the
transparent and timely replication of new data.

The rest of the paper is structured as follows:
Related work is discussed in Section 2. Section 3
describes the target environment and states Pod-
Base’s goals. In Section 4, we sketch the design of
PodBase. Section 5 studies the feasibility of Pod-
Base using our trace data, and Section 6 concludes.

2. RELATED WORK
Automatically managing personal devices is a
largely unsolved problem. Previous approaches
can generally be divided into those providing nam-
ing and connectivity for personal devices, and sys-
tems providing additional storage functionality.

The Unmanaged Internet Architecture [3] pro-
vides a naming and routing service for a user’s
personal electronic devices. It requires zero con-

figuration by the user, and allows rich sharing se-
mantics between users. In PodBase, we address the
orthogonal problem of data management on users’
devices. UIA can be used by PodBase to provide
naming and connectivity among a household’s de-
vices regardless of their present location.

One way to ensure availability of data among
a user’s devices is a distributed file system that
supports disconnected operation, like Bayou [13],
Ficus [8] and Coda [4]. Attempts have been made
to tailor distributed file systems to work with per-
sonal electronic devices. Ensemblue [7], the Few
File system [9], Segank [11] and Perspective [10]
determine which data should be available on a de-
vice based on the device’s characteristics. Unlike
Podbase, distributed filesystems support general
write sharing, but they are not concerned with data
durability. Unlike distributed filesystems, PodBase
is layered on top of device-specific filesystems and
can be easily deployed with existing devices.

The Roma personal metadata service [12] pro-
vides a shared metadata service for user data.
Roma can be used to build higher-level services, in-
cluding synchronization, consistency and increased
availability. Roma relies on devices accessing a cen-
tralized metadata server, an assumption that we do
not make in PodBase.

There is prior work on providing convenient
backup service for user data. Pastiche [2] makes
backup easier for users by automatically copying
data to other machines in a peer-to-peer network.
PodBase provides a similar service, but works with
passive devices that are infrequently connected.

Time Machine [14] is an automatic backup utility
included in Apple’s OS X 10.5 operating system.
It allows all Apple machines in a household to au-
tomatically backup to a single drive over the net-
work. However, the backup device forms a single
point of failure. PodBase is vendor independent,
works with heterogeneous devices and does not de-
pend on any single device.

3. ASSUMPTIONS AND GOALS
We now describe PodBase’s intended operating en-
vironment and the properties it seeks to maintain.

3.1 Target Environment
PodBase is intended for a home environment. We
consider a typical home with a set of shared per-
sonal electronic devices with mass storage. Now,
we briefly describe the assumptions we are making
about this environment.

• Most files are read-only. Most mutable files
are modified by a single user. Concurrent up-
dates of a file are rare.

• Every device is periodically connected to an-

other device, such that information can even-
tually propagate among any pair of devices in
the household via a series of pairwise connec-
tions. The connections can occur via a wire-
less network, Bluetooth or USB.

• Devices may be turned off when not in use,
and it cannot be assumed that any one device
will be online all of the time.

• A device may fail or be lost at any time. How-
ever, we assume that the failure or loss of mul-
tiple devices during a short period of time is
unlikely.

An example of a household as described is a cou-
ple living in the same residence. Each partner has
her own notebook computer, MP3 player, camera,
and mobile phone. They share a large collection
of read-only music, videos and pictures, and main-
tain mostly separate sets of documents that they
occasionally work on.

3.2 System Goals
Our system aims to relieve users of the burden
of explicitly ensuring durability and availability of
their data. First, we want to make sure that all
data is made durable, so that a single device fail-
ure or loss will not result in the loss of user data.
Additionally, we want to establish convenient ac-
cess of the data by making each device store the
latest collection of data relevant to that device.
For example, given enough storage space, each user
should be able to access the entire shared collection
of music files on their MP3 players and each com-
munication device should store the latest version
of the address book.

As an example, consider the household described
above. Alice and Bob are graduate students, and
both return home with their notebooks. At some
point both Alice and Bob have their notebooks
turned on. All the files Alice had edited at the
library are replicated, in cryptographically sealed
form, on Bob’s notebook via their home wireless
network. At the same time a replica of a CD that
Bob has ripped earlier that evening is replicated
to Alice’s laptop so she can listen to it in the fu-
ture. Alice connects her MP3 player to charge; at
this time both users’ latest additions to the music
collection are copied to her player. In this simple
example, all of the files modified during the day
are made durable and available without requiring
any explicit user action.

At a later date, Alice’s laptop is stolen. She
wishes to restore the data on the lost device’s hard
drive to her replacement notebook. When she con-
nects over the wireless network with Bob’s note-
book, the files from her stolen notebook are re-
stored on the new device.

An additional goal for PodBase is transparency:
the use of PodBase should not affect the users’ ex-
perience in unexpected ways. A file modified on
one device should not cause the same modification
on another device without the user explicitly over-
writing the older copy of the file. For example, if
Bob and Alice both make changes to their shared
address book, these changes are not merged auto-
matically; instead, PodBase creates two versions
of the address book. If Alice or Bob wish to in-
tegrate the changes and merge the two versions,
they must do so manually. Automatic reconcilia-
tion techniques can be added to PodBase, but are
beyond the scope of this paper.

3.2.1 Desired Properties
Next, we specify the properties that PodBase at-
tempts to maintain. The primary goal is to ensure
durability. We want to guarantee that each file is
replicated on sufficiently many devices. As a sec-
ondary goal, we want to maximize availability by
placing copies of each file on devices where they
are potentially useful, subject to available space.

Let Π be the set of participating devices and F
be the set of files that are managed by the system.
For each device i, let Mi denote the amount of
space available at i for replication. Let k be the
replication factor. For a set of files S ⊆ F , size(S)
denotes the amount of storage required to store S.
We assume an availability map ϕ : Π → 2F that
assigns each device i a set of files that i should
preferably store.

PodBase places at each device i ∈ Π, a set ψ(i)
of file copies so that the following properties are
satisfied:

Durability. For each file f ∈ F , there exists a
set of at least k devices that store copies of f :
∀f ∈ F : |{i ∈ Π : f ∈ ψ(i)}| ≥ k.

Availability. Each device i ∈ Π uses its stor-
age for its preferred files first: ∀i ∈ Π: Mi −
size(ψ(i)) < size(ϕ(i) − ψ(i)).

The choice of the replication factor k and the size
of memory used for replication {Mi}i∈Π depends
on the amount of available storage, the efficiency
of the replication algorithm (sketched in Section 4),
and the users’ preferences.

PodBase defines default availability mappings
between well-known file types and devices that are
capable of interacting with these file types. For
example, devices capable of playing MP3 files at-
tempt to store all such files, if they have sufficient
space. However, no replicas are normally stored on
a camera, since its storage should be reserved for
storing new pictures. Advanced users can modify
ϕ to more finely control replica placement.

PodBase attempts to move towards a goal state
where the above properties hold, even as the sets of
files and devices are changing. Whenever a change
is made, the system attempts to return to the goal
state as quickly as possible, subject to the avail-
able storage space and the connections among de-
vices that occur. With every pairwise connection,
PodBase makes progress towards the goal state
based on the available information about the sys-
tem state. We want to ensure that with each con-
nection, the number of copies of each file mono-
tonically increases until the durability property is
achieved. Likewise, we want to guarantee that
progress is made towards the availability property.

4. DESIGN
Next, we sketch the design of PodBase. We de-
scribe how devices are introduced and removed
from the system and how the storage on an individ-
ual device is used and managed by PodBase. Fi-
nally, we describe how changes to the system state
are propagated and how new replicas are created
during pairwise connections of devices.

4.1 Overview
PodBase distinguishes between computing devices
and storage devices. Computing devices are capa-
ble of running user-installed software. Storage de-
vices are devices such as hard drives, media players
and mobile phones. Generally, a computing device
contains at least one storage device, and additional
storage devices can be connected via internal or ex-
ternal connections like Bluetooth or USB. Comput-
ing devices may connect to each other via network
connections.

Computing devices run the PodBase agent soft-
ware. In a PodBase deployment, there must be
at least one computing device. The agent inter-
acts with the user, provides connections between
attached storage devices, and runs the algorithm
for pairwise propagation of data using the meta-
data present on each storage device. Whenever two
computing devices are connected or two storage de-
vices are attached to the same computing device,
we say that these two devices are connected.

PodBase uses connections between devices op-
portunistically to transfer metadata and to repli-
cate data. For example, an MP3 player is con-
nected to a desktop computer. During this pe-
riod of connectivity, replicas are exchanged with
the computer’s disk as needed. Finally, the MP3
player is disconnected. At a later time, an external
hard drive is connected to the desktop and repli-
cas are propagated to this drive. Thus, through
a series of pairwise interactions, data propagates
through the system.

4.2 Membership
The set of storage devices used in a household can
change over time, as users purchase new devices,
and existing devices break or become obsolete. De-
vices must be explicitly added and removed from
the system. When a new device is connected for
the first time, PodBase asks the user if the de-
vice should be added to the set of storage devices
it manages. Whenever two participating storage
devices are connected, they exchange information
about the other storage devices they know of and
thus propagate membership information. A stor-
age device may permanently disappear due to loss,
permanent failure, or replacement of the device.
In this case, the user can notify PodBase that the
device is no longer available1.

4.3 Storage Management
With PodBase, a storage device stores three types
of data. It stores regular files that were explicitly
stored by the user or applications, PodBase meta-
data, and PodBase replicas.

The metadata describes a device’s most recent
view of the system. Included in the metadata is the
device membership, a logical clock for each storage
device, and a list of all files that PodBase manages,
along with their state. We assume that each stor-
age device that is part of the system has enough
free storage space to store the PodBase metadata.

Any space that remains after storing user data
and metadata is used to store replicas of files to
increase durability and availability. Each file is
stored under its content hash, so that multiple
copies of the same data are stored only once. Both
the PodBase metadata and replicas are crypto-
graphically sealed on disk using a key derived from
a user password.

4.4 Device Interaction
Whenever two devices are connected, the PodBase
agent attempts to move the system towards the
goal state defined in Section 3.2.1. The pseudocode
run by the agent is shown in Figure 1. A pair of
devices first exchange a vector a logical clocks for
each known device in PodBase. From this, they de-
termine what subset of the metadata they should
exchange to have the most up-to-date view of the
system. Once this exchange is complete, file repli-
cation begins.

Based on the metadata, the agent determines the
set of files that are insufficiently replicated and can
be exchanged between the presently attached de-
vices. Replicas made for durability have priority
over those stored for availability; the latter may
be deleted in favor of durability replicas. We use
1If a device has not been connected for a long time, the
agent can optionally query the user for the device’s status.

exchangeMetadataVersionVectors()
for each j ∈ Π do

if myMDVersion(j) < remoteMDVersion(j) then

updateMetaData(j)
end if

end for

for each f ∈ F , f not stored locally do

Let Sf be the set of devices storing f

if |Sf | < k and Mi − Md
i ≥ size(f) then

storeDurable(f) {Delete availability copies, if necessary}
end if

if f ∈ ϕ(i) and Mi − Md
i − Ma

i ≥ size(f) then

storeAvailable(f) {Add an availability copy of f}
end if

end for

Figure 1: Pseudocode at device i showing what
happens when i connects to another device, here
Md

i and Ma
i denote the spaces on i occupied by

durability and availability copies, respectively

a simple, greedy replication algorithm, which in-
creases the number of replicas monotonically until
it is guaranteed that there are at least k copies of
each file in the system.

This greedy algorithm may create more than k
replicas of a file. Suppose a device i receives a copy
of a file f and i is aware of ℓ < k other copies of f
stored in the system. By the algorithm, i chooses
to store f and (if k − ℓ − 1 > 0) forwards f to
k − ℓ − 1 distinct devices, j1, . . . , jk−ℓ−1, in that
order. In the worst case, each js is only aware
of ℓ + 1 + s copies of f . A recursive application
of this scenario results in propagating f along a
binomial tree [1] of depth k rooted at the originator
of the file. Thus, in the worst but very rare case,
the algorithm may create up to 2k−1 copies of the
file instead of the desired k. This bound must be
used to choose appropriate values of k and {Mi}i∈Π
to guarantee durability. Note that the algorithm
is optimal for k = 2, and for practical values of
k > 2, the bound is still reasonable. More efficient
gossip-based replication algorithms are the subject
of current work.

4.5 Data Recovery and Access
When a storage device fails, PodBase can recover
the files that were stored on that device. The user
informs a PodBase agent that she wishes to re-
cover the data from a particular lost device onto a
replacement device. From the metadata, PodBase
obtains the list of files to recover, and then greed-
ily restores these whenever a device is attached.
The recovery happens automatically as devices in-
teract. Users can speed the recovery process by
connecting appropriate devices under the guidance
of PodBase.

5. FEASIBILITY

 0

 2

 4

 6

 8

 10

 1 2 3 4 5 6 7 8 9 10 11

N
u

m
b

er
 o

f
D

ev
ic

es

Household Number

Storage Devices
Computing Devices

(a)

 0

 200

 400

 600

 800

 1000

 1200

 1 2 3 4 5 6 7 8 9 10 11

S
to

ra
g

e
S

p
ac

e
(G

B
)

Household Number

Free Space
Used Space

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200

C
D

F

Time to Replicate New Data (h)

All Users
Users with Multiple Active Devices

(c)

Figure 2: (a) Number hosts and storage devices per household. Each pair of bars represents one household.
(b) Used and free space on storage devices. Each bar represents one household. (c) Time before generated
data can be replicated in trace.

In this section, we explore whether PodBase’s goals
are feasible, given the set of devices, available stor-
age, rate of data generation and frequency of device
connections that occur in a given household.

5.1 Trace Collection
In order to judge the feasibility of our design, we
need data about the intended deployment environ-
ment for PodBase. Unfortunately, there is little
available data on the disk usage of personal devices
such as desktops, notebooks and PDAs. More-
over, in addition to disk usage, our analysis also re-
quires information about the frequency, duration,
and bandwidth of connections between devices.

Since such data is not readily available, we gath-
ered a trace by deploying a program on the devices
of a small group of participating users for approxi-
mately two months. During this time period, each
machine reported all storage devices that were at-
tached either directly or via USB. For each device,
we recorded the used storage, free space and to-
tal capacity at one minute intervals. We also pe-
riodically crawled the file system of each storage
device to discover which files were stored and how
often files were added, deleted, and modified in the
file system. Additionally, we collected information
about what type of network each computing device
was connected to. The measurements were taken
between August 18, 2007 and October 18, 2007 and
included 11 households with 23 computing devices
and 48 storage devices. There were 1568773 sam-
ples taken, and 971 disk crawls performed during
this period.

5.1.1 Limitations
Ideally, we would like to have collected a trace from
a large and diverse user community over a long pe-
riod of time. However, logistical and privacy issues
make this a difficult undertaking. We instead re-
lied on the generous support of a small community
of volunteers, namely the members of our research
group and their friends and family.

In our group, at least one member of each house-
hold was a computer science researcher. Thus,

there is a likely bias towards users who have an
interest in technology and tend to surround them-
selves with electronic devices. They may also be
more likely to accumulate a large amount of data.
In the absence of better data, we believe that our
trace data nevertheless gives a useful indication of
the feasibility of our approach.

5.2 Results: Feasibility
In order to make effective use of PodBase, a user
must have at least two devices capable of stor-
ing data. Figure 2(a) shows how many comput-
ing devices (desktop or notebook computers) and
how many storage devices (hard drives, MP3 play-
ers, memory sticks) were present in each house-
hold during our trace collection. The results show
that there are many households with more than one
computer. Also, most households have additional
storage devices beyond a single internal hard drive
per computer. This shows that many households
could benefit from automatic storage management.

Figure 2(b) shows the amount of free storage
space. Some households have significant amounts
of free space, others have very little. In particu-
lar, household 3 has over 70% of its storage space
used. For eight of the eleven households there is
enough free space available to provide data durabil-
ity (with k = 2); the remaining households would
have to add storage in order to get the full bene-
fit from PodBase. These households could simply
purchase an inexpensive 320GB USB disk and plug
it in; the system would automatically use this new
space to provide durability and availability.

Our result on the availability of free space is con-
servative, because it ignores data redundancy that
exists on a device and across multiple devices. For
example, there are nine MP3 players in our trace.
An MP3 player typically contains a subset of the
files that are already stored on one of the users’
computers. Also, it has been shown that two ma-
chines running the same operating system have a
significant overlap in data [2].

Recall that PodBase requires each device to store
a copy of the metadata. In our study, the maxi-

mal metadata size is less than 200MB, which is
insignificant relative to the capacity of the devices.

Next, we wish to gauge if there is enough con-
nectivity to ensure that new data is made durable
(with k = 2) in a timely manner. Adding more
storage is relatively easy, since a user can simply
purchase an inexpensive disk. However, if PodBase
required users to connect devices often, this would
place a considerable burden on users.

To address this concern, we use the free space,
data growth rates, and connectivity measured in
the trace to perform a simulation. We begin with
the system in stable state, and then have each de-
vice generate new data at the average rate from the
trace. When two devices can connect to each other
(either directly or via the network), they trans-
fer data at the nominal rate of their connections.
When a device generates data, it attempts to repli-
cate the new data by transferring it to another de-
vice that has free space. We wish to measure the
amount of time it takes for generated data to be
replicated once created.

To do this, we replay2 the connectivity among
the devices of a single household from our trace.
When data is generated it is put into a queue;
the head of the queue is transferred first when a
connection is present. We measure the time in
hours that data waits in this queue before being
replicated. If, at the end of the experiment, data
has not been transferred, it is included as having
waited since its creation time. We repeat this ex-
periment for all households and aggregate the data.

The lower curve in Figure 2(c) shows the re-
sults. Approximately 30% of data can be repli-
cated within one hour. This case occurs when
the creating device is connected to another device
with free space at the time when data is generated.
Around 50% of data can be replicated in under 48
hours. Some data could not be replicated for a
much longer period of time; most of these cases
are due to three of our households who either only
had one device, or had multiple devices but only
activated them to install our monitoring applica-
tion and then did not use them again.

The second, higher, curve shows the results with
these three users removed from the trace. For the
remaining nine households in our trace, it is possi-
ble to get quick replication for newly created data.

In summary, for most of our user community
automatic storage management is feasible: there
are enough devices, storage space, and sufficiently
many connections to achieve acceptable replication
times. The remaining households could take ad-
vantage of PodBase if they were to purchase and
connect an additional storage device.

2We begin the simulation at the time when all of the users’
devices that generate data appear in the trace.

6. CONCLUSION
We have sketched the design of PodBase, a system
that frees users from having to manage data on
their personal devices. PodBase transparently en-
sures durability of data despite the loss or failure of
a device, and increases availability of data on the
appropriate devices. PodBase uses pairwise gossip-
ing to propagate data and information about the
system state. The system is decentralized and does
not depend on the availability of any one device.
PodBase takes advantage of existing free space and
connectivity among devices. A trace-collection ex-
periment within a small community indicates that
the system is feasible. Going forward, we intend to
deploy and evaluate PodBase in actual use.

7. REFERENCES
[1] T. Cormen, C. Leiserson, and R. Rivest. Introduction

to Algorithms. MIT Press, 1999.
[2] L. P. Cox, C. D. Murray, and B. D. Noble. Pastiche:

Making backup cheap and easy. SIGOPS Operating
Systems Review, 36(SI):285–298, 2002.

[3] B. Ford, J. Strauss, C. Lesniewski-Laas, S. Rhea,
F. Kaashoek, and R. Morris. Persistent personal
names for globally connected mobile devices. In Proc.
OSDI ’06, Nov 2006.

[4] J. J. Kistler and M. Satyanarayanan. Disconnected
operation in the Coda file system. ACM Trans.
Comput. Syst., 10(1):3–25, 1992.

[5] Many PC Users don’t backup valuable data.
http://money.cnn.com/2006/06/07/technology/
data loss/index.htm.

[6] PC Pitstop Research. http:
//pcpitstop.com/research/storagesurvey.asp.

[7] D. Peek and J. Flinn. EnsemBlue: Integrating
distributed storage and consumer electronics. In Proc.
OSDI ’06, November 2006.

[8] G. J. Popek, R. G. Guy, T. W. Page, Jr., and J. S.
Heidemann. Replication in Ficus distributed file
systems. In Proc. WMRD, pages 20–25, November
1990.

[9] N. Preguia, C. Baquero, J. L. Martins, M. Shapiro,
Paulo, S. Almeida, H. Domingos, V. Fonte, and
S. Duarte. Few: File management for portable devices.
In Proc. IWSSPS 2005, March 2005.

[10] B. Salmon, S. W. Schlosser, L. B. Mummert, and
G. R. Ganger. Putting home storage management into
perspective. Technical Report CMU-PDL-06-110,
Parallel Data Laboratory, Carnegie Mellon University,
2006.

[11] S. Sobti, N. Garg, F. Zheng, J. Lai, Y. Shao,
C. Zhang, E. Ziskind, A. Krishnamurthy, and R. Y.
Wang. Segank: a distributed mobile storage system.
In Proc. FAST ’04, March 2004.

[12] E. Swierk, E. Kcman, N. C. Williams, T. Fukushima,
H. Yoshida, V. Laviano, and M. Baker. The Roma
Personal Metadata Service. In Proc. WMCSA 2000.

[13] D. B. Terry, M. M. Theimer, K. Petersen, A. J.
Demers, M. J. Spreitzer, and C. H. Hauser. Managing
update conflicts in Bayou, a weakly connected
replicated storage system. In Proc. SOSP’95,
December 1995.

[14] Time Machine. http://www.apple.com/macosx/
features/timemachine.html.

