
FeedTree: Sharing Web micronews with peer-to-peer event
notification

Dan Sandler Alan Mislove Ansley Post Peter Druschel

Department of Computer Science
Rice University, Houston (TX)

{dsandler,amislove,abpost,druschel}@cs.rice.edu

Abstract

Syndication of micronews, frequently-updated content
on the Web, is currently accomplished with RSS feeds
and client applications that poll those feeds. However,
providers of RSS content have recently become concerned
about the escalating bandwidth demand of RSS readers.
Current efforts to address this problem by optimizing the
polling behavior of clients sacrifice timeliness without fun-
damentally improving the scalability of the system. In
this paper, we argue for a micronews distribution system
called FeedTree, which uses a peer-to-peer overlay network
to distribute RSS feed data to subscribers promptly and ef-
ficiently. Peers in the network share the bandwidth costs,
which reduces the load on the provider, and updated con-
tent is delivered to clients as soon as it is available.

1 Introduction

In the early days of the Web, static HTML pages predom-
inated; a handful of news-oriented Web sites of broad
appeal updated their content once or twice a day. Users
were by and large able to get all the news they needed
by surfing to each site individually and pressing Reload.
However, the Web today has experienced an explosion
of micronews: highly focused chunks of content, appear-
ing frequently and irregularly, scattered across scores of
sites. The difference between a news site of 1994 and a
weblog of 2004 is its flow: the sheer volume of timely
information available from a modern Web site means
that an interested user must return not just daily, but a
dozen times daily, to get all the latest updates.

This surge of content has spurred the adoption of
RSS, which marshals micronews into a common, conve-
nient format. Instead of downloading entire web pages,
clients download an RSS “feed” containing a list of re-
cently posted articles. However, RSS specifies a polling-
based retrieval architecture, and the scalability of that
mechanism is now being tested. There is growing con-
cern in the RSS community over these scalability issues
and their impact on bandwidth usage, and providers of
popular RSS feeds have begun to abbreviate or eliminate

their feeds to reduce the bandwidth stress of polling
clients.

The current RSS distribution architecture, in which
all clients periodically poll a central server, has band-
width requirements that scale linearly with the number
of subscribers. We believe that this architecture has little
hope of sustaining the phenomenal growth of RSS [10],
and that a distributed approach is needed. The proper-
ties of peer-to-peer (p2p) overlays are a natural fit for
this problem domain: p2p multicast systems scale log-
arithmically and should support millions of participat-
ing nodes. Therefore, we argue that RSS feeds can be
distributed in a way that shares costs among all partici-
pants. By using p2p event notification to distribute mi-
cronews, we can reduce dramatically the load placed on
publishers, while at the same time delivering even more
timely service to clients than is currently possible. We
sketch this system, called FeedTree, and go on to show
how it can be deployed incrementally.

The remainder of this paper is organized as follows.
Section 2 provides background on RSS and the RSS
bandwidth problem. Section 3 discusses related work
to improve RSS, and section 4 presents the design of
FeedTree. Section 5 describes our prototype FeedTree
implementation. Section 6 concludes.

2 Background

2.1 RSS

RSS1 refers to a family of related XML document formats
for encapsulating and summarizing timely Web content.
Such documents (and those written in the Atom syndica-
tion format [1], a recent entry in the specification fray)
are called feeds. A Web site makes its updates available
to RSS client software (variously termed “readers” and

1 There is some disagreement [4] over the exact expansion of this
acronym. When Netscape first specified version 0.9 of RSS [19], it
did so under the name “RDF Site Summary;” the acronym has since
been taken to stand for “Rich Site Summary” or “Really Simple Syn-
dication.” The subtleties of the many debates over format versions,
nomenclature, and ideology are omitted here.

1



“aggregators”) by offering a feed to HTTP clients along-
side its conventional HTML content. Because RSS feeds
are designed for machines instead of people, client ap-
plications can organize, reformat, and present the latest
content of a Web site—or many sites at once—for quick
perusal by the user. The URL pointing to this feed is
advertised on the main Web site.

By asking her RSS reader to subscribe to the URL of an
RSS feed, a user instructs the application to begin fetch-
ing that URL at regular intervals. When it is retrieved,
its XML payload is interpreted as a list of RSS items by
the application. Items may be composed of just a head-
line, an article summary, or a complete story in HTML;
each entry must have a unique ID, and is frequently ac-
companied by a permanent URL (“permalink”) to a Web
version of that entry. To the user, each item typically
appears in a chronologically-sorted list; in this way, RSS
client applications have become, for many users, a new
kind of email program, every bit as indispensable as the
original. An RSS aggregator is like an inbox for the en-
tire Internet.

2.2 RSS bandwidth

Just as major news outlets have begun to discover RSS
and to expose their audiences to this burgeoning tech-
nology [10, 11, 14], the RSS technical community is
abuzz with weaknesses exposed by its runaway adop-
tion. Chief among these is the so-called “RSS bandwidth
problem.” Essentially, Web servers which make RSS
feeds available tend to observe substantially greater traf-
fic loads as a result, out of proportion to any observable
interactive visitor trend. Consequently, some sites have
implemented self-defense mechanisms (e.g. smaller RSS
feed sizes, or enforced limits on access) in an attempt to
address the problem [12]. This situation is most likely
the effect of many behaviors working in concert:

Polling. For each feed to which a user is subscribed, an
RSS application must issue repeated HTTP requests
for that feed according to some set schedule. Sites
which offer RSS feeds must satisfy one request for
every user, many times a day, even if there is no
new content.

Superfluity. The RSS data format is essentially static;
all entries are returned every time the feed is
polled. By convention, feeds are limited to some N
most recent entries, but those N entries are emitted
for every request, regardless of which of them may
be “new” to a client. While this bandwidth problem
could be helped by introducing a diff-based polling
scheme, all such requests would have to be pro-
cessed by the RSS provider, which adds more pro-
cessing load.

Stickiness. Once a user subscribes to an RSS feed, she
is likely to retain that subscription for a very long

time, so this polling traffic can be counted on for the
foreseeable future. If a previously-obscure Web site
becomes popular for a day, perhaps by being linked
to from popular Web sites, its browsing traffic will
spike and then drop off over time. However, if that
site offers an RSS feed, users may decide to sub-
scribe; in this case, the drop in direct Web browsing
is replaced by a steady, unending load of RSS client
fetches. Such a Web site might be popular for a day,
but it may have to satisfy a crowd forever. [25, 23]

Twenty-four-hour traffic. RSS client applications are
commonly running on desktop computers at all
hours, even when a user is not present; the diur-
nal pattern of interactive Web browsing does not
apply. While the global nature of Web users may
generate “rolling” 24-hour traffic, global use of RSS
readers generates persistent 24-hour traffic from all
over the Earth.

It is easy to see how a website may suffer for publish-
ing RSS feeds. The most popular feed on Bloglines2 is
Slashdot.org, which has about 17,700 subscribers as of
this writing. If each of those subscribers were using per-
sonal aggregation software (desktop clients), Slashdot’s
headlines-only RSS feed (about 2 kilobytes for a day’s
worth of entries, and typically polled half-hourly) would
be transferred 850,000 times a day, for a total of 1.7 GB
of data daily. The New York Times recently introduced a
suite of RSS feeds for its headlines; the front page alone
claims 7,800 subscribers, but the sum of subscribers to
all its feeds comes to 24,000. Feeds from the Times tend
to be around 3 KB, or 3.5 GB of data per day with 30-
minute polling. For websites wishing to provide their
RSS readers with deeper content, the problem is worse
still. Boing Boing, a popular weblog, chooses to pub-
lish complete HTML stories in RSS and Atom; 11,500
subscribers might receive 40 KB for each RSS request.
To provide this service, Boing Boing must be able to ac-
commodate 22 GB/day of RSS traffic alone. If the BBC
News Web site is truly “updated every minute of every
day,”3 its RSS subscribers (18,000 to its various feeds
on Bloglines) are unable to take advantage of it: the
bandwidth demands of those subscribers polling every
minute would be virtually insatiable.

2 Bloglines (http://bloglines.com), a popular Web-based RSS read-
ing application, offers subscription figures for the feeds it aggregates.
We will use these figures (as of late October 2004) as a very crude ap-
proximation of reasonable RSS readership. Though Bloglines certainly
polls RSS feeds only once for its thousands of subscribers, anecdotal
evidence suggests that traditional desktop RSS client usage outweighs
Web-based client usage, so we can regard these figures as a lower
bound on overall RSS polling load.

3As advertised on http://news.bbc.co.uk.

2

http://bloglines.com
http://news.bbc.co.uk


3 Related Work

3.1 Improving the polling process

Several proposals have been submitted to ease the pain
of RSS on webmasters. Many of these are described
in detail in the RSS Feed State HOWTO [17]; exam-
ples include avoiding transmission of the feed content
if it hasn’t changed since the client’s last request, gzip
compression of feed data, and clever ways to shape the
timetable by which clients may poll the RSS feed.

Unfortunately, because the schedule of micronews is
essentially unpredictable, it is fundamentally impossible
for clients to know when polling is necessary. Werner
Vogels puts it succinctly: Uncontrolled Polling of RSS
Resources Does Not Scale [24].

3.2 Outsourcing aggregation

Several online RSS service providers (essentially, Web-
based RSS readers) have proposed alternative solu-
tions [2, 3]. In these “outsourced aggregation” scenar-
ios, a centralized service provides a remote procedure
interface which end-user applications may be built upon
(or refactored to use). Such an application would store
all its state—the set of subscribed feeds, the set of “old”
and “new” entries—on the central server. It would then
poll only this server to receive all updated data. The
central RSS aggregation service would take responsibil-
ity for polling the authoritative RSS feeds in the wider
Internet.

This addresses the bandwidth problem, in a way: A
web site owner will certainly service fewer RSS requests
as end users start polling the central service instead. The
operators of these central services will definitely have
bandwidth issues of their own: they will now be at the
center of all RSS traffic.

There is a far more insidious danger inherent in this
approach, however: a central point of control, failure,
and censorship has now been established for all partici-
pating users. A central RSS aggregation service may: (i)
experience unavailability or outright failure, rendering
users unable to use their RSS readers, (ii) elect to dis-
continue or change the terms of its service at any time,
or (iii) silently modify, omit, or augment RSS data with-
out the user’s knowledge or consent.

Modification of RSS data by the central aggregator
may come in the form of optimized or normalized RSS
formatting (a useful feature, since syndication formats
found in the wild are frequently incompatible [21]), but
might take more dangerous forms as well: it may modify
or corrupt the entries in a feed, or it may add advertis-
ing or other supplemental yet non-indigenous content
to those feeds.

In summary, a third party may not be a reliable or
trustworthy entity, and so it cannot be guaranteed to
proxy micronews for client applications. For these rea-

sons, centralized RSS aggregation is most likely not a
viable long-term solution.

4 FeedTree

4.1 Group communication with overlay
networks

The obvious alternative to polling for data is to dis-
tribute that data, as it becomes available, to lists of
subscribers. This approach may be adequate for small
subscription lists (for example, e-mail lists), but it will
not scale to accommodate the growing subscription de-
mands of Web site syndication. Furthermore, while such
an approach may reduce the overall bandwidth usage of
RSS (by reducing unnecessary fetches), it does nothing
to alleviate the per-update stress on network links close
to the source.

To address these problems, we look to peer-to-
peer overlay networks, which offer a compelling plat-
form for self-organizing subscription systems. Several
overlay-based group communication systems, including
Scribe [7], offer distributed management of group mem-
bership and efficient routing of subscription events to
interested parties in the overlay.

We propose FeedTree, an approach to RSS distribu-
tion based on peer-to-peer subscription technologies. In
FeedTree, timely Web content is distributed to interested
parties via Scribe, a subscription-based event notifica-
tion architecture. Although we chose to base this design
on Scribe, there is no reason it could not be deployed on
any group communication system that provides similar
performance characteristics. In such a system, content
may be distributed as soon as it becomes available; in-
terested parties receive these information bursts imme-
diately, without polling the source or stressing network
links close to the source.

4.2 Scribe

Scribe [7] is a scalable group communication system
built on top of a peer-to-peer overlay such as Pastry.
Each Scribe group has a 160 bit groupId which serves
as the address of the group. The nodes subscribed to
each group form a multicast tree, consisting of the union
of Pastry routes from all group members to the node
with nodeId numerically closest to the groupId. Mem-
bership management is decentralized and requires less
than logn messages on average, where n is the number
of nodes in the overlay.

Scribe has been shown to provide cooperative multi-
cast that is efficient and low overhead [7]. The delay
stretch is approximately double that of IP multicast and
comparable to other end system multicast systems such
as ESM [8] and Overcast [13]. Link stress is also low
and less than twice that of IP muliticast. When there are

3



a large number of groups in the system, as is expected in
FeedTree, the load is naturally balanced among the par-
ticipating nodes. Scribe uses a periodic heartbeat mech-
anism to detect broken edges in the tree; this mecha-
nism is lightweight and is only invoked when there are
no messages being published to a group. It has been
shown to scale well to both large groups and to a large
number of groups. These properties make it a good fit
for building large scale event notification systems like
FeedTree.

4.3 Architecture

When FeedTree publishing software wishes to deliver an
update to subscribers, the following steps are taken (in
addition to refreshing a conventional RSS feed URL):

I A complete RSS document is created to contain
one or more pieces of timely micronews. Each item
is assigned a timestamp and a sequence number, to
aid clients in the detection of omitted or delayed
events.

I The RSS data is then signed with the publisher’s
private key. This is essential to establishing the au-
thenticity of each published item.

I The signed RSS document is multicast in the over-
lay to those peers who have subscribed to a Scribe
group whose topic is (a hash of) the feed’s globally
unique ID, trivially defined to be the canonical URL
of the advertised RSS feed.

I Peers receiving the message verify its signature,
parse the RSS data, and add it to the local RSS ap-
plication state as if it were a conventional, polled
RSS feed. The user can be notified immediately
of the new entries.

FeedTree aware client applications should be able to
examine conventional RSS feed data to discover if up-
dates to that feed will be published through FeedTree.
To do this, FeedTree metadata can be added to the RSS
document structure to signal that it is available for sub-
scription in the overlay. In this way, a FeedTree appli-
cation bootstraps the subscription process with a one-
time HTTP request of the conventional feed. All future
updates are distributed through incremental RSS items
published in FeedTree.

Each RSS feed to be published through FeedTree
should advertise a time-to-live value, the maximum in-
terval between FeedTree events. (Many RSS feeds al-
ready include such a value, to indicate the minimum
allowed polling period for clients.) If the publisher ob-
serves that no new FeedTree events were generated dur-
ing this interval, the publisher must generate a heart-
beat event. These heartbeats allow subscribers to know
conclusively that no published items were lost during
the time-to-live period.

It is desirable for all publishers to cryptographically
sign their published RSS data, so that clients may be
able to trust the Scribe events they receive.4 The con-
ventional RSS feed should also include the URL and fin-
gerprint of the publisher’s certificate, so that clients may
retrieve (and cache) the credentials necessary to vali-
date the integrity of signed RSS data.

4.4 Adoption and deployment

The proliferation of conventional RSS has depended
largely on the availability of quality tools to generate
RSS data; FeedTree will be no different. Developers
have several opportunities to provide support for this
system. We break down the deployment scenarios into
those that support FeedTree fully, and those that serve
as “adapters” to ease transition for legacy RSS systems.

4.4.1 Full FeedTree support

Publishers. Web content management systems (such
as weblog publishing packages or traditional
workflow-based CMS software) join the overlay by
becoming long-lived FeedTree nodes. When new
content is posted, the publishing software automat-
ically creates a new FeedTree message and pub-
lishes it to multicast tree.

Readers. RSS-reading applications join the FeedTree
peer-to-peer network as well. By doing so, they be-
come part of the global FeedTree service, distribut-
ing the network and processing loads of RSS event
forwarding. The user interface for an RSS client
should remain unchanged; the user subscribes to
RSS feeds as she would do ordinarily, and the soft-
ware takes care of detecting and bootstrapping a
FeedTree subscription if it is available. New RSS
items are made available to users as soon as the
FeedTree events are received by the application.

4.4.2 Incremental FeedTree support

Publishers. Legacy publishing software that currently
emits valid RSS can be adapted to FeedTree with a
“republishing” engine running on (or near) the Web
server. This tool would poll the legacy RSS feed
on an aggressive schedule, sifting out new content
and distributing it via FeedTree. Such a republish-
ing tool might even be operated by a third party,
in case the owner is slow to deploy FeedTree. This
is already a common emergent behavior of the RSS
community; several Web sites currently “scrape” the
HTML of popular sites and redistribute that content

4 Even though the general benefits of signed content are indepen-
dent of the FeedTree architecture, we believe our design offers both
an excellent opportunity and a compelling need to introduce signed
RSS.

4



in RSS format. It is up to a user to decide whether
or not to trust this third-party proxy feed.

Readers. Until RSS applications support FeedTree na-
tively, users can still contribute to the RSS band-
width solution by running a local FeedTree proxy.
The proxy would listen receive RSS data through
FeedTree instead of through conventional means.
Existing end-user RSS tools could poll a local
FeedTree proxy as often as desired without unnec-
essary bandwidth usage. Users would then see new
FeedTree items sooner than they would under a
more conservative polling policy.

4.5 Discussion

4.5.1 Benefits for participants

The system we propose offers substantial benefits for
both producers and consumers of RSS data. The chief
incentive for content providers is the lower cost associ-
ated with publishing micronews: large Web sites with
many readers may offer large volumes of timely content
to FeedTree clients without fear of saturating their net-
work links, and a smaller Web site need not fear sudden
popularity when publishing a FeedTree feed. FeedTree
also offers publishers an opportunity to provide differen-
tiated RSS services, perhaps by publishing simple (low-
bandwidth) headlines in a conventional RSS feed, while
delivering full HTML stories in FeedTree.

End users will receive even better news service with
FeedTree than is currently possible. While users cur-
rently punish Web sites with increasingly aggressive
polling schedules in order to get fresh news, no such
schedule will match the timeliness of FeedTree, in which
users will see new items within seconds—not minutes
or hours. If publishers begin to offer richer micronews
through FeedTree, we believe users will be even more
likely to use the system. Finally, since RSS readers
are generally long-running processes, building FeedTree
into the RSS clients will likely result in a stable overlay
network for the dissemination of micronews.

4.5.2 Recovery of lost data

Because Scribe offers a best-effort service, failures and
node departures within the multicast tree may result in
FeedTree clients missing events. In this case, the client
will detect a gap in the sequence numbers or an overdue
heartbeat. A client may query its parent to recover the
missing items; in order to satisfy such a request, each
member of the system will keep a small fixed buffer
with the last n items in the feed. As a fallback, miss-
ing items may be recovered by retrieving the conven-
tional RSS feed by HTTP as in the bootstrapping phase.
FeedTree clients may also be offline for periods, during
which time they will miss update events. Clients coming
online should “catch up” by examining the HTTP-based

RSS feed for previously-unseen items during bootstrap-
ping.

A malicious node acting as an interior node in a
Scribe tree can suppress events. This attack can be ad-
dressed by distributing the responsibility of the Scribe
root among several nodes and by routing around non-
root interior nodes that fail to forward events. We omit
the details due to space limitations.

4.5.3 Overhead

The bandwidth demands made on any individual par-
ticipant in each multicast tree are quite innocuous. For
example, an RSS feed generating 4 KB/hour of updates
will cause an interior tree node with 16 children to for-
ward less than 20 bytes per second of outbound traffic.
Due to the extremely low forwarding overhead, we be-
lieve that the motivation for freeloading is very small.
In the future, we expect richer content feeds, and con-
sequently, the potential incentive for freeloading may
increase. Incentives-compatible mechanisms to ensure
fair sharing of bandwidth [20] can be applied if most
users subscribe to several feeds, which is a common
model of RSS usage. We intend to explore integrating
these techniques with FeedTree in future work.

5 Development Status

In order to validate our design for FeedTree, we have de-
veloped a software prototype which follows the design
outlined in Section 4. The ftproxy daemon serves as
an intermediary for conventional RSS client software;
an HTTP request for a given RSS feed is satisfied by
ftproxy, which constructs a new ad-hoc RSS document
from recent FeedTree messages received for that feed.

When subscribing to a new RSS feed, the proxy first
checks to see if that feed is already being published
through FeedTree. If the feed is not being published,
ftproxy will “volunteer” to republish the RSS feed: it
begins polling the RSS feed as if it were a conventional
RSS reader. New items are published through FeedTree;
if a polling interval yields no new items, the proxy pub-
lishes a “no news” heartbeat event. This event informs
other listening ftproxy instances that the feed is al-
ready being polled by another volunteer.

In the current implementation, this mechanism is gen-
eralized to allow multiple instances of ftproxy to poll
a single RSS feed cooperatively, providing updates to
FeedTree with higher frequency than conventional RSS
polling. To “overload” a feed by a factor of N, ftproxy
will choose to volunteer if it observes fewer than N
FeedTree events for that feed during its polling interval.
On average, an RSS feed with a minimum polling pe-
riod of T will have an effective FeedTree refresh period
of T/N. The polling schedule for volunteers is jittered
to help avoid synchronicity.

5



At the time of this writing, we are running a small
FreeTree deployment internally at Rice. We plan to soon
expand the distribution to the PlanetLab testbed for fur-
ther experimentation and validation.

6 Conclusions and Future Work

The current RSS polling mechanism has been said to
scale well because “its cost is almost directly propor-
tional to the number of subscribers” [5]. In fact, linear
cost is typically an indicator of poor scaling properties,
especially when that cost is focused on one member of a
distributed system. It is likely that the further growth of
RSS adoption will be badly stunted, without substantial
change to the way micronews is distributed.

The proposed FeedTree subscription system for RSS
takes advantage of the properties of peer-to-peer event
notification to address the bandwidth problem suffered
by Web content providers, while at the same time bring-
ing micronews to end users even more promptly than is
currently possible. Self-organizing subscription systems
like Scribe offer scalability that cannot be matched by
any system designed around resource polling.

Building upon the FeedTree distribution system, we
foresee a potential for entirely new services based on
RSS which cannot be accomplished today. By using
single-writer logs [18] in combination with a distributed
storage mechanism such as a DHT [22, 15, 9], we can
record permanently every RSS item published, allowing
a distributed archival store of micronews across the In-
ternet. Clients of such a system would easily be able to
find out what they “missed” if they had been offline for
so long that old RSS items are no longer available in any
conventional, static RSS feed. Another area for future
work is anonymous RSS feeds involving an anonymizing
peer-to-peer routing system, such as AP3 [16]. Finally,
we can envision the use of cooperative multicast (such
as SplitStream [6]) to distribute large files—such as
software, audio, and video—as part of FeedTree feeds.

References
[1] Atom Syndication Format. http://www.atomenabled.org/

developers/syndication/.

[2] Bloglines Web Services. http://www.bloglines.com/services/.

[3] NewsGator Online Service. http://www.newsgator.com/ngs/.

[4] RSS protocol (Wikipedia entry). http://en.wikipedia.org/wiki/
RSS (protocol).

[5] RSS for Mac OS X Roundtable. http://www.drunkenblog.com/
drunkenblog-archives/000337.html, Oct. 2004.

[6] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron, and
A. Singh. Splitstream: High-bandwidth multicast in cooperative
environments. In Proc. SOSP’03, Oct. 2003.

[7] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron.
SCRIBE: A large-scale and decentralized application-level multi-
cast infrastructure. IEEE JSAC, 20(8), Oct. 2002.

[8] Y. Chu, S. Rao, and H. Zhang. A case for end system multicast.
In ACM Sigmetrics, pages 1–12, June 2000.

[9] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica.
Wide-area cooperative storage with CFS. In Proc. ACM SOSP’01,
Banff, Canada, Oct. 2001.

[10] L. Gomes. How the next big thing in technology morphed into a
really big thing. The Wall Street Journal, Oct. 2004.

[11] H. Green. All the news you choose – on one page. BusinessWeek,
Oct. 2004. http://www.businessweek.com/magazine/content/
04 43/b3905055 mz011.htm.

[12] M. Hicks. RSS comes with bandwidth price tag. eWeek,
Sept. 2004. http://www.eweek.com/article2/0,1759,1648625,
00.asp.

[13] J. Jannotti, D. Gifford, K. Johnson, M. Kaashoek, and J. O’Toole.
Overcast: Reliable multicasting with an overlay network. In
OSDI 2000, San Diego, CA, 2000.

[14] V. Kopytoff. One-stop way to read news, blogs online: RSS allows
users to get free, automatic feeds. The San Francisco Chroni-
cle, Oct. 2004. http://www.sfgate.com/cgi-bin/article.cgi?file=
/chronicle/archive/2004/10/25/BUG1U9ES301.DTL.

[15] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,
C. Wells, and B. Zhao. OceanStore: An architecture for global-
scale persistent store. In Proc. ASPLOS’2000, Cambridge, MA,
November 2000.

[16] A. Mislove, G. Oberoi, A. Post, C. Reis, P. Druschel, and D. S.
Wallach. AP3: Cooperative, decentralized anonymous commu-
nication. In Proc. SIGOPS-EW, Leuven, Belgium, Sept. 2004.

[17] R. C. Morin. HowTo RSS Feed State. http://www.kbcafe.com/
rss/rssfeedstate.html, Sept. 2004.

[18] A. Muthitacharoen, R. Morris, T. Gil, and B. Chen. Ivy: A
read/write peer-to-peer file system. In Proc. OSDI’02, Boston,
MA, December 2002.

[19] Netscape Communications Corp. My Netscape Network, Mar.
1999. http://www.purplepages.ie/RSS/netscape/rss0.90.html.

[20] T.-W. J. Ngan, A. Nandi, A. Singh, D. S. Wallach, and P. Druschel.
On designing incentives-compatible peer-to-peer systems. In
Proc. FuDiCo’04, Bertinoro, Italy, June 2004.

[21] M. Pilgrim. The myth of RSS compatibility. http://diveintomark.
org/archives/2004/02/04/incompatible-rss, Feb. 2004.

[22] A. Rowstron and P. Druschel. Storage management and caching
in PAST, a large-scale, persistent peer-to-peer storage utility. In
Proc. ACM SOSP’01, Banff, Canada, Oct. 2001.

[23] R. Scoble. A theory on why RSS traffic is growing out of con-
trol. http://radio.weblogs.com/0001011/2004/09/08.html#
a8200, Sept. 2004.

[24] W. Vogels. Once more: Polling does not scale. http://weblogs.cs.
cornell.edu/AllThingsDistributed/archives/000511.html, Sept.
2004.

[25] N. Wallace. RSS is sticky traffic. http://www.
synop.com/Weblogs/Nathan/PermaLink.aspx?guid=
db37ec96-9271-4e4a-ad8d-6547f27fc1cb, July 2004.

6

http://www.atomenabled.org/developers/syndication/
http://www.atomenabled.org/developers/syndication/
http://www.bloglines.com/services/
http://www.newsgator.com/ngs/
http://en.wikipedia.org/wiki/RSS_(protocol)
http://en.wikipedia.org/wiki/RSS_(protocol)
http://www.drunkenblog.com/drunkenblog-archives/000337.html
http://www.drunkenblog.com/drunkenblog-archives/000337.html
http://www.businessweek.com/magazine/content/04_43/b3905055_mz011.htm
http://www.businessweek.com/magazine/content/04_43/b3905055_mz011.htm
http://www.eweek.com/article2/0,1759,1648625,00.asp
http://www.eweek.com/article2/0,1759,1648625,00.asp
http://www.sfgate.com/cgi-bin/article.cgi?file=/chronicle/archive/2004/10/25/BUG1U9ES301.DTL
http://www.sfgate.com/cgi-bin/article.cgi?file=/chronicle/archive/2004/10/25/BUG1U9ES301.DTL
http://www.kbcafe.com/rss/rssfeedstate.html
http://www.kbcafe.com/rss/rssfeedstate.html
http://www.purplepages.ie/RSS/netscape/rss0.90.html
http://diveintomark.org/archives/2004/02/04/incompatible-rss
http://diveintomark.org/archives/2004/02/04/incompatible-rss
http://radio.weblogs.com/0001011/2004/09/08.html#a8200
http://radio.weblogs.com/0001011/2004/09/08.html#a8200
http://weblogs.cs.cornell.edu/AllThingsDistributed/archives/000511.html
http://weblogs.cs.cornell.edu/AllThingsDistributed/archives/000511.html
http://www.synop.com/Weblogs/Nathan/PermaLink.aspx?guid=db37ec96-9271-4e4a-ad8d-6547f27fc1cb
http://www.synop.com/Weblogs/Nathan/PermaLink.aspx?guid=db37ec96-9271-4e4a-ad8d-6547f27fc1cb
http://www.synop.com/Weblogs/Nathan/PermaLink.aspx?guid=db37ec96-9271-4e4a-ad8d-6547f27fc1cb

	1 Introduction
	2 Background
	2.1 RSS
	2.2 RSS bandwidth

	3 Related Work
	3.1 Improving the polling process
	3.2 Outsourcing aggregation

	4 FeedTree
	4.1 Group communication with overlay networks
	4.2 Scribe
	4.3 Architecture
	4.4 Adoption and deployment
	4.4.1 Full FeedTree support
	4.4.2 Incremental FeedTree support

	4.5 Discussion
	4.5.1 Benefits for participants
	4.5.2 Recovery of lost data
	4.5.3 Overhead


	5 Development Status
	6 Conclusions and Future Work

