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The ML Module System

Widely used feature of ML languages

Originally proposed by Dave MacQueen in 1984
• Developed further by Harper, Leroy, Lillibridge,

Stone, Russo, et al.

Powerful support for:
• Namespace management
• Abstract data types
• Generic programming



Two Problems with the ML Module System

It is not sufficiently expressive.

It is overly complex.
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Why is Separate Compilation Hard?

ML’s separate compilation mechanism is the functor.

functor Sep_A (X : SIG_B) :> SIG_A = ...

Problem: SIG_B depends on type components of A,
which are not in scope.

Not obvious how to generalize functors to work in
the recursive case.
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Problem #2: Conceptual Complexity

We often present ML module system as just a
(dependently-typed) λ-calculus at the module level:
• λ = Functors
• Records = Structures
• Record types = Signatures

But in reality. . .



The ML Module System in Reality

• Structure formation (struct)
• Structure inheritance (open)
• Signature formation (sig)
• Signature inheritance (include)
• Transparent type specifications (type t = typ)
• Opaque type specifications (type t)
• Value specifications (val v : typ)
• Signature refinement (where type / with type)
• Sharing constraints (sharing type)
• Signature bindings (signature)
• Functor abstraction (functor)
• Functor application ( ( ) )
• Transparent signature ascription ( : )
• Opaque signature ascription ( :> )
• Local definitions (let / local)
• Recursive structures (struct rec)
• Recursively dependent signatures (sig rec)



Mixin Modules

Originally proposed by Bracha & Lindstrom (1992)
• Module = record with imports and exports.
• Two modules can be merged, with the exports of

each one filling in the imports of the other.

Advantage of mixin modules:
• Mixin merging is recursive linking.

Disadvantage of mixin modules:
• No type components, hence no type abstraction.
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Combining Mixin Modules and ML-Style Modules

More recent descendants of mixin modules do
include support for type components.
• Units: Flatt-Felleisen (PLDI’98), Owens-Flatt

(ICFP’06)
• Recursive DLLs: Duggan (TOPLAS’02)
• Scala: Odersky et al. (OOPSLA’05, ECOOP’03)

But they do not subsume the ML module system.
• Direct encodings of several key ML features are

verbose and/or impossible.
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Contribution of the Paper

Our attempt to synthesize ML modules and mixin
modules: MixML

Very simple, minimalist design

Generalizes the ML module system
• Supports separately compilable recursive modules, in

addition to all the old features of ML modules

Simplifies the ML module system
• Leverages mixin composition to give a unifying account of

superficially distinct features of ML modules



MixML: The Basic Idea

MixML modules synthesize ML’s structure and
signature languages into one.

Consequences:
• ML structures and signatures are endpoints on a

spectrum of MixML modules.
• Signatures and structures (and mixtures of both)

are composed using the exact same constructs.
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The MixML Module Language

mod ::= X (variable)
| {} (empty)
| [exp] | [: typ] (term)
| [typ] | [: kind] (type)
| {l = mod} | mod.l (namespaces)
| (X = mod1) with mod2 (linking)
| (X = mod1) seals mod2 (sealing)
| [mod] | new mod (units)



Some Useful Derived Forms

• Structure formation (struct)
• Structure inheritance (open)
• Signature formation (sig)
• Signature inheritance (include)
• Transparent type specifications (type t = typ)
• Opaque type specifications (type t)
• Value specifications (val v : typ)
• Signature refinement (where type / with type)
• Sharing constraints (sharing type)
• Signature bindings (signature)
• Functor abstraction (functor)
• Functor application ( ( ) )
• Transparent signature ascription ( : )
• Opaque signature ascription ( :> )
• Local definitions (let / local)
• Recursive structures (struct rec)
• Recursively dependent signatures (sig rec)



ML Structure Example

We can encode the structure

struct
type t = int
val v = λx.x+3

end

as

{
t = [int],
v = [λx.x+3]

}



ML Signature Example

We can encode the signature

sig
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val v : t -> t

end

as

{
t = [:Ω],
v = [:t -> t]

}
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The MixML Module Language
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Signature Refinement

sig with type t = int
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Separate Compilation via “Units”

We can break mutually recursive modules

(X = sig) with {A= modA, B= modB}

into separately compiled units:

UA = [(X = sig) with {A= modA}]

UB = [(X = sig) with {B= modB}]
and link them later on by writing:

new UA with new UB



Improvements Over Previous Mixin Module Systems

Orthogonality
• No monolithic mixin construct (import Γi export Γe Ds).

Hierarchical composability (aka “deep mixing”)
• Previous mixin modules only allow flat namespaces.

Unifying linking and binding: (X = mod1) with mod2

• Very useful, e.g. signature refinement, recursive modules.

“Double vision” problem
• Problem with interaction of recursion and type abstraction.
• We generalize (Dreyer 07) to handle “cross-eyed” version.



See the paper for. . .

• Tour of MixML by example
• Informal explanation of typing issues
• Full formalization
• Higher-order module extension
• Related work
• Future work
• Link to prototype implementation


