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Abstract

Reasoning about program equivalence is one of the oldest pro
lems in semantics. In recent years, useful techniques hega b
developed, based on bisimulations and logical relatiomsrda-
soning about equivalence in the setting of increasinglyistia
languages—Ilanguages nearly as complex as ML or HaskellhMuc
of the recent work in this direction has considered the astng
representation independence principesbledby the use of local
state, but it is also important to understand the princifiias pow-
erful features like higher-order state and control effelitable
This latter topic has been broached extensively within thené-
work of game semantics, resulting in what Abramsky dubbed th
“semantic cube”: fully abstract game-semantic charazaions of
various axes in the design space of ML-like languages. Betnih
comes to reasoning about many actual examples, game semanti
does not yet supply a useful technique for proving equivadsn

In this paper, we marry the aspirations of the semantic cobe t
the powerful proof method aftep-indexed Kripke logical relations
Building on recent work of Ahmed, Dreyer, and Rossberg, we de
fine the first fully abstract logical relation for an ML-likariguage
with recursive types, abstract types, general referenugsall/cc.
We then show how, under orthogonal restrictions to the esspre
power of our language—namely, the restriction to first-oistate
and/or the removal of call/cc—we can enhance the provingepow
of our possible-worlds model in correspondingly orthodamays,
and we demonstrate this proving power on a range of integesk-
amples. Central to our story is the usestidte transition systents
model the way in which properties of local state evolve oireet
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1. Introduction

Reasoning about program equivalence is one of the oldeisigong
in semantics, with applications to program verificatiors(@n op-
timized program equivalent to some reference implementat),
compiler correctness (“Does a program transformationgmuesthe
semantics of the source program?”), representation imtlpee
(“Can we modify the internal representation of an abstrata tiype
without affecting the behavior of clients?”), and more besi

The canonical notion of program equivalence for many applic
tions isobservational(or contextual equivalence. Two programs
are observationally equivalent if no program context castimli
guish them by getting them to exhibit observably differemt i
put/output behavior. Reasoning about observational etgrice di-
rectly is difficult, due to the universal quantification oy@pgram
contexts. Consequently, there has been a huge amount ofomork
developing useful models and logics for observationaledence,
and in recent years this line of work has scaled to handleaser
ingly realistic languages—languages nearly as complex la®M
Haskell, with features like general recursive types, galr@igher-
order) mutable references, and first-class continuations.

The focus of much of this recent worke-g., environmental
bisimulations [36, 17, 32, 35], normal form bisimulatio3g] 16],
step-indexed Kripke logical relations [4, 2, 3]—has beerestab-
lishing some effective techniques for reasoning aboutnarog that
actually usethe interesting, semantically complex features (state,
continuations, etc.) of the languages being modeled. Fbarte,
most of the work on languages with state concerns the vakiods
of representation independence principles that arise altieetuse
of local stateas an abstraction mechanism.

But of course this is only part of the story. When features are
added to a language, they also enrich the expressive povpeo-of
gramcontextsHence, programs that dmt use those new features,
and that are observationally equivalent in the absenceosttfea-
tures, might not be observationally equivalent in theirsprece.
One well-known example of this is the loss of referentiahga
parency in an impure language like ML. Another shows up in the
work of Johann and Voigtlander [15], who study the negaitive
pact that Haskell's strictness operataq has on the validity of
short-cut fusion and other free-theorems-based progransfior-
mations. In our case, we are interested in relational réag@iout
statefulprograms, so we will be taking a language with some form
of mutable state as our baseline. Nonetheless, we feehifisitant
not only to study the kinds of local reasoning principled stateful
programming carnable but also to understand the principles that
powerful features like higher-order state and controlaffdisable

This latter topic has been broached extensively within the
framework ofgame semanticdn the 1990s, Abramsky set forth
a research programme (subsequently undertaken by a nurhber o
people) concerning what he called tbemantic cubgl9, 1, 24].



The idea was to develop fully abstract game-semantic cterza-
tions of various axes in the design space of ML-like langsager
instance, the absence of mutable state can be modeled bgtiegt
game strategies to lienocent and the absence of control operators
can be modeled by restricting game strategies todiebracketed
These restrictions are orthogonal to one another and caorbe ¢
posed to form fully abstract models of languages with défer
combinations of effects. Unfortunately, when it comes tasmn-
ing about many actual examples, these game-semantics sramlel
not yet supply a useful technique for proving programs exjaiut,
except in fairly restricted languages.

One possible reason for the comparative lack of attentigath pa
to this issue in the setting of relational reasoning is tlahe
key techniques that have been developed for reasoning bdmalt
state—notably, Pitts and Stark’s methodadal invariants[28]—
turn out to work just as well in a language with higher-ordeates
and call/cc as they do in the simpler setting (first-ordetestao
control operators) in which they were originally proposBéfore
one can observe the negative impact of certain languagerésat
on relational reasoning principles, one must first develgpomf
technique that actuallgxploitsthe absence of those features!

1.1 Overview

In this paper, we marry the aspirations of Abramsky’s seinant
cube to the powerful proof method sfep-indexed Kripke logical
relations Specifically, we show how to define a fully abstract logi-
cal relation for an ML-like language with recursive typesstmact
types, general references and call/cc. Then, we show haterun
orthogonal restrictions to the expressive power of our lagg—
namely, the restriction to first-order state and/or the neahof
call/lcc—we can enhance the proving power of our model in cor-
respondingly orthogonal ways, and we demonstrate thisimgov
power on a range of interesting examples.

Our work builds closely on that of Ahmed, Dreyer, and Ross-

berg (hereafter, ADR) [3], who gave the first logical relatifor
modeling a language with both abstract types and highesrord
state. We take ADR as a starting point because the concepts un
derlying that model provide a rich framework in which to e
the impact of various computational effects on relatioeraboning.
In particular, one of ADR’s main contributions was an exten®f
Pitts and Stark’s aforementioned “local invariants” metkath the
ability to establish properties about local state thatlveover time
in some controlled fashion. ADR exploited this ability inder to
reason abougenerative(or state-dependepADTS.

The central contribution of our present paper is to obsdraé t
the degree of freedom with which local state properties mvajve
depends directly on which particular effects are presettierpro-
gramming language under consideration. In order to expahisd
observation, we first recast the ADR model in the more familia
terms ofstate transition systen{Section 3). The basic idea is that
the “possible worlds” of the ADR model are really state tiaos
systems, wherein each state dictates a potentially diffgueop-
erty about the heap, and the transitions between statesotbotv
the heap properties are allowed to evolve. Aside from beimges
what simpler than ADR’s formulation of possible worlds (atni
relied on various non-standard anthropomorphic notides“lpop-
ulations” and “laws”), our formulation highlights the easial no-
tion of astate transitionwhich plays a crucial role in our story.

Next, in Section 4, we explain how to extend the ADR model
with support for first-class continuations via the wellgiad tech-
nigue of biorthogonality (aka T T-closure) [18, 28]. The techni-
cal details of this extension are fairly straightforwardthathe
use of biorthogonality turning out to be completely orthoglo(no
pun intended) to the other advanced aspects of the ADR model.
That said, this is to our knowleddke first logical-relations model

for a language with call/cc and statéoreover, a side benefit
of biorthogonality is that it renders our modkbth sound and
completew.r.t. observational equivalence (unlike ADR’s, which
was only sound. Interestingly, nearly all of the example program
equivalences proved in the ADR paper continue to hold in tke-p
ence of call/cc, and their proofs carry over easily to ourspng
formulation. (There is one odd exception, the “callbackwlitck”
example, for which the ADR proof was very fiddly aad hoc We
investigate this example in great detail, as we describabgl

The ADR paper also included several interesting examples
that their method wasinableto handle. The unifying theme of
these examples is that they rely on tivell-bracketednature of
computation—e.,the assumption that control flow follows a stack-
like discipline—an assumption that is only valid in thlesenceof
call/cc. In Section 5, we consider two simple but novel emlean
ments to our state-transition-system modekivate transitions
andinconsistent stateswhich are only sound in the absence of
call/cc and which correspondingly enable us to prove all bR
“well-bracketed examples”.

Conversely, in Section 6, we consider the additional reiagon
power gained by restricting the language to first-orderestéte
observe that this restriction enablbacktrackingwithin a state
transition system, and we demonstrate the utility of thigdee on
several examples.

The above extensions to our basic state-transition-systede|
are orthogonal to each other, and can be used independeritly o
combination. One notable example of this is ADR’s “callbadth
lock” equivalence (mentioned above), an equivalence tblatstin
the presence of eithdnigher-order state or call/cc but not both.
Using private transitions but no backtracking, we can prihie
equivalence in the presence of higher-order state but Afccal
and using backtracking but no private transitions, we cavepr
it in the presence of call/cc but only first-order state. Mabdther
well-known example, due originally to O’Hearn [26], is troaly
in the absence of bothigher-order state and call/cc; hence, it
should come as no surprise that our novel proof of this exampl
(presented in detail in Section 7.5) involves all three afrmodel’s
new features working in tandem.

Most of the paper is presented in an informal, pedagogighd.st
Indeed, one advantage of our state transition systems tighéna
lend themselves to clean “visual” proof sketches. In Secfiowe
make our proof method formally precise and state some of the
key metatheoretic results. Due to space limitations, wg amrk
through the formal proof of one representative exampleailzt
proofs of our full abstraction results, as well as all ourrap&es
(and more!), appear in the companion technical appendix [8]

In Section 8, we briefly consider how our Kripke logical rela-
tions are affected by the addition ekceptionso the language.
Unlike call/cc, exceptions do not impose restrictions on state
transition systems, but they do require us to account foztkanal
behavior in our proofs.

Finally, in Section 9, we compare our methods to related work
and suggest some directions for future work.

2. ThelLanguage(s) Under Consideration

In its unrestricted form, the language that we consider isaa-s
dard polymorphic lambda calculus with existential, paird aso-
recursive types, general references (higher-order stame) first-

11t is important to note that the completeness result hasimptto do
with the particular features present in the language, ahtbatio with
the use of biorthogonality. In particular, biorthogonalifives us a uniform
way of constructing fully abstract models fall of the different languages
considered in this paper, regardless of whether they qongdi/cc, general
references, etc. See Section 9 for further discussion sfibint.



class continuations (call/cc). We call this langu&tf@SC. Its syn-
tax and excerpts of its call-by-value semantics are givétigare 1.
Dots (...) in the syntax cover primitive operations on bggesb,
such as addition and if-then-else. To ensure unique typiags;
ous constructs have explicit type annotations, which weé tyyli-
cally omit if they are implicit from context. Evaluation caxts K,
injected into the term language want. K, represent first-class
continuations. They are a subset of general cont@xt$erms with
a hole”), which are not shown here, but are standard. Thpingy
judgment = C : (Z;A;T;7) ~ (B A TY;7) basically says
that for anye with $; A; T + e : 7 we haveX’; A; TV + Cle] = 7.
The continuation typing judgmeit; A; T - K = 7 says thats is
an evaluation context with a hole of type Finally, contextual (or
observational) approximation, writtét; A;T" F e1 Zeix €2 : 7,
means that in any well-typed program contéktif C[e;] termi-
nates, then so doeS|[ez]. Contextual (or observational) equiva-
lence is then defined as approximation in both directions.

By restrictingHOSC in two orthogonal ways, we obtain three
fragments of interest:

FOSC The result of restricting to first-order state. Concrettis
means only permitting reference type$ b, whereb represents
base types liként, bool, etc.

HOS The result of removing call/cé.e., dropping the typeont 7
and the corresponding three term-level constructs.

FOS The result of making both of the above restrictions.

3. A Model Based on State Transition Systems

The Ahmed-Dreyer-Rossberg (ADR) model [3], on which our

model is based, is a step-indexed Kripke logical relationtffie
languageHOS. In this section, we will briefly review what a step-
indexed Kripke logical relation is, what is interesting abthe

ADR model, and how we can recast the essence of the ADR model

in terms ofstate transition systems

Step-Indexed Kripke Logical RelationsLogical relations are

one of the best-known methods for local reasoning aboutvequi

alence (or, more generally, approximation) in higher-artigoed
languages. The basic idea is to define the equivalence ooxppr
imation relation in question inductively over the type sture of
the language, with each type constructor being interprijethe
logical connective to which it corresponds. For instane®, func-
tions are logically related if relatedness of their argutaénplies
relatedness of their results; two existential packagedogieally
related if thereexistsa relational interpretation of their hidden type
representations that is preserved by their operationssaifiairth.

In order to reason about equivalence in the presence of fitate
becomes necessary to place constraints on the heaps unidér wh

programs are evaluated. This is whefeipke logical relations
come in. Kripke logical relations [28] are logical relatomdexed

T w=alb|n x| — | Va. | Ja. 7|
po. 7 | ref 7| cont T

e ==zx|l]{e,e2)|el|e2|Ax:T.e|erez| Aae|eT|
pack (71,€) as 72 | unpack e1 as (@, z) in e2 |
roll- e |unroll e |[ref e |e1 :=e2 | le| e1 == ez |
cont; K |call/cc_(x.e)|throw, e; toea | ...

K = eo|(K,e2) | (v1,K) | K1|K2|Kes|vi K| K|
pack (71, K) as 72 | unpack K as (a, x) in ez |
roll- K |unroll K |ref K | K :=e2|v1:= K |!K |
K::62|’U1 ::K|
throw, K to ez | throw, v1 to K| ...

v = x|l (vi,v2) | Azt e | Aae | pack (11,v) as 72 |
roll- v | cont- K | ...

(h; K[ref v]) — (h {l—v}; K[I]) (I ¢ dom(h))
(h; Kl := o) = (h[l=v]; K[O]) (I € dom(h))
(h; K1) = (h; K[v]) (h(l) = v)
(h; K[ly == la]) — (h; K[tt]) (I = I»)
(h; Kl == l2]) — (h; KIff]) (i #12)
(h; Kcall/cc_(x. €)]) — (h; K[e[cont, K/x]])

(h; K[throw, v to cont,, K']) < (h; K'[v])

Heap typings Y ou= X7 wherefv(r) =0
Type environments A == .| A«
Term environments ' == .|,z

FK:(S0;T7)~ (30T 77)
S 0THK =T

A THK =71
¥ A;T F contr K @ contT

AT, zcontthe:7 XS A;Tke 7 3;A;TFe:contr’

;AT Feall/ee, (z.e) : T

3;A;T - throw, e’ toe: T

Vir € 2.3 Fh(l): T
Fh:X

‘Z;A;FF@l ,‘jotxegzr‘ def
A TkFer :TAS; AT Fea: TAVC, Y 7/, h.
FC: (A T;7)~ (X557 )AFRIT A
(h;Clea]) | = (m;Cle2]) |

Figurel. The LanguagélOSC

private {.e.,it is never leaked to the context), and since it is never
modified by the function returned ky, it will always point to1.

by apossible world, which codifies some set of heap constraints. To prove this using Kripke logical relations, we would set tw

Roughly speakings; is related toce underi¥ only if they behave
“the same” when run under any heajps and h, that satisfy the

prove thate; ande- are related under an arbitrary initial worltl.
So suppose we evaluate the two terms under hkapsidh. that

constraints ofi¥’. When reasoning about programs that maintain satisfy 1. Since the evaluation of; results in the allocation of
somelocal state, possible worlds allow us to impose whatever somefreshmemory location forr (i.e.,z ¢ dom(h,)), we know
invariants on the local state we want, so long as we ensute tha that the initial worldW cannot already contain any constraints

those invariants are preserved by the code that accessesthe
To make things concrete, consider the following example:

7 = (unit — unit) — int
e1 = letx=ref Lin Af.(f ();!x)
ea = AL(fF(51)

We would like to show that; ande- are observationally equivalent
at typer. The reason, intuitively, is obvious: the referencis kept

governing the contents af. (If it contained such a constrairfi,

would have had to satisfy it, and hengewould have to be in
dom(h1).) So we may extendil” with a newinvariant stating that
x — 1 (i.e.,z points tol). It then remains to show that the twoe

abstractions are logically related under this extendeddwer.e.,

under the assumption that— 1—which is straightforward.
Finally, step-indexedogical relations [4, 2] were proposed

(originally by Appel and McAllester) as a way to account fer s



mantically problematic features, such as general reciyipes,
whose relational interpretations are seemingly “cyclictahus
difficult to define inductively. The idea is simply to stratithe
construction of the logical relation by a natural number “&iep
index”), representing roughly the number of steps of coraiomn
for which the programs in question behave in a related manner

One of the key contributions of the ADR model was to combine
the machinery of step-indexed logical relations with tHatiapke
logical relations in order to model higher-order state. M/lithe
details of this construction are quite interesting, theyathogonal
to the novel contributions of the model we present in thisepap
Indeed, our present model follows ADR’s very closely in ite wf
step-indexing to resolve circularities in the constructiand so we
refer the interested reader to the ADR paper for details.

ADR and State Transition SystemsThe other key contribution

of the ADR model was to provide an enhanced notion of possible
world, which has the potential to express properties ofllstate
that evolveover time. To motivate this feature of ADR, consider
a simple variant of the example shown above, in which the first
programe; is replaced by

let z =ref 0in A\f. (z:=1; f ();!x)

€1

Here,z starts out pointing t6, but if the function that; evaluates
to is ever calledz will be set tol and will never change back t

In this case, the only invariant one can prove ahoistthat it points
toeither0 or 1, but this invariant is insufficient to establish that after
the call to the callbaclf, the contents ot have not changed back
to 0. For this reason, Pitts and Stark, whose possible-worldieino
only supported heajpvariants called this example the “awkward”
example (because they could not handle it) [28].

While the awkward example is clearly contrived, it is also a
minimal representative of a useful class of programs in twvhic
changes to local state occur in some monotonic fashion. AR AD
showed, this includes well-knowgenerative(or state-dependeht
ADTs, in which the interpretation of an abstract type growsro
time in correspondence with changes to some local state.

ADR'’s solution was to generalize possible worlds’ notion of
“heap constraint” to express heap properties that changecon-
trolled fashion. We can understand their possible worldssagn-
tially state transition systemsvhere each state determines a par-
ticular heap property, and where the transitions deterinave the
heap property may evolve. For instance, in the case of thevavek
example, ADR would represent the heap constraintcona the
following state transition system (STS):

—_—>

Initially, = points to0, and then it is set ta. Since the call to the
callbackf occurs when we are in the— 1 state, we know it must
return in the same state since there is no transition outatdfstiate.
Correspondingly, it is necessary to also show thatthe: 1 state
is really final—i.e., if the function to whiche; evaluates is called in
that state, it will not change’s contents again—but this is obvious.
In ADR, states are called “populations” and state transitio
systems are called “laws”, but the power of their possibleldgo
is very similar to that of our STS’s (as we have described them
thus far), and most of their proofs are straightforwardiggantable
in terms of STS’s. That said, the two models are not identical
particular, there is one example we are aware of, the “ccitlbath
lock” example, that is provable in ADR’s model but not in oassic
STS model. As we will see shortly, there are good reasons hiky t
example is not provable in our basic STS model, and in Sebtibn

we will show how to extend our STS's in order to prove this very
example in a much simpler, cleaner way than ADR’s model does.

4. Biorthogonality, Call/cc, and Full Abstraction

One point on which different formulations of Kripke logiced-
lations differ is the precise formulation of the logicalatbn for
terms The ADR model employs a “direct-style” term relation,
which can be described informally as follows: two termsand
ez are logically related under world” iff whenever they are eval-
uated in initial heap&, andh. satisfyingW, they either both di-
verge or they both converge to machine configuratigrisv: ) and
(hs; v2) such thathandh) satisfyWW’ andwv, andv, are logically
related values undé#’’, whereW’ is some‘future world” of W.
(By “future world”, we mean that?’ extendsWW with new con-
straints about freshly allocated pieces of the heap, arnléneap
constraints o/ may have evolved to different heap constraints in
W' according to the STS’s ifil’.) We call this a direct-style term
relation because it involves evaluating the teuirectly to values
and then showing relatedness of those values in some fututd.w

An alternative approach, first employed in the logical iiels
setting by Pitts and Stark [28] but subsequently adoptedeby s
eral others €.9.,[13, 7, 5]), is what one might call a “CPS” term
relation, although it is more commonly known adiarthogonal
(or TT-closed) term relation. The idea is to define two terms to
be related under worldi” if they co-terminate (both converge or
both diverge) when evaluated under heaps that sdfisgnd under
continuationsK; and K related underi¥. The latter (continua-
tion relatedness) is then defined to mean that, for any futorél
W' of W, the continuationd<; and K> co-terminate when applied
(under heaps that satisfy/’) to valuesthat are related undé¥”’. In
this way, the logical relation for values is lifted to a loglicelation
for terms by a kind of CPS transform.

The main arguable advantage of the direct-style term ozlasi
that its definition is perhaps more intuitive, correspogditosely
to the proof sketches of the sort that we will present infdlyna
in the sections that follow. That said, in any language forcivh
a direct-style relation is sound, it is typically possibtestart in-
stead with a biorthogonal relation and then prove a dirgdes
proof principle—e.g., Pitts and Stark’s “principle of local invari-
ants” [28]—as a corollary.

The advantages of the biorthogonal approach are clearst, Fi
it automagically renders the logical relatioompletewith respect
to observational equivalence, largely irrespective offbgicular
features in the language under consideration. (Actualig,not so
magical: T T-closure is essentially a kind of closure under obser-
vational equivalence.) Second, and perhaps more impbytame
biorthogonal approach scales to handle languages withcfass
continuations, such as otfOSC and FOSC, which the direct-
style doesn’'t. The reason for this is simple: the directesgp-
proach is only sound if the evaluation of terméidependenof the
continuation under which they are evaluated. If the ternesiaw-
ior is context-dependent, then it does not suffice to congfutsr
co-termination under the empty continuation, which is effely
what the direct-style term relation does. Rather, it becomexes-
sary to consider co-termination of whole programs (termystioer
with their continuations), as the biorthogonal relatiorslo

Thus, in this paper we adopt the biorthogonal approach. This
enables us to easily adapt all the proofs from the ADR paper
(save for one) to also work for a language with call/cc. (The o
exception is the “callback with lock” equivalence, whicimgiy
doesn’t hold in the presence of call/cc.) It is worth notifgtt
although the kinds of example programs we focus on in thiepap
do not involve abstract types, a number of the ADR examples do

Additionally, we can prove equivalences involving progeam
that manipulateboth call/cc and higher-order state. One well-



known challenging example of such an equivalence is thescorr
ness of Friedman and Haynes’ encoding of call/cc via “ora®sh
continuations (continuations that can only be invoked dijit#,
34]. The basic idea of the encoding is to model an unrestricte
continuation using a private (local) ref cell that contaansne-shot
continuation. Every time the continuation is invoked, teé cell
is updated with a fresh one-shot continuation. With biogthaal
logical relations, the proof of this example is completehaight-
forward, employing just a simple invariant on the privateaell.
As far as we know, though, this proof is novel. Full details given
in the technical appendix [8].

5. Reasoningin the Absence of Call/cc

In this section, we examine some reasoning principles that a
enabledby removing call/cc from our language.
Consider this variant of the “awkward” example (from ADR):

7 = (unit — unit) — int
e1r = letzx=refOin

AMA(z:=0;f ;=1 f ();lz)
ez = AL(FOs (51

What has changed is that now the callback is run twice, anrd,in
the first call tof is preceded by the assignmentzofo 0, not 1.

It is easy to see that; andes are not equivalent iHOSC (or
evenFOSC). In particular, here is a distinguishing contéxt

let g = e inlet b =ref ffin

let f = (A_.if !b then call/cc (k. g (A-. throw () to k))
else b :=tt) in

gf

Exploiting its ability to capture the continuatiaoki of the second
call to f, the contextC' is able to set: back to0 and then immedi-
ately throw control back td. It is easy to verify thaC[e:] yields
0, while Ce2] yields1.

In the absence of call/cc, however, computations are “well-
bracketed”. Here, this means that wheneves set to0, it will
eventually be set té—no matter what the callback function does.
Consequently, it seems intuitively clear that these prograre
equivalent inHOS (and FOS), but how do we prove it? The STS
model we have developed so far will clearly not do the job; pre
cisely because that modeldempatiblewith call/cc and this exam-
ple is not. So the question remains: how can we augment therpow
of our STS’s so that they take advantage of well-bracketing?

To see how to answer this question, let's see what goes wfong i
we try to give an STS for our well-bracketed equivalencestFir
recall the STS (from Section 3) that we used in order to prove
the original awkward example. To see why this STS is inswffiti
for our present purposes, suppose the function value iggditom
evaluatinge; —call it v;—is applied in ther — 1 state? The first
thing that happens is that is set to0. However, as there is no
transition from ther — 1 state to the: — 0 state, there is no way
we can continue the proof. So how about adding that tram$itio

)

While adding the transition from — 1 toz <— 0 clears the
first hurdle, it also erects a new one: according to the STB, it
now possible that, after the second callftowe end up in the left

2When proving functions logically related, we must consitherpossibility
that they are invoked in an arbitrary “future” world-e-, a world where our
STS may be in any state that is reachable from its initiabsfBhis ensures
monotonicityof the logical relation (Theorem 1, Section 7.1).

state—even though this situatiom pointing to0 after that call)
cannot actually arise in reality. And indeed zifcould point to0

at that point, our proof would be doomed. In summary, while we
would like to add this transition, we also want to keep thetexn
from using it. This is whergrivate transitionscome in.

5.1 Private Transitions

Private transitions are a new class of transitions in ouegtan-
sition systems, separate from the ordinary transitionswieshave
seen so far (and which we henceforth galblic transition3. The
basic idea is very simple: when reasoning about the relatsin
of terms, we must show that—when viewegtensionally-they
appear only to be making public transitions, and corresinghy
we may assume that the context only makes public transiasns
well. Internally, howeverwithin a computation, we may make use
of both public and private transitions.

Concretely, we can use the following STS to prove our running
example (where the dashed arrow denotes a private tramsitio

~—

S~ _--

First, if v1 is called in the starting state<— 1, the presence of the
private transition allows us to “lawfully” transition from — 1 to
z — 0. Second, we know that, because we are imthe- 1 state
before the second call tf and there is no public transition from
there to any other state, we must still be in that same staémWh
returns. Hence we know thatpoints to1l at that point, as desired.
Lastly, although the body af; makes a private transition internally
(when called in starting state — 1), it appears extensionally to
make a public transition, since its final state< 1) is obviously
publicly accessible from whichever state was the initiad.on
Private transitions let us prove not only this example, s a
several others from the literature that hold exclusivelyha ab-
sence of call/cc (including Pitts and Stark’s “higher-amefiling”
example [28]—see the appendix [8] for details). The inteitiea-
son why private transitions “don’t work” with call/cc is than the
presence of call/cc, every time we pass control to the combey
be the last! Therefore, the requirement that the extenskmtav-
ior of a term must appear like a public transition would efiaéin
imply that every internal transition must be public as well.

The “Callback with Lock” Example Here is another equivalence
(from ADR) that holds irHOS but not inHOSC. Interestingly, this
example was provable in the original ADR model, but only tlyio
some complex step-index hackery. The proof we are abouttalsk
is much cleaner and easier to understand.

Consider the following two encodings of a counter objechwit
two methods: arincrementfunction that also takes a callback
argument, which it invokes, and goll function that returns the
current counter value.

C = letb=refttinletx =ref Oin
(Af.if b then b := ff; &; b := tt else (),
A lz)
7 = ((unit — unit) — unit) X (unit — int)
e1r = Clf ;xz:=lz+1]
e2 = Clletn=lzin f ();z:=n+1]

Note that in the second program the countéds dereferencete-
fore the callback is executed, and in the first program it is deref-
erencedafter. In both programs, a Boolean loékguards the in-
crement of the counter, thereby enforcing that running &iback
will not result in any change to the counter.

Itis not hard to construct a context that exploits the coratim
of call/cc and higher-order state in order to distinguistandes.



The basic idea is to pass the increment method a callback thatwill check if y points tott and, if so, diverge. If the thunk was not

captures its current continuation and stores that in a réGosit
can be invoked later. The definition of this distinguishiramniext
appears in the appendix [8].

In the absence of call/cc, however, the two programs arevequi
alent. To prove this, we employ the following infinite STS:

For each numben there are two states: one (the “unlocked” state)
saying that points tott andz points ton in both programs, and
another (the “locked” state) saying thghoints toff andx points to

n in both programs. It is thus easy to see that the two poll nistho
are related (they return the same number). To show the irearem
methods related, suppose they are executed in a state wheneats

to somem and b points tott (the other case where — ff is
trivial). Before invoking the callback,is set toff and, in the second
program,n is bound tom. Accordingly, we move “downwards” in
our STS to the locked state and can then ¢aBecause that state
does not have any other public successors, we will still leeetlif
and whenf returns—indeed, this is the essence of what it means to
be a “locked” state. In the first programjs then incremented.e.,

set tom + 1. In the second program; is setton + 1 = m + 1.
Finally, b is set back tat and we thus move to the matching private
successory(— tt, z — m + 1) in the STS. Since this is a public
successor of the initial staté (— tt, x — m), our extensional
transition appears public and we are done.
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While private transitions are clearly a useful extensiopuo STS
model, there is one kind of “well-bracketed example” we avare
of that private transitions alone are insufficient to acedon We
are referring to the “deferred divergence” example, preskiby
ADR as an example they could not handle. The original versfon
this equivalence, due to O’Hearn [26], was presented inétteng
of Idealized Algol, and it does not hold in the presence ohhig
order state. (We will consider a variant of O'Hearn’s exagripter
on, in Section 6.) Here, we consider a version of the equinae
thatdoeshold inHOS, based on the one in Bohr's thesis [7]:

Inconsistent States

7 = ((unit — unit) — unit) — unit
er = letx =ref ffin let y = ref ff in
Af.f (A if lz then L else y := tt);
if ly then L else x := tt
e2 = M. f(A.1)

Intuitively, the explanation why, ande, are equivalent goes as
follows. The functions returned by both programs take a diigh
order callbackf as an argument and apply it to a thunk. In the
case ofeq, if that thunk argument)_. L, where_ L is a divergent
term) is ever applied, either during the call foor at some point
in the future é.g.,if the thunk were stored by in a ref cell and
then called later), then the program will clearly divergawe;
implements the same divergence behavior, but in a rathetkgne
way. It maintains two private flags andy, initially set to ff. If
the thunk that it passes tpis appliedduring the call to f, then
the thunk’s body will not immediately diverge (as in the cage
e2), but rather merely sej to tt. Then, if and whery returns,e;

applied during the call t¢f, thene; will set z to tt, thus ensuring
that any future attempt to apply the thunk will diverge aslwel

As in the previous examples, note that this equivalence does
hold in the presence of call/cc. Here is a distinguishingexn

call/cc (k. o (Ag.throw g () to k))

To prove the equivalence iIHOS, we can split the proof into
two directions of approximation. Proving that approximates;
is actually very easy because (1) it is trivial to show thatL ap-
proximates the thunk that passes tg’, and (2) if a progrand’[ez]
terminates (which is the assumption of observational appra-
tion), thenC'le1] must in fact maintain the invariant that— ff,
and using that invariant the proof is totally straightfordia

In contrast, the other direction of approximation seemsrst fi
glance impossible to prove using logical relations. Theeds that
we have to show that the thunks passed to the callifack related,
i.e.,thatA_.if lx then L else y := tt approximates\_. L, which
obviously isfalsesince, when applied (as they may be) in a state
wherez points toff, the first converges while the second diverges.

To solve this conundrum, we do the blindingly obvious thing,
which is to introducefalsehoodinto our model! Specifically, we
extend our STS's witlinconsistent statesn which we can prove
false things, such as that a terminating computation ajmiates a
divergent one. How, one may ask, can this possibly work? e i
is as follows: when we enter an inconsistent state, we éfdyt
shift the proof burden from the logical relation for termstha
logical relation forcontinuations That is, while it becomes very
easy to prove that two terms are related in an inconsistatd,st
becomes veryard to prove that two continuation&; and K, are
related in such a state—in most cases, we will be forced teepro
that K1 diverges. Thus, while inconsistent states do allow a lichite
kind of falsehood inside an approximation proof, we can @mler
into them if weknowthat the continuation of the term on the left-
hand side of the approximation will diverge anyway.

Concretely, to show that; approximates., we construct the
following STS, where the diamond indicates an inconsisseate:

\
e‘

For the moment, ignore the top-left state (we explain it \¢ldn
the proof, we wish to show that the thunks passed to the aklla
are logically related in the top-right state, which regsisiiowing
that they are related in any state accessible from it. Fatély
this is easy. If the thunks are called in the bottom-leftesttten
they both diverge. If they are called in the top-right or bottright
state, then thelse-branch is executed (in the first program) and
we move to (or stay in) the bottom-right state—since thisesis
inconsistent, the proof is trivially done.

Dually, we must show that the continuations of the callback
applications are also related in any state (publicly) asibésfrom
the top-right one. If the continuations are invoked in the-tight
or the bottom-left state, they will setto tt, thereby transitioning
to the bottom-left. If, on the other hand, they are invokedhae
inconsistent bottom-right state, then we are required tovsthat
the first one diverges, which fortunately it will singgpoints tott.



Now about the top-left state, whose heap constraint is icint
to the one in the top-right state: the reason for including ¢itate
has to do with soundness of the logical relation. In ordemsues
soundness, we require that when an STS is installed in trelpes
world, it may not contain any inconsistent states thatparelicly
accessible from its starting state. We say in this casetibattarting
state issafe (Without this safety restriction, it would be easy to
show, for instance, thatt approximatesff in any world W by
simply adding an STS t&/ with a single inconsistent state.)

To circumvent this restriction, we use the top-left stateas
starting state and connect it to the top-right state by aapriv
transition. (In the proof, the first step before invoking tadibacks
is to transition into the top-right state.) This is fine sodaas the
extensional behavior of the functions we are relating makmasblic
transition, and here it does—if they are invoked in the tfpdtate,
then either they diverge or they return control in the botlefn
state, which is publicly accessible from the top-left.

6. Reasoning With First-Order State

In this section, we consider an orthogonal restriction t® ¢ime
examined in the previous section. Instead of removingamaftom

the language, what happens if we restrict state to be fidgr@r
What new reasoning principles are enabled by this regirieti

6.1 Backtracking

Recall the “callback with lock” example from Section 5.1, el
we proved equivalent iklOS. As it turns out, that equivalence also
holds inFOSC. Of course, we won't be able to prove that using the
HOSC model since the equivalence doesn’t holdH®SC. But let

us see what exactly goes wrong if we try. First of all, redadl tise

of private transitions in our earlier proof. Due to call/e@ cannot
use any private transitions this time. Clearly, making thperhlic is
not an option, so what if we just drop them entirely?
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In the resulting STS, we still know that running the callbatla
locked statel{ — ff, z — m) will leave us in the very same state
if and when it returns. However, without any outgoing (ptda
transition from that state, it seems that we are subsequstuitk.
Fortunately, we are not. The insight now is that the absefce o
higher-order state allows us to dmacktrackingwithin our STS.
Concretely, we can backtrack from the locked state to theaked
state we were in beforeh (— tt, z — m), and then transition
(publicly) to its successob(— tt, x — m + 1). Intuitively, this
kind of backtracking would not be sound in the presence didrig
order state because, in that setting, the callback mighe btored
some higher-order data during its execution (such as fongtor
continuations) that are only logically related in the lodlstate and
its successorsSince b — tt, z < m + 1) is not a successor of
the previous locked state, the final heaps would then faiatisfy
the final world in which the increment functions return. Hare

3Indeed, the context that distinguishes between the twaranag)inHOSC
employs precisely such a callback, namely one that stagesuirent con-
tinuation in a ref cell.

the first-order setting, though, there is no way for the ealkto
store such higher-order data, so backtracking is not a @nobA
precise technical explanation of how the model is changedida
backtracking, and why this is sound, will be given in Secfiai

6.2 Putting It Together

The example we just looked at might suggest that backtrgckin
is mainly useful as a replacement for private transitionghia
presence of call/cc. Butin fact, they are complementaryriepies.
In particular, for equivalences that hold only HOS but not in
HOS or FOSC, we can profitably employ backtracking, private
transitions, and inconsistent states, all working togethe

Consider this simpler version of the “deferred divergenee”
ample, based closely on an example of O’'Hearn [26]:

7 = ((unit — unit) — unit) — unit
er. = lety=refffin
A (Aoy = tt);
if 1y then L else ()
e2 = M.f(O.l)

These programs are not only distinguishable in the setfif@SC
(by the same distinguishing context as given in Section, ha)
also inHQOS, as the following context demonstrates:

C

let r =ref (A_.())in o (Ag.7 :=g);!r ()

Itis easy to verify that[e;] terminates, whileC'[e2] diverges.
The two programs are, however, equivalenfFi@S, which we
can prove using the following STS:

S =

The proof is largely similar to (if a bit simpler than) the one
sketched for the higher-order version of this example iriSe&.2.
We start in the left state and transition immediately aldme fri-
vate transition to the middle state. With the help of the imgistent
right state, it is easy to show that the thunk arguments passhe
callback are related in the middle state. Hence, when thieack
returns, we are either in the right state or the middle statéhe
former case, we must show that the continuation in the Igrcs.
gram diverges; in the latter, weacktrackto the initial, left state,
which is of course publicly accessible from itself. (We vpilesent
this proof in more detail below, in Section 7.5.)

Why, one might ask, is it not possible to avoid the use of
backtracking here by adding a private transition back from t
middle state to the left state? (Of coursemitistnot be possible,
or else the equivalence would hold true HOS, which as we
have seen it does not.) The answer is that, if we were to add suc
a transition, then we would not be able to prove that the thunk
arguments to the callback were logically related in the middle
state. Specifically, in order to show the latter, we must sthatthe
thunks are related in any state accessible (by any kind $itian)
from the middle state. So if there were any transition frora th
middle to the left state, we would have to show that the thunks
were related starting in the left state as well—but they a& n
because there is no public transition from the initial leéits to
the inconsistent right state, and adding one would be ursoun

7. Technical Development

We now present the models for our various languages fornsity
easiest to start with the model fBfOS, and then show how small
changes to that yield the models 8OSC, FOS, andFOSC.
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HeapRel,, =

Island,, =

{(W, hi,h2) | W € World,, }
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(K, 21, 55,0

’ ’
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/ pub
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Vje{m+1,...,m'}. safe(t})

(s, 8,0/ 4/, H') 2 (s,6,0, 4, H) &

def

(80" 4" H) = (6,0, 4, H) A (s,8") € ¢

safe(W) = V.e€ W.w.safe(t) safe(t) e vy (t.5,8') Etp = s' ¢ 1.4 consistent (W) ' he Ww. s € 0.
G @ L LW, hy Wi, ho WhY) | (W, hi, ha) € % A (W, e, hy) € '}
(hi,ha) W L by WS A Fho: WSs A (Wik >0 = 6W, hi, he) € QWi Ww(i). H(Ww(i).s))
Figure2. Worlds and Auxiliary Definitions
7.1 HOS “states of interest”—whether there is other junk in State space

As described in Section 3, we employ a step-indexed Kripgie&d
relation, which is a kind of possible-worlds model.

Worlds Figure 2 displays the construction of worlds, along with
various related operations and relatiéndlorlds W consist of a
step indexk, heap typingst; and X, (for the first and second
programs, respectively), and an array of islands= ¢4, ..., tn.
Islands in turn are (possibly infinite) state transitionteyss gov-
erning disjoint pieces of the heap. Each consists of a custate
s, a transition relatiod, a public transition relatiorp, a set of in-
consistent states, and last but not least, a mappiiffrom states
to heap constraints (in the form of world-indexed heap i@hat—
more on that below). The public transition relatipnmust be a
subset of the “full” transition relatiod (note: the private transi-
tions are obtained by subtractiggfrom §), and we require both
andy to be reflexive and transitive.

What exactly “states? are—i.e.,how we define the state space
State—does not really matter. That iState is essentially a param-
eter of the model, except that it needs to be at least largegtnio
encode bijections on memory locations (see our relationeipre-
tation of ref types below). For our purposes, we find it convenient
to assume thaitate contains all terms and all sets of terms. Also,
note that while an island’#/ map is defined oall states irState,
we typically only care about how it is defined on a particultraf

4Here and in the following development we use the dot-natatioproject
components out of a structure. As an example, we Wiit&; to extract
the first heap typing out of a world/’.

is irrelevant.

Our use of step-indexing to stratify the construction of ider
and to define the logical relation by a primary induction o+ na
ural numbers follows the development in ADR quite closelyr F
space reasons, we therefore omit explanation of the appadixin
operation|- |, the “later” operator-, and other step-related tech-
nicalities and refer the interested reader to the liteegf8r9]. One
point about notation, though: we sometimes whiterld to mean
U,, World,,, and similarly for the other semantic classes.

Based on the two transition relations (full and public), vee d
fine two notions of future worlds (aka world extension). Eirge
say thatW'’ extenddV/, written W’ 3 W, iff it contains the same
islands ag¥ (and possibly more), and for each islandiin, the
new states’ of that island inlW’—which is the only aspect of the
island that is permitted to change in future worlds—is asités
from the old states in W, according to the island’s full transition
relationd. Public extensiopwritten W’ 3P'® W, is defined anal-
ogously, except using the public transition relatipimstead ofd,
and with the additional requirement that the new islandssghin
W’ but not inW) must besafe An island is safe iff there is no
public transition from its current state to any inconsisttate.

The reason why our (and ADR’s) heap relations are world-
indexed is that, when expressing heap constraints, we wane t
able to say, for instance, that a value in the first heap must be
logically related to a value in the second heap. In that caseeed
to have some way of talking about the “current” world undefclth
that logical relation should be considered, and by worlteking
the heap relations we enable the current world to be passasian
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Figure3. A Step-Indexed Biorthogonal Kripke Logical Relation f0S

parameter. These world-indexed heap relations are quiteated,
however. Specifically, they must be monotone with respegtitd
extension, meaning that heaps related in one world willinaetto
be related in any future world. This ensures that adding aisiewd
to the world, or making (any kind of) transition within an stihg
island, does not violate the heap constraints of otherdslan

The last two definitions also concern heap relations. Twpfea
h1 andh; satisfy a worldW, written (h1, hs) : W, iff they can be
split into disjoint subheaps such that for each islandifirthere is
a subheap of; and a corresponding subheaphefthat are related
by that island’s current heap relation (the relation asgedi with
the island’s current state). A heap relatipns thetensorof )" and
", writtenw)’ ® «", if it contains all(W, k1, h2) that can be split
into disjoint part W, h', h5) € " and(W, kY, hy) € 3"

Logical Relation Our logical relation foHOS is defined in Fig-
ure 3. The value relatioV[r]p (wherefv(r) C dom(p)) is
fairly standard. The only real difference from the ADR moidgh
V[ref 7] p, our interpretation of reference types. Basically, we say
that two referenceg andl, are logically related at typesf 7 in
world W if there exists an islandin W, such that (1)'s heap con-
straint (in any reachable state) requiredofindl, precisely that
their contents are related at typeand (2) the reachable statesin
encode a bijection between locations that includes the(pait.).
The latter condition, which employs an auxiliarpij” function
(defined in the appendix [8]), is needed in order to model tesp
ence of reference equality testihg == [, in the language. Our
formulation of V[ref 7] p is slightly different from ADR’s and a bit
more flexible—e.g.,ours can be used to prove Bohr’s “local state
release” example [7] (see the appendix), whereas ADR’st-ean’
but this added flexibility does not affect any of our “heatfi?
examples from Sections 3—-6. We will report on the advantages
our present formulation in a future, extended version of gaiper.

In logical relations proofs, we frequently assume that we ar
given some related valueg.§.,as inputs to functions), and we
want them to be still related after we have added an islantigo t
world or made a transition. It is therefore crucial thatelikeap
relations, value relations are monotone w.r.t. world esitmm Since
we enforce this property for relational interpretationsabftract
types (see the definition dfalRel in Figure 2), it is easy to show
that the value relation indeed has this property:

Theorem 1 (Monotonicity of the Value Relation)lf W’ J W and
(W, v1,v2) € V[r]p, then(W', v1,v2) € V[7]p.

As explained in Section 4, the value relation is lifted to arte
relation via biorthogonality. Concretely, we define thetommation
relationC[7]p based onV[7]p, and then the term relatiofi[7]p
based oriC[ 7] p:

e Two continuations are related iff they yield related oba&ons
when applied to related values.

e Two terms are related iff they yield related observationgmvh
evaluated under related continuations.

Yielding related observations here means (see the defirifi®)
that, whenever two heaps satisfy the wolld in question and
the first program terminates in the first heap (withink steps),

then the second program terminates in the second heap and the

world is consisten{i.e., no island is in an inconsistent state). This
corresponds to the intuition given in Section 5.2 that abmséstent
world is one in which the first program diverges.

Notice that the continuation relation quantifies only opablic
future worlds. This captures the essential idea (explaineslec-
tion 5.1) that the context can only make public transition@rder
to see this, it is important to understand how a typical piacd
biorthogonal logical relation goes. Roughly, showing tekated-



ness of two programs that involve a call to an unknown fumctio
(e.g.,a callback) eventually reduces to showing that the continu-
ations of the function call are related; thanks to the dedfinibf
K[[7]p, we will only need to consider the possibility that those-con
tinuations are invoked inublic future world of the world we were
in prior to the function call—in other words, we can assuna the
function call made a public transition. We will see how thisris
in detail in the example proof in Section 7.5.

Finally, the logical relation is lifted to open terms in thsual
way, quantifying over related closing substitutiahand~y match-
ing A andr’, respectively, as well as an initial world in which every
location bound in¥ is related to itself. We writé, (resp.y:) and
02 (resp.v2) here as shorthand for the first and second type (resp.
value) substitutions contained dn(resp.v).

Soundness and Completenesd he proof that our logical relation
is sound w.r.t. contextual approximation follows closeatt of
ADR [3]. Itinvolves proving the usual “compatibility” lemas and
the construction of a canonicsafeworld for a given heap typing.
Details can be found in the technical appendix [8].

Theorem 2 (Fundamental Property)lf ¥; A;T + e :
0T e Zog e 7.

T, then

Theorem 3 (Soundness) Ziog € Zeix

Following Pitts and Stark [28], we show completeness of our
logical relation w.r.t. contextual approximation with thelp of
Mason and Talcott'siu-approximation [23] as an intermediate
relation.

Theorem 4 (Completeness) Zcix € Seiu € Slog

Proving the inclusion ofScix in Zeiu is fairly easy. The inclusion

of Zeciu iN Siog fOllows as an almost immediate consequence of the
Fundamental Property, together with the logical relasdmbrthog-
onal definition. Again, full details can be found in the apgier8].

7.2 HOSC

The model forHOSC can be obtained from the one fBiOS by
making two changes. First of all, HOSC, we have to account
for the presence of first-class continuation valoest, K. Fortu-
nately, we already have a continuation relatiofr]p, so it is easy
to define the value relation at tygent 7 in terms of it:

V]cont t]p &f {(W, cont K1, cont K3) | (W, K1, K2) € K[7]p}

Now, recall that we need our value relation to be monotone.w.r
2. Given the extension we have just made to the value relation f
cont 7, that means we need our continuation relation to be mono-
tone w.r.t.J as well. However, as explained above, the continua-
tion relation is only monotone w.r.EI”*® (in order to ensure that
the context can only make public transitions). Of courseatvthis
means is that in the presence of call/cc, the private andgubh-
sition relations must be collapsed into one, and consetyuest
must disallow inconsistent states, too. This correspoodkd in-
tuition we gave in Section 5.1, namely that private traossiand
inconsistent states are only sound to use in the absencdl/otca
Formally, we disallow them by redefinifigland,, as follows:

def

Island!, {t €Tsland,, | t.p = .5 Ay =0}

Under this definition, the two notions of world extensionramde
and all worlds are consistent. The rest of the model staysaire.

In particular, proofs done in thHdOS model that do not make use of
private transitions or inconsistent states can be tramesfevithout
any change. The soundness and completeness proofs cargsove
well. The former merely needs to be extended in a straightfoat
way to deal withcall /cc, throw, andcont.
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7.3 FOS

In the first-order state setting, observe that, for the tygfemlues

that can be stored in the heap—namely, those of base type—our
logical relation for values coincides with syntactic edfyalConse-
quently, when expressing that two heap values are logiosléyed,

we no longer need to refer to a world. Obtaining the modeFo6

from the one foHOS is therefore very simple—all that is needed

is to remove the ability of heap relations to be world-deernd

HeapRel,, oo ‘P(Heap x Heap)
Our heap relations are now more or less the same as in Pitts and
Stark [28]—that is, they are simply heap relations! Coroesp
ingly, we must also update the definitiong(afi, ho) : W, ' @",
andV[ref 7] p, allin the obvious manner, to reflect the lack of world
indices in heap relations. (For details, see the appendité that
while step-indices are no longer needed to stratify our dghey
are still useful in modeling general recursive types.

This simplification ofHeapRel enables backtracking (see Sec-
tion 6.1) by isolating islands from one another completdlfiereas
before, changing the state of an islancbuld break the heap con-
straints in other islands if we did not strictly follovs STS, now
there is no way for changes i state to affect the satisfaction of
other islands’ heap constraints, so we are free to backtrack

74 FOSC

The changes to thelOS model discussed in Sections 7.2 and 7.3
are completely orthogonal and may be easily combined inraode
obtain a fully abstract model fafrOSC.

7.5 Proof of Deferred Divergence Example (FOS Version)

We now present in detail a proof that demonstrates the usé of a
three of our model’s special features (private transitiamsonsis-
tent states, and backtracking). Concretely, we show tffiewif di-
rection of approximation in thEOSversion of the “deferred diver-
gence” example from Section 6.2.

Formally, our goal is to prove -; - - e1 Siog €2 : 7. Unfolding
the definition, this reduces to showi(i@/, e1, e2) € E[r] for W €
World. So assume we are given continuatiqi®, K1, K2) €
K[7] and heapghi, ho) : W and(h;; Kilei1]) terminates in less
thanW.k steps. We must now show th8f is consistent and that
(h2; K2[e2]) terminates as well.

Observe that sincéh:; K1[e1]) terminates in less thaf/.k
steps, so doe@y W {l,—ff}; Ki[éi[ly/y]]), whereés is the body
of the let-expression ire;, andl, is some fresh location. For this
new location, we extend the world with an island represeritire
STS from Section 6.2, with = 1, 2, and3 representing the left,
middle, and right states of the STS, respectively:

Ws = (Wk,(W.S1,ly:bool), W.Sa, (W.w, 1s))
Ls = (5757907\{71_1)
6 = {(1,2),(2,3)}"
e = {23}
b= {3
HQ1) = {(h1,h2) | ha(ly) = ff}
H2) = {(h1,h2) | ha(ly) = ff}
H(3) {(h1, h2) | ha(ly) = tt}

Here the superscript “*” in the definitions @fand¢ denotes the
reflexive, transitive closure ov&tate.

Note that:; is safe and therefor&/; IP'® . Given how
we defined our island, it is easy to see ttat W {i,—ff}, ha) :
W follows from (h1,h2) : W. Assuming we are able to show
(W1, élly/y],e2) € V[r], we can instantiaté W, K1, K2) €
K[7] and getconsistent(W:) and that(hs; K2[e2]) terminates.
The latter is one of the two things we needed to show. The other



one isconsistent(W). Since the only difference betweé# and
W1 is our island, this follows fromeonsistent (W7).

It remains to show(W1y, éi[ly/y],e2) € V[r]. So suppose
we are given a future worldV’ 3 W; and related callbacks
(W', f1, f2) € V[(unit — unit) — unit]. We need to show
(W', €1, f2 (A_. L)) € E[unit], where

el = fi1 (A ly = tt);if !, then L else ().

So suppose we are given continuatigh’, K1, K5) € K[unit]
and heapshi, hy) : W’ and(h}; Ki[e]]) terminates in less than
W'k steps. We must now show thét’ is consistent and that
(hy; K[ f2 (A_. 1)]) terminates as well.

As a matter of notation, |66/, denote the world obtained from
W’ by setting our island’s state te. We only show the case
W' = W7 here; the other two are similar (and simpler). The first
step is to “move to the middle state (state 2)”. Formallycsithe
heap constraints of state and 2 are the same(hy, hy) : Wi
implies (h’, h5) : W5. Now, we want to prove the following:

1. (Wi, f1 (e ly == tt), f2 (A 1)) € E[unit]
2. (W3, K1]e;if !l then L else ()], K3) € K[unit]

If we can prove these two subgoals, then instantiating (Ih wi
(2) yields consistent(W3) and that(hs; K3[f2 (A-. L)]) termi-
nates. The latter is one of the two things we needed to show.
The other one igonsistent(W), which obviously follows from
consistent(W3). So it remains to show (1) and (2).

For (1), first note that sincg; and f» are related in¥7, they
are by monotonicity also related I sinceWs 2 Wj. It there-
fore suffices to show the relatedness of their thunk argusnieet,
(W3, (A\-.ly == tt), (A_. L)) € V]unit — unit]. To that end, we
supposeW” J W, and have to showW"” i, = tt,1) €
E[unit]. So assume we are given continuati¢his”’, K1', K5) €
K[unit] and heapghy, h5) : W". With the help of the incon-
sistent state we will now show thaby'; K7'[l, := tt]) certainly
does not terminate in less thali”.k steps (so there is nothing
further to do). Assume it does, implying th@t [I,—tt]; K1'[()])
does, too. Sinc&V/” 1 W3, W” is eitherWy’ or W4’ (using the
same notational trick as above). Consequently, it is easgedhat
w4 2P W, as well as(hf[l,—tt], hy) : W4 Instantiating
(W",KY,K3) € K[unit] with all this plus the trivial fact that
(W3, (), () € V]unit] yields consistent(W3'), which is clearly
in contradiction t® being an inconsistent state.

For (2), suppose we are giveW” P W3 and heaps
(hY,hy) : W and that(h{; K1[if !l, then L else ()]) termi-
nates in less thaW”’.k steps. We have to showonsistent(W")
and that(h5; K5[()]) terminates. From the assumptions it is clear
that A7 (1) must beff and thus(h!; K1[()]) terminates in less
thanW" .k steps. This also implies thé¥ "’ must belVs'. We now
want to instantiat§ Wy, K1, K3) € K[unit], but W3 does not
publicly extendiV{ because there is no public transition from state
1 to state2. However, we can nowacktrackto statel: because
both states express the same heap constraint and becapsehea
lations for FOS are world-independenth!, h5) : Wy implies
(hY,h%) : W{. Note thatWj ZIP“® W; implies Wy ZP** Wj.
Finally, we can instantiatéW7, K1, K3) € K[unit] with all this
plus (W1, (), ()) € V[unit], to obtainconsistent(;") and that
(hy; K3[{)]) terminates. Since our stafeis a consistent state,
consistent(W{") impliesconsistent(W3'), and we are done.

8. Reasoningin the Presence of Exceptions

In this paper, we have focused attention on first-class woations
as our control effect of interest, and demonstrated that #ie
sence enables the extension of our STS-based Kripke mottel wi
the mechanisms of private transitions and inconsistetestét is

11

natural, then, to ask about the impact that other contretesfhave
on our model. At least in the case@fceptionsthe answer is quite
simple, as we will now briefly explain. (Details appear in teh-
nical appendix [8], and we intend to elaborate on these inxan e
tended version of this paper. We leave consideration ofr atbe-
trol effects, such as delimited continuations, to futurekyo

First of all, unlike throwing to a continuation, raising axcep-
tion causes a “well-bracketed” kind of control effect, irethense
that it passes control to the exception handler that was nesest
cently pushed onto the control stack. Thus, the presencecepe
tions does noper serestrict our STS model: we are free to use
STS’s with private transitions and inconsistent states.

However, the possibility of exceptional behavior meang,tha
when proving twaontinuationgo be logically related (byC[7]p),
we must show that they behave in a related manner not only when
they are plugged with related values, but also when theyasequl
related raised exceptions. Concretely, the definitio/Cpf]p be-
comes the following (assuming a new base typeof exceptions):

{(W7 K17K2) € ContAtom[pl(T),pg(T)] |
YW o1, 00. W PP W —
((W’,v1,v2) S VﬂTﬂp - (W’,K1[’U1],K2[U2]) S O) A\
(W' v1,v2) € V[exn] =
(W', Kiq[raise v1], Ka[raise v2]) € O)}

In essence, this new definition is equivalentfM ()] p, where
M is theexception monae-i.e., M(7) ~ 7 + exn.

Each of the various examples we have considered in this paper
involves proving equivalence of two higher-order functahat,
when called, will manipulate some local state and invokerthe
(unknown) callback arguments. Thus, for each of the exasnie
new, more restrictive definition of[r]p requires us to consider
the possibility that the callback invocation may raise acegtion.
Since the higher-order function in each example does naalins
any exception handler around its callback invocation, acgption
raised by that callback invocation will remain uncaughtisiag the
function to return immediately (raising the same exception

We therefore need to show that any state in which the callback
may raise an exceptioni-e., any state that is publicly accessible
from the one in which the callback was invoked—is also pugplic
accessible from the initial state in which the higher-oridgrction
was called. For the callback-with-lock example, this iseed the
case, since the only state publicly accessible from th&#dtstate
(in which the callback is invoked) is itself, which is pullyi@acces-
sible from the “unlocked” starting state. For the other egbas, on
the other hand, this criterion is not met; and indeed, in tlesgnce
of exceptions, itis not hard to find program contexts thatmtisiish
the higher-order functions in those examples.

9. Related and Future Work

Many techniques have been proposed for reasoning abougxcont
tual equivalence of stateful programs. Using a variety e§¢éhtech-
nigues, most of the examples we discuss in this papeebeen
proven already (with minor variations) in different langeaset-
tings, but there has not heretofore been any clear accoumvof
they all fit together. Indeed, our main contribution lies isr aini-
fying framework of STS's, along with the realization thaethb-
sence of call/cc and/or higher-order state enables theggie of
our STS model in orthogonal ways. That said, some of our exam-
ples are also new, such as “callback with lock"R®SC, and the
other ADR examples ilOSC (see the appendix [8] for more).

Game Semantics As explained in the introduction, game seman-
tics has served as an inspiration to us, especially Abramgiga

of the “semantic cube”. There are many papers on this togic; p

haps the two most relevant to our present work are Laird’sehod



of call-by-name PCF extended with a control operator [19] an
Abramsky, Honda, and McCusker’'s model of call-by-value PCF
extended with general references [1]. Unlike ¢t®©SC and its
fragments, the language considered by Abramesksl. does not
support pointer equality.

step-indexed. In the absence of step indices, biorthogpnah-
ders the logical relatiomdmissible(an important property when
modeling recursion). In the presence of step indices, aibility
is not as important, since the model essentially only cémsisfi-
nite approximations, and there is no need to ever talk abhait t

The primary focus of the research on games models has beenlimit. Nevertheless, as we have seen, biorthogonality pkygru-

full abstraction. One of the key motivations for having dyfdb-
stract model is, of course, that it allows one to prove two- pro
grams observationally equivalent by proving that theiratations
(in games models, “strategies”) are the same. However,dheeg
models do not in general directly facilitate such proofssithe
strategies are non-trivial to analyze for equality (anctsigame
categories also involve a non-trivial quotienting). Henpeoof
methods for proving actual program equivalences basedemifgp
games models have primarily been developed only for singpie |
guages with state, namely call-by-name Idealized Algot.a&=ini-
tary version of that language€.,a version with only finite ground
types and no recursion) there is a full classification of wtamtex-
tual equivalence is decidable.g.,see [12, 25]). A finitary version
of a call-by-value variant has also been studied by Mura\{&kj,
and with that model he could show some finitary versions of the
examples of Pitts and Stark.g.,the profiling example [24, p. 29].

cial role in modeling control and ensuring full abstraction

With respect to the latter, it is not clear how useful the &l
straction property is for uper se since it is achieved in a largely
“feature-independent” manner. That is, the proof thatthimgonal-
ity makes the logical relation complete is essentially thme for
each of the four languages we consider, so full abstractére h
is perhaps not the most informative criterion. One couldifer
stance take Pitts and Stark’s original model, add stepxindeto
it, and get out a different fully abstract model #dOSC. Clearly,
that model would not be as practically powerful as our STSebda
model, but it would nevertheless be fully abstract.

Aside from ADR, the closest logical relations to ours are
the ones developed by Bohr in her thesis [7]. Hers also employ
biorthogonality, albeit in a denotational setting. Hergibke worlds
bear some similarity to ADR's in that they, too, allow one todel
heap properties that evolve over time. In addition, thegvalbne

Another focus of game semantics is on understanding how the to impose constraints on continuations. Like us, she isaté® to

presence of different features in a language affects thaskafi in-
teractions a program can have with its context. Laird [19Hgais
the presence of control operators by relaxing the “welkketing”
restriction on strategies. Abramsley al. [1] model the presence
of higher-order state by relaxing the “visibility” resttien. There
seems intuitively to be some correspondence between theefor
and our private transitions, and between the latter and agk-b
tracking, but determining the precise nature of this cqoesence
is left to future work.

Operational Game SemanticsAnother line of related work con-
cerns what some have called “operational game semantitss. T
work considers labeled transition systems, and eitheresramr
bisimulation relations over those, directly inspired byngs mod-
els. Such so-called “normal form bisimulation” relatiores/b been
developed for an untyped language with state and contrg) {84

a typed language with recursive types (but no state) [21d,fan

a language with impredicative polymorphism (but no sta®2).[
Laird [20] gave a fully abstract trace semantics for the ey of
Abramskyet al. [1] extended with pointer equality. His trace-sets
may be viewed as deterministic strategies in the sense o gam
mantics. Normal form bisimulations have been used to prove c
textual equivalence of actual examplegj.,Stgvring and Lassen’s
proof of correctness [34] for the encoding of call/cc via -@het
continuations that we described at the end of Section 4. dast
and Lassen have shown, in unpublished work [16], how Laird’s
trace semantics can be used to proveHt@sS version of the de-
ferred divergence example (Section 5.2), by showing thatio
programs have the same set of traces.

To the best of our knowledge, however, no fully abstract game
model (either operational or denotational) has yet beeangfer
the rich language that we consider in this paper (call-dyejam-
predicative polymorphism, general references with poiatpial-
ity, call/cc, and recursive types).

Logical Relations Our work is heavily indebted to the pioneer-
ing work of Pitts and Stark [28], who gave a fully abstractilog
cal relation for a simply-typed functional language witkeuesion
and first-order state. In particular, we rely on the basicseif
their biorthogonal Kripke model, although (like ADR’s) @i also

5We have not emphasized the fact that we model pointer egialithis
paper, but some of ADR’s examples do make use of it, and it &atufe
one generally expects to find in real ML-like languages.
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handle theHOS version of the deferred divergence example, but
the language she considers is not as rich as ours (it doespmb

full polymorphism), and she does not consider handlingaatbr
the restriction to first-order state. We can prove all of tkeneples
from her thesis, and we believe that our proofs are signifigan
simpler to understand.

Regarding the deferred divergence example: it is origyrdiie
to O’Hearn, who formulated it in the context of Idealized 8l{R6,
2.3]. Pitts showed how to prove this example using operation
Kripke logical relations, by allowing the parameters of tbgical
relation to relate proper states to undefined statesi§y phrasing
heap relations over “lifted” heaps) [29]. It is not clear wher this
technigue generalizes to higher-order state, however.

More recently, Johann, Simpson, and Voigtlander [14] lmoe
posed a generic framework for operational reasoning aldget a
braic effects. Their work is complementary to ours: theyeliey
effect-independent proof principles, whereas we develfgcte
specific proof principles. They do not consider local sthigher-
order state, or control.

Lastly, our decision to employ both step-indexing and Ibiog:
onality was influenced directly by the work of Benton, togeth
with Tabareau [6] and Hur [5], on compiler correctness. Tagye
persuasively for the benefits of combining the two techrsque

Environmental Bisimulations For reasoning about contextual
equivalences (involving either type abstraction or lo¢atey, one
of the most successful alternatives to logical relatiorthéscoin-
ductive technique aénvironmental bisimulationg he current state
of the art is Sumii’s work on type abstraction and generadref
ences [35], which builds on work by Sumii-Pierce [36], Kotts
Wand [17], and Sangiorgi-Kobayashi-Sumii [32]. Sumii ideatn
handle all the examples we have presented here in the sefting
HOS; he does not consider call/cc or first-order state (but does,
in the work with Sangiorgi, consider concurrency). In sorases
(e.g.,for the well-bracketed version of the “awkward” example—
see Section 5.1), his approach is somewhat “brute-forcehén
sense that it requires explicit reasoning about the inbeadistruc-
ture of program contexts. We believe our state transiticsiesys
capture the intuitions about well-bracketing at a moreralostevel.

Anti-Frame Rule Pottier [30] has proposed an alternative way of
reasoning about local state using a rich type system withlibgp
ities, regions, and linearity. Hianti-frame ruleallows one to es-



tablish a hidden property about a piece of local state, mnthe
same way that our islands do. In its original form, howevee t
anti-frame rule was restricted to reasoning abowuariants which
we argued in Section 3 are insufficient for many examples.

To address this limitation, Pottier has suggested two sites
of his framework. First, in joint work with Pilkiewicz [27]he
proposes the use dites which enable reasoning abaubnotonic
state in a manner rather similar to the state transitionegystin

our Kripke model. Second, in a brief unpublished note [3H, h
sets forth egeneralizedversion of the anti-frame rule that permits

reasoning about well-bracketed state change.

While there are clear analogies between these extensi@hs an

our public/private state transitions, determining a medormal
correspondence is likely to be difficult because the mettards
tailored to different purposes. On one hand, Pottier's gymems

are richer than that of ML, and thus his techniques can be used

to verify correctness of some interesting programs thaloéxine

[9] D. Dreyer, G. Neis, A. Rossberg, and L. Birkedal. A redathl modal
logic for higher-order stateful ADTs. IROPL, 2010.

[10] M. Felleisen and R. Hieb. The revised report on the stittdheories
of sequential control and stat€CS 103(2):235-271, 1992.

[11] D. Friedman and C. Haynes. Constraining controlP®PL, 1985.

[12] D.R. Ghica and G. McCusker. Reasoning about |dealizZgdlAising
regular languages. ICALP, 2000.

[13] P. Johann. Short cut fusion is corredEP, 13(4):797-814, 2003.

[14] P. Johann, A. Simpson, and J. Voigtlander.
metatheory for algebraic effects. WHCS, 2010.

A generierafional

[15] P. Johann and J. Voigtlander. The impactsefjon free theorems-
based program transformations-undamenta Informaticae69(1—
2):63-102, 2006.

[16] V. Koutavas and S. Lassen. Fun with fully abstract openal game
semantics for general references. Unpublished, Feb. 2008.

advanced features of his type systems. On the other hand: som [17] V. Koutavas and M. Wand. Small bisimulations for reasgrabout

equivalences—like our “deferred divergence” example fidat-

tion 5.2—do not seem to be easily expressible as “unary”-type
checking problems and thus cannot seemingly be handled by Po

tier's method. Moreover, like Sumii [35], Pottier restdattention
to languages that support higher-order state but no coeiffiexts.

Finally, it is important to note that Pottier’s anti-framde has
only been proven sound in a relatively idealized setting,[88d its
soundness has yet to be established even in the context typihe
and-capability system in which it was originally propos8a][ let
alone the extended systems mentioned above [27, 31].

Other Related Work Seminal work on operational reasoning

about state and control was conducted by Felleisen and H&b [
and Mason and Talcott [23], but the proof principles theyellev
oped are relatively weak in comparison to the ones afforgealib
model. Thielecke [37] demonstrated an interesting egeined that
holds in the presence of exceptions and state, but not irésepce
of continuations and state. His proof method is relativelytd-

force, however, and we can easily prove his example usingfé S

with private transitions. More recently, Yoshidgal.[38] proposed
a Hoare-style logic for reasoning about higher-order mogr with
local state, but it does not handle abstract types, nor dgesrit
the kind of reasoning achieved by our STS’s. Dresteall. [9] have
devised a relational modal logic that accounts for the di&ders-

pects of the ADR model. In the future, we hope to generalia¢ th

logic to account for the additional features we have propdsze.
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