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Abstract
Reasoning about program equivalence is one of the oldest prob-
lems in semantics. In recent years, useful techniques have been
developed, based on bisimulations and logical relations, for rea-
soning about equivalence in the setting of increasingly realistic
languages—languages nearly as complex as ML or Haskell. Much
of the recent work in this direction has considered the interesting
representation independence principlesenabledby the use of local
state, but it is also important to understand the principlesthat pow-
erful features like higher-order state and control effectsdisable.
This latter topic has been broached extensively within the frame-
work of game semantics, resulting in what Abramsky dubbed the
“semantic cube”: fully abstract game-semantic characterizations of
various axes in the design space of ML-like languages. But when it
comes to reasoning about many actual examples, game semantics
does not yet supply a useful technique for proving equivalences.

In this paper, we marry the aspirations of the semantic cube to
the powerful proof method ofstep-indexed Kripke logical relations.
Building on recent work of Ahmed, Dreyer, and Rossberg, we de-
fine the first fully abstract logical relation for an ML-like language
with recursive types, abstract types, general references and call/cc.
We then show how, under orthogonal restrictions to the expressive
power of our language—namely, the restriction to first-order state
and/or the removal of call/cc—we can enhance the proving power
of our possible-worlds model in correspondingly orthogonal ways,
and we demonstrate this proving power on a range of interesting ex-
amples. Central to our story is the use ofstate transition systemsto
model the way in which properties of local state evolve over time.

Categories and Subject DescriptorsD.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming
Languages]: Language Constructs and Features; F.3.1 [Logics
and Meanings of Programs]: Specifying and Verifying and Rea-
soning about Programs

General Terms Languages, Theory, Verification

Keywords Step-indexed Kripke logical relations, biorthogonality,
observational equivalence, higher-order state, local state, first-class
continuations, exceptions, state transition systems
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1. Introduction
Reasoning about program equivalence is one of the oldest problems
in semantics, with applications to program verification (“Is an op-
timized program equivalent to some reference implementation?”),
compiler correctness (“Does a program transformation preserve the
semantics of the source program?”), representation independence
(“Can we modify the internal representation of an abstract data type
without affecting the behavior of clients?”), and more besides.

The canonical notion of program equivalence for many applica-
tions isobservational(or contextual) equivalence. Two programs
are observationally equivalent if no program context can distin-
guish them by getting them to exhibit observably different in-
put/output behavior. Reasoning about observational equivalence di-
rectly is difficult, due to the universal quantification overprogram
contexts. Consequently, there has been a huge amount of workon
developing useful models and logics for observational equivalence,
and in recent years this line of work has scaled to handle increas-
ingly realistic languages—languages nearly as complex as ML or
Haskell, with features like general recursive types, general (higher-
order) mutable references, and first-class continuations.

The focus of much of this recent work—e.g., environmental
bisimulations [36, 17, 32, 35], normal form bisimulations [34, 16],
step-indexed Kripke logical relations [4, 2, 3]—has been onestab-
lishing some effective techniques for reasoning about programs that
actuallyusethe interesting, semantically complex features (state,
continuations, etc.) of the languages being modeled. For instance,
most of the work on languages with state concerns the variouskinds
of representation independence principles that arise due to the use
of local stateas an abstraction mechanism.

But of course this is only part of the story. When features are
added to a language, they also enrich the expressive power ofpro-
gramcontexts. Hence, programs that donotuse those new features,
and that are observationally equivalent in the absence of those fea-
tures, might not be observationally equivalent in their presence.
One well-known example of this is the loss of referential trans-
parency in an impure language like ML. Another shows up in the
work of Johann and Voigtländer [15], who study the negativeim-
pact that Haskell’s strictness operatorseq has on the validity of
short-cut fusion and other free-theorems-based program transfor-
mations. In our case, we are interested in relational reasoning about
statefulprograms, so we will be taking a language with some form
of mutable state as our baseline. Nonetheless, we feel it is important
not only to study the kinds of local reasoning principles that stateful
programming canenable, but also to understand the principles that
powerful features like higher-order state and control effectsdisable.

This latter topic has been broached extensively within the
framework ofgame semantics. In the 1990s, Abramsky set forth
a research programme (subsequently undertaken by a number of
people) concerning what he called thesemantic cube[19, 1, 24].
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The idea was to develop fully abstract game-semantic characteriza-
tions of various axes in the design space of ML-like languages. For
instance, the absence of mutable state can be modeled by restricting
game strategies to beinnocent, and the absence of control operators
can be modeled by restricting game strategies to bewell-bracketed.
These restrictions are orthogonal to one another and can be com-
posed to form fully abstract models of languages with different
combinations of effects. Unfortunately, when it comes to reason-
ing about many actual examples, these game-semantics models do
not yet supply a useful technique for proving programs equivalent,
except in fairly restricted languages.

One possible reason for the comparative lack of attention paid
to this issue in the setting of relational reasoning is that some
key techniques that have been developed for reasoning aboutlocal
state—notably, Pitts and Stark’s method oflocal invariants[28]—
turn out to work just as well in a language with higher-order state
and call/cc as they do in the simpler setting (first-order state, no
control operators) in which they were originally proposed.Before
one can observe the negative impact of certain language features
on relational reasoning principles, one must first develop aproof
technique that actuallyexploitsthe absence of those features!

1.1 Overview

In this paper, we marry the aspirations of Abramsky’s semantic
cube to the powerful proof method ofstep-indexed Kripke logical
relations. Specifically, we show how to define a fully abstract logi-
cal relation for an ML-like language with recursive types, abstract
types, general references and call/cc. Then, we show how, under
orthogonal restrictions to the expressive power of our language—
namely, the restriction to first-order state and/or the removal of
call/cc—we can enhance the proving power of our model in cor-
respondingly orthogonal ways, and we demonstrate this proving
power on a range of interesting examples.

Our work builds closely on that of Ahmed, Dreyer, and Ross-
berg (hereafter, ADR) [3], who gave the first logical relation for
modeling a language with both abstract types and higher-order
state. We take ADR as a starting point because the concepts un-
derlying that model provide a rich framework in which to explore
the impact of various computational effects on relational reasoning.
In particular, one of ADR’s main contributions was an extension of
Pitts and Stark’s aforementioned “local invariants” method with the
ability to establish properties about local state thatevolveover time
in some controlled fashion. ADR exploited this ability in order to
reason aboutgenerative(or state-dependent) ADTs.

The central contribution of our present paper is to observe that
the degree of freedom with which local state properties may evolve
depends directly on which particular effects are present inthe pro-
gramming language under consideration. In order to expoundthis
observation, we first recast the ADR model in the more familiar
terms ofstate transition systems(Section 3). The basic idea is that
the “possible worlds” of the ADR model are really state transition
systems, wherein each state dictates a potentially different prop-
erty about the heap, and the transitions between states control how
the heap properties are allowed to evolve. Aside from being some-
what simpler than ADR’s formulation of possible worlds (which
relied on various non-standard anthropomorphic notions like “pop-
ulations” and “laws”), our formulation highlights the essential no-
tion of astate transition, which plays a crucial role in our story.

Next, in Section 4, we explain how to extend the ADR model
with support for first-class continuations via the well-studied tech-
nique of biorthogonality (aka⊤⊤-closure) [18, 28]. The techni-
cal details of this extension are fairly straightforward, with the
use of biorthogonality turning out to be completely orthogonal (no
pun intended) to the other advanced aspects of the ADR model.
That said, this is to our knowledgethe first logical-relations model

for a language with call/cc and state. Moreover, a side benefit
of biorthogonality is that it renders our modelboth sound and
completew.r.t. observational equivalence (unlike ADR’s, which
was only sound).1 Interestingly, nearly all of the example program
equivalences proved in the ADR paper continue to hold in the pres-
ence of call/cc, and their proofs carry over easily to our present
formulation. (There is one odd exception, the “callback with lock”
example, for which the ADR proof was very fiddly andad hoc. We
investigate this example in great detail, as we describe below.)

The ADR paper also included several interesting examples
that their method wasunable to handle. The unifying theme of
these examples is that they rely on thewell-bracketednature of
computation—i.e.,the assumption that control flow follows a stack-
like discipline—an assumption that is only valid in theabsenceof
call/cc. In Section 5, we consider two simple but novel enhance-
ments to our state-transition-system model—private transitions
and inconsistent states—which are only sound in the absence of
call/cc and which correspondingly enable us to prove all of ADR’s
“well-bracketed examples”.

Conversely, in Section 6, we consider the additional reasoning
power gained by restricting the language to first-order state. We
observe that this restriction enablesbacktrackingwithin a state
transition system, and we demonstrate the utility of this feature on
several examples.

The above extensions to our basic state-transition-systemmodel
are orthogonal to each other, and can be used independently or in
combination. One notable example of this is ADR’s “callbackwith
lock” equivalence (mentioned above), an equivalence that holds in
the presence of eitherhigher-order state or call/cc but not both.
Using private transitions but no backtracking, we can provethis
equivalence in the presence of higher-order state but no call/cc;
and using backtracking but no private transitions, we can prove
it in the presence of call/cc but only first-order state. Yet another
well-known example, due originally to O’Hearn [26], is trueonly
in the absence of bothhigher-order state and call/cc; hence, it
should come as no surprise that our novel proof of this example
(presented in detail in Section 7.5) involves all three of our model’s
new features working in tandem.

Most of the paper is presented in an informal, pedagogical style.
Indeed, one advantage of our state transition systems is that they
lend themselves to clean “visual” proof sketches. In Section 7, we
make our proof method formally precise and state some of the
key metatheoretic results. Due to space limitations, we only work
through the formal proof of one representative example. Detailed
proofs of our full abstraction results, as well as all our examples
(and more!), appear in the companion technical appendix [8].

In Section 8, we briefly consider how our Kripke logical rela-
tions are affected by the addition ofexceptionsto the language.
Unlike call/cc, exceptions do not impose restrictions on our state
transition systems, but they do require us to account for exceptional
behavior in our proofs.

Finally, in Section 9, we compare our methods to related work
and suggest some directions for future work.

2. The Language(s) Under Consideration
In its unrestricted form, the language that we consider is a stan-
dard polymorphic lambda calculus with existential, pair, and iso-
recursive types, general references (higher-order state), and first-

1 It is important to note that the completeness result has nothing to do
with the particular features present in the language, and all to do with
the use of biorthogonality. In particular, biorthogonality gives us a uniform
way of constructing fully abstract models forall of the different languages
considered in this paper, regardless of whether they contain call/cc, general
references, etc. See Section 9 for further discussion of this point.
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class continuations (call/cc). We call this languageHOSC. Its syn-
tax and excerpts of its call-by-value semantics are given inFigure 1.
Dots (. . . ) in the syntax cover primitive operations on base typesb,
such as addition and if-then-else. To ensure unique typing,vari-
ous constructs have explicit type annotations, which we will typi-
cally omit if they are implicit from context. Evaluation contextsK,
injected into the term language viacontτ K, represent first-class
continuations. They are a subset of general contextsC (“terms with
a hole”), which are not shown here, but are standard. Their typing
judgment ⊢ C : (Σ; ∆; Γ; τ ) ; (Σ′;∆′; Γ′; τ ′) basically says
that for anye with Σ; ∆; Γ ⊢ e : τ we haveΣ′;∆′; Γ′ ⊢ C[e] : τ ′.
The continuation typing judgmentΣ;∆; Γ ⊢ K ÷ τ says thatK is
an evaluation context with a hole of typeτ . Finally, contextual (or
observational) approximation, writtenΣ; ∆; Γ ⊢ e1 -ctx e2 : τ ,
means that in any well-typed program contextC, if C[e1] termi-
nates, then so doesC[e2]. Contextual (or observational) equiva-
lence is then defined as approximation in both directions.

By restrictingHOSC in two orthogonal ways, we obtain three
fragments of interest:

FOSC The result of restricting to first-order state. Concretely,this
means only permitting reference typesref b, whereb represents
base types likeint, bool, etc.

HOS The result of removing call/cc,i.e.,dropping the typecont τ
and the corresponding three term-level constructs.

FOS The result of making both of the above restrictions.

3. A Model Based on State Transition Systems
The Ahmed-Dreyer-Rossberg (ADR) model [3], on which our
model is based, is a step-indexed Kripke logical relation for the
languageHOS. In this section, we will briefly review what a step-
indexed Kripke logical relation is, what is interesting about the
ADR model, and how we can recast the essence of the ADR model
in terms ofstate transition systems.

Step-Indexed Kripke Logical RelationsLogical relations are
one of the best-known methods for local reasoning about equiv-
alence (or, more generally, approximation) in higher-order, typed
languages. The basic idea is to define the equivalence or approx-
imation relation in question inductively over the type structure of
the language, with each type constructor being interpretedby the
logical connective to which it corresponds. For instance, two func-
tions are logically related if relatedness of their arguments implies
relatedness of their results; two existential packages arelogically
related if thereexistsa relational interpretation of their hidden type
representations that is preserved by their operations; andso forth.

In order to reason about equivalence in the presence of state, it
becomes necessary to place constraints on the heaps under which
programs are evaluated. This is whereKripke logical relations
come in. Kripke logical relations [28] are logical relations indexed
by apossible worldW , which codifies some set of heap constraints.
Roughly speaking,e1 is related toe2 underW only if they behave
“the same” when run under any heapsh1 andh2 that satisfy the
constraints ofW . When reasoning about programs that maintain
some local state, possible worlds allow us to impose whatever
invariants on the local state we want, so long as we ensure that
those invariants are preserved by the code that accesses thestate.

To make things concrete, consider the following example:

τ = (unit → unit) → int
e1 = let x = ref 1 in λf. (f 〈〉; !x)
e2 = λf. (f 〈〉; 1)

We would like to show thate1 ande2 are observationally equivalent
at typeτ . The reason, intuitively, is obvious: the referencex is kept

τ ::= α | b | τ1 × τ2 | τ1 → τ2 | ∀α. τ | ∃α. τ |
µα. τ | ref τ | cont τ

e ::= x | l | 〈e1, e2〉 | e.1 | e.2 | λx:τ. e | e1 e2 | Λα.e | e τ |
pack 〈τ1, e〉 as τ2 | unpack e1 as 〈α, x〉 in e2 |
rollτ e | unroll e | ref e | e1 := e2 | !e | e1 == e2 |
contτ K | call/cc

τ
(x. e) | throwτ e1 to e2 | . . .

K ::= • | 〈K, e2〉 | 〈v1,K〉 |K.1 |K.2 |K e2 | v1 K |K τ |
pack 〈τ1,K〉 as τ2 | unpack K as 〈α, x〉 in e2 |
rollτ K | unroll K | ref K |K := e2 | v1 := K | !K |
K == e2 | v1 == K |
throwτ K to e2 | throwτ v1 to K | . . .

v ::= x | l | 〈v1, v2〉 | λx:τ. e | Λα.e | pack 〈τ1, v〉 as τ2 |
rollτ v | contτ K | . . .

〈h;K[ref v]〉 →֒ 〈h ⊎ {l 7→v};K[l]〉 (l /∈ dom(h))
〈h;K[l := v]〉 →֒ 〈h[l 7→v];K[〈〉]〉 (l ∈ dom(h))
〈h;K[!l]〉 →֒ 〈h;K[v]〉 (h(l) = v)
〈h;K[l1 == l2]〉 →֒ 〈h;K[tt]〉 (l1 = l2)
〈h;K[l1 == l2]〉 →֒ 〈h;K[ff]〉 (l1 6= l2)
〈h;K[call/cc

τ
(x. e)]〉 →֒ 〈h;K[e[contτ K/x]]〉

〈h;K[throwτ v to contτ ′ K′]〉 →֒ 〈h;K′[v]〉

Heap typings Σ ::= · | Σ, l:τ where fv(τ ) = ∅
Type environments ∆ ::= · | ∆, α
Term environments Γ ::= · | Γ, x:τ

⊢ K : (Σ; ∆; Γ; τ) ; (Σ; ∆; Γ; τ ′)

Σ; ∆; Γ ⊢ K ÷ τ

Σ;∆;Γ ⊢ K ÷ τ

Σ;∆;Γ ⊢ contτ K : cont τ

Σ;∆; Γ, x:cont τ ⊢ e : τ

Σ;∆;Γ ⊢ call/ccτ (x. e) : τ

Σ;∆; Γ ⊢ e′ : τ ′ Σ;∆;Γ ⊢ e : cont τ ′

Σ;∆;Γ ⊢ throwτ e′ to e : τ

∀l:τ ∈ Σ. Σ; ·; · ⊢ h(l) : τ

⊢ h : Σ

Σ;∆; Γ ⊢ e1 -ctx e2 : τ
def
=

Σ;∆; Γ ⊢ e1 : τ ∧ Σ; ∆; Γ ⊢ e2 : τ ∧ ∀C,Σ′, τ ′, h.
⊢ C : (Σ;∆; Γ; τ ) ; (Σ′; ·; ·; τ ′) ∧ ⊢ h : Σ′ ∧
〈h;C[e1]〉↓ =⇒ 〈h;C[e2]〉↓

Figure 1. The LanguageHOSC

private (i.e., it is never leaked to the context), and since it is never
modified by the function returned bye1, it will always point to1.
To prove this using Kripke logical relations, we would set out to
prove thate1 ande2 are related under an arbitrary initial worldW .
So suppose we evaluate the two terms under heapsh1 andh2 that
satisfyW . Since the evaluation ofe1 results in the allocation of
somefreshmemory location forx (i.e.,x 6∈ dom(h1)), we know
that the initial worldW cannot already contain any constraints
governing the contents ofx. (If it contained such a constraint,h1

would have had to satisfy it, and hencex would have to be in
dom(h1).) So we may extendW with a newinvariant stating that
x →֒ 1 (i.e.,x points to1). It then remains to show that the twoλ-
abstractions are logically related under this extended world—i.e.,
under the assumption thatx →֒ 1—which is straightforward.

Finally, step-indexedlogical relations [4, 2] were proposed
(originally by Appel and McAllester) as a way to account for se-
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mantically problematic features, such as general recursive types,
whose relational interpretations are seemingly “cyclic” and thus
difficult to define inductively. The idea is simply to stratify the
construction of the logical relation by a natural number (or“step
index”), representing roughly the number of steps of computation
for which the programs in question behave in a related manner.

One of the key contributions of the ADR model was to combine
the machinery of step-indexed logical relations with that of Kripke
logical relations in order to model higher-order state. While the
details of this construction are quite interesting, they are orthogonal
to the novel contributions of the model we present in this paper.
Indeed, our present model follows ADR’s very closely in its use of
step-indexing to resolve circularities in the construction, and so we
refer the interested reader to the ADR paper for details.

ADR and State Transition SystemsThe other key contribution
of the ADR model was to provide an enhanced notion of possible
world, which has the potential to express properties of local state
that evolveover time. To motivate this feature of ADR, consider
a simple variant of the example shown above, in which the first
programe1 is replaced by

e1 = let x = ref 0 in λf. (x := 1; f 〈〉; !x)

Here,x starts out pointing to0, but if the function thate1 evaluates
to is ever called,x will be set to1 and will never change back to0.
In this case, the only invariant one can prove aboutx is that it points
toeither0 or1, but this invariant is insufficient to establish that after
the call to the callbackf , the contents ofx have not changed back
to 0. For this reason, Pitts and Stark, whose possible-worlds model
only supported heapinvariants, called this example the “awkward”
example (because they could not handle it) [28].

While the awkward example is clearly contrived, it is also a
minimal representative of a useful class of programs in which
changes to local state occur in some monotonic fashion. As ADR
showed, this includes well-knowngenerative(or state-dependent)
ADTs, in which the interpretation of an abstract type grows over
time in correspondence with changes to some local state.

ADR’s solution was to generalize possible worlds’ notion of
“heap constraint” to express heap properties that change ina con-
trolled fashion. We can understand their possible worlds asessen-
tially state transition systems, where each state determines a par-
ticular heap property, and where the transitions determinehow the
heap property may evolve. For instance, in the case of the awkward
example, ADR would represent the heap constraint onx via the
following state transition system (STS):

x →֒ 0 x →֒ 1

Initially, x points to0, and then it is set to1. Since the call to the
callbackf occurs when we are in thex →֒ 1 state, we know it must
return in the same state since there is no transition out of that state.
Correspondingly, it is necessary to also show that thex →֒ 1 state
is really final—i.e.,if the function to whiche1 evaluates is called in
that state, it will not changex’s contents again—but this is obvious.

In ADR, states are called “populations” and state transition
systems are called “laws”, but the power of their possible worlds
is very similar to that of our STS’s (as we have described them
thus far), and most of their proofs are straightforwardly presentable
in terms of STS’s. That said, the two models are not identical. In
particular, there is one example we are aware of, the “callback with
lock” example, that is provable in ADR’s model but not in our basic
STS model. As we will see shortly, there are good reasons why this
example is not provable in our basic STS model, and in Section5.1,

we will show how to extend our STS’s in order to prove this very
example in a much simpler, cleaner way than ADR’s model does.

4. Biorthogonality, Call/cc, and Full Abstraction
One point on which different formulations of Kripke logicalre-
lations differ is the precise formulation of the logical relation for
terms. The ADR model employs a “direct-style” term relation,
which can be described informally as follows: two termse1 and
e2 are logically related under worldW iff whenever they are eval-
uated in initial heapsh1 andh2 satisfyingW , they either both di-
verge or they both converge to machine configurations〈h′

1; v1〉 and
〈h′

2; v2〉 such thath′
1andh′

2 satisfyW ′ andv1 andv2 are logically
related values underW ′, whereW ′ is some“future world” of W .
(By “future world”, we mean thatW ′ extendsW with new con-
straints about freshly allocated pieces of the heap, and/orthe heap
constraints ofW may have evolved to different heap constraints in
W ′ according to the STS’s inW .) We call this a direct-style term
relation because it involves evaluating the termsdirectly to values
and then showing relatedness of those values in some future world.

An alternative approach, first employed in the logical relations
setting by Pitts and Stark [28] but subsequently adopted by sev-
eral others (e.g.,[13, 7, 5]), is what one might call a “CPS” term
relation, although it is more commonly known as abiorthogonal
(or ⊤⊤-closed) term relation. The idea is to define two terms to
be related under worldW if they co-terminate (both converge or
both diverge) when evaluated under heaps that satisfyW and under
continuationsK1 andK2 related underW . The latter (continua-
tion relatedness) is then defined to mean that, for any futureworld
W ′ ofW , the continuationsK1 andK2 co-terminate when applied
(under heaps that satisfyW ′) to valuesthat are related underW ′. In
this way, the logical relation for values is lifted to a logical relation
for terms by a kind of CPS transform.

The main arguable advantage of the direct-style term relation is
that its definition is perhaps more intuitive, corresponding closely
to the proof sketches of the sort that we will present informally
in the sections that follow. That said, in any language for which
a direct-style relation is sound, it is typically possible to start in-
stead with a biorthogonal relation and then prove a direct-style
proof principle—e.g.,Pitts and Stark’s “principle of local invari-
ants” [28]—as a corollary.

The advantages of the biorthogonal approach are clearer. First,
it automagically renders the logical relationcompletewith respect
to observational equivalence, largely irrespective of theparticular
features in the language under consideration. (Actually, it is not so
magical:⊤⊤-closure is essentially a kind of closure under obser-
vational equivalence.) Second, and perhaps more importantly, the
biorthogonal approach scales to handle languages with first-class
continuations, such as ourHOSC and FOSC, which the direct-
style doesn’t. The reason for this is simple: the direct-style ap-
proach is only sound if the evaluation of terms isindependentof the
continuation under which they are evaluated. If the terms’ behav-
ior is context-dependent, then it does not suffice to consider their
co-termination under the empty continuation, which is effectively
what the direct-style term relation does. Rather, it becomes neces-
sary to consider co-termination of whole programs (terms together
with their continuations), as the biorthogonal relation does.

Thus, in this paper we adopt the biorthogonal approach. This
enables us to easily adapt all the proofs from the ADR paper
(save for one) to also work for a language with call/cc. (The one
exception is the “callback with lock” equivalence, which simply
doesn’t hold in the presence of call/cc.) It is worth noting that,
although the kinds of example programs we focus on in this paper
do not involve abstract types, a number of the ADR examples do.

Additionally, we can prove equivalences involving programs
that manipulateboth call/cc and higher-order state. One well-
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known challenging example of such an equivalence is the correct-
ness of Friedman and Haynes’ encoding of call/cc via “one-shot”
continuations (continuations that can only be invoked once) [11,
34]. The basic idea of the encoding is to model an unrestricted
continuation using a private (local) ref cell that containsa one-shot
continuation. Every time the continuation is invoked, the ref cell
is updated with a fresh one-shot continuation. With biorthogonal
logical relations, the proof of this example is completely straight-
forward, employing just a simple invariant on the private ref cell.
As far as we know, though, this proof is novel. Full details are given
in the technical appendix [8].

5. Reasoning in the Absence of Call/cc
In this section, we examine some reasoning principles that are
enabledby removing call/cc from our language.

Consider this variant of the “awkward” example (from ADR):

τ = (unit → unit) → int
e1 = let x = ref 0 in

λf. (x := 0; f 〈〉;x := 1; f 〈〉; !x)
e2 = λf. (f 〈〉; f 〈〉; 1)

What has changed is that now the callback is run twice, and ine1,
the first call tof is preceded by the assignment ofx to 0, not1.

It is easy to see thate1 ande2 are not equivalent inHOSC (or
evenFOSC). In particular, here is a distinguishing contextC:

let g = • in let b = ref ff in
let f = (λ . if !b then call/cc (k. g (λ . throw 〈〉 to k))

else b := tt) in
g f

Exploiting its ability to capture the continuationK of the second
call tof , the contextC is able to setx back to0 and then immedi-
ately throw control back toK. It is easy to verify thatC[e1] yields
0, whileC[e2] yields1.

In the absence of call/cc, however, computations are “well-
bracketed”. Here, this means that wheneverx is set to0, it will
eventually be set to1—no matter what the callback function does.
Consequently, it seems intuitively clear that these programs are
equivalent inHOS (andFOS), but how do we prove it? The STS
model we have developed so far will clearly not do the job, pre-
cisely because that model iscompatiblewith call/cc and this exam-
ple is not. So the question remains: how can we augment the power
of our STS’s so that they take advantage of well-bracketing?

To see how to answer this question, let’s see what goes wrong if
we try to give an STS for our well-bracketed equivalence. First,
recall the STS (from Section 3) that we used in order to prove
the original awkward example. To see why this STS is insufficient
for our present purposes, suppose the function value resulting from
evaluatinge1—call it v1—is applied in thex →֒ 1 state.2 The first
thing that happens is thatx is set to0. However, as there is no
transition from thex →֒ 1 state to thex →֒ 0 state, there is no way
we can continue the proof. So how about adding that transition?

x →֒ 0 x →֒ 1

While adding the transition fromx →֒ 1 to x →֒ 0 clears the
first hurdle, it also erects a new one: according to the STS, itis
now possible that, after the second call tof , we end up in the left

2 When proving functions logically related, we must considerthe possibility
that they are invoked in an arbitrary “future” world—i.e.,a world where our
STS may be in any state that is reachable from its initial state. This ensures
monotonicityof the logical relation (Theorem 1, Section 7.1).

state—even though this situation (x pointing to0 after that call)
cannot actually arise in reality. And indeed, ifx could point to0
at that point, our proof would be doomed. In summary, while we
would like to add this transition, we also want to keep the context
from using it. This is whereprivate transitionscome in.

5.1 Private Transitions

Private transitions are a new class of transitions in our state tran-
sition systems, separate from the ordinary transitions that we have
seen so far (and which we henceforth callpublic transitions). The
basic idea is very simple: when reasoning about the relatedness
of terms, we must show that—when viewedextensionally—they
appear only to be making public transitions, and correspondingly
we may assume that the context only makes public transitionsas
well. Internally, however,within a computation, we may make use
of both public and private transitions.

Concretely, we can use the following STS to prove our running
example (where the dashed arrow denotes a private transition):

x →֒ 0 x →֒ 1

First, if v1 is called in the starting statex →֒ 1, the presence of the
private transition allows us to “lawfully” transition fromx →֒ 1 to
x →֒ 0. Second, we know that, because we are in thex →֒ 1 state
before the second call tof and there is no public transition from
there to any other state, we must still be in that same state whenf
returns. Hence we know thatx points to1 at that point, as desired.
Lastly, although the body ofv1 makes a private transition internally
(when called in starting statex →֒ 1), it appears extensionally to
make a public transition, since its final state (x →֒ 1) is obviously
publicly accessible from whichever state was the initial one.

Private transitions let us prove not only this example, but also
several others from the literature that hold exclusively inthe ab-
sence of call/cc (including Pitts and Stark’s “higher-order profiling”
example [28]—see the appendix [8] for details). The intuitive rea-
son why private transitions “don’t work” with call/cc is that, in the
presence of call/cc, every time we pass control to the context may
be the last! Therefore, the requirement that the extensional behav-
ior of a term must appear like a public transition would essentially
imply that every internal transition must be public as well.

The “Callback with Lock” Example Here is another equivalence
(from ADR) that holds inHOS but not inHOSC. Interestingly, this
example was provable in the original ADR model, but only through
some complex step-index hackery. The proof we are about to sketch
is much cleaner and easier to understand.

Consider the following two encodings of a counter object with
two methods: anincrement function that also takes a callback
argument, which it invokes, and apoll function that returns the
current counter value.

C = let b = ref tt in let x = ref 0 in
〈λf. if !b then b := ff; •; b := tt else 〈〉,
λ . !x〉

τ = ((unit → unit) → unit) × (unit → int)
e1 = C[f 〈〉;x := !x+ 1]
e2 = C[let n = !x in f 〈〉;x := n+ 1]

Note that in the second program the counterx is dereferencedbe-
fore the callback is executed, and in the first program it is deref-
erencedafter. In both programs, a Boolean lockb guards the in-
crement of the counter, thereby enforcing that running the callback
will not result in any change to the counter.

It is not hard to construct a context that exploits the combination
of call/cc and higher-order state in order to distinguishe1 ande2.
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The basic idea is to pass the increment method a callback that
captures its current continuation and stores that in a ref cell so it
can be invoked later. The definition of this distinguishing context
appears in the appendix [8].

In the absence of call/cc, however, the two programs are equiv-
alent. To prove this, we employ the following infinite STS:

b →֒ tt
x →֒ 0

b →֒ tt
x →֒ 1

b →֒ tt
x →֒ 2 foo. . .

b →֒ ff
x →֒ 0

b →֒ ff
x →֒ 1

b →֒ ff
x →֒ 2

. . .

For each numbern there are two states: one (the “unlocked” state)
saying thatb points tott andx points ton in both programs, and
another (the “locked” state) saying thatb points toff andx points to
n in both programs. It is thus easy to see that the two poll methods
are related (they return the same number). To show the increment
methods related, suppose they are executed in a state wherex points
to somem and b points to tt (the other case whereb →֒ ff is
trivial). Before invoking the callback,b is set toff and, in the second
program,n is bound tom. Accordingly, we move “downwards” in
our STS to the locked state and can then callf . Because that state
does not have any other public successors, we will still be there if
and whenf returns—indeed, this is the essence of what it means to
be a “locked” state. In the first program,x is then incremented,i.e.,
set tom + 1. In the second program,x is set ton + 1 = m + 1.
Finally, b is set back tott and we thus move to the matching private
successor (b →֒ tt, x →֒ m + 1) in the STS. Since this is a public
successor of the initial state (b →֒ tt, x →֒ m), our extensional
transition appears public and we are done.

5.2 Inconsistent States

While private transitions are clearly a useful extension toour STS
model, there is one kind of “well-bracketed example” we are aware
of that private transitions alone are insufficient to account for. We
are referring to the “deferred divergence” example, presented by
ADR as an example they could not handle. The original versionof
this equivalence, due to O’Hearn [26], was presented in the setting
of Idealized Algol, and it does not hold in the presence of higher-
order state. (We will consider a variant of O’Hearn’s example later
on, in Section 6.) Here, we consider a version of the equivalence
thatdoeshold in HOS, based on the one in Bohr’s thesis [7]:

τ = ((unit → unit) → unit) → unit
e1 = let x = ref ff in let y = ref ff in

λf. f (λ . if !x then ⊥ else y := tt);
if !y then ⊥ else x := tt

e2 = λf. f (λ .⊥)

Intuitively, the explanation whye1 ande2 are equivalent goes as
follows. The functions returned by both programs take a higher-
order callbackf as an argument and apply it to a thunk. In the
case ofe2, if that thunk argument (λ .⊥, where⊥ is a divergent
term) is ever applied, either during the call tof or at some point
in the future (e.g., if the thunk were stored byf in a ref cell and
then called later), then the program will clearly diverge. Now, e1
implements the same divergence behavior, but in a rather sneaky
way. It maintains two private flagsx and y, initially set to ff. If
the thunk that it passes tof is appliedduring the call tof , then
the thunk’s body will not immediately diverge (as in the caseof
e2), but rather merely sety to tt. Then, if and whenf returns,e1

will check if y points tott and, if so, diverge. If the thunk was not
applied during the call tof , thene1 will set x to tt, thus ensuring
that any future attempt to apply the thunk will diverge as well.

As in the previous examples, note that this equivalence doesnot
hold in the presence of call/cc. Here is a distinguishing context:

call/cc (k. • (λg. throw g 〈〉 to k))

To prove the equivalence inHOS, we can split the proof into
two directions of approximation. Proving thate2 approximatese1
is actually very easy because (1) it is trivial to show thatλ .⊥ ap-
proximates the thunk thate1 passes tof , and (2) if a programC[e2]
terminates (which is the assumption of observational approxima-
tion), thenC[e1] must in fact maintain the invariant thaty →֒ ff,
and using that invariant the proof is totally straightforward.

In contrast, the other direction of approximation seems at first
glance impossible to prove using logical relations. The issue is that
we have to show that the thunks passed to the callbackf are related,
i.e., thatλ . if !x then ⊥ else y := tt approximatesλ .⊥, which
obviously isfalsesince, when applied (as they may be) in a state
wherex points toff, the first converges while the second diverges.

To solve this conundrum, we do the blindingly obvious thing,
which is to introducefalsehoodinto our model! Specifically, we
extend our STS’s withinconsistent states, in which we can prove
false things, such as that a terminating computation approximates a
divergent one. How, one may ask, can this possibly work? The idea
is as follows: when we enter an inconsistent state, we effectively
shift the proof burden from the logical relation for terms tothe
logical relation forcontinuations. That is, while it becomes very
easy to prove that two terms are related in an inconsistent state, it
becomes veryhard to prove that two continuationsK1 andK2 are
related in such a state—in most cases, we will be forced to prove
thatK1 diverges. Thus, while inconsistent states do allow a limited
kind of falsehood inside an approximation proof, we can onlyenter
into them if weknowthat the continuation of the term on the left-
hand side of the approximation will diverge anyway.

Concretely, to show thate1 approximatese2, we construct the
following STS, where the diamond indicates an inconsistentstate:

x →֒ ff
y →֒ ff

x →֒ ff
y →֒ ff

x →֒ tt
y →֒ ff

x →֒ ff
y →֒ tt

For the moment, ignore the top-left state (we explain it below). In
the proof, we wish to show that the thunks passed to the callback f
are logically related in the top-right state, which requires showing
that they are related in any state accessible from it. Fortunately,
this is easy. If the thunks are called in the bottom-left state, then
they both diverge. If they are called in the top-right or bottom-right
state, then theelse-branch is executed (in the first program) and
we move to (or stay in) the bottom-right state—since this state is
inconsistent, the proof is trivially done.

Dually, we must show that the continuations of the callback
applications are also related in any state (publicly) accessible from
the top-right one. If the continuations are invoked in the top-right
or the bottom-left state, they will setx to tt, thereby transitioning
to the bottom-left. If, on the other hand, they are invoked inthe
inconsistent bottom-right state, then we are required to show that
the first one diverges, which fortunately it will sincey points tott.
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Now about the top-left state, whose heap constraint is identical
to the one in the top-right state: the reason for including this state
has to do with soundness of the logical relation. In order to ensure
soundness, we require that when an STS is installed in the possible
world, it may not contain any inconsistent states that arepublicly
accessible from its starting state. We say in this case that the starting
state issafe. (Without this safety restriction, it would be easy to
show, for instance, thattt approximatesff in any worldW by
simply adding an STS toW with a single inconsistent state.)

To circumvent this restriction, we use the top-left state asour
starting state and connect it to the top-right state by a private
transition. (In the proof, the first step before invoking thecallbacks
is to transition into the top-right state.) This is fine so long as the
extensional behavior of the functions we are relating makesa public
transition, and here it does—if they are invoked in the top-left state,
then either they diverge or they return control in the bottom-left
state, which is publicly accessible from the top-left.

6. Reasoning With First-Order State
In this section, we consider an orthogonal restriction to the one
examined in the previous section. Instead of removing call/cc from
the language, what happens if we restrict state to be first-order?
What new reasoning principles are enabled by this restriction?

6.1 Backtracking

Recall the “callback with lock” example from Section 5.1, which
we proved equivalent inHOS. As it turns out, that equivalence also
holds inFOSC. Of course, we won’t be able to prove that using the
HOSC model since the equivalence doesn’t hold inHOSC. But let
us see what exactly goes wrong if we try. First of all, recall the use
of private transitions in our earlier proof. Due to call/cc,we cannot
use any private transitions this time. Clearly, making thempublic is
not an option, so what if we just drop them entirely?

b →֒ tt
x →֒ 0

b →֒ tt
x →֒ 1

b →֒ tt
x →֒ 2 foo· · ·

b →֒ ff
x →֒ 0

b →֒ ff
x →֒ 1

b →֒ ff
x →֒ 2

· · ·

In the resulting STS, we still know that running the callbackin a
locked state (b →֒ ff, x →֒ m) will leave us in the very same state
if and when it returns. However, without any outgoing (private)
transition from that state, it seems that we are subsequently stuck.

Fortunately, we are not. The insight now is that the absence of
higher-order state allows us to dobacktrackingwithin our STS.
Concretely, we can backtrack from the locked state to the unlocked
state we were in before (b →֒ tt, x →֒ m), and then transition
(publicly) to its successor (b →֒ tt, x →֒ m + 1). Intuitively, this
kind of backtracking would not be sound in the presence of higher-
order state because, in that setting, the callback might have stored
some higher-order data during its execution (such as functions or
continuations) that are only logically related in the locked state and
its successors.3 Since (b →֒ tt, x →֒ m + 1) is not a successor of
the previous locked state, the final heaps would then fail to satisfy
the final world in which the increment functions return. Herein

3 Indeed, the context that distinguishes between the two programs inHOSC
employs precisely such a callback, namely one that stores its current con-
tinuation in a ref cell.

the first-order setting, though, there is no way for the callback to
store such higher-order data, so backtracking is not a problem. A
precise technical explanation of how the model is changed toallow
backtracking, and why this is sound, will be given in Section7.3.

6.2 Putting It Together

The example we just looked at might suggest that backtracking
is mainly useful as a replacement for private transitions inthe
presence of call/cc. But in fact, they are complementary techniques.
In particular, for equivalences that hold only inFOS but not in
HOS or FOSC, we can profitably employ backtracking, private
transitions, and inconsistent states, all working together.

Consider this simpler version of the “deferred divergence”ex-
ample, based closely on an example of O’Hearn [26]:

τ = ((unit → unit) → unit) → unit
e1 = let y = ref ff in

λf. f (λ . y := tt);
if !y then ⊥ else 〈〉

e2 = λf. f (λ .⊥)

These programs are not only distinguishable in the setting of FOSC
(by the same distinguishing context as given in Section 5.2), but
also inHOS, as the following context demonstrates:

C = let r = ref (λ . 〈〉) in • (λg. r := g); !r 〈〉

It is easy to verify thatC[e1] terminates, whileC[e2] diverges.
The two programs are, however, equivalent inFOS, which we

can prove using the following STS:

y →֒ ff y →֒ ff y →֒ tt

The proof is largely similar to (if a bit simpler than) the one
sketched for the higher-order version of this example in Section 5.2.
We start in the left state and transition immediately along the pri-
vate transition to the middle state. With the help of the inconsistent
right state, it is easy to show that the thunk arguments passed to the
callback are related in the middle state. Hence, when the callback
returns, we are either in the right state or the middle state.In the
former case, we must show that the continuation in the l.h.s.pro-
gram diverges; in the latter, webacktrackto the initial, left state,
which is of course publicly accessible from itself. (We willpresent
this proof in more detail below, in Section 7.5.)

Why, one might ask, is it not possible to avoid the use of
backtracking here by adding a private transition back from the
middle state to the left state? (Of course, itmustnot be possible,
or else the equivalence would hold true inHOS, which as we
have seen it does not.) The answer is that, if we were to add such
a transition, then we would not be able to prove that the thunk
arguments to the callbackf were logically related in the middle
state. Specifically, in order to show the latter, we must showthat the
thunks are related in any state accessible (by any kind of transition)
from the middle state. So if there were any transition from the
middle to the left state, we would have to show that the thunks
were related starting in the left state as well—but they are not,
because there is no public transition from the initial left state to
the inconsistent right state, and adding one would be unsound.

7. Technical Development
We now present the models for our various languages formally. It is
easiest to start with the model forHOS, and then show how small
changes to that yield the models forHOSC, FOS, andFOSC.
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HeapAtomn

def
= {(W,h1, h2) |W ∈ Worldn}

HeapReln
def
= {ψ ⊆ HeapAtomn | ∀(W,h1, h2) ∈ ψ. ∀W ′ ⊒W. (W ′, h1, h2) ∈ ψ}

Islandn
def
= {ι = (s, δ, ϕ, ,H) | s ∈ State ∧ δ ⊆ State2 ∧ ϕ ⊆ δ ∧ δ, ϕ reflexive ∧ δ, ϕ transitive ∧

 ⊆ State ∧H ∈ State → HeapReln}

Worldn
def
= {W = (k,Σ1,Σ2, ω) | k < n ∧ ∃m. ω ∈ Islandm

k }

ContAtomn[τ1, τ2]
def
= {(W,K1,K2) |W ∈ Worldn ∧W.Σ1; ·; · ⊢ K1 ÷ τ1 ∧W.Σ2; ·; · ⊢ K2 ÷ τ2}

TermAtomn[τ1, τ2]
def
= {(W, e1, e2) |W ∈ Worldn ∧W.Σ1; ·; · ⊢ e1 : τ1 ∧W.Σ2; ·; · ⊢ e2 : τ2}

ValRel[τ1, τ2]
def
= {r ⊆ TermAtomval[τ1, τ2] | ∀(W,v1, v2) ∈ r. ∀W ′ ⊒W. (W ′, v1, v2) ∈ r}

SomeValRel
def
= {R = (τ1, τ2, r) | r ∈ ValRel[τ1, τ2]}

⌊(ι1, . . . , ιm)⌋k
def
= (⌊ι1⌋k, . . . , ⌊ιm⌋k) ⌊H⌋k

def
= λs.⌊H(s)⌋k

⌊(s, δ, ϕ, ,H)⌋k
def
= (s, δ, ϕ, , ⌊H⌋k) ⌊ψ⌋k

def
= {(W,h1, h2) ∈ r |W.k < k}

⊲(k + 1,Σ1,Σ2, ω)
def
= (k,Σ1,Σ2, ⌊ω⌋k) ⊲r

def
= {(W, e1, e2) |W.k > 0 =⇒ (⊲W, e1, e2) ∈ r}

(k′,Σ′
1,Σ

′
2, ω

′) ⊒ (k,Σ1,Σ2, ω)
def
= k′ ≤ k ∧ Σ′

1 ⊇ Σ1 ∧ Σ′
2 ⊇ Σ2 ∧ ω′ ⊒ ⌊ω⌋k′

(ι′1, . . . , ι
′
m′) ⊒ (ι1, . . . , ιm)

def
= m′ ≥ m ∧ ∀j ∈ {1, . . . ,m}. ι′j ⊒ ιj

(s′, δ′, ϕ′, ′,H ′) ⊒ (s, δ, ϕ, ,H)
def
= (δ′, ϕ′, ′,H ′) = (δ, ϕ, ,H) ∧ (s, s′) ∈ δ

(k′,Σ′
1,Σ

′
2, ω

′) ⊒pub (k,Σ1,Σ2, ω)
def
= k′ ≤ k ∧ Σ′

1 ⊇ Σ1 ∧ Σ′
2 ⊇ Σ2 ∧ ω′ ⊒pub ⌊ω⌋k′

(ι′1, . . . , ι
′
m′) ⊒pub (ι1, . . . , ιm)

def
= m′ ≥ m ∧ ∀j ∈ {1, . . . ,m}. ι′j ⊒pub ιj ∧

∀j ∈ {m+ 1, . . . ,m′}. safe(ι′j)

(s′, δ′, ϕ′, ′,H ′) ⊒pub (s, δ, ϕ, ,H)
def
= (δ′, ϕ′, ′,H ′) = (δ, ϕ, ,H) ∧ (s, s′) ∈ ϕ

safe(W )
def
= ∀ι ∈ W.ω. safe(ι) safe(ι)

def
= ∀s′. (ι.s, s′) ∈ ι.ϕ =⇒ s′ /∈ ι. consistent(W )

def
= ∄ι ∈W.ω. ι.s ∈ ι. 

ψ ⊗ ψ′ def
= {(W,h1 ⊎ h′

1, h2 ⊎ h′
2) | (W,h1, h2) ∈ ψ ∧ (W,h′

1, h
′
2) ∈ ψ′}

(h1, h2) : W
def
= ⊢ h1 : W.Σ1 ∧ ⊢ h2 : W.Σ2 ∧ (W.k > 0 =⇒ (⊲W,h1, h2) ∈

N|W.ω|
i=1

W.ω(i).H(W.ω(i).s))

Figure 2. Worlds and Auxiliary Definitions

7.1 HOS

As described in Section 3, we employ a step-indexed Kripke logical
relation, which is a kind of possible-worlds model.

Worlds Figure 2 displays the construction of worlds, along with
various related operations and relations.4 WorldsW consist of a
step indexk, heap typingsΣ1 and Σ2 (for the first and second
programs, respectively), and an array of islandsω = ι1, . . . , ιn.
Islands in turn are (possibly infinite) state transition systems gov-
erning disjoint pieces of the heap. Each consists of a current state
s, a transition relationδ, a public transition relationϕ, a set of in-
consistent states , and last but not least, a mappingH from states
to heap constraints (in the form of world-indexed heap relations—
more on that below). The public transition relationϕ must be a
subset of the “full” transition relationδ (note: the private transi-
tions are obtained by subtractingϕ from δ), and we require bothδ
andϕ to be reflexive and transitive.

What exactly “states”s are—i.e.,how we define the state space
State—does not really matter. That is,State is essentially a param-
eter of the model, except that it needs to be at least large enough to
encode bijections on memory locations (see our relational interpre-
tation of ref types below). For our purposes, we find it convenient
to assume thatState contains all terms and all sets of terms. Also,
note that while an island’sH map is defined onall states inState,
we typically only care about how it is defined on a particular set of

4 Here and in the following development we use the dot-notation to project
components out of a structure. As an example, we writeW.Σ1 to extract
the first heap typing out of a worldW .

“states of interest”—whether there is other junk in theState space
is irrelevant.

Our use of step-indexing to stratify the construction of worlds
and to define the logical relation by a primary induction on nat-
ural numbers follows the development in ADR quite closely. For
space reasons, we therefore omit explanation of the approximation
operation⌊·⌋k, the “later” operator⊲, and other step-related tech-
nicalities and refer the interested reader to the literature [3, 9]. One
point about notation, though: we sometimes writeWorld to meanS

n
Worldn, and similarly for the other semantic classes.
Based on the two transition relations (full and public), we de-

fine two notions of future worlds (aka world extension). First, we
say thatW ′ extendsW , writtenW ′ ⊒ W , iff it contains the same
islands asW (and possibly more), and for each island inW , the
new states′ of that island inW ′—which is the only aspect of the
island that is permitted to change in future worlds—is accessible
from the old states in W , according to the island’s full transition
relationδ. Public extension, writtenW ′ ⊒pub W , is defined anal-
ogously, except using the public transition relationϕ instead ofδ,
and with the additional requirement that the new islands (those in
W ′ but not inW ) must besafe. An island is safe iff there is no
public transition from its current state to any inconsistent state.

The reason why our (and ADR’s) heap relations are world-
indexed is that, when expressing heap constraints, we want to be
able to say, for instance, that a value in the first heap must be
logically related to a value in the second heap. In that case,we need
to have some way of talking about the “current” world under which
that logical relation should be considered, and by world-indexing
the heap relations we enable the current world to be passed inas a
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VJαKρ
def
= ρ(α).r

VJbKρ
def
= {(W, v, v) ∈ TermAtom[b, b]}

VJτ × τ ′Kρ
def
= {(W, 〈v1, v

′
1〉, 〈v2, v

′
2〉) ∈ TermAtom[ρ1(τ × τ ′), ρ2(τ × τ ′)] | (W, v1, v2) ∈ VJτKρ ∧ (W,v′1, v

′
2) ∈ VJτ ′Kρ}

VJτ ′ → τKρ
def
= {(W,λx:τ1. e1, λx:τ2. e2) ∈ TermAtom[ρ1(τ

′ → τ ), ρ2(τ
′ → τ )] |

∀W ′, v1, v2. W
′ ⊒W ∧ (W ′, v1, v2) ∈ VJτ ′Kρ =⇒ (W ′, e1[v1/x], e2[v2/x]) ∈ EJτKρ}

VJ∀α. τKρ
def
= {(W,Λα.e1,Λα.e2) ∈ TermAtom[ρ1(∀α. τ ), ρ2(∀α. τ )] |

∀W ′ ⊒W. ∀(τ1, τ2, r) ∈ SomeValRel. (W ′, e1[τ1/α], e2[τ2/α]) ∈ EJτKρ,α7→(τ1, τ2, r)}

VJ∃α. τKρ
def
= {(W, pack 〈τ1, v1〉 as τ ′1, pack 〈τ2, v2〉 as τ ′2) ∈ TermAtom[ρ1(∃α. τ ), ρ2(∃α. τ )] |

∃r. (τ1, τ2, r) ∈ SomeValRel ∧ (W,v1, v2) ∈ VJτKρ, α7→(τ1, τ2, r)}

VJµα. τKρ
def
= {(W, rollτ1

v1, rollτ2
v2) ∈ TermAtom[ρ1(µα. τ ), ρ2(µα. τ )] | (W, v1, v2) ∈ ⊲VJτ [µα. τ/α]Kρ}

VJref τKρ
def
= {(W, l1, l2) ∈ TermAtom[ρ1(ref τ ), ρ2(ref τ )] | ∃i. ∀W

′ ⊒W. (l1, l2) ∈ bij(W ′.ω(i).s) ∧

∃ψ. W ′.ω(i).H(W ′.ω(i).s) = ψ ⊗ {(fW, {l1 7→v1}, {l2 7→v2}) ∈ HeapAtom | (fW, v1, v2) ∈ VJτKρ}}

O
def
= {(W, e1, e2) | ∀h1, h2. (h1, h2) : W ∧ 〈h1; e1〉↓

<W.k =⇒ consistent(W ) ∧ 〈h2; e2〉↓}

KJτKρ
def
= {(W,K1,K2) ∈ ContAtom[ρ1(τ ), ρ2(τ )] |

∀W ′, v1, v2. W
′ ⊒pub W ∧ (W ′, v1, v2) ∈ VJτKρ =⇒ (W ′,K1[v1], K2[v2]) ∈ O}

EJτKρ
def
= {(W, e1, e2) ∈ TermAtom[ρ1(τ ), ρ2(τ )] | ∀K1,K2. (W,K1,K2) ∈ KJτKρ =⇒ (W,K1[e1],K2[e2]) ∈ O}

GJ·Kρ
def
= {(W, ∅) |W ∈ World} GJΓ, x:τKρ

def
= {(W, (γ, x 7→(v1, v2))) | (W,γ) ∈ GJΓKρ ∧ (W, v1, v2) ∈ VJτKρ}

DJ·K
def
= {∅} DJ∆, αK

def
= {ρ, α7→R | ρ ∈ DJ∆K ∧ R ∈ SomeValRel}

SJ·K
def
= World SJΣ, l:τK

def
= SJΣK ∩ {W ∈ World | (W, l, l) ∈ VJref τK∅}

Σ; ∆; Γ ⊢ e1 -log e2 : τ
def
= Σ;∆;Γ ⊢ e1 : τ ∧ Σ; ∆; Γ ⊢ e2 : τ ∧

∀W,ρ, γ. W ∈ SJΣK ∧ ρ ∈ DJ∆K ∧ (W,γ) ∈ GJΓKρ =⇒ (W,ρ1γ1e1, ρ2γ2e2) ∈ EJτKρ

Figure 3. A Step-Indexed Biorthogonal Kripke Logical Relation forHOS

parameter. These world-indexed heap relations are quite restricted,
however. Specifically, they must be monotone with respect toworld
extension, meaning that heaps related in one world will continue to
be related in any future world. This ensures that adding a newisland
to the world, or making (any kind of) transition within an existing
island, does not violate the heap constraints of other islands.

The last two definitions also concern heap relations. Two heaps
h1 andh2 satisfy a worldW , written(h1, h2) : W , iff they can be
split into disjoint subheaps such that for each island inW there is
a subheap ofh1 and a corresponding subheap ofh2 that are related
by that island’s current heap relation (the relation associated with
the island’s current state). A heap relationψ is thetensorof ψ′ and
ψ′′, writtenψ′ ⊗ ψ′′, if it contains all(W,h1, h2) that can be split
into disjoint parts(W,h′

1, h
′
2) ∈ ψ′ and(W,h′′

1 , h
′′
2 ) ∈ ψ′′.

Logical Relation Our logical relation forHOS is defined in Fig-
ure 3. The value relationVJτKρ (where fv(τ ) ⊆ dom(ρ)) is
fairly standard. The only real difference from the ADR modelis in
VJref τKρ, our interpretation of reference types. Basically, we say
that two referencesl1 and l2 are logically related at typeref τ in
worldW if there exists an islandι inW , such that (1)ι’s heap con-
straint (in any reachable state) requires ofl1 and l2 precisely that
their contents are related at typeτ , and (2) the reachable states inι
encode a bijection between locations that includes the pair(l1, l2).
The latter condition, which employs an auxiliary “bij” function
(defined in the appendix [8]), is needed in order to model the pres-
ence of reference equality testingl1 == l2 in the language. Our
formulation ofVJref τKρ is slightly different from ADR’s and a bit
more flexible—e.g.,ours can be used to prove Bohr’s “local state
release” example [7] (see the appendix), whereas ADR’s can’t—
but this added flexibility does not affect any of our “headlining”
examples from Sections 3–6. We will report on the advantagesof
our present formulation in a future, extended version of this paper.

In logical relations proofs, we frequently assume that we are
given some related values (e.g., as inputs to functions), and we
want them to be still related after we have added an island to the
world or made a transition. It is therefore crucial that, like heap
relations, value relations are monotone w.r.t. world extension. Since
we enforce this property for relational interpretations ofabstract
types (see the definition ofValRel in Figure 2), it is easy to show
that the value relation indeed has this property:

Theorem 1 (Monotonicity of the Value Relation). If W ′ ⊒W and
(W,v1, v2) ∈ VJτKρ, then(W ′, v1, v2) ∈ VJτKρ.

As explained in Section 4, the value relation is lifted to a term
relation via biorthogonality. Concretely, we define the continuation
relationKJτKρ based onVJτKρ, and then the term relationEJτKρ
based onKJτKρ:

• Two continuations are related iff they yield related observations
when applied to related values.

• Two terms are related iff they yield related observations when
evaluated under related continuations.

Yielding related observations here means (see the definition of O)
that, whenever two heaps satisfy the worldW in question and
the first program terminates in the first heap (withinW.k steps),
then the second program terminates in the second heap and the
world is consistent(i.e.,no island is in an inconsistent state). This
corresponds to the intuition given in Section 5.2 that an inconsistent
world is one in which the first program diverges.

Notice that the continuation relation quantifies only overpublic
future worlds. This captures the essential idea (explainedin Sec-
tion 5.1) that the context can only make public transitions.In order
to see this, it is important to understand how a typical proofin a
biorthogonal logical relation goes. Roughly, showing the related-
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ness of two programs that involve a call to an unknown function
(e.g.,a callback) eventually reduces to showing that the continu-
ations of the function call are related; thanks to the definition of
KJτKρ, we will only need to consider the possibility that those con-
tinuations are invoked in apublic future world of the world we were
in prior to the function call—in other words, we can assume that the
function call made a public transition. We will see how this works
in detail in the example proof in Section 7.5.

Finally, the logical relation is lifted to open terms in the usual
way, quantifying over related closing substitutionsδ andγ match-
ing ∆ andΓ, respectively, as well as an initial world in which every
location bound inΣ is related to itself. We writeδ1 (resp.γ1) and
δ2 (resp.γ2) here as shorthand for the first and second type (resp.
value) substitutions contained inδ (resp.γ).

Soundness and CompletenessThe proof that our logical relation
is sound w.r.t. contextual approximation follows closely that of
ADR [3]. It involves proving the usual “compatibility” lemmas and
the construction of a canonicalsafeworld for a given heap typing.
Details can be found in the technical appendix [8].

Theorem 2 (Fundamental Property). If Σ; ∆; Γ ⊢ e : τ , then
Σ; ∆; Γ ⊢ e -log e : τ .

Theorem 3 (Soundness). -log ⊆ -ctx

Following Pitts and Stark [28], we show completeness of our
logical relation w.r.t. contextual approximation with thehelp of
Mason and Talcott’sciu-approximation [23] as an intermediate
relation.

Theorem 4 (Completeness). -ctx ⊆ -ciu ⊆ -log

Proving the inclusion of-ctx in -ciu is fairly easy. The inclusion
of -ciu in -log follows as an almost immediate consequence of the
Fundamental Property, together with the logical relation’s biorthog-
onal definition. Again, full details can be found in the appendix [8].

7.2 HOSC

The model forHOSC can be obtained from the one forHOS by
making two changes. First of all, inHOSC, we have to account
for the presence of first-class continuation valuescontτ K. Fortu-
nately, we already have a continuation relationKJτKρ, so it is easy
to define the value relation at typecont τ in terms of it:

VJcont τKρ
def
= {(W, contK1, contK2) | (W,K1, K2) ∈ KJτKρ}

Now, recall that we need our value relation to be monotone w.r.t.
⊒. Given the extension we have just made to the value relation for
cont τ , that means we need our continuation relation to be mono-
tone w.r.t.⊒ as well. However, as explained above, the continua-
tion relation is only monotone w.r.t.⊒pub (in order to ensure that
the context can only make public transitions). Of course, what this
means is that in the presence of call/cc, the private and public tran-
sition relations must be collapsed into one, and consequently we
must disallow inconsistent states, too. This corresponds to the in-
tuition we gave in Section 5.1, namely that private transitions and
inconsistent states are only sound to use in the absence of call/cc.
Formally, we disallow them by redefiningIslandn as follows:

Island′
n

def
= {ι ∈ Islandn | ι.ϕ = ι.δ ∧ ι. = ∅}

Under this definition, the two notions of world extension coincide
and all worlds are consistent. The rest of the model stays thesame.
In particular, proofs done in theHOS model that do not make use of
private transitions or inconsistent states can be transferred without
any change. The soundness and completeness proofs carry over as
well. The former merely needs to be extended in a straightforward
way to deal withcall/cc, throw, andcont.

7.3 FOS

In the first-order state setting, observe that, for the typesof values
that can be stored in the heap—namely, those of base type—our
logical relation for values coincides with syntactic equality. Conse-
quently, when expressing that two heap values are logicallyrelated,
we no longer need to refer to a world. Obtaining the model forFOS
from the one forHOS is therefore very simple—all that is needed
is to remove the ability of heap relations to be world-dependent:

HeapRel′n
def
= P(Heap × Heap)

Our heap relations are now more or less the same as in Pitts and
Stark [28]—that is, they are simply heap relations! Correspond-
ingly, we must also update the definitions of(h1, h2) : W ,ψ′⊗ψ′′,
andVJref τKρ, all in the obvious manner, to reflect the lack of world
indices in heap relations. (For details, see the appendix.)Note that
while step-indices are no longer needed to stratify our worlds, they
are still useful in modeling general recursive types.

This simplification ofHeapRel enables backtracking (see Sec-
tion 6.1) by isolating islands from one another completely.Whereas
before, changing the state of an islandι could break the heap con-
straints in other islands if we did not strictly followι’s STS, now
there is no way for changes toι’s state to affect the satisfaction of
other islands’ heap constraints, so we are free to backtrack.

7.4 FOSC

The changes to theHOS model discussed in Sections 7.2 and 7.3
are completely orthogonal and may be easily combined in order to
obtain a fully abstract model forFOSC.

7.5 Proof of Deferred Divergence Example (FOS Version)

We now present in detail a proof that demonstrates the use of all
three of our model’s special features (private transitions, inconsis-
tent states, and backtracking). Concretely, we show the difficult di-
rection of approximation in theFOS version of the “deferred diver-
gence” example from Section 6.2.

Formally, our goal is to prove·; ·; · ⊢ e1 -log e2 : τ . Unfolding
the definition, this reduces to showing(W, e1, e2) ∈ EJτK forW ∈
World. So assume we are given continuations(W,K1, K2) ∈
KJτK and heaps(h1, h2) : W and〈h1;K1[e1]〉 terminates in less
thanW.k steps. We must now show thatW is consistent and that
〈h2;K2[e2]〉 terminates as well.

Observe that since〈h1;K1[e1]〉 terminates in less thanW.k
steps, so does〈h1 ⊎ {ly 7→ff};K1[ be1[ly/y]]〉, wherebe1 is the body
of the let-expression ine1, andly is some fresh location. For this
new location, we extend the world with an island representing the
STS from Section 6.2, withs = 1, 2, and3 representing the left,
middle, and right states of the STS, respectively:

Ws = (W.k, (W.Σ1, ly:bool),W.Σ2, (W.ω, ιs))
ιs = (s, δ, ϕ, ,H)
δ = {(1, 2), (2, 3)}∗

ϕ = {(2, 3)}∗

 = {3}

H(1) = {(fh1,fh2) | fh1(ly) = ff}

H(2) = {(fh1,fh2) | fh1(ly) = ff}

H(3) = {(fh1,fh2) | fh1(ly) = tt}

Here the superscript “*” in the definitions ofδ andϕ denotes the
reflexive, transitive closure overState.

Note thatι1 is safe and thereforeW1 ⊒pub W . Given how
we defined our island, it is easy to see that(h1 ⊎ {ly 7→ff}, h2) :
W1 follows from (h1, h2) : W . Assuming we are able to show
(W1, be1[ly/y], e2) ∈ VJτK, we can instantiate(W,K1,K2) ∈
KJτK and getconsistent(W1) and that〈h2;K2[e2]〉 terminates.
The latter is one of the two things we needed to show. The other
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one isconsistent(W ). Since the only difference betweenW and
W1 is our island, this follows fromconsistent(W1).

It remains to show(W1, be1[ly/y], e2) ∈ VJτK. So suppose
we are given a future worldW ′ ⊒ W1 and related callbacks
(W ′, f1, f2) ∈ VJ(unit → unit) → unitK. We need to show
(W ′, e′1, f2 (λ .⊥)) ∈ EJunitK, where

e′1 = f1 (λ . ly := tt); if !ly then ⊥ else 〈〉.

So suppose we are given continuations(W ′,K′
1,K

′
2) ∈ KJunitK

and heaps(h′
1, h

′
2) : W ′ and〈h′

1;K
′
1[e

′
1]〉 terminates in less than

W ′.k steps. We must now show thatW ′ is consistent and that
〈h′

2;K
′
2[f2 (λ .⊥)]〉 terminates as well.

As a matter of notation, letW ′
s denote the world obtained from

W ′ by setting our island’s state tos. We only show the case
W ′ = W ′

1 here; the other two are similar (and simpler). The first
step is to “move to the middle state (state 2)”. Formally, since the
heap constraints of state1 and 2 are the same,(h′

1, h
′
2) : W ′

1

implies(h′
1, h

′
2) : W ′

2. Now, we want to prove the following:

1. (W ′
2, f1 (λ . ly := tt), f2 (λ .⊥)) ∈ EJunitK

2. (W ′
2,K

′
1[•; if !ly then ⊥ else 〈〉],K′

2) ∈ KJunitK

If we can prove these two subgoals, then instantiating (1) with
(2) yields consistent(W ′

2) and that〈h′
2;K

′
2[f2 (λ .⊥)]〉 termi-

nates. The latter is one of the two things we needed to show.
The other one isconsistent(W ′

1), which obviously follows from
consistent(W ′

2). So it remains to show (1) and (2).
For (1), first note that sincef1 andf2 are related inW ′

1, they
are by monotonicity also related inW ′

2 sinceW ′
2 ⊒ W ′

1. It there-
fore suffices to show the relatedness of their thunk arguments, i.e.,
(W ′

2, (λ . ly := tt), (λ .⊥)) ∈ VJunit → unitK. To that end, we
supposeW ′′ ⊒ W ′

2 and have to show(W ′′, ly := tt,⊥) ∈
EJunitK. So assume we are given continuations(W ′′,K′′

1 ,K
′′
2 ) ∈

KJunitK and heaps(h′′
1 , h

′′
2 ) : W ′′. With the help of the incon-

sistent state we will now show that〈h′′
1 ;K′′

1 [ly := tt]〉 certainly
does not terminate in less thanW ′′.k steps (so there is nothing
further to do). Assume it does, implying that〈h′′

1 [ly 7→tt];K′′
1 [〈〉]〉

does, too. SinceW ′′ ⊒ W ′
2, W ′′ is eitherW ′′

2 or W ′′
3 (using the

same notational trick as above). Consequently, it is easy tosee that
W ′′

3 ⊒pub W ′′, as well as(h′′
1 [ly 7→tt], h′′

2 ) : W ′′
3 . Instantiating

(W ′′,K′′
1 ,K

′′
2 ) ∈ KJunitK with all this plus the trivial fact that

(W ′′
3 , 〈〉, 〈〉) ∈ VJunitK yields consistent(W ′′

3 ), which is clearly
in contradiction to3 being an inconsistent state.

For (2), suppose we are givenW ′′ ⊒pub W ′
2 and heaps

(h′′
1 , h

′′
2 ) : W ′′ and that〈h′′

1 ;K′
1[if !ly then ⊥ else 〈〉]〉 termi-

nates in less thanW ′′.k steps. We have to showconsistent(W ′′)
and that〈h′′

2 ;K′
2[〈〉]〉 terminates. From the assumptions it is clear

that h′′
1 (ly) must beff and thus〈h′′

1 ;K′
1[〈〉]〉 terminates in less

thanW ′′.k steps. This also implies thatW ′′ must beW ′′
2 . We now

want to instantiate(W ′
1,K

′
1,K

′
2) ∈ KJunitK, but W ′′

2 does not
publicly extendW ′

1 because there is no public transition from state
1 to state2. However, we can nowbacktrackto state1: because
both states express the same heap constraint and because heap re-
lations for FOS are world-independent,(h′′

1 , h
′′
2 ) : W ′′

2 implies
(h′′

1 , h
′′
2 ) : W ′′

1 . Note thatW ′′
2 ⊒pub W ′

2 impliesW ′′
1 ⊒pub W ′

1.
Finally, we can instantiate(W ′

1,K
′
1,K

′
2) ∈ KJunitK with all this

plus (W ′′
1 , 〈〉, 〈〉) ∈ VJunitK, to obtainconsistent(W ′′

1 ) and that
〈h′′

2 ;K′
2[〈〉]〉 terminates. Since our state2 is a consistent state,

consistent(W ′′
1 ) impliesconsistent(W ′′

2 ), and we are done.

8. Reasoning in the Presence of Exceptions
In this paper, we have focused attention on first-class continuations
as our control effect of interest, and demonstrated that their ab-
sence enables the extension of our STS-based Kripke model with
the mechanisms of private transitions and inconsistent states. It is

natural, then, to ask about the impact that other control effects have
on our model. At least in the case ofexceptions, the answer is quite
simple, as we will now briefly explain. (Details appear in thetech-
nical appendix [8], and we intend to elaborate on these in an ex-
tended version of this paper. We leave consideration of other con-
trol effects, such as delimited continuations, to future work.)

First of all, unlike throwing to a continuation, raising an excep-
tion causes a “well-bracketed” kind of control effect, in the sense
that it passes control to the exception handler that was mostre-
cently pushed onto the control stack. Thus, the presence of excep-
tions does notper serestrict our STS model: we are free to use
STS’s with private transitions and inconsistent states.

However, the possibility of exceptional behavior means that,
when proving twocontinuationsto be logically related (byKJτKρ),
we must show that they behave in a related manner not only when
they are plugged with related values, but also when they are passed
related raised exceptions. Concretely, the definition ofKJτKρ be-
comes the following (assuming a new base typeexn of exceptions):

{(W,K1,K2) ∈ ContAtom[ρ1(τ ), ρ2(τ )] |
∀W ′, v1, v2. W

′ ⊒pub W =⇒
((W ′, v1, v2) ∈ VJτKρ =⇒ (W ′,K1[v1],K2[v2]) ∈ O) ∧
((W ′, v1, v2) ∈ VJexnK =⇒

(W ′,K1[raise v1], K2[raise v2]) ∈ O)}

In essence, this new definition is equivalent toKJM(τ )Kρ, where
M is theexception monad—i.e.,M(τ ) ≈ τ + exn.

Each of the various examples we have considered in this paper
involves proving equivalence of two higher-order functions that,
when called, will manipulate some local state and invoke their
(unknown) callback arguments. Thus, for each of the examples, the
new, more restrictive definition ofKJτKρ requires us to consider
the possibility that the callback invocation may raise an exception.
Since the higher-order function in each example does not install
any exception handler around its callback invocation, any exception
raised by that callback invocation will remain uncaught, causing the
function to return immediately (raising the same exception).

We therefore need to show that any state in which the callback
may raise an exception—i.e., any state that is publicly accessible
from the one in which the callback was invoked—is also publicly
accessible from the initial state in which the higher-orderfunction
was called. For the callback-with-lock example, this is indeed the
case, since the only state publicly accessible from the “locked” state
(in which the callback is invoked) is itself, which is publicly acces-
sible from the “unlocked” starting state. For the other examples, on
the other hand, this criterion is not met; and indeed, in the presence
of exceptions, it is not hard to find program contexts that distinguish
the higher-order functions in those examples.

9. Related and Future Work
Many techniques have been proposed for reasoning about contex-
tual equivalence of stateful programs. Using a variety of these tech-
niques, most of the examples we discuss in this paperhavebeen
proven already (with minor variations) in different language set-
tings, but there has not heretofore been any clear account ofhow
they all fit together. Indeed, our main contribution lies in our uni-
fying framework of STS’s, along with the realization that the ab-
sence of call/cc and/or higher-order state enables the extension of
our STS model in orthogonal ways. That said, some of our exam-
ples are also new, such as “callback with lock” inFOSC, and the
other ADR examples inHOSC (see the appendix [8] for more).

Game Semantics As explained in the introduction, game seman-
tics has served as an inspiration to us, especially Abramsky’s idea
of the “semantic cube”. There are many papers on this topic; per-
haps the two most relevant to our present work are Laird’s model
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of call-by-name PCF extended with a control operator [19] and
Abramsky, Honda, and McCusker’s model of call-by-value PCF
extended with general references [1]. Unlike ourHOSC and its
fragments, the language considered by Abramskyet al. does not
support pointer equality.5

The primary focus of the research on games models has been
full abstraction. One of the key motivations for having a fully ab-
stract model is, of course, that it allows one to prove two pro-
grams observationally equivalent by proving that their denotations
(in games models, “strategies”) are the same. However, the games
models do not in general directly facilitate such proofs since the
strategies are non-trivial to analyze for equality (and since game
categories also involve a non-trivial quotienting). Hence, proof
methods for proving actual program equivalences based on specific
games models have primarily been developed only for simple lan-
guages with state, namely call-by-name Idealized Algol. For a fini-
tary version of that language (i.e.,a version with only finite ground
types and no recursion) there is a full classification of whencontex-
tual equivalence is decidable (e.g.,see [12, 25]). A finitary version
of a call-by-value variant has also been studied by Murawski[24],
and with that model he could show some finitary versions of the
examples of Pitts and Stark,e.g.,the profiling example [24, p. 29].

Another focus of game semantics is on understanding how the
presence of different features in a language affects the kinds of in-
teractions a program can have with its context. Laird [19] models
the presence of control operators by relaxing the “well-bracketing”
restriction on strategies. Abramskyet al. [1] model the presence
of higher-order state by relaxing the “visibility” restriction. There
seems intuitively to be some correspondence between the former
and our private transitions, and between the latter and our back-
tracking, but determining the precise nature of this correspondence
is left to future work.

Operational Game SemanticsAnother line of related work con-
cerns what some have called “operational game semantics”. This
work considers labeled transition systems, and either traces or
bisimulation relations over those, directly inspired by games mod-
els. Such so-called “normal form bisimulation” relations have been
developed for an untyped language with state and control [34], for
a typed language with recursive types (but no state) [21], and for
a language with impredicative polymorphism (but no state) [22].
Laird [20] gave a fully abstract trace semantics for the language of
Abramskyet al. [1] extended with pointer equality. His trace-sets
may be viewed as deterministic strategies in the sense of game se-
mantics. Normal form bisimulations have been used to prove con-
textual equivalence of actual examples,e.g.,Støvring and Lassen’s
proof of correctness [34] for the encoding of call/cc via one-shot
continuations that we described at the end of Section 4. Koutavas
and Lassen have shown, in unpublished work [16], how Laird’s
trace semantics can be used to prove theHOS version of the de-
ferred divergence example (Section 5.2), by showing that the two
programs have the same set of traces.

To the best of our knowledge, however, no fully abstract games
model (either operational or denotational) has yet been given for
the rich language that we consider in this paper (call-by-value, im-
predicative polymorphism, general references with pointer equal-
ity, call/cc, and recursive types).

Logical Relations Our work is heavily indebted to the pioneer-
ing work of Pitts and Stark [28], who gave a fully abstract logi-
cal relation for a simply-typed functional language with recursion
and first-order state. In particular, we rely on the basic setup of
their biorthogonal Kripke model, although (like ADR’s) ours is also

5 We have not emphasized the fact that we model pointer equality in this
paper, but some of ADR’s examples do make use of it, and it is a feature
one generally expects to find in real ML-like languages.

step-indexed. In the absence of step indices, biorthogonality ren-
ders the logical relationadmissible(an important property when
modeling recursion). In the presence of step indices, admissibility
is not as important, since the model essentially only consists of fi-
nite approximations, and there is no need to ever talk about their
limit. Nevertheless, as we have seen, biorthogonality plays a cru-
cial role in modeling control and ensuring full abstraction.

With respect to the latter, it is not clear how useful the fullab-
straction property is for usper se, since it is achieved in a largely
“feature-independent” manner. That is, the proof that biorthogonal-
ity makes the logical relation complete is essentially the same for
each of the four languages we consider, so full abstraction here
is perhaps not the most informative criterion. One could forin-
stance take Pitts and Stark’s original model, add step-indexing to
it, and get out a different fully abstract model forHOSC. Clearly,
that model would not be as practically powerful as our STS-based
model, but it would nevertheless be fully abstract.

Aside from ADR, the closest logical relations to ours are
the ones developed by Bohr in her thesis [7]. Hers also employ
biorthogonality, albeit in a denotational setting. Her possible worlds
bear some similarity to ADR’s in that they, too, allow one to model
heap properties that evolve over time. In addition, they allow one
to impose constraints on continuations. Like us, she is alsoable to
handle theHOS version of the deferred divergence example, but
the language she considers is not as rich as ours (it does not support
full polymorphism), and she does not consider handling call/cc or
the restriction to first-order state. We can prove all of the examples
from her thesis, and we believe that our proofs are significantly
simpler to understand.

Regarding the deferred divergence example: it is originally due
to O’Hearn, who formulated it in the context of Idealized Algol [26,
2.3]. Pitts showed how to prove this example using operational
Kripke logical relations, by allowing the parameters of thelogical
relation to relate proper states to undefined states (i.e.,by phrasing
heap relations over “lifted” heaps) [29]. It is not clear whether this
technique generalizes to higher-order state, however.

More recently, Johann, Simpson, and Voigtländer [14] havepro-
posed a generic framework for operational reasoning about alge-
braic effects. Their work is complementary to ours: they develop
effect-independent proof principles, whereas we develop effect-
specific proof principles. They do not consider local state,higher-
order state, or control.

Lastly, our decision to employ both step-indexing and biorthog-
onality was influenced directly by the work of Benton, together
with Tabareau [6] and Hur [5], on compiler correctness. Theyargue
persuasively for the benefits of combining the two techniques.

Environmental Bisimulations For reasoning about contextual
equivalences (involving either type abstraction or local state), one
of the most successful alternatives to logical relations isthe coin-
ductive technique ofenvironmental bisimulations. The current state
of the art is Sumii’s work on type abstraction and general refer-
ences [35], which builds on work by Sumii-Pierce [36], Koutavas-
Wand [17], and Sangiorgi-Kobayashi-Sumii [32]. Sumii is able to
handle all the examples we have presented here in the settingof
HOS; he does not consider call/cc or first-order state (but does,
in the work with Sangiorgi, consider concurrency). In some cases
(e.g.,for the well-bracketed version of the “awkward” example—
see Section 5.1), his approach is somewhat “brute-force” inthe
sense that it requires explicit reasoning about the intensional struc-
ture of program contexts. We believe our state transition systems
capture the intuitions about well-bracketing at a more abstract level.

Anti-Frame Rule Pottier [30] has proposed an alternative way of
reasoning about local state using a rich type system with capabil-
ities, regions, and linearity. Hisanti-frame ruleallows one to es-
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tablish a hidden property about a piece of local state, much in the
same way that our islands do. In its original form, however, the
anti-frame rule was restricted to reasoning aboutinvariants, which
we argued in Section 3 are insufficient for many examples.

To address this limitation, Pottier has suggested two extensions
of his framework. First, in joint work with Pilkiewicz [27],he
proposes the use offates, which enable reasoning aboutmonotonic
state in a manner rather similar to the state transition systems in
our Kripke model. Second, in a brief unpublished note [31], he
sets forth ageneralizedversion of the anti-frame rule that permits
reasoning about well-bracketed state change.

While there are clear analogies between these extensions and
our public/private state transitions, determining a precise formal
correspondence is likely to be difficult because the methodsare
tailored to different purposes. On one hand, Pottier’s typesystems
are richer than that of ML, and thus his techniques can be used
to verify correctness of some interesting programs that exploit the
advanced features of his type systems. On the other hand, some
equivalences—like our “deferred divergence” example fromSec-
tion 5.2—do not seem to be easily expressible as “unary” type-
checking problems and thus cannot seemingly be handled by Pot-
tier’s method. Moreover, like Sumii [35], Pottier restricts attention
to languages that support higher-order state but no controleffects.

Finally, it is important to note that Pottier’s anti-frame rule has
only been proven sound in a relatively idealized setting [33], and its
soundness has yet to be established even in the context of thetype-
and-capability system in which it was originally proposed [30], let
alone the extended systems mentioned above [27, 31].

Other Related Work Seminal work on operational reasoning
about state and control was conducted by Felleisen and Hieb [10]
and Mason and Talcott [23], but the proof principles they devel-
oped are relatively weak in comparison to the ones afforded by our
model. Thielecke [37] demonstrated an interesting equivalence that
holds in the presence of exceptions and state, but not in the presence
of continuations and state. His proof method is relatively brute-
force, however, and we can easily prove his example using an STS
with private transitions. More recently, Yoshidaet al.[38] proposed
a Hoare-style logic for reasoning about higher-order programs with
local state, but it does not handle abstract types, nor does it permit
the kind of reasoning achieved by our STS’s. Dreyeret al. [9] have
devised a relational modal logic that accounts for the essential as-
pects of the ADR model. In the future, we hope to generalize that
logic to account for the additional features we have proposed here.
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