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Abstract

Mitchell's notion of representation independenéea particularly
useful application of Reynolds’ relational parametrieitytwo dif-

ferent implementations of an abstract data type can be slhown
textually equivalent so long as there exists a relation betwtheir
type representations that is preserved by their operatibnere
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1. Introduction

Reynolds’ notion ofelational parametricity{23] is the essence of
type abstraction — clients of an abstract type behave umifor
acrossll relational interpretations of that type and thus cannot de-
pend in any way on how the type is represented. Mitchell'somot
of representation independengt7] is a particularly useful appli-

have been a number of methods proposed for proving represen-cation of relational parametricity — two different implentations

tation independence in various pure extensions of Systemheére
data abstraction is achieved through existential typiag)wvell as
in Algol- or Java-like languages (where data abstracti@atiseved
through the use of local mutable state). However, none cktlag-
proaches addresses thmeraction of existential type abstraction
and local state. In particular, none allows one to proveasgmta-
tion independence results fgenerativeADTs — i.e., ADTs that
bothmaintain some local stand define abstract types whose in-
ternal representations are dependent on that local state.

In this paper, we present a syntactic, logical-relatioasehl
method for proving representation independence of gewerat
ADTs in a language supporting polymorphic types, existénti
types, general recursive types, and unrestricted ML-gtylea-
ble references. We demonstrate the effectiveness of ounatdty
using it to prove several interesting contextual equivedsrthat in-
volve a close interaction between existential typing amalstate,
as well as some well-known equivalences from the literatsweh
as Pitts and Stark’s “awkward” example) that have causatbteo
for previous logical-relations-based methods.

The success of our method relies on two key technical inno-
vations. First, in order to handle generative ADTs, we dgved
possible-worlds model in which relational interpretataf types
are allowed togrow over time in a manner that is tightly coupled
with changes to some local state. Second, we empédgmindexed
stratification of possible worlds, which facilitates a slified ac-
count of mutable references of higher type.
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of an abstract data type can be shown contextually equivalen
long as thereexistsa relation between their type representations
that is preserved by their operations. This is useful eveanithe
type representations of the two ADTs are the same, becaese th
choice of an arbitrary relational interpretation for thestahct type
allows one to establish the existence of local invariants.

Originally these ideas were developed in the context ofi{var
ants of) System F, but over the past two decades there hasabeen
great deal of work on extending them to the setting of morésrea
tic languages, such as those with recursive functions fgjeral
recursive types [16, 1, 11], selective strictness [29], Bidhese
functionallanguages, data abstraction is achieved through the use
of existential types. Others have considered representetilepen-
dence in the setting amperativelanguages, such as Algol and
Java, where data abstraction is achieved instead throegistnof
local mutable statee(g.,local variables or private fields) [21, 5, 14].

Of course, most modern languages (such as ML) are nei-
ther purely functional nor imperative, but rather freelyxnthe
paradigms. However, none of the existing work on represienta
independence has considered a language supporting bdimte
tional and the imperative approaches to data abstradgtenboth
existential types and local state. This is unfortunategesivoth ab-
straction mechanisms play important, interdependent rinlehe
definition ofgenerativeabstract data types.

1.1 Reasoning About Generative Abstract Data Types

Existential type abstraction providegpe generativity— every
unpacking of an existential package generatisshabstract type
that is distinct from any other. This is similar to the belwavof
Standard ML'sgenerative functorswhich generate fresh abstract
types at each application, and indeed the semantics of Sié-s
functors may be understood as a stylized use of existernf t
abstraction [25]. The clearest motivation for type geneitgitis

in the definition of ADTs that encapsulate some local state. |
such instances, generativity is sometimesessaryo achieve the
proper degree of data abstraction.

As a simple motivating example, consider the SML mod-
ule code in Figure 1, which is adapted from an example of
Dreyeret al. [12]. (Later in the paper, we will develop a simi-
lar example using existential types.) Here, the signafyiB0L
describes a module implementing a mutable symbol tablegtwhi
maps “symbols” to strings. The module provides an abstrgu t
t describing the symbols currently in its table; a functisnfor
comparing symbols for equality; a functiaasert, which adds a



signature SYMBOL = sig
type t
val eq : t * t -> bool
val insert : string -> t
val lookup : t -> string
end

functor Symbol () :> SYMBOL = struct
type t = int
val size = ref 0O
val table = ref nil

fun eq (x,y) =x =y

fun insert str = (
size := !size + 1;
table := str :: !table;

Isize
)
fun lookup n =
List.nth (!table,
end

!size - n)

Figure 1. Generativity Example

given string to the table and returns a fresh symbol mappét to
and a functiorLookup, which looks up a given symbol in the table
and returns the corresponding string.

The functorSymbol implements the symbol typeas an integer
index into a (mutable) list of strings. When appliggmbol creates
a freshtable (represented as a pointer to an empty list) and a
mutable countersize (representing the size of the table). The
implementations of the various functions are straightody and
the body of the functor is sealed with the signat8¥&BOL, thus
hiding access to the local stateaple andsize).

The call toList.nth in the lookup function might in general
raise aSubscript exception if the inpuh were an arbitrary inte-
ger. However, we “know” that this cannot happen becaugsup
is exported with argument type and the only values of typethat
a client could possibly have gotten hold of are the valuagmet

by insert, i.e.,integers that are between 1 and the current size of

table. Therefore, the implementation of theokup function need
not bother handling theubscript exception.

In other words, there is no observable difference betweeottiy-
inal Symbol functor and one that dynamically checks the various
invariants we claim to “know.” Hence, the checks are unnemss

This kind of result can be understood as an instance of repres
tation independence, albeit a somewhat degenerate onatithth
ADTs in question share the same type representation. Aamast
such results, the proof hinges on the construction of ancgpiaite
relational interpretation of the abstract typewhich serves to im-
pose an invariant on the possible values of typtn this case, we
wish to assert that for a particular structgrdefined bySymbol (),
the only values of typg.t are integers between 1 and the current
size ofS’s table. This will allow us to prove that any range check
on the argument t8’s lookup function is superfluous.

The problem is that the relational interpretation we wish to
assign toS.t depends on theurrent values stored irs’s local
state. In effect, as's insert function is called repeatedly over
time, its table grows larger, and the relational interpretation of
S.t must grow accordingly to include more and more integers.
Thus, what we need is an accounstdte-dependent representation
independencein which the relational interpretations of abstract
types are permitted tgrow over time, in a manner that is tightly
coupled with changes to some local state.

1.2 Overview

Inthis paper, we present a novel method for proving stapeagent
representation independence results. Our method extelds p
ous work by Ahmed on syntactistep-indexedogical relations
for recursive and quantified types [1]. We extend her tealmiq
with support for reasoning about local state, and dematestta
effectiveness on a variety of small but representative @kasn
Although our primary focus is on proving representationejnen-
dence for ADTSs that exhibit an interaction of existentiald atate,
our method also handles several well-known simply-typeahex
ples from the literature on local state (such as Pitts andk'Sta
“awkward” example [21]) that have proven difficult for preus
logical-relations-based methods to handle.
In order to reason about local state, we build into our ldgica

relation a notion ofossible worldsWhile several aspects of our
possible worlds are derived from and inspired by prior wotker

This kind of reasoning is commonplace in modules that encap- aSPects are quite novel:

sulate local state. But what justifies it? Intuitively, thesever is
type generativity. Each instantiation of tRgmbol functor creates

a fresh symbol type, which represents the type of symbols that are
valid in its owntable (but not any other). Wergymbol not gen-
erative, each application of th&ymbol functor would produce a
module with distinct local state but tisamesymbol type. It would
then be easy to inducesabscript error by accidentally passing
a value of one table’s symbol type to anoth@rekup function?

While this intuition about the importance of generativisywery
appealing, it is also completely informal. The goal of thaper is
to develop a formal framework for reasoning about the irtéoa
of generative type abstraction and mutable state.

In the case of an example like ti8gmbol functor, we will
be able to show that the implementation $fmbol shown in
Figure 1 iscontextually equivalerto one whosé ookup function
is replaced by:

fun lookup n =
if n > 0 andalso n <= !size
andalso !size = length(!table)
then List.nth (!table, !size - n)
else "Hell freezes over"

1This is the case, for example, in OCaml, which only suppapislicative
(i.e.,non-generative) functors [15].

1. We enrich our possible worlds withopulationsand laws,
which allow us to evolve the relational interpretation of an
abstract type over time in a controlled, state-dependshida.

For instance, we can use a population to grow a set of val-
ues €.g.,the integers between 1 and somjy together with a
law that explains what the current population implies alibat
current machine state.g.,that the symbol table has sizg.

2. Second, our method provides the ability to reason loeddyut
references to higher-order values. While ours is not the firs
method to handle higher-order state, our approach is noxel a
arguably simpler than previous accounts. It depends allijic
on step-indexing in order to avoid a circularity in the const
tion of possible worlds.

The remainder of the paper is structured as follows. In Sec-
tion 2, we present*', our language under consideration, which
is essentially System F extended with general recursivestgnd
general ML-style references. In Section 3, we explain agh tavel
how our method works and what is novel about it. In Sectionel, w
present the details of our logical relation and prove it sbilout not
complete) with respect to contextual equivalenc&'6fprograms.

In Section 5, we show how to use our method to prove a num-
ber of interesting contextual equivalences. Finally, int®a 6, we
conclude with a thorough comparison to related work, as all
directions for future work.
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Figure 2. F*' Syntax + Dynamic and Static Semantics (excerpts)

2. The LanguageF*

We considerF*, a call-by-value-calculus with impredicative
polymorphism, iso-recursive types, and general ML-st@éer
ences. The syntax df*' is shown in Figure 2, together with ex-
cerpts of the static and dynamic semantics. We assume aitanfin
set of locationg.oc ranged over by. Our term language includes
equality on references{ == e2), but is otherwise standard.

We define a small-step operational semanticsFforas a rela-
tion between configurations, e), wheres is a global store map-
ping locationd to valuesv. We use evaluation contexisto lift the
primitive reductions to a standard left-to-right call-bgtue seman-
tics for the language. We elide the syntax of evaluationexistas
it is completely standard, and we show only some of the réaluct
rules in Figure 2.

F# typing judgments have the foreh; T; 3 + e : 7 where the
contextsA, T', andX. are defined as in Figure 2. The type contaxt
is used to track the set of type variables in scope; the valoeegt
T"is used to track the term variables in scope (along with tigpis
7, which must be well formed in contex, written A + 7); and
the store typing: tracks the types of the contents of locations in
the store. Note thaE maps locations to closed types. We write

type 7. The typing rules are entirely standard, so we show only
a few rules in Figure 2. We refer the reader to the online tieathn
appendix [3] for full details of*'.

2.1 Contextual Equivalence

A contextC' is an expression with a single holé in it. Typing
judgments for contexts have the fotmC : (A; I8 F 7) =
(A;T; % F '), where(A;T; S + 7) indicates the type of the
hole. Essentially, this judgment says that is an expression such
that A;T; 2 e : 7, thenA’;T'; X' + Cle] : 7. The typing rule
for a hole[] is as follows:
ACA TCIY »Cy
FI]: (AT F 1) = (AT Y Fr)

The other rules are straightforward (see our online appeg).

We define contextual approximation(I'; ¥ F e; <% ey : 7)
to mean that, for any well-typed program contéxwith a hole of
the type ofe; ande,, the termination of”[e;] implies the termina-
tion of Clez]. Contextual equivalence;I'; & F e; = ey : 7)
is then defined as approximation in both directions.

Definition 2.1 (Contextual Approximation & Equivalence)

LetA;I; X Fer:7andA; T X Fes: 7.

AT Fep X% eg T =

VO, X 1 s. FC: (AT FT)= (52 FT) A Fs: T A
s,Clei] 4 = s,Cle2] I

14 def
AT, S Fep RO eg 7 =

AT e X egim A AT S Feg X ey i1

3. The Main Ideas

In this section we give an informal overview of the main nadelas
in our method, and how it compares to some previous appreache

3.1 Logical Relations

Broadly characterized, our approach ilgical relationsmethod.
We define arelatio [7] p, which relates pairs of values at type
where the free type variables efare given relational interpreta-
tions in p. The relation is “logical” in the sense that its definition
follows the structure of, modeling each type constructor as a log-
ical connective. For example, arrow types correspond tdigayp
tion, so functions are defined to be related at an arrow tyfe-if
latedness of their arguments implies relatedness of tesilts. We
will show that this logical relation is sound with respecttmtex-
tual equivalence foF*'. This is useful because, for many examples,
it is much easier to show two programs are in the logical i@tat
than to show they are contextually equivalent directly.

Logical relations methods are among the oldest technicures f
proving representation independence results. We willrassthe
reader is generally familiar with the flavor of these techieis; and
instead focus on what is distinctive and original about ours

3.2 Local Reasoning via Possible Worlds and Islands

As explained in Section 1, our core contribution is the idéa o
state-dependemelational interpretations of abstract types. That is,
whether two values are related by some abstract type’sorédin-
terpretation may depend on the current state of the heapviBen
defining such a relational interpretation, how can we charae
the “current state of the heap?”

As a starting point, we review the general approach taken by
a number of prior works on reasoning about local state [21, 22
7, 10]. This approach, which utilizespmssible worldsnodel, has
influenced us greatly, and constitutes the foundation ofrethod.
However, the form it has taken in prior work is insufficient faur

FTV(7) to denote the set of type variables that appear free in purposes, and it is instructive to see why.



The general approach of these prior works is to index the&gi
relation not only by a type but by aworld V. Instead of charac-
terizing the current state of the hed,characterizes the properties
we expect the heap to have. In other words, it is a relation an m
chine stores, and we restrict attention to pairs of storasstisfy
it. If two valuesv; andwv. are in the logical relation at type and

and that, in addition, both map the locatisize to n. The idea is
thatV;, describes the set of values of typegiventhat the current
stores satisfy),. Thus, when we extend the initial world, with
an islandws,m governingSymbol’s local state, we will choose that
wsym tO COMprise populatioy, store relatiomyo, and a lawl
defined ag{ (¢, V1) | n > 0}. Here,V, and characterize the

world W, then it means they are related when considered under anyinitial world, in which there are no values of typeand the size

two storess; ands., respectively, that satisfi’.

Worlds in turn are constructed as a separating conjunctfon o
smaller worlds(ws, ..., wy,), sometimes calledslands where
each island is a relation that “concerns” a disjoint piecethef
store. Intuitively, this means that each island distingessbetween
pairs of stores only on the basis of a particular set of mertomy-
tions, and the set of locations that one island cares abaligjant
from the set that any other one cares about.

Exactly how the separation criterion on islands is fornelirs
immaterial; the important point is that it enables locals@ang.
Suppose we want to prove that one expression is related theano
in world W. Each may allocate some fresh piece of the store,
and before showing that the resulting values of the expessi
are related, we are permitted to exterd with a new islandw
describing how these fresh pieces of the store relate to @aei.
World extension is sound here precisely because the nendisa
(due to freshness of allocation) separate from the otherkrf) as
the expressions in question do not make the locations in Il
stores publicly accessible, no other part of the progranapsble
of mutating the store in such a manner as to violate

To make things concrete and to observe the limitations adipos
ble worlds (at least as we have described them), let us cemiid
motivating example from Section 1. To prove that the two ieapl
mentations of théymbol functor are contextually equivalent, we
will show that their bodies are logically related in an ardniy ini-
tial world W,. Both functors allocate local state in the same way,
namely by allocating one pointer famble and one forsize, so
we will want to extend?, with an islandws,m describing the local
invariants ontable andsize. How should we definesym?

One useful invariant thatvs,m can enforce is that, for both
implementations afymbol, the integer pointed to hyize is equal
to the length of the list pointed to byable. By incorporating this
property intows,m, we will be guaranteed that, in afiyture world
(i.e., any extension oi¥y W wsym) in Which thelookup function
is called, the dynamic checksize = length(!table) in the
second implementation Sfymbol will always evaluate tarue.

We can also usesym to enforce that size is the same in the
stores of both programs, and similarly fotable. Unfortunately,
while this is a necessary condition, it is not sufficient tover that
the range check on the argumentlebkup in the secondymbol
implementation always evaluatestteue. For that, we need a way
of correlating the value ofsize and the possible values of type
but the islands we have developed thus far do not provide one.

3.3 Populating the Islands and Enforcing the Laws

The problem with islands is that they are static entitiehwib
potential for development. To address this limitation, \we@h is-
lands withpopulations A population is a set of values that “in-
habit” an island and affect the definition of the store relatfor
that island. An island’s population mayow over time {.e.,as we
move to future worlds), and its store relation may changermcc
ingly. In order to control population growth, we equip evéiand
with an immutabldaw governing the connection between its pop-
ulation and its store relation. We denote populationsihystore
relations byy, and laws byZ.

Consider theSymbol example. Let us defin®, = {1,...,n},
and lety),, be the store relation containing pairs of stores that obey
the properties concerningible andsize described in Section 3.2

of the table is 0. The law describes what future populations and
store relations on this island may look like. In particulaenforces
that future populations may contain 1sdfor anyn), but only in
conjunction with stores that magize to n. (Of course, the initial
population and store relation must also obey the law, whigy t
do.) An island’s law is established when the island is firsteatito
the world and may not be amended in future worlds.

Having extended the worl@V, with this new islandwsym, we
are now able to define a relational interpretation for theetyp
namely: valuesy; and vo are related at type in world W if
v1 = vz = m, Wherem belongs to the population @fsm in W.

In proving equivalence of the two versions of thekup function,
we can assume that we start with stosgsand s, that are related
by some worldW, whereW is a future world of (W W wsym,
and that the arguments tookup are related at type in W.
Consequently, given the law that we establishedufgr, together
with the interpretation of, we know that the arguments t@okup
must both equal some., that the current population @fs,m must
be soméV,,, wherel < m < n, and that the current store relation
must bey,,. Sinces; ands; satisfyW, they must satisfy,,, which
means they mapize ton > m. Hence, the dynamic range check
in the second version &fymbol must evaluate térue.

For the above relational interpretation oto make sense, we
clearly need to be able to refer to a particular island in dav@.g.,
weym) Dy SOMe unique identifier that works in all future worlds. We
achieve this by insisting that a world be an ordered list lainds,
and that new islands only be added to the end of the list. Tiows
us to access islands by their position in the list, which stine
same in future worlds.

In addition, an important property of the logical relatievhich
relational interpretations of abstract types must thuy elsevell, is
closure under world extensione., that if two values are related in
world W, then they are related in any future worlddf. To ensure
closure under world extension for relations that dependheir t
constituents’ inhabitation of a particular island (suchiesrelation
used above to interpref), we require that island populations can
only grow larger in future worlds, not smaller.

For expository purposes, we have motivated our population
technique with an example that is deliberately simple, sndénse
that the relational interpretation afis completely dependent on
the current local state. That is, if we know that the currextie of
Isize isn, then we know without a doubt that the relational inter-
pretation oft in the current world must bg(1, 1), ..., (n,n)}. In
Section 5, we will see more complex examples in which the rela
tional interpretation ot may depend not only on the current state,
but also on the history of the program execution up to thattpoi
Our population techniques scales very nicely to handle sxeh
amples because it allows us to control gwlutionof an abstract
type’s relational interpretation over time.

3.4 Mutable References to Higher-Order Values

Most prior possible-worlds logical-relation approachesdason-
ing about local state impose serious restrictions on whathe
stored in memory. Pitts and Stark [21], for example, onlypwll
references to integers. Reddy and Yang [22] and Benton apd Le
erchey [7] additionally allow references data which include in-
tegers and pointers but not functions. In the present wankgeher,
we would like to avoid any restrictions on the store.



To see what (we think) is tricky about handling references to folded type is larger (usually a deal breaker for logicaatielns,

higher-order values, suppose we have two programs thatieiti
tain some local state, and we are trying to prove these progra
equivalent. Say the invariant on this local state, which vileem-
force using an island, is very simple: the value that the first pro-
gram stores in locatioly is logically related to the value that the
second program stores ip. If these values were just integers, we
could write the law forw (as we did in theSymbol example) so
that in any future worldyw’s store relation) must demand that two
storess; and sz are related only ifs1(l1) = s2(l2). This works
because at typat, the logical relation coincides with equality.

If the locations have some higher typehowever, the definition
of w’s store relation) will need to relates; (I1) andsz(l2) using
thelogical relation at typer, not mere syntactic equality. But the
problem is: logical relations are indexed by worlds. In orfde
to say thak, (I1) andsz (l2) are related at type, it needs to specify
the worldW in which their relation is being considered.

Bohr and Birkedal [10] address this issue by imposing a rigid
structure on their store relations. Specifically, instedtlaving a
single store relation per island, they employogal parameter
which is roughly a set of pairs of the for(P, LL), whereP is
a store relation and L is a finite set of pairs of locations (together
with a closed type). The way to interpret this local paramistthat
the current stores must satighpe of the P’s, and all the pairs of
locations in the correspondingZ must be related by the logical
relation in thecurrent world. In the case of our example with
andl, they would define a local parametgfP, LL)}, where P
is the universal store relation adl. = {(l1,l2,7)}. Bohr and
Birkedal's approach effectively uses tHel’s to abstract away
explicit references to the world-indexed logical relatisithin the
store relation. This avoids the need to refer to a specifiddvor
inside a store relation, but it only works for store relatidhat are
expressible in the highly stylized form of these local pagters.

Instead, our approach is parameterizestore relations over the
world in which they will be considered. Then, in defining wiitat
means for two stores; ands, to satisfy some worldiV’, we require
that for everyy in W, (s1,s2) € ¥[W], i.e., s1 and s, obey
when it is instantiated to the current woldf. The astute reader
will have noticed, however, that this parameterizationadtices a
circularity: worlds are defined to be collections of storkatiens,
which are now parameterized by worlds. To break this ciriyla
we employstep-indexedbgical relations.

3.5 Step-Indexed Logical Relations and Possible Worlds

Appel and McAllester [4] introduced the step-indexed moate!
a way to expressemantictype soundness proofs for languages
with general recursive and polymorphic types. Althoughoitig)-
inal motivation was tied to foundational proof-carryingdeo the
technique has proven useful in a variety of applicationgarticu-
lar, Ahmed [1] has used a binary version of Appel and McA#est
model for relational reasoning about System F extended gdth
eral recursive types, and it is her work that we build on.

The basic idea is closely related to classic constructions f
domain theory. We define the logical relativrir] p as the limit of
an infinite chain of approximation relatiohs, [ 7] p, wheren > 0.
Informally, valuesv; andwv, are related by the-th approximation
relation only if they are indistinguishable in any context# steps
of computation. (They might be distinguishalaiter n steps, but
we don't care because the “clock” has run out.) Thus, valuese
lated in the limit only if they are indistinguishable in anyntext for
anyfinite number of steps,e.,if they are really indistinguishable.

The step-indexed stratification makes it possible to defiee t
semantics of recursive types quite easily. Two valfiesd v and
fold v, are defined to be related B, [uc. 7] p iff v1 andv, are
related byVi[[uca. 7/a]T] p for all k < n. Even though the un-

which are typically defined by induction on types), the step i
dex gets smaller, so the definition of the logical relationvid]-
founded. Moreover, it makes sense for the step index to gaflem
since it takes a step of computation to extracfrom fold v;.

Just as we use steps to stratify logical relations, we cam als
use them to stratify our quasi-circular possible worlds. d&&ne
an “n-level world” inductively to be one whose constituent store
relations (they’s) are parameterized by:{-1)-level worlds. The
intuition behind this stratification of worlds is actuallgry simple:
ann-level world describes properties of the current storesrtiay
affect the relatedness of pairs of valuessosteps of computation.
Since it takes one step of computation jusirspectthe stores (via
a pointer dereference), the relatedness of pairs of vatwesdteps
can only possibly depend on the relatedness of the currergsst
for n—1 steps. Thus, it is fine for an-level world to be defined
as a collection of 1(—1)-level store relationsi.e., 1's that only
guarantee relatedness of memory contents fet steps. And these
(n—1)-level ¢’s, in turn, need only be parameterized hy—1)-
level worlds.

4. Step-Indexed Logical Relations fofF

In this section, we present the details of our logical refafor F*!
and prove it sound with respect to contextual equivalence.

The basic idea is to give a relational interpretatidrr] of
a (closed) typer as a set of tuples of the forrtk, W, v1, v2),
wherek is a natural number (called tistep index W is a world
(as motivated in Section 3), and andwv, are values. Informally,
(k,W,v1,v2) € V[7] says that in any computation running for no
more thank steps,v; approximatess at the typer in world 1.
An important point is that to determinedf approximates. for
steps (at type’), it suffices for the worldV to be ak-level world.
That is, the store relations in W need only guarantee relatedness
of memory contents fok — 1 steps, as discussed in Section 3.5. We
make the notion of ak-level world” precise in Section 4.1.

Preliminaries In the rest of the paper, the metavariableg, k,
m, andn all range over natural numbers. We use the metavarjable
to denote sets of tuples of the forfh, 1V, e1, e2) wherek is a step
index, W is aworld, anct; ande- are closed terms.€.,terms that
may contain locations, but no free type or term variableg)eGa
sety of this form, we writexy*® to denote the subset gfsuch that
e1 andes are values.

As mentioned in Section 3.3, world W is an ordered list
(written (w1, . .., wy)) of islands An islandw is a pair of some
currentknowledgey and alaw L. The knowledge for each island
represents the current “state” of the island. It comprises parts: a
store relationy, which is a set of tuples of the forfi, W, s1, s2),
wherek is a step index}V is a world, ands;, and s, are stores;
a population V', which is a set of closed values; and two store
typings 31 and 3. The domains of:; and X, give us the sets
of locations that the island “cares about” (a notion we noed
in Section 3.2). Meanwhile, a law is a set of pairgk,n). If
(k,m) € L, it means that, at “timek (representing the number of
steps left on the clock), the knowledgerepresents an acceptable
state for the island to be in. Below we summarize our notdion
ease of reference.

Type Interpretation x == {(k,W,e1,e2),...}
Store Relation P = {(k,W,s1,82),...}
Population Vo o= Av,...}
Knowledge n = (¥, V,Xq,%2)

Law o ()

Island w = (n,L)

World W u= (wi,...,wn)



CandAtom, = {(j,W,e1,e2)| j <k AN W &€ CandWorld;} CandAtom., = Uk>o CandAtom,
CandType,, dof P(CandAtom}") CandType,, «f P(éandAtomV:I) 2 Ukso CandType,,
CandStoreAtomy, def {(;W,s1,82) | j <k NW € CandWorld;} -
CandStoreRely, dof P(CandStoreAtomy,) der
CandKnowledge,, def CandStoreRely, X Population IxJk d:ef (G, Wer,e2) | j <k A (4, W,e1,e2) € x}
x StoreTy x StoreTy W] = {(G,W,s1,82) | <k A (j,W,s1,s2) € 0}
CandLawAtom, def {G,m) | <k Ane C’andKnowledgej} 7]k def ([ ]k, V, 31, 22) wheren = (v, V, $1, 32)
CandLaw), < P(CandLawAtomy,) L]y % (G| G<k A Gon) € L}
Candlslandy, dof CandKnowledge;, x CandLawy, |w]k dof (ks LK) wherew = (7, £)
CandWorld, def {W € (CandIsland )™ | n > 0} (W |k def (lwi ]k, lwn k) whereW = (w1,...,wn)
© VOV ADIOE AS, DR,

(@, V', 21,55) J (3, V,£1,%2)

(', L") 3 (n, L)
) 2 (wi, ...
(G,W') 3 (k,W
(G W' 3 (k,W

def

’ / def
<w17~~~7wn+m y Wn =
def

)
) def
)

Atom[Tl s Tg]k =

" dn AL =L

m>0AVie{l,...,n}. w, Jw;

= Jj<kEAW J|W]; AW €World; N W € Worldy,
= j<kA(@GwW)3kW)

{(], W,el,ez) € CandAtomy, ‘ W e WOTldj A El(W) Fep:m A EQ(W) Feg :TQ}
{x € P(Atom[r1, 7]} | V(j, W,v1,v2) € x.V(§', W') 2 (5, W). (/, W/, v1,v2) € x}

{¢ € P(StoreAtomy,) | V(4,W, s1,82) € . V(i, W') D (j, W). (i, W', s1,52) € ¢}

(VI € dom(X1). s1(l) =s1(1) A Vi€ dom(X2).s2(l) = s5(l)) =
vj,W (.77 W751752) € w <~ (.77 W7 8’175/2) € w}

Type[ri, T2l =
StoreAtomy, def {(4, W, s1,s2) € CandStoreAtomy, | W € World;}
StoreRely, def
Knowledge,, def {(¥, V,21,X2) € CandKnowledge,, | ¢ € StoreRel), A
Vs, s2, 87, sh.
LawAtomy, def {(4;n) € CandLawAtomy, | n € Knowledge;}
Law, ' {L£ € P(LawAtomy) | ¥(j,n) € L. Vi < j. (i, |nl:) € £}
Islandy, def {(n, £) € Knowledge;, X Lawy | (k,n) € L}
World, < {W € (Island)™ | n>0 A

Ya,be{l,...,n}.a #b =

dom(Wa].X1) # dom(W[b].X1) A dom(W[a].X2) # dom(W[b].X2)}

Atom[Tl,TQ] = UkZO Atom[Tl,TQ}k

Type[ri,m2] =

{x € CandType,, | Yk > 0. [x]rx € Type[ri,m2]k} 2 Ugso Typelr, m2]k

Figure 3. Auxiliary Definitions: Candidate Set&;Approximation, World Extension, and Well-Formedness ditians

If W = (wn,...,w,)andl < j < n, we writeW ;] as shorthand
for w;. If w = (n;, £i) wheren; = (¢, Vi, i1, Xi2), we use the
following shorthand to extract various elements out of theridw:

wn = wV =V
w.L = Ei w. 1 = Ez‘l
w.’d) = i w. 2 = Ez‘z

If W is a world withn islands, we also use the following shorthand:

def .
= Uigjcn W1

1 (W)
def .
Ui<j<n Wil-22

3o (W) =

We write Val for the set of all valuesS$tore for the set of all stores
(finite maps from locations to values), aftore Ty for the set of
store typings (finite maps from locations to closed types) \White
Population for the set of all subsets ofal. Finally, we write
S1 # S» to denote that the sefs and.S, are disjoint.

4.1 Well-Founded, Well-Formed Worlds and Relations

Notice that we cannot naively construct a set-theoretidehbased
on the above intentions since the worlds we wish to consaret
(effectively) lists of store relations and store relatiarse them-
selves parameterized by worlds (as discussed in Sectipnf3ve
ignore islands, laws, populations, and store typings fentioment,
and simply model worlds as lists of store relations, we attédehe
following specification which captures the essence of tioblpm:

StoreRel
World

P(N x World x Store x Store)
StoreRel™

A simple diagonalization argument shows that the $etreRel
has an inconsistent cardinalityg., it is an ill-founded recursive
definition).

We eliminate the inconsistency by stratifying our definitiaa
the step index. To do so, we first constrgeindidatesets, which
are well-founded sets of our intended form. We then construc
proper notions of worlds, islands, laws, store relations] ao



on, by filtering the candidate sets through some additiorell-w extend a world with new islands without fear of breaking ttores

formedness constraints. properties from the old islands.

Figure 3 (top left) defines our candidate sets by inductio.on Knowledge,, is the set of all tuples of the fory, V, X, 32) €
First, note that elements afandAtom; and CandStoreAtom, CandKnowledge,, such thaty € StoreRel,. As mentioned
are tuples with step index strictly less thark. Hence, our can- above, the domains of; and X, contain the locations that an
didate sets are well-defined at all steps. Next, note thabeziés island cares about. What this means is that when determining
of CandLawAtom, are tuples with step index < k. Informally, whether two stores; and s> belong to the store relationt, we

this is because &-level law should be able to govern the current cannot depend upon the contents of any location in stprénat
knowledge {.e., the knowledge at the present time when we have is not indom(X;) or on the contents of any location ia that is
steps left to execute), not just the knowledge in the futunemwe notindom(32). Thus,X1 andX; essentially serve acessibility
have strictly fewer steps left. maps[7]. While Benton and Leperchey’s accessibility maps are
While our candidate sets establish the existence of setarof o functions from stores to subsets béc, our accessibility maps are
intended form, our worlds and type relations will need to tedlw essentially sets of locations that are allowed to grow avee t

behaved in other ways. There are key constraints associatied We defineLaw, as the set of lawg such that for al(j,n) € £

atoms, types, store relations, knowledge, laws, islamisweorlds we have that) € Knowledge;. Furthermore, we require that the

that will be enforced in our final definitions. To specify tees setsL be closed under decreasing step index—that is, if some

constraints we need some additional functions and presicat knowledgen obeys law. for j steps, then it must be the case that at
For any sety and any set), we define thé:-approximation of any future time, when we have< j steps left, thé-approximation

the set (written| x | and ||k, respectively) as the subset of its  of knowledgen still obeys the lawC.

elements whose indices asgictly lessthank (see Figure 3, top Islandy, is the set of all pair$n, £) € (Knowledge,, X Lawy,)

right). Meanwhile, for any set’, we define thek-approximation such that the knowledge obeys the lawl at the current time
of the set (written| £ 1) as the subset of its elements whose in- denoted by step index—i.e., (k,n) € L.

dices ardess than or equato k. We extend thesk-approximation Finally, we defineWorld,, as the set of allW € (Islandy)".
notions to knowledge;, islandsw, and worldsW (written 7, We also require that the sets of locations that each islafid]
|w]x, and |W |, respectively) by applying:-approximation to cares about are disjoint from the sets of locations that dhgro
their constituent parts. Note that each of khapproximation func- islandW [b] cares about, thus ensuring separation of islands.
tions yields elements af'andX ,, whereX denotes the appropriate

semantic object. 4.2 Relational Interpretations of Types

Next, we define the notion ofvorld extension(see Figure 3,
middle). We write(j, W’) 3 (k,W) (where 3 is pronounced
“extends”) if W is a world that is good fok steps (e., W €
Worldy,, see below)J¥’ is a good world forj < k steps V' €
World;), and W' extends| W |; (writen W’ 3 |W ;). Recall
from Section 3.3 that future worlds accessible fréfhmay have
new islands added to the end of the list. Furthermore, foh eac
islandw € |W |, the islanckw’ in the same position iV’ must
extendw. Here we require that'’.£ = w.L since an island’s law
cannot be amended in future worlds (see Section 3.3). We also

require thatw’.n 3 w.n, which says that the island’s population and X (W) F wa @ p2(7). Most of the relati.onsvn[[ﬂ]p are
may grow ('.V D w.V), as may the sets of locations that the straightforward. For instance, the logical relation atetyp says

island cares about(.; D w.%; andw’.%2 D w.Xs). Though it that two integers are logically related for any numberl opste
may seem from the definition of knowledge extension in Fidire and in any worIoW_ as long as they aré equal. The_ relat|0n§ for the
that we do not impose any constraintswoht, this is not the case. ~ °ther base typesnit andbool are similar. The logical relation at
As explained in Section 3.3, an island’s law should goveratstihe typer x 7’ says that two pairs of values are related steps in
island’s future store relations, populations, and loatiof concern world W if their first and second components are related (each for

may look like. The requireme¥’ € World; (which we discuss k steps in WO”.OW) at typesr andr respective_ly. .

below) ensures that the future knowledgen obeys the lavuw’. L. . Since functions are suspended computations, their relassd
Figure 3 (bottom) defines our various semantic objects netgai is defined based on the relatedness of computations (charact

induction onk. These definitions serve to filter their corresponding 126d by the relation,[7] p, discussed below). Two functions

candidate sets. We proceed now to discuss each of thesingiter % pi(7).e1 and ’\x,:_pz.(T)' e2 are related fo',k steps in world
constraints. W at the typer — 7’ if, in any future worldWW’ where there are

Following Pitts [20], our model is built from syntacticaliyell- j < k steps left to execute and we have argumentandv, that
typed terms. Thus, we defindtom[r1, ], as the set of tuples ~ 2'€ related at the argument typethe computationgv /e and
(j, W, e1, e2) whereSy (W) F e1 : 7 andSa(W) b e : 7, and [v/z/m]ez are also related fof step§ in world/V* at t.he result type
j < k. (Recall that; (W) denotes the “global” store typingi-e., 7' (i.e.,they are in the relatioé,, [ 7] p). Intuitively, j < k suffices

the union of thex; components of all the islands ¥.) We also since beta-reduction consumes a step. Parameterizinguoabi-
require the world¥’ to be a member ofVorld, trary future worldW”’ is necessary here in order to ensure closure
e

8 of the logical relation under world extension.
C m val . i
We define Type[ri, 72]x as those sety C Atom[n, i Before we can specify when two computations are related, we

that are closed under world extension. Informallysifandv, are . .
related fork steps in world?, thenv; andv, should also be related haye to describe what 'F means for two stores to be related. We
write s1, s2 :x W, denoting that the stores ands. are related

for 5 steps in any future worldV’ such that(j, W’) is accessible . )
from (i.e., extends)k, W). We defineStoreRel;, as the setof all  [OF ¥ Steps at the worldV" (see Figure 4, top), if the stores are
1 C StoreAtom; C CandStoreAtom;, that are closed under Well-tyE[)_edlwﬂh :’je_Sfpt(;-;Ct t? the store typl_l‘éQS ((Ij/V) anthg(Wb),
T ; - e . respectively, and if the stores are considered acceptabld.b.,
world extension. This property is critical in ensuring thz can they are in the store relations of—all the islandd$iihat all future
times whenj < k.

Figure 4 (top) gives the definition of our logical relatioms F*'.
The relationsV,, [7] p are defined by induction on and nested
induction on the typer. We use the metavariable to denote
type substitutions. A type substitutignis a finite map from type
variablesa to triples(x, 71, 72) wherer; andr are closed types,
and y is a relational interpretation ifype[ri, 2]. If p(a) =
(x, 1, 72), thenp: («) denotesr; andp2(«) denotesr,.

Note that, by the definition o, [7] p, if (k,W,v1,v2) €
Vul7] p, thenk < n, W € Worldy, andX; (W) F vy = p1(7)



def

s1,82 1 W = Fs1:Z1(W) A Fsa:3a(W) A

Yw € W.Vj < k. (j,[W];,s1,52) € w.ap
Vnlrlp = Valrlp N Atom[pi(r), p2(7)]7!
Valalp = x  wherep(a) = (x,71,72)
Vnlunit] p = {(k, W, (), )}
Valint]l p = {(k,W,v,v) | v € Z}
Vnlbooll p = {(k, W,v,v) | v=true V v=false}

Valr x 7] p = {(k, W, (v1,v1), (v2, v3)) |
(k, W,v1,v2) € Vnlr]p A
(k, W, Uivvé) € Vn[r'] p}

Vlr — 1 p = {( W, Az p1(r).e1, Az pa(r). e2) |
V(], W/) 1 (k,W).VUl,vz.
(7, W, v1,v2) € Vur] p =
(7, W', [v1/x]ex, [v2/z]e2) € Enlr'] p}

VulVa. 1] p = {(k, W, Aa. e1, Aa.e2) |
Vi, W') 3 (k,W). V71,72, x € Type[r1,T2].
(j7W/7[Tl/a]ely
[r2/ale2) € Enl7] plo = (x, 71, 72)]}

Vul[Ba. 1] p = {(k, W, pack 71, v1 as . p1(7),
pack 72, v2 as Ja. p2(7)) |
Ix € Type[r1,72].
(kv W1, U2) € V”l[[Tﬂ p[a = (X?Tlv 7-2)]}

Vnlpa. 7] p = {(k,W,foldv1, foldvs) | k <n A
Vi <k (4, [W]j v1,02) € Vi[lpe.7/al7] p}

V”HrEfT}]p = {(k7W7l17l2) ‘ k<n A wref(kvvavlLZZ) € W}

wref(k7p777l17l2) = (777'6)
wheren = (¢, {}, {l1 : p1(7)}, {l2 : p2(7)})
Y ={0,W',s1,82) | (4, W, s1(l1),52(I2)) € Vi[7] p}
L={0,Inl;) | J <k}

Enlrlp = {(k,W,e1,2) € Atomlpr (7), pa()]n |
Vj < k.Vs1,s2,8],v1.
51,€e1 —J sh,v1 A s1,82 g W =
35/277-}27W/' (k —Js Wl) | (k,W) A
s2,e2 —* sh,va A sy, 8L i WA
(k =3, W' v1,v2) € Vnlr] p}

VIrlp = U,so Vnlrle Elrlp = Upsoénlrlp

D[] = {0}
DA, a] = {pla— (x;71,72)] | p € D[A] A x € Type[r1,72]}

Gl1p = {(k,W,0) | W € Worldy}
G,z :7]p = {(k, W,v[z — (v1,v2)]) |
(k,W,7) €GTTp A (k,W,v1,v2) € V7] p}

S[Z] = {k,W) | V(:7)e . (k,W,1,1) € V[ref 7] 0}
AT S Fey <09 ey i 7 def AT Fer:7 AN AT S Rea:TA
Vk > 0.Yp,v,W. p€ D[A] A (k,W,7) €G[I]p A
(k,W)eS[E] =
(k, W, p1(71(e1)), p2(r2(e2))) € E[r] p

AT S Fey ~lo9 eyt def AT S Fep <99 enir A

AT Fey <09 ey o 7

Figure 4. Step-Indexed Logical Relations f&t"

The relationg,, [] p specifies when two computations are logi-
cally related. Two closed, well-typed termsande- are related for
k steps at the type in world W if, given two initial storess; ands:
that are related fok steps at worldV, if s, e; evaluates ta}, v1
in j < k steps then the following conditions hold. First, ec must
evaluate to some), v in anynumber of steps. (For details on why
the number of steps; takes is irrelevant, see Ahmed [1].) Second,
there must exist a worltlV’ € World,_, that extends the world
W. Third, the final stores} ands’, must be related for the remain-
ing k — j steps at world¥’. Fourth, the values; andv> must be
related fork — j steps in the worldV’ at the typer. Notice the
asymmetric nature of the relation on computations; ife; termi-
nates, themz, e; must also terminate. Hence, our relatiohg 7] p
model logical approximation rather than logical equivaken

The cases of the logical relation fgrv.7 and3Ja.7 are essen-
tially standard. The former involvgsarameterizingover an arbi-
trary relational interpretatiog of «, and the latter involveshoos-
ing an arbitrary relational interpretationof «. The way the worlds
are manipulated follows in the style of the other rules. Tdgidal
relation forua.7 is very similar to previous step-indexed accounts
of recursive types, as described in Section 3.5. (Note étt@ipugh
the type gets larger on the r.h.s. of the definition, the stdpx gets
smaller, so the definition is well-founded.)

Any two locations related at a typef — are publicly accessible
references. For reasoning about suishblelocations, existing log-
ical relations methods usually employ some mechanism stdist
tinct from the machinery used to reason about loc&liddenstate.
Since there always exists a bijection between the visildations
of the two computations, the mechanism usually involvesrtpa
special portion of the world that tracks the bijection begweisi-
ble locations as well as the typeof their contents. Unlike previous
methods, our worlds have no specialized machinery for réago
about visible locations. Our technique for modeling (pcifliac-
cessible) references is simply a mode of use of our mechdiism
reasoning about local state.

Intuitively, two locationsl; andl, should be related at the type
ref 7 in world W for k steps if, given any two stores ands, that
are related fok steps at worldV, the contents of these locations,
i.e., s1(l1) andsz(l2), are related fork — 1 steps at the type.
To enforce this requirement, we simply install a specianigho.f
that only cares about the one locatiarin s; and the one location
l2 in s2. Furthermorew,.s has an empty population and a law that
says the population should remain empty in future worldsaly,
the island’sfixedstore relation) relates all stores; ands; whose
contents at locationd andl», respectively, are related at type
for j < k steps. Herg < k suffices since pointer dereferencing
consumes a step (see Section 3.5).

The definitions of logical approximation and equivalence fo
open terms are given at the bottom of Figure 4. These defisitio
rely on the relational semantics ascribed to the cont&xt¥, X,
which we discuss next.

We say a type substitutignbelongs to the relational interpreta-
tion of A if dom(p) = A, and whenevep(«) = (x, 71, 72), X IS
a well-formed relational interpretationd., x € Type[r1, T2]).

We let the metavariablg range of relational value substitutions.
These are finite maps from term variablesto pairs of values
(v1,v2). If v(x) = (v1,v2), then~i(x) denotesv: and v2(z)
denotesvs. We say~ belongs to the relational interpretation of
T for k steps at worldW (written (k, W,~) € G[I'] p, where
FTV(I') C dom(p)), if dom(y) = dom(I'), and the values
~1(z) and~y:(z) are related fok steps in worldV at typel'(z).

We say a worldW satisfies a store typin@ for k steps
(written (k, W) € S[X]) if W contains an island of the form
wrer(k, 0, 7,1,1) for each(l : 7) € X—i.e.,if [ is related to itself
for k steps in worldW at typeref 7.



We write A;T; X - ey <! ey : 7 (pronounced &; logically
approximatese2”) to mean that for allk, given a type substitu-
tion p € D[A] and a relational value substitution such that
(k,W,~) € G[I'] p, where the world/¥ satisfiesX: for k steps,
the closed termpi(v1(e1)) andp2(y2(e2)) are related fok steps
in world W at the typer. Finally, we saye; andez are logically
equivalent, writtem\; T'; & - ey =Y e5 : 7, if they logically ap-
proximate each other.

4.3 Fundamental Property & Soundness of Logical Relation

Here we state some of the main properties of our logicalicglat
and sketch interesting aspects of the proofs. Furtherlgeththe
meta-theory are given in the online technical appendix [3].

Lemma 4.1 (Closure Under World Extension)

LetA + 7andp € D[A]. If (k,W,v1,v2) € V,[7] p and
G.W") 3 (k, W), then(i, W, vr,2) € Valr] .

Proof: By induction onn and nested induction oA + 7. O

An important property of logical approximation is that itas
precongruencei.e., it is compatiblewith all the constructs of the
language (see.g.,Pitts [20]). We state these compatibility lemmas,
and give detailed proofs of the ones involving referenceshée
online technical appendix [3]. The most involved caseslaosd for
allocation fef) and assignment, which we discuss below. Proofs
of compatibility lemmas that do not involve references ptally
follow the proofs given in Ahmed [1]—although we must now dea
with additional hypotheses and goals involving stores andds,
this does not complicate the proofs in any fundamental way.

The compatibility property forref says that ifA;T; X F
el jlog ez : T then A;T; Y F refe; jlog refes : ref 7. In the
proof, we find ourselves at a point where we have steres; :, W
and we allocate locations ¢ dom(si) andlz ¢ dom(sz) to
hold the valuesv: and v» respectively (where we know that
(k,W,v1,v2) € V[r]p). To proceed, we define a new world
W' € World,—1, which is just|W ], extended with a new
islandwyer(k — 1, p, 7,11,12). In addition to showing thatV’ is a
valid world, which is straightforward, we must also showtttiy
(k — 1, W/) _ (k, W) and (2)81[11 — 'Ul], 82[12 — 'UQ] k—1 W/.

For (1) we need to show thatandl; are distinct from locations
that any islandv € W “cares about”—that ig,; ¢ dom(X; (W))
andlz ¢ dom(X2 (1)), which follows easily sincé; andi. are
fresh fors; ands2. For (2) we must show that for all’ ¢ W',
andj < k-1, (], LW’J]'7S1[Z1 — U1],82[l2 — ’Uz]) S w/.’l/J. If
w’ is the new islandv.s(k — 1, p, 7,11, l2), then the desired result
follows from the knowledge that; andwv- are logically related. If
w’ is any other island, it must be th&—1)-th approximation of
some islandv € W. In this case, the desired result follows from
closure ofw.1) under world extension, together with the fact that
ands;[l; — v;] are identical when restricted to the domair®;.

The proof of the compatibility lemma for assignment is quite
similar to that forref, except that we do not add a new is-
land to W since we know thai¥ already contains an island
weef (K, p,7,11,12) wherel; andl; are the locations being updated.

Theorem 4.2 (Fundamental Property)
fFAT;SFe:rthenA; ;8 Fe < e T,

Proof: By induction on the derivation of\;T";> + ¢ : 7. Each
case follows from the corresponding compatibility lemma. O

Soundness To show that the logical relation is sound with respect
to contextual approximation, we need an additional prgpes
call store parametricity This property says thatfif s : ¥ andWW €
Worldy, is a world comprising onev,.r island for each location in
S—ie it X ={li : 71,...,ln s T andW = (wi, ..., wy),
where eachv; = wres(k, 0, 7i, i, 1;))—thens, s :, W.

Notice that, to prove store parametricity, we need to shat th
for each(l; : 7;) € %, the value stored at locatidp in stores is
related to itself at the type; (i.e., (k, W, s(l;), s(l;)) € V [1:] 0).
Unfortunately, the latter does not follow from the Fundataén
Property, which only allows us to conclude from; X - s(l;) : 75
that(k, W, s(l;), s(l;)) € & [r:] 0.

What we need is the notion dégical value approximation
AT oy <% vy ¢ 7, which we define exactly ad; T; 3 +
v = vy @ 7 except that the [7] p at the end of that definition
is replaced withV [7] p. Now we can prove that any well-typed
value is related to itself in the appropriate value relafiofr] p,
not just in the computation relatiofi[7] p as established by the
Fundamental Property. Specifically, we show thaf™; > + v : 7
implies A; T3 F v jé‘;g v : 7. (The proof is by induction on
A;T;% F v . 7 and for each case the proof is similar to that of
the corresponding compatibility lemma.) With this lemmédéand,
store parametricity follows easily.

Theorem 4.3 (Soundness w.r.t. Contextual Approximation)
fFA;T;SF e <% ey : 7thenA; TS Fep < ey 0 7.

Proof: Supposé- C' : (A; T F7) = (5% F7'),Fs: X,
ands, Cle1] —* s1,v1. We must show that, C[ez] |

X ={l:7,....,0n: T} l€tW = (w1,...,w,), where
eachw; = wrer(k + 1,0, 7:,1;,1;). By the compatibility lemmas,
we can show; ;%' F Clei] <" Cleq] : 7'. Hence, noting that
(k+1,W) € S[X'], we have(k+1, W, Cle1], Clez2]) € E[7] 0.
Sinces,s :x11 W (by store parametricity) and, Clei] +——"
s1,v1 (from the premise), it follows that, Cles] ). O

5. Examples

In this section we present a number of examples demongjratin
applications of our method. Our examples do not make use of
recursive types (or even recursion), but Ahmed’s prior waithich

we build on, gives several examples that do [1]. We will walk
through the proof for the first example in detail. For the ravimg
ones, we only sketch the central ideas, mainly by givingasulet
island definitions and type interpretations. Full proofs floese
examples and others appear in the online technical app3idix

5.1 Name Generator

Our first example is perhaps the simplest possible staterdismt
ADT, a generator for fresh names. Nevertheless, it capttmes
essence of theymbol example from the introduction:

e=1letrx=ref(in
packint, (A\z:unit. (++z), Az:int. (z < 'z)) aso

wheres = Ja. (unit — a) x (a — bool) and(++x) abbreviates

the expressiofr := !'z+1; ! z), andlet is encoded in the standard
way (using function application). The package defines atradis
type a of names and provides two operations: the first one returns
a fresh name on each invocation, and the second one chedks tha
any value of typex it is given is a “valid” namej.e., one that was
previously generated by the first operation.

Names are represented as integers, and the local counter
stores the highest value that has been used so far. The éatend
invariant of this implementation is that no value of typever has
a representation that is greater than the current contentlhder
this invariant, we should be able to prove that the secondatipe,
which dynamically checks this property, always retutpsge.

To prove this, we show thatis equivalent to a second expres-
sion¢’, identical toe, except that the dynamic che¢k < 'z) is
eliminated and replaced lyrue. We only show the one direction,

F e <9 ¢’ : 0. The other direction is proven analogously.



Because the terms are closed, this only requires showirg tha
(ko, Wo,e,e’) € E[o] 0 for all kg > 0 and worldsiWy. Assume
storesso, sy 1k, Wo and the existence of a reduction sequence
s0,e —"1 51,01 with k; < ko. According to the definition of
& [o] 0, we need to come up with a reductiefy, ¢’ ——* s}, v}
and a worldiW; such that(ko — k1, W1) 3 (ko, Wo) and:

81,8’1 ko—kq Wi A (ko — ka1, W17U17U1) cy [[O'ﬂ [0}
By inspecting the definition of reduction, we see that
s1 = so[l — 0], wv1 =packint, (Az.(++1),\z.(z < 1)) asc

for somel ¢ dom(so). In the same mannes;, ¢’ obviously can
choose somé& ¢ dom(sg) and reduce to:

s1 = so[l' — 0], wi = packint, (Az.(++1), A\z.true) as o

Now we chooséVs to be| W2 ]k, i, With its (p + 1)-th island
updated tqn]j;fks , Lrs—1y ). Again, we have to check the relevant
properties, (k2 — ks, W3) 3 (k2, W2) and ss, s5 thy—ks W3,
which are straightforward. Last, we have to show that theltes
vs, v3 are related iV o] p under this worldi.e., (k2 —ks, W3, n+
1,n+ 1) € xa. Sincen +1 € Voyp1 = Wilp + 1].V, this is
immediate from the definition of..

Now consider (2). The proof is similar to that for part (1)t bu
simpler. We are given thdtks, Wa,v2,v3) € V[a] p = Xxa, and
s2, (v2 < 1) ——"3 g3, 03 for someks < kz. The main thing to
show is thatvs = true (we can pick the end worl&ls to just be
| W2]k,—x5). Asin part (1), we can reason that:[p 4 1].n = g,
for somen, and therefore that>(1) = n and, by definition ofy.,
also thatve < n. Hencep2 < s2(1), and the desired result follows
easily.

We now need to define a suitable island that enables us to show

thatv, andv] are related. We knowV, has the formws, . . ., wp)
for somep. Let W1 be |Wo |r,—k,, extended with a new island,
wp+1, defined as follows:

Wp+1 (Mg k> Lro—ky)
me = (i, Vo, {L s int}, {I' s int})
IZL = {(]7 W7875/) (S StoreAtomk | S(Z) = sl(l/) = n}
Vo = {i|1<i<n}
Le = {(,n}) € LawAtom, | n € N}

The populatiorV;, consists of all integers that are “valid” names in
the current worldj.e., not greater than the current valueaof We
have to ShOV\(k‘o — k‘17W1) | (k07W0) and81,8/1 ko —k1 Wi.
Both are straightforward.

By definition of V [3a.7], we need to continue by giving a
relationx. € Typelint, int], such that:

(ko — k1, Wi, (Az.(++1), Az.(z < 1)), (Az.(++1"), Az.true))
€ V[(unit — a) x (e — bool)] p

with p = [@ — (xa, int, int)]. We choose the following one:
Xa = {(j, W,i,i) € Atom[int,int] | i € W[p+ 1.V}

This interpretation ofe depends on the (valid) assumption that
it will only be considered a#¥’s that are future worlds oit’;
(in particular, it assumes that thg+(1)-th island in W, written
W(p + 1], is a future version of they,;.;, we defined above). We
could build this assumption explicitly into the definitiohg,, but
as we will see it is simply not necessary to do so. By virtuehef t
assumption, a valugis only a valid inhabitant of type in worlds
whose p-+1)-th island population containsthat is, where [ > 4.
Note that the relation is closed under world extension bee&u
may only grow over time, as explained in Section 3.3.

By definition of V [+ x 7'], it remains to be shown that:

1. (ko — k1, Wi, Az.(++1), Az.(++1")) € V [unit — o] p
2. (ko — k1, W1, Az.(2 < '), Az.true) € V [ — bool] p

For each of these, we assume we begin in some strictly futarklw
Wao in which (kz7 WQ) | (ko — k1, W1) and52, 8/2 ko Wa.

First consider (1). We are givesy, (++41) —"3 s3,v3 for
someks < k2, and it remains to show thaf, (++1") —* s5, v3,
such thaks, s5 andvs, v} are related in some future worldis such
that(kz — k:g, Wg) _ (kQ, WQ)

From (k2, W2) 3 (ko — k1, W1) we know thatWs[p + 1].L =
[Wilp+1].L]| ko = Lk, From that(ke, Walp + 1].n) € Ly
follows, and hence there exisisuch that¥z [p+1].n = ny,. That
is, Wa[p+1].4 = op, andWa[p+1].V = V,,. Fromsa, s i, W
andks < ko we can concludéks, |Wa |k, s2,52) € ¢, and
thus sz (1) s5(I') = n. Consequentlyps = vj n + 1,
s3 = so[l — n + 1], andss = 5[ — n + 1].
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5.2 Usingref As a Name Generator

An alternative way to implement a name generator is to remtes
names by locations and rely on generativity of & operator.

e = pack ref unit, (Az : unit. (ref ()),
Ap: (ref unit x ref unit). (fst p==sndp)) aso

whereo = Ja. (unit — a) X (o x a — bool). Here, the second
function implements a proper equality operator on namesweve
to prove this implementation contextually equivalent t@ arsing
integers, as in the previous example:

e =letx=ref0in
packint, (Az: unit. (++z),
Ap:(int x int). (fst p = sndp))aso

Here are a suitable island definition and type interpretdato «:

= (77/8) 5 ‘Cko )

Wp+1
it = (g Vil sunit [ 1< <}, {1 int})
i = {(4,W,s,s") € StoreAtomy, | s'(I') = n}
Viy,oany = {{liyi) | 1 <i <n}
Ly = {(J, n§l1""’l">) € LawAtomy, | n € N}
Xa = {(J, W, 1,1) € Atom|[ref unit,int] |

(i) € W[p+1].V}

Here, and in the examples that follod, represents the current
step level, ang the number of islands in the current woflid,, at
the point in the proof where we extentl, with the islandw,+1
governing the example’s local state. In this example, werass
that all labels in a listly, .. .,1,) are pairwise disjoint, and is

a distinguished label, namely the one that has been albfate:
(as in the previous example).

In the definitions above, the population not only records the
valid names for’ (as in Section 5.1), but also relates them to the
locations allocated by. The latter are not guessable ahead of time,
due to nondeterminism of memory allocation, but the l&wis
flexible enough to permit any partial bijection betwedn. .., n}
and Loc to evolve over time. We (ab)use term-level pajits) to
encode this partial bijection iW. This is sufficient to deduce= j
iff [; = I; when proving equivalence of the equality operators.

5.3 Twin Abstraction

Another interesting variation on the generator theme weslthe
definition oftwo abstract types (we writgack 71, 72, e as I, 5.7
to abbreviate two nested existentials in the obvious way):

e=1letx=ref(Oin
packint, int, (Az

Az

Ap

sunit. (++z),
sunit. (++x),
:(int x int). (fstp = sndp))aso



whereo = Ja, 5. (unit — «) x (unit — B) x (a X 8 — bool). So, assuming we have been given a relational interpretation
Here we use a single counter to generate names of two types,x. € Type|Ta, 7S] for the type parametet, consider the proof
« and 8, and a comparison operator that takes as input namesthat the constructor functions are logically related. Whencon-
of differenttype. Because both types share the same counter, it structors are called, we allocate fresh statiex: the first program,

appears impossible for a name to belong to both types (éitivess
generated as a name of typeor of type 8 but not of both). The
example is interesting, however, in that we have no way ofkng
the interpretations af and ahead of time, since calls to the name
generation functions can happen in arbitrary combinatidfescan
verify our intuition by proving that is equivalent to ar’ where
the comparison operator is replacedXyy: (int x int). false.

The followingw andy definitions enable such a proof:

Wp+1 = (772;)@7Lk0)
S = (Y, Vs, {L = int}, {I' : int})
w=1{(j,W,s,s") € StoreAtomy, | s(l) = s'(I') = n}
Vs ={(L,d)|ieSTU{(2,i)]|ie{l,...,n}\ S}
L ={(, 77;“5) € LawAtomy |n € NAS C{1,...,n}}
Xa = {(3, W,i,i) € Atom]int,int] | (1,i) € W[p+1].V}
xs = {(4, W,i,i) € Atom[int,int] | (2,i) € W[p+1].V}

The population here is partitioned into the valid namesdand
the valid names fof, basically recording the history of calls to the
two generator functions. To encode such a disjoint unidr,irach
value is wrapped in a pair with the first component markingype

it belongs to (1 fory, 2 for 3). When proving equivalence of the two
comparison operators, the definitionsxof, xg andWp + 1].V
directly imply that the arguments must be from disjoint sets

5.4 CellClass

The next example is a more richly-typed variation of the kigh
order cell object example of Koutavas and Wand [13]:

e = Aa.packref o, (A\x: . ref z,
Arcref . e,
Xr,z):refa X a.(r:=z))aso

whereo = 38.(a« — B) x (8 — «a) X (8 x o — unit). We
use pattern matching notation here merely for clarity areViby
(imagine replacing occurrencesroéndz in the third function with
fst andsnd projections, respectively, of the argument).

This example generalizes Koutavas and Wand'’s originalmers
in two ways. First, we parameterize over the cell contene typ
which can of course be instantiated with an arbitrary higkpe,
thus exercising our ability to handle higher-order storetlies.
Second, instead of just implementing a single object, oanmgpte
actually models &lass whereg represents the abstract class type,
and the first function acts as a constructor for creating redivb-
jects. (A subsequent paper by Koutavas and Wand also cosside
class-based version of their original example [14], bud inbdeled
with a Java-like nominal type system, not with existentyplets.)

Similar to [13], we want to prove this canonical cell impleme
tation equivalent to one using two alternating slots:

e’ = Aa. pack (ref int x (ref a x ref ),
(Az: . (ref 1, (ref x,ref ),
Ao, (r1,72)) : (refint X (ref a x ref @)).
if 'rg = 1 then !r; else !ra,
A{(ro, (r1,72)), ) : (refint x (ref a x ref a)) x .
if lrg =1 then(ro :=2;72 :=1x)
else(ro:=1;r1 :=x))aso

Whene or ¢’ is instantiated with a type argument, neither one
immediately allocates any new state. Correspondinglysiamd is
introduced at that point in the proof. Rather, a new islaretided

to the world at each call to the classes’ constructor funstidor it

is at that point when fresh state is allocated in both program
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and Iy, (I1,15)) in the second program. For convenience, we will
package these together notationallylas= (I, (Iy, (I1,15))). We
now extend the current world” with w,1, defined as follows:

wp1 = (1l Lhy)
e = (W {lsh (U mad, {lo s int, 127, B 74 ))
b = {(j,W,s,s') € StoreAtomy, |
Fie {1,2}.5' (1) =i A (§, W, s(1),8"(15)) € Xat
£g ={G.n) |3 <k}

The store relation)!* ensures that the contentsiddre related (by
Xa) to the contents of the proper slit or 15, depending on the
current flag value stored iy. Note how the definition of’}® relies
crucially on the presence of the world paramét@ér Without it,
we would not know in which world to compargl) and s’ (I;).
Note also that in this example,;; does not evolveife.,its store
relation remains the same in all future worlds).

Finally, when proving equivalence of the existential pags
we represent the cell class typawith x 3 defined as follows:

XB = {(J7 W7l7 <l67< ,17ll2>>) | W e WOT’ldj A\
Jw € W.w = (1", £3°), wherels = (I, (Io, (11, 15)))}

Note thatxg includesls’s owned byanyisland of the right form.
This might add some “junk” to the relatioe.g.,objects that were
created by some other class’s constructor function), bytsaich

junk is harmless since it adheres to the same invariantsthieat
objects created by ande’ do.
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A well-known example that has caused trouble for previogekd
relations methods is Pitts and Stark’s “awkward” examplg].[2
Although this example does not involve existentials, it pesven
difficult to handle because it involves areversible state change

Irreversible State Changes

e = letz=refOinAf: (unit — unit). (x:=1; f(); 'x)

e = Af:(unit — unit). (f(); 1)

The idea here is that and e’ are equivalent because, as soon as
they are applied, the contents:ofire set to 1, after which pointc
will always return 1. In other words, the first applicationeaharks
an irreversible state change fram— 0tox — 1.

Intuitively, irreversible state changes are hard to haiifdibe
knowledge about a piece of local state is fixed once and fatall
the point it is allocated. Using traditional possible-vasrimodels,
the most precise invariant one can enforce about the cent#nt
x is that they areeither 0 or 1. With such a weak invariant, it is
impossible to know when returning froif() whether! z is still 1.

Using populations, however, we can prove the equivalenee of
ande’ quite easily. A suitable island definition is:

= (7720 ) ‘cko)

Wp+1
m = (W, Vil sint} {})
oy = {(j,W,s,s") € StoreAtomy, | s(l.) = |V}
Lo = {Gn)Ji<knlVI<1}
The intuition here is that we usié to encode a flag telling us

whetherz has already been set to 1. Initiallyz is 0, signified
by V = 0. Whenz is set to 1, we add some arbitrary valuelfo
making it a singleton set of size 1. Becaugds only allowed to
grow, we know thatr can never be changed back to 0. In addition,
since the lan’, requiregV| < 1, z must remain at 1 permanently.



5.6 Callback with Lock its first (upper) and last (lower) step, andbeing the value to which

The proofs for the examples presented so far do not use stiegén x _is fixed during the window. The side condition/_ﬂvc ensures that_
in an interesting way. The last of our examples, which isiiesp windows do not oyerlap._ConsequentIy, therg is always aueniq
by the reentrant callback example of Banerjee and Naumapn [6 'OWest (newest) windounin(V') = (ki, k2,n), i.e., the one with
demonstrates an unexpected case where the steps come jn handN€ least first projection (the,). The store relation) ensures that,
Relying as it does on subtle stepwise reasoning, our prachfs if the step level; has not yet passed the lower boukg of the

; ; : : t windowi(e., if j > k2), then !z must equal the: from
example is rather involved (some might say ugly), but likcogd =~ NEWES! "
walking on its hind legs, one is surprised to find it done at all that window, and the lock must be held. The definition/oélso

Consider the following object encoding of higher-ordereyp prohibits windovx_/s from starting_in the future by_ requirings k:.
7 = ((unit — unit) — unit) X (unit — int): To prove equivalence of the increment functions, startirsjep

k with so(l:) = so(l,) = nandso(ly) = so(l) = true (the

e = CfO;z:=tx+1] interesting case), we proceed jpn steps to seb to false, and
then add a new lowest windogk — j1,k — j1 — j2 — 1, n) to the
population of thep+1)-th island. Next, we knowy () returns after

C = letz=ref0in(Af:unit — unit.[], Az :unit. 'z) exactlyj» steps in some future world’, and the stores; ands;

that it returns must be related by at stepm = k — j1 — j2, which

means thatm — 1, |W |n—1,s1,s1) € Wlp + 1].¢. Since the

step levelm — 1 is still in the range of the window we installed,

we know thatf () could not have added an even lower window to

the population of thép+1)-th island (as the law disallows adding

where

It implements a counter object with two methods: an incregmen
function, and a get function requesting the current couvadre.
An interesting feature of this object is that its incremergtinod
takes a callback argument, which is invoked before the @sliat

incremented. - ! -
Now, consider the following alternative implementation tiois wzr;dngtt\?gtart inthe future). Thus, we knoYv t[,?ﬁtp+1]‘w —
Y 720" and consequently (I,) = si(l,) = n and

bject, in whichz is deref teforethe callback:
oblect. in W/ Ichie 1S dereferencetietoretne caflbac s1(ly) = si(l;) = false. That is, thanks to our use of the lock,

e = Clletn='!zinf();z:=n+1] the call tof () could not have affected our local state.

One might naively assume that the two versions are equivale 57 \ell-Bracketed State Changes

becauser is not publicly accessible. Byt might perform arbitrary

operations, including recursively calling the incremantdtion! In

this caseg may be modified between read and write access.in
Such reentrance can be prevented by adding a lock:

To conclude, we give two examples that our method appewable
to handle. The first one, suggested to us by Jacob Thamsbag, i
variant of Pitts and Stark’s “awkward” example (Section)5.5

C = letb=ref truein e = letr=ref(in
letz=ref(in Af i (unit — unit). (z :=0; f();z :=1; f(); ')
(A\f :unit — unit. ¢ = Af:(unit — unit). (fO; £0: 1)

(if 'bthen (b:=false;[]|;b:=true)else())

Az : unit. 1) Here, unlike in the “awkward” example, the state mofchanges

o ) ) ) ) back and forth between 0 and 1. The reason we bekeard ¢’
Note that it is still possible foyf to invoke the get function, which to be equivalent (we do not have a proof!) is that the stategds

justreadsthe currentz. . ) occur in a “well-bracketed” fashion —-e., every change to 0 is
With C' reimplemented using a lock,ande’ are now contextu-  guaranteed to be followed later on in the computation by agha
ally equivalent. But how do we go about actually proving #i® to 1. This implies (informally) that invoking the callbackrfction

show the two increment functions equivalent, we need tdoéiska  r will either leave the state of unchanged or will return control
that f cannot modifyz. But how can we set up an island that en-  with » set to 1. However, it is not clear to us how to formally
sures that? After all, the island’s law must certainly allopdates  establish this. The trick of representing irreversibleestzhanges
to = in general pr can we formulatg a I.aw that allows the store via population growth is inapplicable since the state cleangre
to change, but still catemporarilyprohibit it? _ not irreversible, and the time windows idea from Section i5.6
Steps to the rescue! When proving that the two incrementfunc jnapplicable as well since the example does not make useks.lo
tions are related, we assume that one terminates jnstieps. As-
sumingb is set totrue (i.e., assuming that is “unlocked”), we 5.8 Deferred Divergence

can partition the reduction sequence for its executionfm_nbases Here is another example we cannot handle, due to Hongseak?van
of lengthji +j2 +j3 = j, wherej, spans the steps spent in the call

to f. Thesej, steps are the time window in whichis not allowed er = Af:(unit — unit) — unit. f (Az: unit. diverge)
to change. So the idea is to define a law that allows settingngppt €2 = Af + (unit — unit) — unit.
windows of this kind, during whichz must remain constant. letz=refOinlety=ref(in
The following island definition does the trick: f(Az:unit.if 1z = Otheny :=1elsediverge);

if ly = Othenx :=1elsediverge

Wpa1 = (n{<k07k0,0)} Li,) ] ] ) ] )
"*V krgin(V) ) Ro ) , . Here, f may either call its argument directly, in which case the
e = (Vy, s Vi {ly : bool, Iy :int}, {l}, : bool, I}, :int}) computation clearly diverges (i this happens eventually because
w,ikhk%n) = {(j,W,s,s’) € StoreAtomy, | y is set to 1), or it may store its argument in some ref cell. In
(G <Ekins(ly)=5y) Ns(lz) =5"(I3) A the latter case, any subsequent call to the stored argurgethieb
(j > ko = (s(ly) = false A s(lz) =n))} program context will also cause divergence (in the casexof
L= A{(7, nJV) € LawAtomy, | becauser will be 1 at that point). Only if neithef nor the context
V= {{k1,k,n1), ..., (km, Kby, m )} A ever tries to callf’s argument may the computation terminate.

ki > Ky > ko > > kyq > ki > K}
) ) . ) ) 2 A similar example is discussed in Benton and Leperchey [7heend
Each window is represented by a trigle , k2, n) in V' (assuming of their section 5. However, the two terms in their exampteraot actually
the obvious encoding of triples using pairs), withandk. giving equivalent in our language, because we have higher-orole. st
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For us to prove:; andes equivalent, we would need some way
of relating the two arguments té. Initially, however, when the
arguments are invoked, one terminates and the other dogsmot
it is not obvious how to relate them. In fact, they are onlyatedl
under the knowledge of what ande: will do after the call tof.

textual equivalence, it is still useful for proving repretaion in-
dependence results, which is our primary focus. Recent Wwgrk
Ahmed and Blume [2] involves a variant of [1] thit complete
with respect to contextual equivalence, where completeisesb-
tained by essentially Church-encoding the logical intetgtion of

This suggests to us that one way to handle such an examplé migh existentials (this is roughly similar to whatT -closure does, t00).

be to define a relation on terms coupled with their contirzuneti

6. Related and Future Work

There is a vast body of work on methods for reasoning aboat loc
state and abstract data types. In the interest of space, lweitna
representative fraction of the most closely related reaenk.

Logical Relations Our work continues (and, to an extent, synthe-
sizes) two lines of recent work: one on using logical relaito
reason about type abstraction in more realistic langudlyesther
on using logical relations to reason about local state.

Concerning the former, Pitts [20] provides an excellentoiesv,
although it is now slightly outdated — in the last few yeaesjesal
different logical relations approaches have been proptmsehn-
dling general recursive (as well as polymorphic) types f611],
which Pitts considers an open problem. Much of the work os thi
topic is concerned with logical relations that are both sband
completewith respect to contextual equivalence. Completeness is
useful for establishing variolwextensionality propertieat different
types,e.g.,that two values of typ&«.7 are contextually equiva-
lent iff their instantiations at any particular typé are equivalent.

In general, however, just because a method is complete with r
spect to contextual equivalence does not mean thatafféective

in proving all contextual equivalences. In fact, Pitts gieerepre-
sentation independence example for which existing teclasigre
“effectively” incomplete®

For a logical relation to be complete it must typically be wha
Pitts terms “equivalence-respecting.” There are differemys
to achieve this condition, such asT-closure [20], biorthogo-
nality [16], or working with contextual equivalence classef
terms [11]. Pitts’ T T-closure neatly combines the equivalence-
respecting property together wittumissibility(or continuity, nec-
essary for handling recursive functions) into one package.

We build on the work of Ahmed [1] on step-indexed logical
relations for recursive and quantified types. One advanvadlee
step-indexed approach is that admissibility comes “foe frn the
sense that it is built directly into the model. By only evesigening
about finite approximations of the logical relatiov, (] p), we
avoid the need to ever prove admissibility. (In other worals,
inadmissible relation is indistinguishable from an adibigsone
if one only ever examines its step-indexed approximatjoQ.

We are currently attempting to develop a complete versioouof
method, using a similar approach to Ahmed and Blume.
Concerning the second line of work — logical relations for
reasoning about local state — most of the recent previouk wer
know of employs possible-worlds models of the sort we diseds
in Section 3.2, so we refer the reader to that earlier se¢tioa
thorough comparison [21, 22, 7, 10]. However, there are agemt
pieces of work that are worth discussing in further detail.
Perhaps the closest related work to ours is Nina Bohr's PhD
thesis [9], which extends her work with Lars Birkedal [10]twmo
directions. First, she gives a denotational possible-atgorhodel
for a language with general recursive types, polymorphiand
higher-order references, with the restriction that refees must
haveclosedtype. This restriction seems to imply that her method
is inapplicable to the cell class example in Section 5.4 beeat
involves references of typesf a. Second, she proposes a more
refined (and complex) notion of possible world in which aarisl’s
store relation has the ability to change over time. Thisrglar in
certain ways to our population technique, except that Hands
do not contain anything resembling a population. Her apgras
designed to handle examples involving irreversible statnges,
like Pitts and Stark’s “awkward” example (Section 5.5), bot
generative ADTs (Sections 5.1-5.3). Bohr’s possible wsodtso
include the ability to impose invariants on tleentinuationsof
related terms, so we believe her technique can handle ableasf
not both, of the examples in Section 5.7 and 5.8, which weaann
In a paper conceived concurrently with ours, Birkedal, 8ty
and Thamsborg [8] present a relationally parametric deiootzl
model of a language with general recursive types, polynismph
and references of arbitrary type. Their model improves ohrBo
in the flexibility of its references, but it offers only a weadtion of
possible worlds, with which one can only do very simple reasp
about local state. Their model cannot handle any of our el@snp

Bismulations For reasoning about contextual equivalences (in-
volving either type abstraction or local state), one of thestsuc-
cessful alternatives to logical relations is the coindigctechnique

of bisimulations Pierce and Sangiorgi [19] define a bisimulation
for reasoning about polymorphic-calculus, and they demonstrate
its effectiveness on an example that is similar to our syntétalie
example. Due to the low-level, imperative nature of thealculus,

it is difficult to give a precise comparison between theihteque

course, the price one pays for this is that one is forced to use and ours, but the basic idea of their technique (describémivpe

stepwise reasoningverywhergso admissibility is not really “free”
after all. To ameliorate this burden, we are currently itigesing
techniques for proving logical approximation in our modéthout
having to do explicit stepwise reasoning. As we saw in Sa&ié6,
though, sometimes the presence of the step indices can|tfelhel
Like Ahmed’s previous work, our logical relation is soundi b
not complete, with respect to contextual equivalence. glitecom-
plete except for the case of existential type§Vhile our method
cannot in its current form prove extensionality propertégon-

3 Pitts’ example is actually provable quite easily biyansitivecombination
of logical relations proofs www.mpi-sws.org/~dreyer/pitts.txt).

Dreyer has suggested a harder example, mentioned on pageS2bni
and Pierce [28], for which there is not even any known “bifatee” proof.

4The published conference version of her paper claims futipleteness,
but the proof contains a technical flaw uncovered by the skaathor. The
extended version of her paper corrects the error [1].
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has been quite influential on subsequent work.

Sumii and Pierce define bisimulations for an untyped lan-
guage with a dynamic sealing operator [27], as well as an ex-
tension of System F with general recursive types [28]. Keaga
and Wand [13] adapt the Sumii-Pierce technique to handle an
untyped higher-order language with general referenceshén
process, they improve on Sumii-Pierce’s treatment of canéd
equivalences involving higher-order functions. Inteiregly, the
Koutavas-Wand technique involves the use of inductiveveitep
reasoning when showing that two functions are in the bisitior.
Subsequently, Sangiorgi, Kobayashi, and Sumii [26] pregowi-
ronmental bisimulationsvhich generalize Sumii and Pierce’s pre-
vious work to an untyped framework subsuming that of Kowava
Wand’s, but in a way that does not appear to require any ssepwi
reasoning. While all of these bisimulation approaches atmg
and complete with respect to contextual equivalence, nandlbs
a language with both existential type abstraction and nhestate.



There are many similarities between bisimulations andckgi
relations, although a precise comparison of the technicgraains
elusive (and an extremely interesting direction for futurerk).
With bisimulations, one defines the relational interpietet of ab-
stract types, or the invariants about local stagefront, as part of a
relation also containing the terms one wishes to prove gturaéy
equivalent, and then one proceeds to show that the relatiemas
defined is in fact a bisimulation. With logical relationsetproof
proceeds backward in a structured way from the goal of stpwin
two terms logically equivalent, and the invariants abouetyep-
resentations or local state are chosen in mid-proof. Itgsialy
easier to sketch a bisimulation proof (by just stating theni-
lation), whereas the islands agddefinitions in our proof sketches
must be stateth medias resOn the other hand, our islands apd
are more minimal than bisimulations, which must often e
include a number of redundant intermediate proof steps.

The Sumii-Pierce-Koutavas-Wand-Sangiorgi-Kobayashiris
approach is roughly to define bisimulations as sets of mafi
with each relation tied to a particulanvironmente.g., a type
interpretation, a pair of stores, etc. Various “up-to” teiclues are
used to make bisimulations as small as possible. This apiproa
seems conceptually similar to possible-worlds semantigsthe
exact relationship is unclear, and we plan to explore th@ecton
further in future work.

Separation Logic To reason about imperative programs in a lo-
calized manner, O’'Hearn, Reynol@s$ al. introducedseparation
logic [24] as an extension to Hoare logic. Separation logic has
been enormously influential in the last few years, but it hatsto
our knowledge been used to reason about higher-order tymed f
tional languages with type abstraction and higher-ordaesiNo-
tably, however, the desire to scale separation logic tcoreabout

a functional programming language has led to Hoare Type fifheo
(HTT) [18]. HTT is a dependently typed system where computa-
tions are assigned a monadic type in the style of a Hoaretfiji-

der this approach, programs generally have to pass aroyatidiex
proof objects to establish properties. Currently, HTT dméydles
strong update (where alocation’s type can vary over tin)Mi-
style references with weak update (and thus stronger sves).

Relational Reasoning About Classes There is a large body of
work on reasoning techniques for object-oriented langsiager
example, Banerjee and Naumann [5] present a denotatiortabohe
for proving representation independence for a Java-likguage.
Koutavas and Wand [14] have adapted their bisimulation@aagr
to a subset of Java. The languages considered in these woriat d
provide generativity and first-class existential typeg, riather tie
encapsulation to static class definitions. On the other hsutase-

quent work by Banerjee and Naumann [6] addresses the issue of

ownership transfer, which we do not. We believe that the gene
tivity of existential quantification and the separationanéd by
possible-island semantics are closely related to variotioms of
ownership and ownership types, but we leave the investigaif
this correspondence to future work.
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