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Abstract
Fine-grained concurrent data structures (or FCDs) reduce the gran-
ularity of critical sections in both time and space, thus making it
possible for clients to access different parts of a mutable data struc-
ture in parallel. However, the tradeoff is that the implementations
of FCDs are very subtle and tricky to reason about directly. Con-
sequently, they are carefully designed to be contextual refinements
of their coarse-grained counterparts, meaning that their clients can
reason about them as if all access to them were sequentialized.

In this paper, we propose a new semantic model, based on Kripke
logical relations, that supports direct proofs of contextual refinement
in the setting of a type-safe high-level language. The key idea behind
our model is to provide a simple way of expressing the “local life
stories” of individual pieces of an FCD’s hidden state by means
of protocols that the threads concurrently accessing that state must
follow. By endowing these protocols with a simple yet powerful
transition structure, as well as the ability to assert invariants on both
heap states and specification code, we are able to support clean and
intuitive refinement proofs for the most sophisticated types of FCDs,
such as conditional compare-and-set (CCAS).

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs

Keywords Refinement, fine-grained concurrency, linearizability,
separation logic, logical relations, data abstraction, local state

1. Introduction
Suppose you want to take a sequential mutable data structure and
adapt it to a concurrent setting, so that multiple threads can safely
access it in parallel. The simplest way to do it is to treat all of the
operations on the data structure as critical sections governed by a
common lock. This coarse-grained approach to concurrency is easy
for clients to reason about, since it essentially sequentializes all
access to the data structure, but by the same token it also thwarts any
speedup one might hope to gain from parallelism. In contrast, fine-
grained concurrent data structures (or FCDs) reduce the granularity
of critical sections in both time and space, often down to a single
primitive atomic instruction like “compare-and-set” (CAS), so that
clients can exploit parallelism by having different threads manipulate
different parts of the data structure simultaneously.
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As FCDs are very tricky to reason about directly, they are
carefully designed to be contextual refinements of their course-
grained counterparts. This means essentially that, performance gains
aside, no client can tell they are working with the fine-grained
version of a data structure instead of the coarse-grained version.
Put another way, the FCD is a faithful implementation of its coarse-
grained specification. Thus, clients can safely reason about the FCD
as if all access to it were sequentialized, while at the same time
reaping the efficiency benefits of parallelism.

Contextual refinement is clearly an essential property that clients
of an FCD expect to hold [20]. The question is how to prove it.
In this paper, we propose a new semantic model that supports
direct proofs of contextual refinement in the setting of a type-safe
high-level language. The key idea behind our model is to provide
a simple way of expressing the protocols that govern the hidden
state of an FCD and that the threads concurrently accessing it must
follow. By endowing these protocols with a simple yet powerful
transition structure, as well as the ability to assert invariants on both
heap states and specification code, we are able to support intuitive
refinement proofs for the most sophisticated types of FCDs. We
now examine these selling points in more detail.

Direct: Rather than prove contextual refinement directly, most prior
approaches have focused on proving a related property on traces
called linearizability [21]. Linearizability is often viewed as being
synonymous with contextual refinement, but in fact this has only
recently been shown by Filipovic et al. [14] to be the case (and
only for a particular class of languages). As Filipovic et al. argue,
refinement is the property that clients of an FCD actually want, and
linearizability is one technique for proving it. We instead provide
a direct proof technique for contextual refinement, which sidesteps
any discussion of linearizability.

High-level language: Most prior work has only considered FCDs
coded in first-order C-like languages. However, one of the most
widely-used FCD libraries, java.util.concurrent, is written in a
type-safe high-level language (Java) and indeed depends on the ab-
straction facilities of Java to ensure that the private state of its FCDs
is hidden from clients. Our approach is the first to prove contextual
refinement for java.util.concurrent-style FCDs in the setting of a
higher-order language with abstract types, recursive types, and gen-
eral mutable references, thus establishing the correctness of these
FCDs when linked with unknown well-typed client code.

How? To achieve these first two aims, we employ a step-indexed
Kripke logical relations (SKLR) model [2, 3, 9, 4]. SKLRs have been
actively developed in recent years as an effective tool for reasoning
about representation independence for higher-order stateful ADTs,
and thus provide a solid foundation for reasoning about contextual
refinement of concurrent objects in a realistic, high-level setting. To
adapt SKLRs to reasoning about FCDs, we follow the approach of
recent work by Birkedal et al. [5] and employ a “small-step-style”
model, which accounts properly for the possibility that threads are
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preempted after every step of computation. Birkedal et al.’s model,
however, is limited in its ability to reason about interference between
threads, which is ubiquitous in FCDs. We therefore generalize their
model with support for protocols.

Protocols: To understand how an FCD works, it helps to think of
each piece of the data structure (e.g., each node of a linked list) as
being subject to a protocol that tells its “life story”: how it came to be
allocated, how its contents evolve over time, and how it eventually
“dies” by being disconnected (or deleted) from the data structure.
This protocol describes the rules by which all threads must play as
they access the shared state of the FCD.

A number of FCDs additionally require their protocols to support
role-playing—that is, a mechanism by which different threads
participating in the protocol can dynamically acquire certain “roles”.
These roles may enable them to make certain transitions that other
threads cannot. A simple example of this is a locking protocol, under
which the thread that acquires the lock adopts the unique role of
“lock-holder” and thus knows that no other thread has the ability to
release the lock.

How? Following recent work by Dreyer et al. in the setting of
SKLRs [9], our model supports a direct encoding of protocols as
state transition systems (STSs) of a certain kind. In comparison to
Dreyer et al.’s work, we deploy STSs at a much finer granularity and
use them to tell local life stories about individual nodes of a data
structure. Of course, there are also “global” constraints connecting
up the life stories of the individual nodes, but to a large extent we
are able to reason about FCDs at the level of these local life stories
and their local interactions with one another.

In order to account for role-playing, we enrich our STSs with a
notion of tokens. Intuitively, the idea is that, while the STS defines
the basic roadmap for the possible changes to the state of the FCD,
some of the roads on that map are toll roads that may only be
traversed by threads owning certain tokens. This idea is highly
reminiscent of recent work on “concurrent abstract predicates” [7],
but we believe our approach is simpler and more direct.

The most sophisticated types of FCDs: In proving refinement for
each operation of an FCD, a key step is identifying its linearization
point, the point during its execution at which the operation can be
considered to have “committed”, i.e., the point at which its coarse-
grained spec can be viewed as having executed atomically. What
sets the most sophisticated FCDs apart from the pack, and makes
them so challenging to verify, is that their linearization points are
hard to identify in a thread-local and temporally-local way.

For example, the “elimination stack” FCD [19] provides side
channels by which a “push” and “pop” operation can mutually
decide to cancel each other out without touching the stack itself.
This works by having one operation (say, push) use the side channel
to offer its argument to be pushed; if a thread running the pop
operation sees this offer, it can commit both the push and pop at
once. Although it is very kind of the pop thread to cooperate with
the push thread by helping it complete its operation in this way, it
also means that the linearization point for push occurs during the
execution of pop, thus making thread-local verification difficult.

In other algorithms like CCAS [18, 15], the nondeterminism in-
duced by shared-state concurrency has the effect that it is impossible
to determine where the linearization point has occurred until after
the fine-grained operation has completed its execution. This in turn
makes it challenging to reason about refinement in a temporally-
local way, i.e., showing that each step of the algorithm, considered
in isolation, obeys the FCD’s shared-state protocol.

How? The whole point of SKLRs is to provide a way of
describing local knowledge about the hidden resources of an abstract
data type, but in prior work those “hidden resources” have been
synonymous with “local variables” or “a private piece of the heap”.

To support reasoning about thread cooperation and nondeterminism,
we make two orthogonal generalizations to the notion of resources.

First, to model cooperation, we extend resources to also include
specification code. This extension makes it possible for “the right to
commit an operation” (e.g., push, in the example above) to be treated
as a shareable resource, which one thread may pass to other “helper”
threads to run on its behalf. Second, to model nondeterminism,
we extend resources to include sets of specification states. This
extension makes it possible to speculate about all the possible
specification states that our FCD implementation could be viewed
as refining, so that we can wait until the implementation has finished
executing to decide which one we want to choose.

Both of these extensions are formally and conceptually simple—
especially in comparison to prior approaches relying on ghost and
prophecy variables [1]—and we will demonstrate their utility on
both illustrative toy examples (Sections 2.5 and 2.6) and a more
realistic FCD example toward the end of the paper (Section 4).

2. The main ideas
2.1 The language
We study FCDs within a variant of the polymorphic lambda cal-
culus, extended with tagged sums, general mutable references
(higher-order state), equi-recursive types, CAS, and fork. These
features suffice for modeling the kinds of FCDs used within
java.util.concurrent, which (a) are polymorphic, (b) use recur-
sive, linked data structures, and (c) rely on the abstraction facilities
of the language for data hiding.1 Figure 1 presents the syntax of the
language together with excerpts of the static and dynamic semantics.
In examples, we will employ a few other features that trivially
extend the language defined here, e.g., immutable pairs and records.

While the language is essentially standard, there are a few
unusual aspects that help keep our treatment of FCDs concise. Terms
are not annotated with types, but polymorphism is nevertheless
introduced and eliminated by explicit type abstraction (Λ.e) and
application (e ). Reference and tuple types are combined into the
type ref(τ), useful for constructing objects with many mutable
fields. The term e[i] reads and projects the i-th component from
a tuple reference e, while e[i] := e′ assigns a new value to that
component. When e is a single-cell reference, we will usually write
e := e′ instead of e[1] := e′. Finally, the type ref?(τ) of “option
references” provides an untagged union of the unit and reference
types, with explicit coercions null and some(e). Because reading
and writing operations work on references, and not option references
(which must be separately eliminated by cases), there are no null-
pointer errors. The net effect of flattening these types is fewer layers
of indirection, which simplifies verification.

The type system imposes two important restrictions. First, recur-
sive types µα.τ are required to be productive, meaning that all free
occurrences of α in τ must appear under a non-µ type constructor.
More subtle is the restriction on CAS, which can only be used on
components of comparable type σ. This constraint is needed be-
cause CAS performs an equality comparison of word-sized values
at the hardware level; it is only reasonable to apply it at types whose
representation allows such a comparison, i.e., base types and loca-
tions. Tagged sums are allocated on the heap and hence represented
using locations, making them comparable as well. Figure 1 presents
the nonstandard typing rules; the remaining rules are standard (see
appendix [35]). Note that we use u to denote values that can be
stored in the heap.

A threadpool T is a finite map from thread identifiers to expres-
sions. A program configuration h;T pairs a heap with a thread pool.
We define a small-step, call-by-value operational semantics as a re-

1 We will use closures as our primary means of hiding local state.
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τ ::= 1 | B | N | τ + τ | ref(τ) | ref?(τ) | µα.τ | ∀α.τ | α | τ → τ

σ ::= 1 | B | N | τ + τ | ref(τ) | ref?(τ) | µα.σ
e ::= () | true | false | if e then e else e | n | e+ e | x | Λ.e | e | e e
| rec f(x).e | new e | e[i] | e[i] := e | CAS(e[i], e, e) | ` | fork e
| null | some(e) | case(e, null⇒ e, some(x)⇒ e)

| inji e | case(e, inj1 x⇒ e, inj2 y ⇒ e)

v ::= rec f(x).e | Λ.e | () | n | true | false | ` | x u ::= (v) | inji v
Γ ::= · | Γ, x : τ ∆ ::= · |∆, α Ω ::= ∆; Γ

K ::= [ ] | some(K) | case(K, null⇒ e, some(x)⇒ e) |K | · · ·
T ∈ ThreadPool , N fin

⇀ Exp h ∈ Heap , Loc fin
⇀ HeapVal

Type rules Ω ` e : τ

Ω ` e : ref(τ) τi = σ Ω ` eo : σ Ω ` en : σ

Ω ` CAS(e[i], eo, en) : B

Ω ` e : 1

Ω ` fork e : 1

Ω ` e : ref(τ)

Ω ` some(e) : ref?(τ)

Ω, α ` e : τ

Ω ` Λ.e : ∀α.τ
Ω ` e : ∀α.τ

Ω ` e : τ [τ ′/α]

Primitive reductions h; e ↪→ h′; e′

h; `[i] ↪→ h; vi when h(`) = (v)
h; CAS(`[i], vo, vn) ↪→ h[`[i] = vn]; true when h(`)[i] = vo
h; CAS(`[i], vo, vn) ↪→ h; false when h(`)[i] 6= vo

h; case((), null⇒ e1, some(x)⇒ e2) ↪→ h; e1
h; case(`, null⇒ e1, some(x)⇒ e2) ↪→ h; e2[`/x]
h; new (v) ↪→ h ] [` 7→ (v)]; ` h; null ↪→ h; ()
h; inji v ↪→ h ] [` 7→ inji v]; ` h; some(`) ↪→ h; `
h; Λ.e ↪→ h; e

Program reduction h;T → h′;T ′

h; e ↪→ h′; e′

h;T ] [i 7→ K[e]]→ h′;T ] [i 7→ K[e′]]

h;T ] [i 7→ K[fork e]]→ h;T ] [i 7→ K[()]] ] [j 7→ e]

Figure 1. Our language: Fµ! with fork and CAS

lation→ between program configurations, allowing the creation of
new threads and the nondeterministic interleaving of existing ones.
We use evaluation contexts K to specify a left-to-right evaluation
order within each thread.

2.2 A finer look at FCDs
The granularity of a concurrent data structure is a measure of the
locality of synchronization between threads accessing it. Coarse-
grained data structures provide exclusive, global access for the
duration of a critical section: a thread holding the lock can access as
much of the data structure as needed, secure in the knowledge that
it will encounter a consistent, frozen representation. By contrast,
fine-grained data structures localize or eliminate synchronization,
forcing threads to do their work on the basis of limited knowledge
about its state—sometimes as little as what the contents of a single
word are at a single moment.

The local, highly-concurrent nature of FCDs is best understood
by example. In Figure 2, we give a variant of Michael and Scott’s
lock-free queue [29].2 The queue maintains a reference, head, to
a nonempty linked list; the first node of the list is considered a
“sentinel” whose data does not contribute to the queue.

Nodes are dequeued from the front of the list, so we examine the
deq code first. If the queue is logically nonempty, it contains at least
two nodes: the sentinel (physical head), and its successor (logical

2 We use the shorthand cons(e, e′) , some(new (e, e′)).

head). Intuitively, the deq operation should atomically update the
head reference from the sentinel to its successor; after doing so, the
old logical head becomes the new sentinel, and the next node, if any,
becomes the new logical head. Because there is no lock protecting
head, however, a concurrent operation could update it at any time.
Thus, deq employs optimistic concurrency: after gaining access to
the sentinel by dereferencing head, it does some additional work—
finding the logical head—while optimistically assuming that head
has not changed behind its back. In the end, optimism meets reality
through CAS, which performs an atomic update only when head
is unchanged. If its optimism was misplaced, deq must start from
scratch. After all, the queue’s state may have entirely changed in the
interim.

The key thing to notice is just how little knowledge deq has as it
executes. Immediately after reading head, the most that can be said
is that the resulting node was once the physical head of the queue.
The power of CAS is that it mixes instantaneous knowledge—the
head is now n—with instantaneous action—the head becomes n′.
The weakness of CAS is that this potent mixture applies only to a
single word of memory. For deq, this weakness is manifested in the
lack of knowledge CAS has about the new value n′, which should
still be the successor to the physical head n at the instant of the
CAS. Because CAS cannot check this fact, it must be established
pessimistically, i.e., guaranteed to be true on the basis of the queue’s
internal protocol. We will see in a moment how to formulate such a
protocol, but first, we examine the more subtle enq.

In a singly-linked queue implementation, one would expect to
have both head and tail pointers, and indeed the full Michael-Scott
queue includes a “tail” pointer. However, because CAS operates
on only one word at a time, it is impossible to use a single
CAS operation to both link in a new node and update a tail
pointer. The classic algorithm allows the tail pointer to lag behind
the true tail by at most one node, while the implementation in
java.util.concurrent allows multi-node lagging. These choices
affect performance, of course, but from a correctness standpoint
one needs to make essentially the same argument whether one has a
lagging tail, or simply traverses from head as we do.

In all of these cases, it is necessary to find the actual tail of the
list (whose successor is null) by doing some amount of traversal.
Clearly, this requires at least that the actual tail be reachable from
the starting point of the traversal; the loop invariant of the traversal
is then that the tail is reachable from the current node. But in our
highly-concurrent environment, we must account for the fact that
the data structure is changing under foot, even as we traverse it. The
node that was the tail of the list when we began the traversal might
not even be in the data structure by the time we finish.

2.3 The story of a node
We want, ultimately, to prove that MSQ refines its coarse-grained
specification CGQ. The latter uses a lock to protect its internal state;
sync(e) { e′ } is a simple derived form that wraps acquisition/re-
lease of the non-reentrant spinlock e around the code e′.3 Ideally,
the proof would proceed in the same way one’s intuitive reasoning
does, i.e., by considering the execution of a single function by a
single thread one line at a time, reasoning about what is known at
each program point. To achieve this goal, we must solve two closely-
related problems: we must characterize the possible interference
from concurrent threads, and we must characterize the knowledge
that our thread can gain.

We solve both of these problems by introducing a notion of
protocol, based on the abstract state transition systems of Dreyer
et al. [9], but with an important twist: we apply these transition
systems at the level of individual nodes, rather than as a description

3 The definition of sync is given in the appendix [35].
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MSQ: ∀α.1→ { enq : α→ 1, deq : 1→ ref?(α) }
MSQ , Λ. λ(). let head = new (new (null, null)) in {

deq = rec try(). let n = head[1] in case n[2]
of some(n′)⇒ if CAS(head[1], n, n′)

then n′[1] else try()
| null ⇒ null, (∗ queue is empty ∗)

enq = λx. let n = cons(some(new x), null) in
let rec try(c) = case c[2]

of some(c′)⇒ try(c′)
| null ⇒ if CAS(c[2], null, n)

then () else try(c)
in try(head[1])

}
CGQ , Λ. λ(). let head = new null, lock = new false in {

deq = λ(). sync(lock) {
case head[1] of some(n)⇒ head[1] := n[2]; some(new n[1])

| null ⇒ null
},
enq = λx. sync(lock) { . . . } (∗ elided ∗)
}

Per-node protocol:

⊥ Live(v, null)
v

Live(v, `)
`

Sentinel(v, `)

Sentinel(v, null)

`

Dead(v, `)

Reachable

Logically in queue

Global interpretation:

I(s) , headI 7→I `0 ∗ `0 7→I (v0, vI) ∗ ∃vS. headS 7→S vS

∗ lock 7→S false ∗ link(vI, vS, sL) ∗ (s(`′i) 6= ⊥ ∧ `i 7→I (vi, `′i))

when s = [`0 7→ Sentinel(v0, vI)] ] sL ] [`i 7→ Dead(vi, `′i)]

link(null, null, ∅) , emp

link(`I, `S, [`I 7→ Live(vI, v
′
I )] ] s) , ∃v, vS, v

′
S. v �

V vS : α ∗
vI 7→I v ∗ `I 7→I (vI, v

′
I ) ∗ `S 7→I (vS, v

′
S) ∗ link(v′I , v

′
S, s)

Figure 2. A variant of Michael and Scott’s queue

of the entire data structure. These transition systems describe what
we call the local life stories of each piece of an FCD. The diagram
in Figure 2 is just such a story. Every heap location can be seen
as a potential node in the queue, but all but finitely many are
“unborn” (state ⊥). After birth, nodes go through a progression of
life changes. Some changes are manifested physically. The transition
from Live(v, null) to Live(v, `), for example, occurs when the
successor field of the node is updated to link in a new node. Other
changes reflect evolving relationships. The transition from Live to
Sentinel, for example, does not represent an internal change to the
node, but rather a change in the node’s position in the data structure.
Finally, a node “dies” when it becomes unreachable.

The benefit of these life stories is that they account for knowledge
and interference together, in a local and abstract way. Knowledge
is expressed by asserting that a given node is at least at a certain
point in its life story. This kind of knowledge is inherently stable
under interference, because all code must conform to the protocol,
and is therefore constrained to a forward march through the STS.
The life story gathers together in one place all the knowledge and
interference that is relevant to a given node, even knowledge like
“reachability” which is ostensibly a global property. This allows us to
draw global conclusions from local information, which is precisely
what is needed when reasoning about FCDs. For example, notice that

no node can die with a null successor field. A successful CAS on the
successor field from null to some location—like the one performed
in enq—entails that the successor field was instantaneously null
(local information), which by the protocol means the node was
instantaneously reachable (global information), which entails that
the CAS makes a new node reachable. Similarly, the protocol
makes it immediately clear that the queue is free from any ABA
problems [34], because nodes cannot be reincarnated and their fields,
once non-null, never change.

To formalize this reasoning, we must connect the abstract ac-
count of knowledge and interference provided by the protocol to
concrete constraints on the queue’s representation. We do this by
giving a state-dependent invariant I for the data structure, where
“state” refers to abstract STS states. For the queue, we have the
following set of states for each node’s local STS:

S0 , {⊥} ∪ {Live(v, v′) | v, v′ ∈ Val}
∪ {Sentinel(v, v′) | v, v′ ∈ Val} ∪ {Dead(v, `) | v ∈ Val, ` ∈ Loc}

along with the transition relation 0 given in the diagram, where the
annotated edges denote branches for choosing particular concrete v
and ` values. The data structure as a whole is governed by a product
STS with states S , Loc fin

⇀ S0, where fin
⇀ indicates that all but

finitely many locations are in the⊥ (unborn) state in their local STS.
The transition relation for the product STS is just the pointwise
lifting of the one for each node’s STS: s s′ iff ∀`. s(`) 0 s

′(`).
Thus, at the abstract level, the product STS is simply a collection of
independent, local STSs.

At the concrete level of the invariant I , however, we record the
constraints that tie one node’s life story to another’s; see Figure 2.
The invariant is essentially a relational version of the recursive
“list” predicate from separation logic [33]. The relational nature is
apparent in the fact that the invariant makes assertions about both
the implementation (7→I) and specification (7→S) heap, carving out
the portion of each corresponding to an instance of MSQ and CGQ,
respectively. It is thus a kind of linking invariant (or “refinement
map”) [22, 1], as one would expect to find in any refinement proof.

At a high level, the invariant says: the state of the product STS
must decompose into exactly one sentinel node (at location `0),
a collection of Live nodes sL, and a collection of Dead nodes at
locations `i (the overbar notation represents a list). The link assertion
recursively asserts that each Live node in the implementation
corresponds to some node in the specification, and that a node
is Live iff it is reachable from the sentinel. Since the queue is
parametric over the type α of its data, the data stored in each live
implementation node must refine the data stored in the specification
node at type α (written v1 �V v2 : α; see Section 3). The invariant
also accounts for two representation differences between MSQ
and CGQ. First, the node data in the implementation is stored in
a ref?(α), while the specification stores the data directly. Second,
the specification has a lock. The invariant requires that the lock is
always free (false) because, as we show that MSQ refines CGQ,
we always run entire critical sections of CGQ at once, going from
unlocked state to unlocked state. These “big steps” of the CGQ
correspond to the linearization points of the MSQ.

Finally—and crucially—Dead nodes must have non-null suc-
cessor pointers whose locations are in a non-⊥ state. This property
is the key for giving a simple, local loop invariant for enq, namely,
that the current node c is at least in a Live state. It follows that if the
successor pointer of c is not null, it must be another node at least in
the Live state. If, on the other hand, the successor node of c is null,
we know that c is both not Dead, and at least Live, which means
that c must be (at that instant) reachable from the implementation’s
head pointer.

The proof outlines for MSQ and the other examples in this
section are given in the appendix [35].
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2.4 Role-playing and tokens
Although Michael and Scott’s queue is already tricky to verify, there
is a specific sense in which its protocol in Figure 2 is simple: it
treats all threads equally. All threads see a level playing field with
a single notion of “legal” transition, and any thread is free to make
any legal transition according to the protocol. Many FCDs, however,
require more refined protocols in which different threads can play
different roles—granting them the rights to make different sets of
transitions—and in which threads can acquire and release these roles
dynamically as they execute.

In fact, one need not look to complex FCDs for instances of this
dynamic role-playing—the simple lock used in the coarse-grained
“spec” of the Michael-Scott queue is a perfect and canonical example.
In a protocol governing a single lock (e.g., lock, in CGQ), there are
two states: Unlocked and Locked. Starting from the Unlocked state,
all threads should be able to acquire the lock and transition to the
Locked state. But not vice versa: once a thread has acquired the
lock and moved to the Locked state, it has adopted the role of “lock-
holder” and should know that it is the only thread with the right to
release the lock and return to Unlocked.

To support this kind of role-playing, we enrich STSs with a
notion of tokens, which are used to grant authority over certain types
of actions in a protocol. Each STS may employ its own appropriately
chosen set of tokens, and each thread may privately own some subset
of these tokens. The idea, then, is that certain transitions are only
legal for the thread that privately owns certain tokens. Formally
speaking, this is achieved by associating with each state in the STS
a set of tokens that are currently free, i.e., not owned by any thread.4

We then stipulate the law of conservation of tokens: for a thread to
legally transition from state s to state s′, the (disjoint) union of its
private tokens and the free tokens must be the same in s and in s′.

For instance, in the locking protocol, there is just a single
token—call it TheLock. In the Unlocked state, the STS asserts
that TheLock must belong to the free tokens and thus that no thread
owns it privately, whereas in the Locked state, the STS asserts that
TheLock does not belong to the free tokens and thus that some
thread owns it privately. Pictorially, • denotes that TheLock is in
the free tokens, and ◦ denotes that it is not:

Unlocked; • Locked; ◦

When a thread acquires the physical lock and transitions to the
Locked state, it must add TheLock to its private tokens in order
to satisfy conservation of tokens. Thereafter, no other thread may
transition back to Unlocked because doing so requires putting
TheLock back into the free tokens of the STS, which is something
only the private owner of TheLock can do. Usually the invariant for
the Unlocked state owns all of the hidden state for the data structure,
while the Locked invariant owns nothing. Thus, a thread taking the
lock also acquires the resources it protects, but must return these
resources on lock release (in the style of CSL [31]).

As this simple example suggests, tokens induce very natural
thread-relative notions of rely and guarantee relations on states of
an STS. For any thread i, the total tokensA of an STS must equal the
disjoint union of i’s private tokens Ai, the free tokens Afree in the
current state s, and the “frame” tokens Aframe (i.e., the combined
private tokens of all other threads but i). The guarantee relation says
which future states thread i may transition to, namely those that are
accessible by a series of transitions that i can “pay for” using its
private tokens Ai. Dually, the rely relation says which future states
other threads may transition to, namely those that are accessible by

4 Another perspective is that the free tokens are owned by the STS itself, as
opposed to the threads participating in the protocol; cf. CSL [31].

redFlag , λ(). let flag = new true, chan = new 0 in {
flip = rec try().
if CAS(chan, 1, 2) then () else
if CAS(flag, true, false) then () else
if CAS(flag, false, true) then () else
if CAS(chan, 0, 1) then

if CAS(chan, 1, 0) then try() else chan := 0
else try(),

read = λ(). flag[1]
}
blueFlag , λ(). let flag = new true, lock = new false in {

flip = λ(). sync(lock) { flag := not flag[1] },
read = λ(). sync(lock) { flag[1] }
}

Empty; •

Offered(j,K); ◦

Accepted(j,K); ◦

j,K

Q , ∃x : B. flagI 7→I x ∗ flagS 7→S x ∗ lock 7→S false
I(Empty) , Q ∗ chan 7→I 0

I(Offered(j,K)) , Q ∗ chan 7→I 1 ∗ j �S K[flipS()]

I(Accepted(j,K)) , Q ∗ chan 7→I 2 ∗ j �S K[()]

Figure 3. Red flags versus blue flags

a series of transitions that can be paid for without using i’s private
tokensAi (i.e., only using the tokens inAframe ). These two relations
play a central role in our model (Section 3).

2.5 Cooperation and specifications-as-resources
As explained in the introduction, some FCDs use side channels,
separate from the main data structure, to enable threads executing
different operations to cooperate. To illustrate this, we use a toy
example—inspired specifically by “elimination stacks” [19]—that
isolates the essential challenge of reasoning about cooperation,
minus the full-blown messiness of a real data structure.

Figure 3 shows the example, in which redFlag is a lock-free
implementation of blueFlag. The latter is a very simple data struc-
ture, which maintains a hidden boolean flag, and provides oper-
ations to flip it and read it. One obvious lock-free implementa-
tion of flip would be to keep running CAS(flag, true, false) and
CAS(flag, false, true) repeatedly until one of them succeeds. How-
ever, to demonstrate cooperation, redFlag does something more
“clever”: in addition to maintaining flag, it also maintains a side
channel chan, which it uses to enable two flip operations to cancel
each other out without ever modifying flag at all!

More specifically, chan adheres to the following protocol, which
is visualized in Figure 3 (ignore the K’s for now). If chan 7→I 0,
it means the side channel is not currently being used (it is in the
Empty state). If chan 7→I 1, it means that some thread j has offered
to perform a flip using the side channel and moved it into the
Offered(j,−) state. If chan 7→I 2, it means that another thread has
accepted thread j’s offer and transitioned to Accepted(j,−)—thus
silently performing both flip’s at once (since they cancel out)—but
that thread j has not yet acknowledged that its offer was accepted.

Like the locking example, this protocol uses a single token—call
it Offer—which is free in state Empty but which thread j moves
into its private tokens when it transitions to the Offered(j,−) state.
After that transition, due to its ownership of Offer, thread j is the
only thread that has the right to revoke that offer by setting chan
back to 0 and returning to Empty. On the other hand, any thread
may transition from Offered(j,−) to Accepted(j,−), since the
two states have identical free tokens, namely, none. Once in the
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Accepted(j,−) state, though, thread j is again the only thread able
to Empty the channel.

The implementation of flip in redFlag then works as follows.
First, we use CAS to check if another thread has offered to flip (i.e.,
if chan 7→I 1), and if so, we accept the offer by setting chan to 2.
We then immediately return, having implicitly committed both flips
right then and there, without ever accessing flag. If that fails, we
give up temporarily on the side-channel shenanigans and instead
try to perform a bona fide flip by doing CAS(flag, true, false) and
CAS(flag, false, true) as suggested above. If that fails as well, then
we attempt to make an offer on the side channel by changing chan
from 0 to 1. If our attempt succeeds, then we (rather stupidly5) try
to immediately revoke the offer and loop back to the beginning. If
perchance another thread has preempted us at this point and accepted
our offer (i.e., if CAS(chan, 1, 0) fails, implying that another thread
has updated chan to 2), then that other thread must have already
committed our flip on our behalf, so we simply set chan back to
0, thus making the side channel free for other threads to use, and
return. Finally, if all else fails, we loop again.

As far as the refinement proof is concerned, there are essentially
two interesting points here. The first concerns the CAS(chan, 1, 0)
step. As we observed already, the failure of this CAS implies that
chan must be 2. Why? Because of the way our protocol uses tokens.
After the previous CAS(chan, 0, 1) succeeded, we knew that we had
successfully transitioned to the Offered(j,−) state, and thus that
our thread j now controls the Offer token. Our ownership of Offer
tells us that other threads can only transition to a limited set of states
via the rely ordering (i.e., without owning Offer): they can either
leave the state where it is, or they can transition to Accepted(j,−).
Thus, when we observe that chan is not 1, we know it must be 2.

The second, more interesting point concerns the semantics of
cooperation. If we make an offer on chan, which is accepted by
another thread, it should imply that the other thread performed our
flip for us, so we don’t have to. At least that’s the intuition, but how
is that intuition enforced by the protocol? That is, when we observe
that our offer has been accepted, we do so merely by inspecting the
current value of chan. But how do we know that the other thread
that updated chan from 1 to 2 actually “performed our flip” for us?
For example, as perverse as this sounds, what is to prevent redFlag
from performing chan := 2 as part of its implementation of read?

Our key to enforcing that the semantics of cooperation is re-
spected is to treat specification code as a kind of resource. We
introduce a new assertion, j �S e, which describes the knowledge
that thread j (on the spec side) is poised to run the term e. Ordinarily,
this knowledge is kept private to thread j itself, but in a cooperative
protocol, the whole idea is that j should be able to pass control over
its spec code e to other threads, so that they may execute some steps
of e on its behalf.

Specifically, this assertion is used to give semantic meaning
to the Offered(j,K) and Accepted(j,K) states in our protocol
(see the interpretation of F in Figure 3). In the former state, we
know that j �S K[flipS()], which tells us that thread j has offered
its spec code K[flipS()] to be run by another thread, whereas in
the latter state, we know that j �S K[()], which tells us that
j’s flip has been executed. (The K is present here only because
we do not want to place any restrictions on the evaluation context
of the flip operation.) These interpretations demand that whatever
thread accepts the offer by transitioning from Offered(j,K) to
Accepted(j,K) must take the responsibility not only of updating
chan to 2 but also of executing flipS()—and only flipS()—on j’s
behalf. When j subsequently moves back to the Empty state, it

5 At this point in a real implementation, it would make sense to wait a while
for other threads to accept our offer, but we elide that detail since it is
irrelevant for reasoning about correctness.

rand , λ(). let y = new false in (fork y := true); y[1]

lateChoice , λx. x := 0; rand()

earlyChoice , λx. let r = rand() in x := 0; r〈
xI �V xS : ref(N) ∧ j �S K[earlyChoice(xS)]

〉
xI := 0〈
xI �V xS : ref(N) ∧ (j �S K[true]⊕ j �S K[false])

〉
rand()〈

ret. (ret = true ∨ ret = false) ∧ (j �S K[true]⊕ j �S K[false])
〉〈

ret. j �S K[ret])
〉

Figure 4. Late choice versus early choice

regains private control over its specification code, so that other
threads may no longer execute it.

2.6 Nondeterminism and speculation
Another tricky aspect of reasoning about FCDs (like the “conditional
CAS” example we consider in Section 4) is dealing with nondeter-
minism. The problem is that when proving that an FCD refines
some coarse-grained spec, we want to reason in a temporally-local
fashion—i.e., using something akin to a simulation argument, by
which the behavior of each step of FCD code is matched against
zero or more steps of spec code—but nondeterminism, it would
seem, foils this plan.

To see why, consider the “late choice/early choice” example in
Figure 4. This example is really simple: it does not maintain any hid-
den state (hence no protocol), and is not in fact an FCD at all, but it
nevertheless illustrates the core difficulty with nondeterminism. We
want to show that lateChoice refines earlyChoice. Both functions
flip a coin (i.e., use rand() to nondeterministically choose a boolean
value) and set a given variable x to 0, but they do so in opposite
orders. Intuitively, though, the order shouldn’t matter: there is no
way to observe the coin flip until the functions return. However, if
we try to reason about the refinement using a simulation argument,
we run into a problem. The first step of lateChoice is the setting
of x to 0. To simulate this step in earlyChoice, we need to match
the assignment of x to 0 as well, since the update is an externally
observable effect. But to do that we must first flip earlyChoice’s
coin. While we have the freedom to choose the outcome of the
flip,6 the trouble is that we don’t know what the outcome should be:
lateChoice’s coin flip has yet to be executed.

The solution is simple: speculate! That is, if you don’t know
which spec states to step to in order to match an implementation
step, then keep your options open and maintain a speculative set of
specification states that are reachable from the initial spec state and
consistent with any observable effects of the implementation step. In
the case of lateChoice/earlyChoice, this means that we can simulate
the first step of lateChoice (the setting of x to 0) by executing the
entire earlyChoice function twice. In both speculative states x is set
to 0, but in one the coin flip returns true, and in the other it returns
false.

This reasoning is captured in the Hoare-style proof outline given
in Figure 4. The precondition j �S K[earlyChoice(xS)]—an in-
stance of the assertions on specification code introduced in the previ-
ous section—denotes that initially the spec side is poised to execute
earlyChoice. After we execute x := 0 in lateChoice, we speculate
that the coin flip on the spec side could result in earlyChoice either
returning true or returning false. This is represented by the spec-
ulative assertion (j �S K[true] ⊕ j �S K[false]) appearing in
the postcondition of this first step, in which the ⊕ operator provides
a speculative choice between two subassertions characterizing pos-
sible spec states. In the subsequent step, lateChoice flips its coin,

6 For every implementation execution, we must construct some specification
execution.
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yielding a return value ret of either true or false. We can then refine
the speculative set of specification states to whichever one (either
j �S K[true] or j �S K[false]) matches ret, and simply drop the
other state from consideration. In the end, what matters is that we are
left with at least one spec state that has been produced by a sequence
of steps matching the observable behavior of the implementation’s
steps.

The idea of speculation is not new: it is implicit in Lynch and
Vaandrager’s notion of forward-backward simulation [28]. What
is new here is that we capture speculation assertionally without
using prophecy variables, which allows us to compose speculations
without fuss. For example, we can use speculative reasoning in a
private, thread-local way (as in the choice example) while separately
using it within the protocol governing some shared state (as in the
CCAS example, Section 4). We give a more detailed comparison to
related work in Section 5.

3. The formal model
In this section, we develop the syntax and semantics of a logic for
concurrent programs in our higher-order, polymorphic language. We
leave a proof theory for future work, and instead work “in the model”
(semantically) when verifying examples.

3.1 Overview: proving refinement via hiding and protocols
Our logic is ultimately used to prove contextual refinements, so it
is important to first make clear what that entails, both formally and
practically. To define contextual refinement, we first introduce a
standard typing judgment for contexts,

C : (Ω, τ) (Ω′, τ ′)

so that whenever Ω ` e : τ , we have Ω′ ` C[e] : τ ′. Then if
Ω ` eI : τ and Ω ` eS : τ , we say eI contextually refines eS, written
Ω |= eI � eS : τ , if:

for every i, j and C : (Ω, τ) (∅,N) we have
∀n.∀TI. ∅; [i 7→ C[eI]] →∗ h1; [i 7→ n] ] TI

=⇒ ∃TS. ∅; [j 7→ C[eS]]→∗ h2; [j 7→ n] ] TS

Refinement formalizes “observable behavior” as anything a client
of an expression could “test.” A context C captures the notion of an
unknown (but well-typed!) client, which can interact arbitrarily with
the two expressions. If eI behaves in a way that its spec, eS, does
not, it should be possible to find a context C whose main thread
returns a number with eI that, with eS, it does not.

The only practical way to prove refinement is to find some other,
more structured way of characterizing observable behavior—one
that does not require detailed reasoning about particular contexts.
In a high-level language, FCDs hide their internal state within the
functions they export (their “methods”), thereby greatly limiting the
scope of interaction they have with their clients. In particular, a client
context can neither observe nor alter the internal state directly; all
interactions are mediated by the methods. From the perspective of an
FCD, then, the behavior of a client can be reduced to a collection of
possibly-concurrent method invocations. And from the perspective
of a client, the behavior of an FCD can be reduced to the answers it
returns from those invocations.

How can we prove that an arbitrary collection of concurrent
method calls to an FCD will yield the same answers as its spec?
Protocols are the key: they capture the effect methods can have on
the internal state—and thereby the effect they have on each other—
abstractly, i.e., without reference to FCD code. Protocols enable us
to reason locally, about one method invocation at a time. Instead
of considering an arbitrary sequence of prior method invocations,
we simply start from an arbitrary protocol state. And instead of
considering arbitrary concurrent invocations, we simply force our
local reasoning to withstand arbitrary “rely” moves in a protocol.

P ::= v = v | emp | v 7→I u | v 7→S u | i�S e | P ∗ P
| P ⇒ P | P ∧ P | P ∨ P | ∃x.P | ∀x.P
| P ⊕ P | ϕ | ι | . P | T@m 〈x. P 〉

ϕ ::= 〈P 〉 e 〈x. Q〉 | v �V v : τ | Ω ` e �E e : τ

ι ::= (θ, I, s, A) where

{
I ∈ θ.S → Assert, s ∈ θ.S,
A ⊆ θ.A, A#θ.F (s)

θ ::= (S,A, , F ) where S,A sets,  ⊆ S × S, F ∈ S → ℘(A)

m ::= i | none

Figure 5. Syntax of assertions

3.2 Assertions
In program logics for first-order languages, there is a strict separation
between assertions about data (e.g., heap assertions) and assertions
about code (e.g., Hoare triples). But the distinction makes less sense
for higher-order languages, where code is data and hence claims
about data must include claims about code. Our logic is therefore
built around a single notion of assertion, P , shown in Figure 5, that
plays several disparate roles.

Assertions are best understood one role at a time. The first role
they play is similar to that of heap assertions in separation logic:
they capture knowledge about a part of the (implementation’s) heap,
e.g., x 7→I 0, and support the composition of such knowledge, e.g.,
x 7→I 0∗y 7→I 1. In this capacity, assertions make claims contingent
on the current state, which may be invalidated in a later state.

On the other hand, some assertions are pure, meaning that if
they hold in a given state, they will hold in any possible future
state. The syntactic subclass of code assertions ϕ all have this
property, and they include Hoare triples 〈P 〉 e 〈x. Q〉. The Hoare
triple says: for any future state satisfying P , if the (implementation)
expression e is executed until it terminates with a result, the final
state will satisfyQ (where x is the value e returned). So, for example,
〈emp〉 new 0 〈x. x 7→I 0〉 is a valid assertion, i.e., it holds in any
state. More generally, the usual rules of separation logic apply,
including the frame rule, the rule of consequence—and sequencing.
The sequencing rule works, even in our concurrent setting, because
heap assertions describe a portion of heap that is privately owned
by the expression in the Hoare triple. In particular, that portion of
the heap is guaranteed to be neither observed nor altered by threads
concurrent with the expression.

The next role assertions play is expressing knowledge about
shared resources. All shared resources are governed by a protocol.
For hidden state, the protocol can be chosen freely, modulo proving
that exported methods actually follow it. For visible state, however,
e.g., a reference that is returned directly to the context, the protocol
is forced to be a trivial one—roughly, one that allows the state to
take on any well-typed value at any time, accounting for the arbitrary
interference an unknown context could cause (see Section 3.4).

Claims about shared resources are made through island asser-
tions ι (inspired by LADR [10]), which first of all assert the existence
of said resources. We call each shared collection of resources an
island, because each collection is disjoint from the others and is
governed by an independent protocol. An island assertion gives the
protocol governing its resources:

• The component θ = (S,A, , F ) formalizes the STS for the
protocol, where S is its set of states, A is its set of possible
tokens, is its transition relation, and F is a function telling
which tokens are free at each state. (We will use dot notation
like θ.S to project named components from compound objects.)

• The component I tells how each state of the STS is interpreted
as an assertion characterizing the concrete, hidden resources that
are actually owned by the island in that state.
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Domains
StateSet , { Σ ⊆ Heap× ThreadPool | Σ finite, nonempty }
Resource , { η ∈ Heap× StateSet }

Islandn ,

{
(θ, J, s, A)

∣∣∣∣∣ θ ∈ STS, s ∈ θ.S, A ⊆ θ.A, A#θ.F (s),

J ∈ θ.S → UWorldn
mon→ ℘(Resource)

}
Worldn ,

{
W = (k, ω)

∣∣∣ k < n, ω ∈ N fin
⇀ Islandk

}
UWorldn , { U ∈ Worldn | U = |U | }
VReln ,

{
V ∈ UWorldn

mon→ ℘(Val× Val)
}

Island and world operations
|(θ, J, s, A)| , (θ, J, s, ∅) |(k, ω)| , (k, λi.|ω(i)|)

frame(θ, J, s, A) , (θ, J, s, θ.A− θ.F (s)−A)

frame(k, ω) , (k, λi.frame(ω(i)))

b(θ, J, s0, A)ck , (θ, λs.I(s) � UWorldk, s0, A)

.(k + 1, ω) , (k, λi.bω(i)ck)

interp(θ, J, s, A) , J(s)

Composition
State sets Σ1 ⊗ Σ2 , { h1 ] h2;T1 ] T2 | hi;Ti ∈ Σi } when all compositions are defined
Resources (h1,Σ1) ⊗ (h2,Σ2) , (h1 ] h2,Σ1 ⊗ Σ2)

Islands (θ, J, s, A) ⊗ (θ′, J ′, s′, A′) , (θ, J, s, A ]A′) when θ = θ′, s = s′, J = J ′

Worlds (k, ω) ⊗ (k′, ω′) , (k, λi.ω(i)⊗ ω′(i)) when k = k′, dom(ω) = dom(ω′)

Protocol conformance
θ ` (s,A)  (s′, A′) , s θ s′, θ.F (s) ]A = θ.F (s′) ]A′

(θ, J, s, A)
guar
v (θ′, J ′, s′, A′) , θ = θ′, J = J ′, θ ` (s,A) ∗ (s′, A′)

(k, ω)
guar
v (k′, ω′) , k ≥ k′, ∀i ∈ dom(ω). bω(i)ck′

guar
v ω′(i)

W
rely
v W ′ , frame(W )

guar
v frame(W ′)

World satisfaction: η : W, η′ , W.k > 0 =⇒ η = η′ ⊗ ηi, ∀i ∈ dom(W.ω). ηi ∈ interp(W.ω(i))(.|W |)

Figure 6. Semantic structures and operations on them

In addition, island assertions express knowledge about the state of
the protocol (the component s) and any privately-owned tokens (the
component A). This last bit of knowledge gives a lower bound on
the actual state of the protocol, which may in fact by in any “rely-
future” state of s, i.e., any state that can be reached from s by the
environment without using the privately-owned tokens A.

Finally, assertions play two refinement-related roles. The first
is to express refinement itself, either between two closed values
(vI �V vS : τ ) or between open expressions (Ω ` eI �E eS : τ )—
the syntactic counterpart to semantic refinement (Section 3.1). Until
this point, we have avoided saying anything about spec terms, but
in order to prove refinement we need to show that the observable
behavior of an implementation can be mimicked by its spec. This
brings us to an essential idea:

eI �E eS : τ ≈ (roughly!)
∀j. 〈j �S eS〉 eI

〈
xI. ∃xS. xI �V xS : τ ∧ j �S xS

〉
By treating spec code as a resource, we can reduce refinement
reasoning to Hoare-style reasoning. Thus, the final role assertions
play is to express knowledge about—and ownership of—spec
resources, which include portions both of the heap (e.g., x 7→S 0)
and of the threadpool (e.g., j �S eS). These resources can be
shared and hence governed by protocols, just as implementation-
side resources can.

When proving refinement for an FCD, we will prove something
like the above Hoare triple for an arbitrary application of each of
its methods—usually in the scope of an island assertion giving the
protocol for its shared, hidden state. For each method invocation,
we start from an arbitrary state of that protocol, and are given
ownership of the spec code corresponding to the invocation, which
we may choose to transfer to the protocol to support cooperation (as
explained in Section 2.5). But in the end, when the implementation’s
invocation has finished and returned a value xI, we must have
regained exclusive control over its spec, which must have mimicked
it by producing a value xS that xI refines.

The remaining forms of assertions include standard logical
connectives, and two more technical forms of assertions—.P and
T@m 〈x. P 〉—which we explain in the Section 3.4.

3.3 Semantic structures
The semantics of assertions is given using two judgments, one for
general assertions (W,η |=ρ P ) and the other for code assertions
(U |=ρ ϕ), where P and ϕ contain no free term variables but may
contain free type variables bound by ρ. To explain these judgments,
we begin with the semantic structures of worlds W , resources η
and environments ρ, together with operations on them needed to
interpret assertions—all defined in Figure 6.

Resources The resources η = (h,Σ) that assertions claim knowl-
edge about and ownership of include both implementation heaps h,
and speculative sets Σ of spec configurations. (Recall that a configu-
ration ς = h;T consists of a heap and a threadpool.) Resources can
be combined at every level, which is necessary for interpreting the
∗ operator on assertions. For heaps and threadpools, composition is
done via ], the usual disjoint union. The composition of state sets
is just the set of state compositions—but it is only defined when
all such state compositions are defined, so that speculative sets Σ
have a single “footprint” consisting of all the locations/threads ex-
isting in any speculative state. To ensure that this footprint is finite,
we require that speculation is itself finite. Finally, composition of
resources is the composition of their parts.

Islands and possible worlds All assertions are interpreted in the
context of some possible world W , which contains a collection ω of
islands—this is the “Kripke” in Kripke logical relations. Semantic
islands look very much like syntactic island assertions: the only
difference is that STS states are interpreted semantically via J , rather
than syntactically via I . Unfortunately, this creates a circularity: J
is meant to interpret its syntactic counterpart I , and since assertions
are interpreted in the contexts of worlds, the interpretation must
be relative to the current world—but we are in the middle of
defining worlds! The step index k in worlds is used to stratify away
circularities in the definition of worlds and the logical relation; it
and its attendant operators . and b−ck are completely standard, and
so for space reasons we direct the interested reader to earlier work
for a detailed explanation [9, 10]. The less interested reader should
simply ignore step indices from here on.
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There is one additional subtlety, however: it is crucial that all
participants in a protocol agree on the protocol’s interpretation
of a state, which must therefore be insensitive to which tokens
a particular participant owns. We guarantee this by giving the
interpretation J access to only the unprivileged part of a participant’s
world, |W |, which has been stripped of any tokens; see the constraint
on the type of J .

To determine the meaning of assertions like ι ∗ ι′, we must allow
islands to be composed. Semantic island composition ⊗ is defined
only when the islands agree on all aspects of the protocol, including
its state; their owned tokens are then (disjointly) combined. Note,
however, that because island assertions are rely-closed, an assertion
like ι ∗ ι′ does not require ι and ι′ to assert the same state. It merely
requires that there is some state that is in both of their rely-futures.
Worlds are composable only when they define the same islands and
those islands are composable.

Environments Type variables are interpreted by an environment
ρ that maps them to relations V ∈ VRel. This interpretation of
types captures the usual relational parametricity [32], in which the
interpretation of an abstract type may relate values of potentially
different types on the the implementation and specification sides.

Protocol conformance The judgment θ ` (s,A) (s′, A′) cod-
ifies the law of conservation of tokens (Section 2.4) for a single
step.7 We use this judgment in defining a guarantee relation govern-
ing the changes an expression can make to an island’s state, given
the tokens it owns. An expression can likewise rely on its environ-
ment to only change the island ι according to the tokens that the
environment owns, i.e., the tokens owned by frame(ι).

The rely and guarantee views of a protocol give rise to two
notions of future worlds. In both cases, the world may grow to
include new islands, but any existing islands are constrained by their
rely and guarantee relations, respectively. The guarantee relation on
islands may include changes to both the state of the STS and the
privately-owned tokens. The rely relation only allows the state to
change, since only the (implicit) environmental participant making
the move may gain or lose tokens. Island interpretations J are
required to be monotone with respect to the rely relation on worlds
(written mon→), which ensures that making a rely move in one island
cannot possibly invalidate the interpretation of another.

World satisfaction Worlds describe shared state abstractly, in
terms of protocol states. Expressions, on the other hand, are executed
against some concrete resources. The world satisfaction relation
η : W,η′ defines when a given collection of concrete resources
η “satisfies” a world, meaning that it breaks into a disjoint portion
for each island, with each portion satisfying its island’s current
interpretation. The parameter η′ represents additional resources that
are private, and therefore disjoint from those governed by the world,
which is convenient for defining the semantics of assertions below.

3.4 Semantics
The semantics of assertions given in Figure 7 satisfies a fundamental

property: if W, η |=ρ P and W
rely
v W ′ then W ′, η |=ρ P .

All assertions are therefore “stable” under arbitrary interference
from other threads. This should not be a surprise: assertions are
either statements about private resources (for which interference
is impossible) or about shared islands (for which interference
is assumed, e.g., we are careful to only assert lower bounds on
the state of an island). The only subtlety is in the semantics of
implication, which must be explicitly rely-closed to ensure stability.
The semantics of the basic assertions about private resources and

7 We use the more readable notation s θ s′ in place of θ. (s, s′).

islands are entirely straightforward, as are those for the basic logical
connectives (we omit =, ∨ and ∃).

The value refinement assertion v1 �V v2 : τ requires that
any observations a context can make of v1 at type τ can also be
made of v2. Those readers familiar with Kripke logical relations
will recognize it as essentially the standard definition of logical
approximation between values. Base type values must be identical.
For function types, we check that the bodies of the functions are
related when given related arguments, which, due to the semantics of
implication, might happen in a rely-future world. For recursive types,
we check that the values are related at the unfolded type, which is
well-founded due to the productivity requirement on recursive types
(and our strategic uses of . in type constructors). Values that are
exposed to the context at heap-allocated type—ref and sum types—
are forced to be governed by a trivial island allowing all type-safe
updates (in the case of ref’s) and no updates (in the case of sums).
Hidden state, on the other hand, is by definition state that does not
escape directly to the context, and so we need say nothing about it
for value refinement.

The fact that refinement is a pure assertion (insensitive to the
state of private resources or the ownership of private tokens) is
essential for soundness, for a simple reason: once a value has reached
the context, it can be copied and used concurrently. We therefore
cannot claim that any one copy of the value privately owns some
resources. Note that, if P is impure, we use U |=ρ P as shorthand
for ∀η. U, η |=ρ P .

For expression refinement Ω ` e1 �E e2 : τ , we first close
off any term or type variables bound by Ω with the appropriate
universal quantification. Closed expression refinement is defined
in terms of a Hoare triple, almost in the way we suggested in
Section 3.2. The main difference in the actual definition is that
we additionally quantify over the unknown evaluation context K
in which a specification is running; this annoyance appears to be
necessary for proving that refinement is a precongruence.

Hoare triples are defined via the threadpool simulation assertion
T@m 〈x. P 〉, which is the engine that powers our model. Thread-
pool simulation accounts for the fact that an expression can fork
threads as it executes, but that we care about the return value only
from the initial thread, m. To satisfy T@m 〈x. P 〉 at some W and
η, the threads in T must first of all continuously obey the protocols
of W , given private ownership of η. That is, every atomic step taken
by a thread must transform its shared resources in a way that corre-
sponds to a guarantee move in the protocol, and it must preserve as
a frame any private resources of its environment, but it may change
private resources η in any way it likes. In between each such atomic
step, the context might get a chance to run, which we model by
quantifying over an arbitrary rely-future world. If at any point the
main thread m terminates, it must do so in a state satisfying P ,
where x is bound to the value the main thread returned. Afterward,
any lingering threads are still required to obey the protocol.

That threadpool simulation is, in fact, a simulation is due to its
use of the speculative stepping relation Σ⇒ Σ′, which requires any
changes to the spec state to represent feasible execution steps: every
new state must be reachable from some old state, but we are free to
introduce multiple new states originating in the same old state, and
we are free to drop irrelevant old states on the floor. As a result of
how simulation is defined, such changes to the spec state can only be
made to those pieces that are under the threadpool’s control, either
as part of its private resources (allowing arbitrary feasible updates)
or its shared ones (allowing only protocol-permitted updates).

3.5 Soundness for refinement
Our key theorem is:

Theorem 1 (Soundness). If U |=∅ Ω ` e1 �E e2 : τ for all U
then Ω |= e1 � e2 : τ .
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Private and shared-state assertions: W,η |=ρ R iff Value refinement: U |=ρ v1 �V v2 : τ0 iff

R Requirements

ϕ |W | |=ρ ϕ
emp W = |W |, η = (∅, {∅; ∅})
v 7→I u η = ([v 7→ u], {∅; ∅})
v 7→S u η = (∅, {[v 7→ u]; ∅})
i�S e η = (∅, {∅; [i 7→ e]})
P ∧Q W, η |=ρ P and W, η |=ρ Q

P ⇒ Q ∀W ′
rely
w W. W ′, η |=ρ P =⇒ W ′, η |=ρ Q

∀x.P ∀v. W, η |=ρ P [v/x]

.P W.k > 0 =⇒ .W, η |=ρ P
P1 ∗ P2 W = W1 ⊗W2, η = η1 ⊗ η2, Wi, ηi |=ρ Pi
P1 ⊕ P2 η.Σ = Σ1 ∪ Σ2, W, (η.h,Σi) |=ρ Pi

(θ, I, s, A) ∃i. W
rely
w (W.k, [i 7→ (θ, JIK, s, A)])

where JIK , λs.λU.{η | U, η |=ρ I(s)}

τ0 Requirements

τb v1 = v2, ` vi : τb for τb ∈ {1,B,N}
α (v1, v2) ∈ ρ(α)(U)

τ → τ ′ vi = rec f(x).ei, U |=ρ .(x : τ ` e1[v1/f ] �E e2[v2/f ] : τ ′)

∀α.τ vi = Λ.ei, U |=ρ .(α ` e1 �E e2 : τ)

µα.τ U |=ρ v1 �V v2 : τ [µα.τ/α]

ref?(τ) U |=ρ v1 �V v2 : 1 ∨ v1 �V v2 : ref(τ)

ref(τ) U |=ρ inv(∃x, y.
∧
x �V y : τ ∧ v1 7→I (x) ∗ v2 7→S (y))

τ1 + τ2 ∃i. U |=ρ ∃x, y. x �V y : τi ∧ inv(v1 7→I inji x ∗ v2 7→S inji y)

Expression refinement: U |=ρ Ω ` e1 �E e2 : τ iff

Ω Requirements

· ∀K, j. U |=ρ 〈j �S K[e2]〉 e1
〈
x. ∃y. x �V y : τ ∧ j �S K[y]

〉
x :τ ′,Ω′ ∀v1, v2. U |=ρ v1 �V v2 : τ ′ ⇒ Ω′ ` e1[v1/x] �E e2[v2/x] : τ

α,Ω′ ∀V. U |=ρ[α7→V ] Ω′ ` e1 �E e2 : τ

Hoare triples:
U |=ρ 〈P 〉 e 〈x. Q〉 , ∀i. U |=ρ P ⇒ [i 7→ e]@i 〈x. Q〉

Invariant protocols: inv(P ) , (({1}, ∅, ∅, λ .∅), λ .P, 1, ∅)
Spec stepping: Σ⇒ Σ′ , ∀ς′ ∈ Σ′. ∃ς ∈ Σ. ς →∗ ς′

Threadpool simulation:
W0, η |=ρ T@m 〈x. Q〉 , ∀W

rely
w W0, ηF#η. if W.k > 0 and h,Σ : W,η ⊗ ηF then:

if h;T → h′;T ′ then ∃Σ′, η′,W ′
guar
w W. Σ⇒ Σ′, h′,Σ′ : W ′, η′ ⊗ ηF , W ′.k = W.k − 1, W ′, η′ |=ρ T ′@m 〈x. Q〉

if T = T0 ] [m 7→ v] then ∃Σ′, η′,W ′
guar
w W. Σ⇒ Σ′, h,Σ′ : W ′, η′ ⊗ ηF , W ′.k = W.k, W ′, η′ |=ρ Q[v/x] ∗ T0@none 〈x. tt〉

Figure 7. The semantics of assertions

The proof of this theorem, given in the appendix [35], is built on
novel lemmas expressing key framing properties for the threadpool
simulation assertion, the most important being:

Lemma 1 (Framing). If W1, η1 |=ρ T1@m1

〈
x. Q1

〉
and

W2, η2 |=ρ T2@m2

〈
x. Q2

〉
with m1 = none or m1 ∈ dom(T1),

then W1 ⊗W2, η1 ⊗ η2 |=ρ T1 ] T2@m1

〈
x. Q1

〉
.

These lemmas allow us to prove that refinement assertions are con-
gruent (i.e., they compose), which is the difficult part of soundness.
We can also derive the following inference rules for valid, pure
assertions (true at every world):

〈P 〉 e
〈
x. P ′

〉
∀x.
〈
P ′
〉
e′
〈
y. P ′′

〉
〈P 〉 let x = e in e′

〈
y. P ′′

〉 〈P 〉 e 〈x. Q〉
〈P ∗R〉 e 〈x. Q ∗R〉

P ⇒ P ′
〈
P ′
〉
e
〈
x. Q′

〉
Q′ ⇒ Q

〈P 〉 e 〈x. Q〉
.P ⇒ P

P

The first three of these inference rules are the expected ones for a
separation logic (our assertions also model intuitionistic BI). The
last rule is the Löb rule, which allows us to reason about recursive
functions by assuming their specification holds one step later [10].
In giving proof outlines in the next section, we make implicit use of
these rules, and also drop the variable binding in the postcondition
when it is irrelevant.

4. Case study: conditional CAS
With the details of our model in hand, we are now in a position to
tackle, in detail, a rather complex FCD: Harris et al.’s conditional
CAS [18, 15], which performs a compare-and-set on one word of
memory, but only succeeds when some other word (the control flag)
is non-zero at the same instant. This data structure is the workhorse

that enables Harris et al. to build their remarkable lock-free multi-
word CAS from single-word CAS.

As with the Michael-Scott queue, we have boiled down condi-
tional CAS to its essence, retaining its key verification challenges
while removing extraneous detail. Thus, we study lock-free condi-
tional increment on a counter, with a fixed control flag per instance
of the counter; see the specification counterS in Figure 8. These sim-
plifications eliminate the need to track administrative information
about the operation we are trying to perform but do not change the
algorithm itself, so adapting our proof of conditional increment to
full CCAS is a straightforward exercise.

4.1 The protocol
To explain our implementation, counterI, we begin with its rep-
resentation and the protocol that governs it. The control flag f is
represented using a simple boolean reference; all of the action is
in the counter c, which has type ref(N + N). A value inj1 n rep-
resents an “inactive” counter with logical value n. A value inj2 n,
in contrast, means that the counter is undergoing a conditional in-
crement, and had the logical value n when the increment began.
Because inj2 n records the original value, a concurrent thread at-
tempting another operation on the data structure can help finish the
in-progress increment. This helping is actually not so selfless: really,
one thread is just “helping” another thread get out of its way.

The question is how to perform a conditional increment without
using any locks. Remarkably, the algorithm simply reads the flag
f , and then—in a separate step—updates the counter c with a CAS;
see the complete function. It is possible, therefore, for one thread
performing a conditional increment to read f as true, at which point
another thread sets f to false; the original thread then proceeds with
incrementing the counter, even though the control flag is false!
Proving that counterI refines counterS despite this blatant race
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counterS ,
let c = new 0, f = new false, lock = new false
let setFlag(b) = sync(lock) { f := b }
let get() = sync(lock) { c[1] }
let cinc() = sync(lock) { c[1] := c[1] + if f [1] then 1 else 0 }
in (get, setFlag, cinc)

counterI ,
let c = new inj1 0, f = new false
let setFlag(b) = f := b
let complete(x, n) = if f [1] then CAS(c, x, inj1 (n+ 1))

else CAS(c, x, inj1 n)
let rec get() = let x = c[1] in case x of

inj1 n⇒ n
| inj2 n⇒ complete(o, n); get()

let rec cinc() = let x = c[1] in case x of
inj1 n⇒ let y = inj2 n in

if CAS(c, x, y) then complete(y, n); () else cinc()
| inj2 n⇒ complete(x, n); cinc()

in (get, setFlag, cinc)

⊥; •

Upd(d, ∅); ◦

Upd(d, {0}); ◦

Upd(d, {1}); ◦

Upd(d, {0, 1}); ◦ Done(d); ◦ Gone; •

Const(n); • Dead; •

d

n

d ::= n, j,K B ⊆ {0, 1} A , Loc S , Loc fin
⇀ S0

S0 , {⊥,Upd(d,B),Done(d),Gone,Const(n),Dead}

I(s) , ∃b : B. fI 7→I b ∗ fS 7→S b ∗ lock 7→S false

∗ ∃!`c. s(`) ∈ {Const(−),Upd(−,−)}

∗
{

linkUpd(`c, n, j,K,B) s(`c) = Upd(n, j,K,B)

linkConst(`c, n) s(`c) = Const(n)

∗ ∗s(`)=Done(n,j,K)
` 7→I inj2 n ∗ j �S K[()]

∗ ∗s(`)=Gone
` 7→I inj2 − ∗ ∗s(`)=Dead

` 7→I inj1 −

linkConst(`c, n) , cI 7→I `c ∗ `c 7→I inj1 n ∗ cS 7→S n

linkUpd(`c, n, j,K,B) , cI 7→I `c ∗ `c 7→I inj2 n

∗

 cS 7→S n ∗ j �S K[cinc()]

⊕ cS 7→S n ∗ j �S K[()] if 0 ∈ B
⊕ cS 7→S (n+ 1) ∗ j �S K[()] if 1 ∈ B


Figure 8. Conditional increment, a simplification of CCAS

condition will require all the features of our model, working in
concert.

An initial idea is that when the physical value of the counter is
inj2 n, its logical value is ambiguous: it is either n or n+ 1. This
idea will only work if we can associate such logical values with
feasible executions of the spec’s cinc code, since “logical” value
really means the spec’s value. The difficulty is in choosing when to
take spec steps. If we wait to execute the spec code until a successful
CAS in complete, we may be too late: as the interleaving above
shows, the flag may have changed by then. But we cannot execute
the spec when we read the flag, either: the CAS that follows it may
fail, in which case some other thread must have executed the spec.

The way out of this conundrum is for threads to interact via
a speculative protocol, shown in Figure 8. Recall that injections
into sum types are heap-allocated, so every value c takes on has

let complete(x, n) =
〈
x ∝ Upd(n, j,K, ∅)

〉
if f [1] then

〈
x ∝ Upd(n, j,K, {1})

〉
CAS(c, x, inj1 (n+ 1))

〈
x ∝ Done(n, j,K)

〉
else

〈
x ∝ Upd(n, j,K, {0})

〉
CAS(c, x, inj1 n)

〈
x ∝ Done(n, j,K)

〉
let rec cinc() =

〈
j �S K[cincS()] ∗ (θ, I, ∅, ∅)

〉
let x = c[1] in

〈
j �S K[cincS()] ∗(
x ∝ Const(−) ∨ x ∝ Upd(−,−)

)〉
case x of
inj1 n⇒

〈
j �S K[cincS()] ∗ x ∝ Const(n)

〉
let y = inj2 n in

〈
j �S K[cincS()] ∗ x ∝ Const(n) ∗
y 7→ inj2 n

〉
if CAS(c, x, y) then

〈
x ∝ Dead(n) ∧ y ∝• Upd(n, j,K, ∅)

〉
∴

〈
y ∝• Upd(n, j,K, ∅)

〉
complete(y, n);

〈
y ∝• Done(n, j,K)

〉
()

〈
ret. ret = () ∧ j �S K[()] ∧ y ∝ Gone

〉
∴

〈
ret. ret = () ∧ j �S K[()]

〉
else

〈
j �S K[cincS()] ∗ (θ, I, ∅, ∅)

〉
cinc()

〈
ret. ret = () ∧ j �S K[()]

〉
| inj2 n⇒

〈
j �S K[cincS()] ∗ x ∝ Upd(n,−,−,−)

〉
complete(x, n);

〈
j �S K[cincS()] ∗ x ∝ Done(n,−,−)

〉
∴
〈
j �S K[cincS()] ∗ (θ, I, ∅, ∅)

〉
cinc()

〈
ret. ret = () ∧ j �S K[()]

〉
Figure 9. Proof outline for conditional increment

an identity: its location. The protocol gives the life story for every
possible location in the heap as a potential value of c, with the
usual constraint that all but finitely many locations are in the
unborn (⊥) state. The first step of the protocol reflects the choice
latent in the sum type: either this location is a quiescent inj1 n
(represented initially by Const(n)) or an active increment operation
inj2 n (represented initially by Upd(d, ∅)). The logical descriptor
d gives the old value n of the counter, together with the thread
id j and specification evaluation context of the thread attempting
the increment. The latter information is necessary because thread
j temporarily donates its spec to the protocol, permitting helping
threads to execute the spec on its behalf. Following the pattern laid
out in Section 2.5, in return for donating its spec, thread j receives a
token—call it Attempt—which will later permit it, and only it, to
recover its spec. As usual, we depict the token with a bullet.

The life story for a quiescent inj1 n is quite mundane: either it is
the current value pointed to by c, or it is Dead. An active cell inj2 n
leads a much more exciting life. In the first phase of life, Upd(d,B),
the cell records which branches B ⊆ {0, 1} of the complete code
have been entered by a thread. Initially, no thread has executed
complete, so the set is empty. If a thread subsequently reads that
f = true in the first step of executing complete, it moves to the set
{1}, since it is now committed to the branch that adds 1 to the initial
value n. Crucially, this step coincides with a speculative run of the
specification; the un-run spec is also retained, in case some other
thread commits to the 0 branch. The branch-accumulation process
continues until some thread (perhaps not the original instigator of
the increment) actually succeeds in performing its CAS in complete.
At that point, the increment is Done, and its inj2 n cell is effectively
dead, but not yet Gone: in the end, the thread that instigated the
original increment reclaims its spec, whose execution is guaranteed
to be finished.

4.2 The proof
We now formally justify that counterI refines counterS by giving a
concrete interpretation to the protocol and providing a Hoare-style
proof outline for complete and cinc. The outline for get is then a
straightforward exercise.
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To formalize the protocol, we first give the set of states S0 for an
individual life story; see Figure 8. The states S for the data structure
are then a product of individual STS states indexed by location, with
all but finitely many locations required to be in state ⊥. The set of
tokens A for the product STS is just the set of locations, i.e., there
is one token per location (and hence per individual life story). The
transition relation on the product STS lifts the one for individual
life stories: s s′ , ∀`. s(`) = s′(`) ∨ s(`) s′(`). If F0 is the
free-token function for an individual STS, we can then define the
product STS as follows:

θ , (S,A, , λs.{` | F0(s(`)) = {Attempt}})
The interpretation I for states of the product STS given in Figure 8
is fairly straightforward. The implementation and specification flag
values must always match. There must exist a unique location `c
(“∃!`c”) in a “live” state of Const or Upd. This unique live location
will be the one currently pointed to by c. In the Upd state, it also
owns speculative spec resources according to the branch set B.
Finally, Done nodes retain a finished spec, while Dead and Gone
nodes are simply garbage inj1 (−) and inj2 (−) nodes, respectively.

To show the refinement counterI �E counterS : τ , where τ =
(1 → N × B → 1 × 1 → 1), it suffices to show the following
Hoare triple for every j,K:

〈j �S K[counterS]〉 counterI

〈
zI. ∃zS. zI �V zS : τ ∧ j �S K[zS]

〉
The execution of counterI is short and simple: it allocates the
hidden state of the data structure, and then immediately returns three
procedures for manipulating that state. In the proof of the triple, after
the hidden state is allocated, we construct an island to govern it and
add the island to the world (a guarantee extension). The new island
is described by the assertion ∃`. (θ, I, [` 7→ Const(0)], ∅), which
says that it follows the conditional increment protocol (θ and I), is
in some rely-future state of [` 7→ Const(0)] (in which every location
other than ` is unborn), and currently owns no tokens. Adding this
island requires us to show that the initial values of the hidden state
in the implementation and specification satisfy the invariant at this
state, which they clearly do.

We must then show, in the context of this extended world, that
each of the implementation procedures refines the corresponding
specification procedure; we give the detailed proof for cinc, i.e.,
〈j �S K[cincS()] ∗ (θ, I, ∅, ∅)〉 cincI() 〈ret. ret = () ∧ j �S K[()]〉

In the precondition, we weaken our knowledge about the island
to simply saying that it is in a rely-future state of ∅ (where every
location maps to ⊥), since this is all we need to know.

The locality of the local life stories is manifested in our ability
to make isolated, abstract assertions about a particular location
governed by the data structure. Because every location is in some
rely-future state of ⊥, we can focus on a location x of interest by
asserting that the product STS is in a rely-future state of [x 7→ s0],
where s0 ∈ S0. For readability, we employ the following shorthand
for making such local assertions about the island:

x ∝ s0 , (θ, I, [x 7→ s0], ∅) x ∝• s0 , (θ, I, [x 7→ s0], {x})
Thus empowered, we can glean some additional insight about the
algorithm: that the complete function satisfies the triple
〈x ∝ Upd(n, j,K, ∅)〉 complete(x, n) 〈ret. x ∝ Done(n, j,K)〉

In reading this triple, it is crucial to remember that assertions are
closed under rely moves—so x ∝ Upd(n, j,K, ∅) means that the
location x was once a live, in-progress update. The interesting thing
about the triple is that, regardless of the exact initial state of x, on
exit we know that x is at least Done—and there’s no going back.

The proof outline for complete at the top of Figure 9 states
that, after reading the value of the flag, the location x is in an
appropriately speculative state. To prove that fact, we must consider
the rely-future states of Upd(n, j,K, ∅), and show that for each
such state we can reach (via a guarantee move) a rely-future state

of Upd(n, j,K, {1}) or Upd(n, j,K, {0}), depending on the value
read. For example, if the initial state is s0 and we read that the flag
is true, we take a guarantee move to s′0 as follows:

If s0 is then s′0 is

Upd(d, ∅) Upd(d, {1})
Upd(d, {0}) Upd(d, {0, 1})
Done(d) Done(d)

If s0 is then s′0 is

Upd(d, {1}) Upd(d, {1})
Upd(d, {0, 1}) Upd(d, {0, 1})
Gone Gone

If the initial state already included the needed speculation (or was
Done or Gone), there is nothing to show; otherwise, changing the
state requires speculative execution of the spec. We perform a similar
case analysis at the CAS step, but there we start with the knowledge
that the appropriate speculation has already been performed—which
is exactly what we need if the CAS succeeds. If, on the other hand,
the CAS fails, it must be the case that x is at least Done: if it were
still in an Upd state, the CAS would have succeeded.

With complete out of the way, the proof of cinc is relatively
easy; see the bottom of Figure 9.8 When entering the procedure, all
that is known is that the island exists, and that the specification is
owned. The thread first examines c to see if the counter is quiescent,
which is the interesting case. If the subsequent CAS succeeds in
installing an active descriptor inj2 n, that descriptor is the new live
node (in state Upd(n, j,K, ∅))—and the thread, being responsible
for this transition, gains ownership of the descriptor’s token. The
resulting assertion y ∝• Upd(n, j,K, ∅) is equivalent to

y ∝ Upd(n, j,K, ∅) ∗ y ∝• Upd(n, j,K, ∅)
which means that we can use y ∝• Upd(n, j,K, ∅) as a frame in an
application of the frame rule to the triple for complete(y, n). This
gives us the framed postcondition

y ∝ Done(n, j,K) ∗ y ∝• Upd(n, j,K, ∅)
which is equivalent to y ∝• Done(n, j,K). Since our thread still
owns the token, we know the state is exactly Done(n, j,K), and in
the next step (where we return the requisite unit value) we trade the
token in return for our spec—which some thread has executed.

5. Discussion and related work
We have presented a model for a high-level language with concur-
rency that enables direct refinement proofs for sophisticated FCDs,
via a notion of local protocol that encompasses the fundamental
phenomena of role-playing, cooperation, and nondeterminism.
In this section, we survey the most closely related work along each
of these axes.

High-level language Birkedal et al. [5] recently developed the
first logical-relations model for a higher-order concurrent language
similar to the one we consider here. Their aim was to show the
soundness of a sophisticated Lucassen-and-Gifford-style [27] type-
and-effect system, and in particular to prove the soundness of
a Parallelization Theorem for disjoint concurrency expressed by
the effect system (when the Bernstein conditions are satisfied).
The worlds used in the logical relation capture the all-or-nothing
approach to interference implied by the type-and-effect system. As
a result, the model has rather limited support for reasoning about
FCDs: it can only prove correctness of algorithms that can withstand
arbitrary interference.

We are unaware of any other proof methods that handle higher-
order languages, shared-state concurrency, and local state.

Direct refinement proofs Herlihy and Wing’s seminal notion of
linearizability [21] has long been the gold standard of correctness
for FCDs, but as Filipović et al. argue [14], what clients of an FCD
really want is a contextual refinement property. Filipović et al. go on

8 The steps labeled with ∴ indicate uses of the rule of consequence.
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to show that, under certain (strong) assumptions about a program-
ming language, linearizability implies contextual refinement for that
language. More recently, Gotsman and Yang generalized both lin-
earizability and this result (the so-called abstraction theorem) to
include potential ownership transfer of memory between FCDs and
their clients [16]. While it is possible to compose this abstraction
theorem with a proof of linearizability to prove refinement, there
are several advantages to our approach of proving refinement di-
rectly. First of all, it allows us to treat refinement as an assertion in
our logic, which means that we can compose proofs of refinement
when reasoning about compound FCDs, and do so while working
within a single logic. Second, it allows us to leverage recent work
for reasoning about refinement and hidden state, e.g., Dreyer et al.’s
STS-based logical relations [9]. Third, it allows us to reason about
FCDs that use higher-order features, e.g., the universal FCD con-
struction given in [20], which would otherwise require extending the
definition of linearizability to the higher-order case. Finally, it allows
us to seamlessly combine reasoning about fine-grained concurrency
with other kinds of reasoning, e.g., relational parametricity [32].

Turon and Wand developed the first logic for reasoning directly
about contextual refinement for FCDs [36]. Their model is based on
ideas from rely-guarantee and separation logic and was developed
for a simple first-order language, using an extension of Brookes’s
trace-based denotational semantics [6]. While it is capable of
proving refinement for simple FCDs, such as Treiber’s stack, it
does not easily scale to more sophisticated algorithms.

More recently, Liang et al. proposed RGSim [25], a composi-
tional inter-language simulation relation based on rely-guarantee
for verifying program transformations in a concurrent setting. Liang
et al. also use their method to prove that some simple, but realis-
tic, FCDs are simulated by their spec. While the original paper on
RGSim did not relate simulation to refinement or linearizability, new
(currently unpublished) work has done so [24].

Local protocols O’Hearn et al.’s work on Linearizability with
hindsight [30] clearly articulates the need for local protocols in
reasoning about FCDs, and demonstrates how a certain mixture of
local and global constraints leads to insightful proofs about lock-
free traversals. At the heart of the work is the remarkable Hindsight
Lemma, which justifies conclusions about reachability in the past
based on information in the present. Since O’Hearn et al. are focused
on providing proofs for a particular class of algorithms, they do
not formalize a general notion of protocol, but instead focus on a
collection of invariants specific to the traversals they study. We have
focused, in contrast, on giving a simple but general account of local
protocols that suffices for temporally-local reasoning about a range
of FCDs. It remains to be seen, however, whether our techniques
yield a satisfying temporally-local correctness proof for the kinds of
traversals O’Hearn et al. study, or whether (as O’Hearn et al. argue)
these traversals are best understood non-locally.

The notion of protocol most closely related to ours is Dinsdale-
Young et al.’s Concurrent abstract predicates (CAP) [7]. CAP
extends separation logic with shared, hidden regions similar to our
islands. These regions are governed by a set of abstract predicates,
which can be used to make localized assertions about the state of the
region. In addition, CAP provides a notion of named actions which
characterize the possible changes to the region. Crucially, actions
are treated as a kind of resource which can be gained, lost, or split
up (in a fractional permissions style), and executing an action can
result in a change to the available actions. It is incumbent upon users
of the logic to show that their abstract predicates and actions cohere,
by showing that every abstract predicate is “self-stable” (remains
true after any available action is executed).

While CAP’s notion of protocol is very expressive, it is also
somewhat “low-level” compared to our STS-based protocols, which
would require a somewhat unwieldy encoding to express in CAP. In

addition, our protocols make a clear separation between knowledge
bounding the state of the protocol (treated as a copyable assertion)
and rights to change the state (treated as a linear resource: tokens),
which are mixed in CAP. Another major difference is that CAP
exposes the internal protocol of a data structure as part of the
specification seen by a client—which means that the spec for a
given FCD often depends on how the client is envisioned to use
it. Additional specs (and additional correctness proofs) may be
necessary for other clients. By contrast, we take a coarse-grained
data structure as an all-purpose spec; if clients then want to use
that data structure according to some sophisticated internal protocol,
they are free to do so. Finally, our protocols support speculation and
spec code as a resource, neither of which are supported in CAP.

Role-playing The classic treatment of role-playing in shared-state
concurrency is Jones’s rely-guarantee reasoning [23], in which
threads guarantee to make only certain updates, so long as they
can rely on their environment to make only certain (possibly differ-
ent) updates. More recent work has combined rely-guarantee and
separation logic (SAGL [13] and RGSep [38]), in some cases even
supporting a frame rule over the rely and guarantee constraints them-
sevles (LRG [12]). This line of work culminated in Dodds et al.’s
deny-guarantee reasoning [8]—the precursor to CAP—which was
designed to facilitate a more dynamic form of rely-guarantee to ac-
count for non-well-bracketed thread lifetimes. In the deny-guarantee
framework, actions are classified into those that both a thread and its
environment can perform, those that neither can perform, and those
that only one or the other can perform. The classification of an action
is manifested in terms of two-dimensional fractional permissions
(the dimensions being “deny” and “guarantee”), which can be split
and combined dynamically. Our STSs express dynamic evolution of
roles in an arguably more direct and visual way, through tokens.

Cooperation Vafeiadis’s thesis [37] set a high-water mark in veri-
fication of the most sophisticated FCDs (such as CCAS [18, 15]).
Building on his RGSep logic, Vafeiadis established an informal
methodology for proving linearizability by employing several kinds
of ghost state (including prophecy variables and “one-shot” re-
sources, the latter representing linearization points). By cleverly
storing and communicating this ghost state to another thread, one
can perform thread-local verification and yet account for coopera-
tion: the other thread “fires” the single shot of the one-shot ghost
resource. While this account of cooperation seems intuitively rea-
sonable, it lacks any formal metatheory justifying its use in lineariz-
ability or refinement proofs. Our computational resources generalize
Vafeiadis’s “one-shot” ghost state, since they can (and do) run com-
putations for an arbitrary number of steps, and we have justified
their use in refinement proofs—showing, in fact, that the technique
of logical relations can be expressed in a “unary” (Hoare logic) style
by using these computational resources.

Concurrently with our work, Liang and Feng have extended
their RGSim framework to account for cooperation [24]. The new
simulation method is parameterized by a “pending thread inference
map” Θ, which plays a role somewhat akin to our worlds. For
us, worlds impose a relation between the current protocol state,
the current implementation heap, and the current, speculative spec
resources. By contrast, Θ imposes a relation between the current
implementation heap and the current spec thread pool. To recover
something like our protocols, one instead introduces ghost state
into the implementation heap, much as Vafeiadis does; as a result,
Θ can be used to do thread-local reasoning about cooperative
FCDs. However, there are several important differences from our
approach. First, there is no notion of composition on thread inference
maps, which take the perspective of the global implementation
heap and global pool of spec threads. Thus thread inference maps
do not work as resources that can be owned, split up, transferred
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and recombined. Second, the assertions that are used in pre- and
post-conditions cannot talk directly about the thread inference
map; they must control it indirectly, via ghost state. Third, the
simulation approach does not support speculation or high-level
language features like higher-order functions or polymorphism.
Finally, it requires encoding protocols via traditional ghost state
and rely/guarantee, rather than through standalone, visual protocols.

Groves and Colvin propose [17] a radically different approach
for dealing with cooperation, based on Lipton’s method of reduc-
tion [26]. Reduction, in a sense, “undoes” the effects of concurrency
by showing that interleaved actions commute with one another—
much like linearizability. Groves and Colvin are able to derive an
elimination stack from its spec by a series of transformations, justi-
fying each by considering possible interleavings and proving, very
roughly, that the relevant actions commute. Elmas et al. also de-
veloped a method for proving linearizability using reduction and
abstraction [11], and while they do not study cooperation explicitly,
it is likely that their method can cope with it too.

Nondeterminism Forward simulation is well-known to be sensi-
tive to differences in the timing of nondeterminism (also known
as the “branching” structure of a transition system) [39]. On the
other hand, forward simulation is appealingly local, since it con-
siders only one step of a program at a time (as opposed to e.g.,
trace semantics). To retain temporally-local reasoning but permit
differences in nondeterminism (as in the late/early choice example),
it suffices to use a combination of forward and backward simula-
tion or, equivalently, history and prophecy variables [28, 1]. Lynch
and Vaandrager showed that there are also hybrids of forward and
backward simulations, which relate a single state in one system to a
set of states in the other—much like our speculation. Our technique
goes further, though, in combining this temporally-local form of
reasoning with thread-local reasoning: hybrid simulations work at
the level of complete systems, whereas our threadpool simulations
can be composed into larger threadpool simulations. Composability
allows us to combine thread-private uses of speculation with shared
uses of speculation in protocols; moreover, it is crucial in showing
soundness for contextual refinement.
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