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Abstract

There has been much work in recent years on extending ML with
recursive modules. One of the most difficult problems in teeett
opment of such an extension is teuble visionproblem, which
concerns the interaction of recursion and data abstradtiopre-
vious work, | defined a type system called RTG, which solves th
double vision problem at the level of a System-F-style calews
lus. In this paper, | scale the ideas and techniques of RT@eo t
level of a recursive ML-style module calculus called RMQjgh
establishing that no tradeoff between data abstractionrecuat-
sive modules is necessary. First, | describe RMC's typirlgsru
for recursive modules informally and discuss some of thégdes
guestions that arose in developing them. Then, | presenfothe
mal semantics of RMC, which is interesting in its own righheT
formalization synthesizes aspects of both the Definitiod e
Harper-Stone interpretation of Standard ML, and includes\el
two-pass algorithm for recursive module typechecking incivithe
coherence of the two passes is emphasized by their repatisent
in terms of the same set of inference rules.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guage§ Formal Definitions and Theory; D.3.3Pfogramming
Languagel Language Constructs and Features—Abstract data
types, Modules, Recursion; F.3.Bdgics and Meanings of Pro-
gramg: Studies of Program Constructs—Type structure

General Terms Design, Languages, Theory

Keywords Type systems, modules, recursion, abstract data types

1. Introduction

The ML module system (MacQueen 1984), while esteemed for its
strong support for data abstraction and code reuse, hadedso
criticized for lacking a feature common to less sophisédanod-

ule systems—namelyecursive modulesThe absence of recursive
modules in ML means that programmers are forced to consoli-
date mutually recursive code and type definitions withinraeyle
module, often at the expense of modularity. Consequentlyei
cent years, language researchers have proposed and impdeime
a variety of recursive module extensions to ML in the intecds
remedying this deficiency (Russo 2001; Leroy 2003; Drey&520
Nakata and Garrigue 2006).
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My Ph.D. thesis (Dreyer 2005) examines several problems in
the design of a recursive module construct that all of theeafien-
tioned proposals have had to deal with in one way or another. B
far the most serious of these problems is one that invohesitlr-
action of recursion and data abstraction. Inside a recuraivdule,
one may wish to define an abstract data type in a context where
a name for the type already exists, and there is no way in-tradi
tional accounts of ML-style type generativity to connect tid
name with the new definition. | call this thaouble visionprob-
lem because it has the effect that the programmer sees ttirctlis
versions of the same type when they should only see one. (A mot
vating example of the problem is given in Section 2.1.)

Double vision has proven difficult to cure. To the extent that
existing recursive module proposals address the problesy, do
so either by imposing severe restrictions on the use of data a
straction within recursive module definitions (Crary et H99;
Russo 2001), or else by implementing tricky typecheckingena
vers that are difficult to formalize cleanly and only work ierain
cases (Leroy 2003; Dreyer 2005). Neither of these apprsaishe
satisfactory. (An overview of existing proposals is givenSec-
tion 2.2.)

In recent work (Dreyer 2007b), | argued that the reason aoubl
vision is a difficult problem is that the classical type-ttet@ inter-
pretation of abstract data types—namely, as packagessitetial
type (Mitchell and Plotkin 1988)—is inadequate for expiegshe
kinds of recursive abstract data types that arise naturathye con-
text of recursive modules. | defined a type system called Ro6G (
Recursive Type Generativity) that addresses this defigiahthe
level of a System-F-style core calculus. (The basic ideaTdss &
presented in Section 2.3.) Although | gave several exaniplesg-
gest how recursive modules may be encoded in RTG, | left the de
velopment of a general recursive module semantics to fuvor&.

The primary contribution of this paper is to fulfill the proseiof
RTG by scaling its ideas and techniques to the level of a sa@ir
ML-style module calculus, which | call RMC. The semantics of
RMC successfully avoids the double vision problem withdatp
ing any undue restrictions on the use of data abstractiondurs
sive modules. While RMC'’s approach to solving double vis®n
based closely on that of RTG, the typechecking of RMC program
is more complex than that of RTG programs (much as the type-
checking of ML modules is more complex than that of System F).
In Section 3, | describe recursive module typechecking ainan
formal level, and provide a humber of examples and exerdses
demonstrate its subtleties. | also discuss a number of tieite
cal issues that arose (aside from the handling of doublenjisih
working out a semantics for a general recursive module laggu

The formalization of the RMC type system (presented in full
detail in Section 4) is interesting on several levels. Fitsixhibits
a hybrid of the two main approaches to defining the semanfics o
ML-style modules: namely, the Definition of Standard ML (e
et al. 1997) and the type-theoretic interpretation of Harmed



Stone (2000). On one hand, | define the dynamic semantics of
RMC by means of a Harper-Stone-st@kaborationrelation (aka
evidence translationinto an “internal” type system. This internal
type system is just RTG extended with a primitive module esyst

The main benefit of this approach is that it enables us to ksttab
the type soundness of RMC as a corollary of the type soundness
of RTG. In contrast, while Definition-style formalisms tgpily
employ a “direct” big-step evaluation semantics, type simass

of these formalisms is more difficult to prove (Tofte 1988).

On the other hand, the interpretations of modules and signa-
tures in RMC are much closer in detail to tsemantic objects
of the Definition than to theranslucent-sums/manifest-typks-
malism (Harper and Lillibridge 1994; Leroy 1994) employegd b
Harper and Stone. Moreover, like the Definition’s typingesylthe
RMC typing rules are completely self-contained and can be ex
plained to the programmer independently of the evidenaeskaa
tion into the internal RTG type system. In fact, that is pseti how
I will present the rules in this paper, leaving most of theadst
of evidence translation to the companion technical reforéyer
2007a). Thus, RMC's formalization combines the benefitsathb
definitional approaches.

A second interesting feature of RMC’s static semanticsds it
streamlined presentation of recursive module typechecKiie
proper handling of double vision seems to demand the use of a
two-pass algorithm for typechecking certain kinds of medut-
the first (“static”) pass computes only the type componehth®
module, while the second pass typechecks the full modulea As
way of demonstrating the semantic coherence of these pdsses
formalize both of them using a single set of typing rules—ahby
difference is that the static pass omits some of the prenoistse
rules for the full pass. | believe the built-in coherencehefse judg-
ments makes the semantics of RMC easier to understand than ot
recursive module formalisms that involve multiple typeckieg
passes (Nakata and Garrigue 2006; Dreyer 2005, 2006).

A key feature that RMC does not account for in its present form
is the ability to compile mutually recursive modules sepeyeand
link them dynamically. None of the related work on recurdie-
style modules supports this feature either. In prior workeffer
2007b), | demonstrated that the RTG calculus is capablearfcen
ing separately compiled recursive modules, so | believelithe
possible in the future to scale RMC to support separate dampi
tion. At the moment, however, it is unclear how best to introel
this feature syntactically into a programmable module legg,
and | consider it separable from the focus of the present work

Detailed comparisons with related work on recursive maslule
appear throughout the paper, particularly in Sections B@ &

I conclude in Section 5 with further discussion of relatedrkyo
as well as directions for future work.

2. The Double Vision Problem

Crary et al. (1999) were the first to attempt to establish &typ
theoretic foundation for recursive ML-style modules. Rghthe
most influential aspect of their work is that they set forth thvo
main syntactic extensions to the ML module system that appea
(with minor variations) in every subsequent recursive ni@guo-
posal, including the present one.

The first is the recursive module construct itself, which thees
form rec (X: sig) mod. Here, mod is the module being recur-
sively defined X is the module identifier by whiclnod refers to
itself, andsig is theforward declarationsignature, which is used
as the signature oKX during the typechecking ofiod. Mutually
recursive modules are definable as a single recursive maedtie
multiple substructures.

The second extension is thecursively dependent signatujer
rds), which has the fornrec (X) sig. The idea is thaX is a vari-

signature S) = sig
type u; type t;
val £ : t -> u *x t
end
signature Sp = sig
type t; type u;
val g : t > u * t .
end

signature S =
rec (X) sig

structure A : Sp where type u = X.B.u
structure B : Sp where type t = X.A.t
end
structure AB = rec (X : S) struct
structure A :> (Sp where type u = X.B.u) = struct
type u = X.B.u
type t = int
fun £ (x:t) : u*xt =
let val (y,z) = X.B.g(x+3) (* Error 1 *)
in (y,z+5) end (* Error 2 *)
end
structure B :> (Sg where type t = X.A.t) = struct
type t = X.A.t
type u = bool
fun g (x:t) : u*xt = XA£C.0) ...
end
end

Figure 1. Motivating Recursive Module Example

able by whichsig can refer recursively to themodulewhose sig-
naturesig is intended to describe. This functionality is critical if
we wish to describe the signatures of mutually recursive utesd
with abstract type components, such as those in the matiyati-
ample (below). Although several authors refer to rds’s astirsive
signatures”, | concur with Crary et al. that this is mislewylias it
gives one the impression that the signatures can refersigely to
themselves (rather than to the modules that inhabit them).

2.1 Motivating Example

Figure 1 presents a motivating example of a recursive matiale
exhibits the double vision problem. So that this motivagxgmple
may serve as a running example throughout the paper, it s®n
to the point of being contrived. For more realistically diet
examples of recursive modules, see Dreyer (2005) and Nakalta
Garrigue (2006).

The recursive module in Figure 1 comprises two mutually re-
cursive substructures and B, with A providing an abstract type
component and a value componeiit andB providing an abstract
type component. and a value componegt In this example, the
types of both value components,f andB.g, refer to both type
componentd.t andB.u. So that we may write down the signa-
ture for each module independently and bind it to a signatiee-
tifier (S, andsg), each of these signatures includes a specification
of the type component from the other module. This is a stahdar
technigue in ML programming, which Harper and Pierce (2005)
recently dubbedibration.

When we write down the forward declaration signat8reve
need a way to connect the two copies of each type component. Fo
this purpose, we employ a recursively dependent signatisieg
ML's where type mechanism, we can reify the specification of
A.u so that itis transparently equal XoB.u (and similarly so that
B.t is transparently equal 0.4 t).



Now we come to the recursive module definition itself. While
typechecking the body of the definition, we assume that tberre
sive variablex has the forward declaration signat@eWwithin the
definition of modules, the typet is defined to beint. The func-
tion £ takes a value of typet as an argument.¢., an integer)
and callsx.B.g on x+3. Unfortunately, this is not well-typed, be-
causeX.B.g expects a value of type. A. t, nott, andX.A.t is not
known to equalint. To the programmer, however, this may seem
bizarre, sincex.A.t is merely a recursive reference t¢ so the
two types should be indiscernible, shouldn’t they? Thidesfirst
instance of the double vision problem. The second instaooes
on the following line of code. The call t&.B.g has returned a
valuez of typeX.A.t, which the functionf then tries to add to.
The typechecker will prevent it from doing so, though, fax #ame
reason as before*=A.t does not equaint.

Intuitively, the problem here is obvious. The bodiesacdnd
B should have access to different privileged informationualibe
type components of. Specifically,A should know thak.A.t is
int, but it ought not know anything abodt B.u. Converselys
should know thaX.B.u is bool, but it ought not know anything
aboutX.A.t. However, it is far from obvious how to define a gen-
eral typing rule for recursive modules so th¥ahas different sig-
natures when typechecking different parts of the recunsigdule
definition.

2.2 Existing Approaches to Double Vision

Under all of the existing recursive module proposals, tfegmm
in Figure 1 is rejected as ill-typed.

Crary et al. (1999) observe the double vision problem inrthei
original paper, although they do not refer to it as suchtélagd, they
call it the “trouble with opacity”.) Their response to theoplem is
simply to restrict the forward declaration signature of eursive
module to be transparent. In the case of our motivating el@mp
this means that the definitions bft andB.u would need to be ex-
posed, effectively prohibiting either module from hidinginternal
data representation from the other. Aware of this, Craryl.alis-
cuss informally several ideas for how this restriction nbigg lifted
in practice, but to my knowledge none of these ideas has lwen f
mally fleshed out.

Russo (2001) defines a recursive module extension to Sthndar
ML, which he has implemented in the Moscow ML compiler.
Although Russo does not explicitly require forward dediares
to be transparent, other restrictions of his system intpficio. In
particular, his typing rule fotec (X: sig) mod demands that, if a
type component is forward-declared abstractly iig, thenmod
must definet to be equal tX.t (i.e.,by writing type t = X.t).
While this clearly has the effect of avoiding double visidralso
means that never gets defined anywhere!

This restriction makes it essentially impossible to forvar
declare abstract data types. It is worth noting that Russkema
an exception for types that are defined by an algebtatatype
definition. If a type is forward-declared usingdatatype spec-
ification, then the body of the recursive module must defiree th
corresponding type via SML'8atatype copying constructe.g.,
datatype t = datatype X.t.Insome sense, though, this isthe
exception that proves the rule—whitein this case is technically
an abstract type, theatatype specification oft in the forward
declaration signature exposes alld$ data constructors, so's
internal representation is all but transparent.

Leroy (2003) describes informally a recursive module esit@m
that he implemented for OCaml. To permit abstract type $igaei
tions in forward declaration signatures, he sketches achgik-
ing algorithm that typechecks different mutually recuesimodules
under different typing contexts. However, while his al¢fum suc-
cessfully avoids double vision in certain cases, it only kgoior

type components that are defined internallydagtatype defini-
tions. It does not work for types that are defined internajiyrbns-
parent bindings (such @ t andB.u in our motivating example)

or for types that are defined under more than one level of apaqu
signature ascription. Moreover, there remains no formebant of

his algorithm.

Nakata and Garrigue (2006) propose a recursive module-exten
sion to ML, calledTraviata, that is significantly different from other
proposals in that it does not require recursive modules ve hay
forward declaration at all. Nevertheless, as the authesdyfradmit,
their approach still suffers from the double vision problém fact,
as | explain in Section 3.4, some of their examples only thipek
becauseheir type system suffers from the double vision problem.)
The authors mention the existence of a workaround by whieh th
programmer may manually coerce values from one “doublentsi
of atype component to the othex.§..fromX.A.t toint), but they
do not describe this workaround in any detail.

In my thesis (Dreyer 2005), | formally defined a recursive mod
ule extension to ML, which | implemented in the TILT compiler
My typechecking algorithm was an attempt to generalize fhe a
proach taken by Leroy’s OCaml extension into a more complete
solution to the double vision problem. Figure 1 does notdieek
under my TILT extension, but only because my semantics for re
cursively dependent signatures was overly restrictive @gidchot
permit one to write the signatui® in its fibered form. A slight
variant of this example—using an unfibered forward dediamnat
signature—doestypecheck in TILT.

Nevertheless, since my thesis does not contain a clean type-
theoretic account of the double vision problem, the formzion
of my TILT extension is extremely long and complex. It emda@y
variety ofad hoctricks, such as “meta-signatures” containing both
“public” and “private” interfaces for subcomponents, anfitrence
rules that make critical use of graphical boxes drawn araiehks
of the typing context. In short, while my TILT extension sass-
fully avoids the double vision problem (as far as | know),fis
malization is incomprehensible. The desire for a simpléutgm
was the primary motivation for my work on the RTG type system.

2.3 The RTG Type System

In traditional accounts of data abstraction, includinghbexisten-

tial types (Mitchell and Plotkin 1988) and ML-style modulgss
tems (MacQueen 1984), one can only create a new abstract type
name if one supplies a definition along with it. In the contekt
recursive modules, this joining together of type creatiod type
definition engenders the double vision problem by preventime
from providing a definition for a pre-existing type name. kor
stance, in the case of our motivating example, double viaises
because module wants to define an abstract typein a scope
where a name for that type¥-A.t—already exists. The key idea

of my RTG type system (Dreyer 2007b) is to separate the gener-
ation of the name for an abstract type from the definition ef th
type, so that a type name may be created and referred to eiten if
definition is not yet available.

This approach is best illustrated by example. Considerrgigu
which demonstrates how the motivating example from Figure 1
would be encoded in RTG. (Actually, the encoding is in a varia
of RTG that includes a primitive module system. This variarte-
fined formally in the companion technical report (Dreyer 28)0)

Here, X is the RTG representation of the forward declaration
signatures from Figure 1. The key difference is that the type com-
ponentsA.t andB.u of X are not abstract like those sf—rather,
their specifications, written gds= «: T] and[= 3: T], denote that
they are transparently equal to the free type variablesnd 3.
These type variables are created and bound, before thesnezur
moduleAB is defined, by invoking aew construct. Since thigew



new aTT, 1T in

let AB = rec (X : )
[A = def « := int in
[u=p3, t=idnt, £f= ..., ...1 : X,
B = def # := bool in
[t =a, u=Dbool, g= ..., ...] gl

in (* rest of program *)

where
def

Xa = [u:[=6:T],t:[=a:T],f:[a—Fxa],...]
Yg = [t:[=a:T]u:[=8:T],g:[a—Bxa],..]
Yy = [A:%,,B:3p]

Figure 2. Encoding of Figure 1 in a Variant of RTG

construct does not actually supply a definitiondoandg, they are
consideredundefinedand are marked as such in the type context
during typechecking using anbinding.

In the recursive module body, the usesagfaque signature
ascription(akasealing have been replaced by RTG'’s own sealing
construct, called thaef construct For 4, what thisdef construct
does is to provide the type namewith the definitionint, but to
only make that definition visible within the body of thef. Within
A’s definition, « is considered equivalent timt, and thusx.A.t
is also considered equivalent iat sinceX.A.t is transparently
equal toa. This is the key to solving the double vision problem.
Upon leaving the scope afs definition, however, the identity af
is returned to its abstract state, amis added to the context with
signatureX, . In addition, so that no subsequent code may attempt
to redefinen—a critical condition for type soundness—the context
binding for « is changed fromx T T to « | T. The typechecking
of B proceeds similarly.

In short, RTG provides a simple way of typechecking différen
parts of the recursive module definition under typing cotstéat
expose different privileged information concerning thertities of
X.A.t andX.B.u. This corresponds to the programmer’s natural
intuition about how a recursive module should be typechecke

3. An Informal Overview of RMC Typechecking

In this section, | explain what is involved in scaling theadeand
techniques of the RTG type system from the level of a System-
F-style core calculus to the level of an ML-style module syst
| begin in Section 3.1 with a simple informal explanation afxh

recursive modules and sealed modules (the two main language

features on display in our running example) are typecheckieen,

in the following sections, | explore some of the interestitegign

questions that arise when one goes to work out the details.
Along the way, | test the reader’s understanding of the expos

tion by offering some simplexercises concerning RMC semantics.

| strongly encourage the reader to attempt the exercises—or, fail-

ing that, to cheat by looking ahead to ttietailed solutions given

at the end of the paper—because the exercises (and theiiossju

help to illuminate a number of subtle aspects of RMC semantic

3.1 Typechecking Recursive and Sealed Modules
Intuitively, the basic goal of the RMC type system is to tyipeck

typechecking of an RTG expression is done under the assompti
that the names of the abstract types the expression wangdite d
have already been created and are bound as undefipiedtie typ-
ing context. The RMC type system relies on a similar funcldn

In the case of our motivating example, we will assume thatrwhe
we are typechecking the modulg, there exist two type variables
« and 3, which will representAB.A.t and AB.B.u, respectively,
and which are bound in the initial context a8 as undefined.
The names of these type variables are arbitrary—they amypur
semanticrepresentations ofB’s abstract typesi.e., they play an
important role in typechecking but are not visible to the RG-
grammer syntactically.

Second, the forward declaration signat&ein Figure 1 is
opaque, whereas the forward declaratidrin Figure 2 is trans-
parent. To transforns into X, we need to reify the specifications
of S's opaque type components to be transparently equal to their
definitions in the recursive module body. Under ordinary oied
type systems this would be difficult, since the recursive uhed
body can (and, in the case of modw, does) withhold the def-
initions of those components by defining them abstractlywHo
ever, under the RMC type system this is not an issue, since we
have arranged for those components to be named ahead of time.
For AB, the definitions ofA.t andB.u are simplya and g3 (the
undefined type variables bound in the context). Correspaghgi
¥ is morally equivaleritto s filled in with those definitionsi.e.,

S where type A.t = « and type B.u = (5.

* * *

Exercise #1: Suppose that our example were modified so that the
definition of moduleB werenot sealed. What transparent signature
would S be transformed to in that case, and consequently what
effect would this have on the typechecking of the recursiedute?

* * *

Third, sealed modules (such &8. A andAB.B) in Figure 1 be-
comedef expressions in Figure 2. In order to typecheck a sealed
module as if it were def expression, we first compute a type sub-
stitutiond, mapping the names of the abstract types that the module
will define to their definitions in the module body (underiretite
sealing). For example, farB. A, the computed would mapa to
int, and forAB.B, the computed) would map( to bool. This
substitution is then applied to the typing context beforetheck-
ing the module body. Thus, when typechecking the bodyBof,
all references tav in the signature of are replaced bynt; when
typechecking the body ofB.B, all references t@ in the signa-
ture of X are replaced byool. In this way, each module’s secret
knowledge of certain type components is reflected in theestnt
under which it is typechecked.

To summarize, and also to number the steps of typechecking
for convenient reference later in the paper, here is how atCRM
recursive module of the formec (X : sig) mod is typechecked:

1. AssumingX has signatureig, compute the type components
of mod, and use these to look up the definitions of the type
components that are specified opaquelyiin

2. Use the information from the previous step to construcaast
parent forward declaration, which is justsig with its opaque
type components reified with their definitions franvd.

3. After rebindingX in the context with:, typecheckmod.

an RMC program such as the example in Figure 1 as if it were the 4. Check thatnod’s signature matches (is coercible 1)

RTG program in Figure 2. To understand how this is achiewd, |

us consider the major ways in which Figure 2 differs from Fégi.
First of all, the success of RTG is based on its built-in func-

tionality for forward declaration of abstract types. Caatety, the

1n (Dreyer 2007b) this is called thest construct.

2 Arranging for these variables to “magically” appear in thatext—in the
right number and with the right kinds—is not a problem. (Seeti®n 4.5.)
3| saymorally equivalent becausg is asemanticsignature, not ayntactic

RMC signature, but this is largely a technical point. Theidetion between
syntactic and semantic signatures is explained in Section 4



The typechecking of an opaquely sealed moduted :> sig,
proceeds as follows:

1. For each of the type components specified opaquelyign
there should be an abstract type variablbound as undefined
in the context (with the appropriate kind).

2. Compute the type components nfod, and use these to de-

termine a substitution that maps the undefined type variables
from the first step to their definitions imod.

3. After applyingd to the typing context, typecheeakod.
4. Check thatnod’s signature matches (is coercible ta}).

* * *
Exercise #2: Suppose that the following is well-typed in RMC:

rec (X : sig structure A : sig end) struct
structure A = mod

end

Here,sig is an RMC signature, anahod is an RMC module. Also,
assume that neithérnor B appears free inig. Determine whether
or not the above recursive module would continue to be vypkkd
if its body (structure A = mod) were replaced with:

(a). structure A :> sig = mod

(b). structure B :> sig = mod; structure A = B

(C). structure B = mod; structure A :> sig = B

3.2 Forward Declarations, Not Signature Ascriptions

One design point on which existing recursive module prolsosa
differ is the question of whether the forward declaratiagnsiure

in a recursive module definition should also serve as therégo
signature of the recursive module itself.

In Crary et al.'s foundational type system, recursive medualre
modeled as fixed-points at the level of modules. Accordinthi®
interpretationrec (X : sig) mod has signatureig, as long asnod
hassig under the assumption thathassig. Although Crary et al.'s
is the only proposal to treat recursive modules explicityfined-
points? several other proposals, including Leroy’s and the one in
my thesis, follow suit in treating the forward declaratieiy as
the principal exported signature of the recursive moddelfit In
contrast, Russo’s extension to Moscow ML treatg merely as a
forward declaration, not as a sealing signature. In othexdsyat
allows the recursive module to export components that appea
mod but are not forward-declared #ig.

3.3 Computing the Type Components of a Module

A central step in both typing rules described above is theione
which we compute the type components of the underlying neodul

mod. | will refer to this phase as thstatic typecheckingf mod.
In an earlier version of the RMC system (Dreyer 2006), which |
discuss in Section 5.1, this static typechecking pass wasdlized
using a completely different set of rules from the reguladuie
typing judgment, and | found that this made the language itiefin
seem somewhatd hocand confusing. (It is a similar problem that
plagues the typechecking algorithm in my thesis (Dreye5200

As a result, | have sought to develop a maleclarativeac-
count of module typechecking. In particular, my initial &dwas
that the static typechecking steps could consist merelpoflater-
ministically guessinghe type components of.od. For example,
in typechecking the sealed definition &8.A from Figure 1, one
might simplyguessthat the typet was defined internally asnt.
That one had guessewrrectly could be verified after the fact by
making sure that the underlying module matched a signatifihetw
transparently equal tint. In practice, one would of course need to
supply a deterministic algorithm in order to perform the ggieg,
but the declarative definition of the type system would netchi®
specify the gory details of this algorithm.

Unfortunately, this idea does not seem to work, and it igirest
tive to see why. First, consider the following example:

rec (X : sig type t end)
struct type t = X.t end

We run into trouble here if we try to nondeterministicallyegs
the definition oft in the recursive module body. If we guess that
t is int, and we typecheck the body under a context whehas
the signaturesig type t = int end—as demanded by step 3
of the recursive module typing rule described above—we fivad t
the body has the same signature. However, if we guessttimat
bool, the module still typechecks, but this time with signature
sig type t = bool end.Hence, we lose the property that mod-
ules have principal signatures.

In short, the problem is that the recursive definition of tyeet
t in this example is1on-contractivei.e., there are infinitely many
ways to solve it. Ideally, we would like to demand that the miefi
tions of the type components be contractive. But this denigad
catch-22: we cannot evestateit unless we have already computed
the definitions of the type components, which is preciselptwie
were trying to avoid doing by nondeterministically guegsinem.

A seemingly simple fix is to require that when we guess the type

| believe that Russo’s approach is a clear win, and RMC adopts components of a module, the guess we make iutiigueguess

it. If the author of a recursive module wishes to seal the lafdiie
recursive module with the forward declaration signatures very
easy to do so explicithg.g.,by writing rec (X : sig) (mod :> sig).
Moreover, if a recursive module is only “slightly” recursive.g.,

if there is only one value componett say, that needs to be
referred to recursively through the recursive module \deiX —
then Russo’s approach only requires one to specify the titiead
one component in the forward declaration signature. There is no
need to forward-declare components of the module that wtlbe
referred to recursively.

* * *

Exercise #3: In the example in Figure 1, is it necessary to use
a recursively dependent signature to defiels there a simpler
signature that could be used as a forward declaration, witho
effecting any changes to the exported signatur&Bof

4Most other proposals employ a Scheme-style backpatchimgusics for
module-level recursion, as does the present one. One @wepthe pro-
posal of Nakata and Garrigue (2006), which uses a call-loyensemantics
for modules.

that enables typechecking to succeed. Such a restrictiattvan-
ish the above example from consideration. However, thisifiead
approach causes a different kind of trouble. Consider ti®rsd
example:

rec (X : sig type ’a t end) struct
type ’a t = ’a X.t
val n : int t = 3
val b : bool t = true

end

In this example, although the type constructois defined in the
same non-contractive way as before, there is a unique soltdr

it so that the whole recursive module typechecks. Spedifidake

type annotations on andb constrain the definition of to be the
identity function, \Aa.«.. Figuring this out requires a form of higher-
order unification, which in general is undecidable (Goldfa881).

These types of examples have led me to abandon the idea of

guessing the type components of a module nondeterminligtica
Fortunately, | have found a way to compute the type companent
of a module (deterministically) that does not complicate ldmn-



guage definition with a whole set of extra rules. The basia ide
is that the inference rules that implement static typecinechre

the same as those for normal typechecking, except with sdme o
the premises—such as the ones concermiage components of
modules—removed. As a result, it is only necessary to witerd
one set of inference rules for both the regular and staticuteod
typechecking judgments. | leave further discussion of thih-
nique until Section 4.4.

In both of the problematic examples presented in this sectio
the RMC static typechecking judgment would successfullinco
pute the type componentin the body of the recursive module to
equalX.t. Whether such a cyclic type definition is considered ac-
ceptable is then a separate question, examined in the raidrse

* * *

Exercise #4:Can you come up with a variant of the second prob-
lematic example above that achieves the same effeet;there is

a unique way of guessirig). t correctly, and figuring it out involves
higher-order unification—but where the module in your vatria
only has type components, no value components?

3.4 Cyclic Type Definitions

Recursive modules provide a natural means of writing dovaficy
type definitions that span module boundaries. Howevertiegis
recursive module proposals differ on what kinds of cyclipety
definitions they consider permissible.

One approach is to allotransparentype cyclesi.e.,type com-
ponents that are defined transparently in terms of themsedueh
astype t = int * X.t. This is the approach taken by Crary
et al. (1999), but it requires them to extend their type thewith
support for so-callecequi-recursivetype constructors of higher
kind.> The meta-theory of higher-kinded equi-recursive type con-
structors is not well-understood (in particular, it is natokwn
whether type equivalence in their presence is decidable).

A more restrictive approach is the one taken by Leroy (2003)
and Nakata and Garrigue (2006), who permit cycles betwegs-r
parent type definitions, but only if they are intercepted lny tise
of opaque sealing. For instance, suppose we were to modify th
example in Figure 1 so that internally. t were defined to equal
int * X.A.t. The resulting cyclic definition would be permissi-
ble in OCaml and Traviata because the type cycle is brokehdy t
use of opaque sealing in the definition of module

However, the ability to express such recursive type defingin
these languages is intricately tied to their failure to Hardbuble
vision. For example, if these languages were to solve thdldou
vision problem, then in the definition of modulethe typeX.A.t
would be seen as transparently equali® * X.A.t. This would
constitute an unbroken transparent type cycle, which OCamdl
Traviata treat as illegal.

In the interest of adopting a simple policy concerning type ¢
cles that is compatible with solving double vision, my desigr
RMC follows RTG in requiring that all type cycles go through a
least one component that is defined byatatype declaration.
That is, even if all uses of opaque sealing are stripped alvaye
must still be no transparent type cycles. This policy hasatie
vantage that recursive modules do not introduce any newsfafm
(equi-)recursive type definitions that are not already esgible in
the underlying core language of ML—they just provide thdigbi
to decompose ML’s existing forms of recursive type defim&iinto
modular components.

That said, one consequence of following RTG is that the type-
checking of certain constructs in RMC is somewhat consmeat

5Crary et al. coined the termqui-recursiveto describe recursive types
whose equational theory follows the style of Amadio and €Hir{L993).

Specifically, in order to ensure that no transparent typéesyarise

in the presence of data abstraction, (1) the internal diefirstof
abstract types in a sealed module are not allowed to depend on
any type variables bound as undefingdl iq the context, and (2)
in functor applications, the type components of the argunmed-

ule may not depend on any type variables bound as undefined (
in the context. (These restrictions are derived directiyrfisimilar
restrictions in RTG, and | refer the reader to (Dreyer 200@bjle-
tailed discussion.) Nevertheless, as demonstrated inTfedper,
this approach is sufficient to typecheck common uses ofrggatid
functors in recursive modulese-g., Okasaki'sbootstrapped heap
example (Okasaki 1998). | am currently investigating wayetax
this restriction by generalizing RTG'’s treatment of typelesg.

Finally, it is important to mention how RMC defines and de-
tects a transparent type cycle. The question arises onceawe h
computed the type components of some module, at which p@nt w
typically need to use them in order to look up the definitiohs o
opaque type components in some signature. RMC's policyais th
there must be some way of ordering the type components we are
looking up so that each component’s definition only depeadsrr
sively on the previous ones in the ordering. For examplesicien:

rec (X : sig type t; type ’a u end) struct
type t = bool X.u
type ’a u = ’a

end

This module is well-typed in RMC because the componentsef th
module can be named in a certain order thent) so that their
definitions are acyclic-£s recursive dependency adhu is OK
becausa comes earlier in the ordering. In contrast, consider:

rec (X : sig type t; type ’a u end) struct
type t = X.t X.u
type ’a u = ’a

end

In this case, the recursive module typing rule rejects tlogam
because the definition afrefers cyclically to itself (vi& . t).

It is worth noting that RMC also rejects similar examples rehe
no “true” transparent cycle exists, such as:

rec (X : sig type t; type ’a u end) struct
type t = X.t X.u
type ’a u = int

end

| do not consider this to be a serious limitation. In the abexe
ample, it does not seem like a serious hardship for the pnogier
to remove this cyclic dependency by replacing the modulefs d
inition of t with type t = int. Alternatively, the programmer
could make the type definitiotiype ’a u = int explicit in the
forward declaration signature, in which case the statiet¢ieck-
ing step would be able to determine that the definition @f the
body normalizes tant.

* * *

Exercise #5:The example in Figure 1 clearly does not have any
type cycles. What would happen, however, if we changed ihin a
of the following ways? Would the RMC type system accept it or
rejectit?

(a). Change the internal definition &f.t to int * X.B.u.

(b). Change the internal definition 8f. u tobool * X.A.t.

(c). Change the example as describeda)
and also remove the sealing in the definition of module

(d). Change the example as described in Hbhand(c).



3.5 Recursively Dependent Signatures

RMC extends the signature language of ML with recursively de
pendent signatures (rds’s), which have the farm (X) sig. Com-
pared with typechecking a recursive module, checking thi-we
formedness of an rds is fairly straightforward. The basialge

to check that the rds does not contain any cyclic transpayget
specifications, whose presence would demand support far equ
recursive type§.While RMC’s treatment of rds’s is not markedly
different from their treatment in most other proposalssitorth
explaining informally nonetheless.

The well-formedness checking oéc (X) sig proceeds as fol-
lows. First, we need to come up with some temporary signature
sig’ to which we can bin& during the checking ofig. This tem-
porary sig’ will act essentially as a forward declaration§. As
such, it need only be a “shallow” representationsgf—it should
record the (path-)names and kindss@§’s type components, but
may ignoresig’s value components, becausi@ can only possibly
refer to thetypecomponents oK. In Russo’s account of rds’s, the
programmer is required to write down this shalleiy’ explicitly,
but it is perfectly easy to infetig’ via a syntactic pass oveig.

Second, after binding to sig’ in the context, we proceed to
check the well-formedness 6fg.

Third, we check that there is some linear ordering of the type
components ofig such that no transparent component’s specifica-
tion depends on a later component in the ordering. This imdbr
ized in a manner very similar to the detection of transpatgme
cycles in recursive modules (as described in the previoti#osg.

For examplerec (X) sig type t = X.t end will be ill-
formed because is defined transparently in terms of itself. In con-
trast, the signature from Figure 1 will typecheck successfully—
even though it contains references to the recursive modulahie
X in the specifications of.u andB.t—because the type compo-
nents of the signature can be ordered in such a way that teése r
erences are seen as acyclie.(A.t,B.u, A.u, B.t).

4. The RMC Type System
4.1 Syntax

Figure 3 gives the syntax of RMC. While RMC is intended to be
representative of a Standard ML-like module language, ésdwt
directly support all features of SML. | focus instead on sutipg

the most semantically interesting features, and leavedtzation

of a full-fledged ML extension to future work.

Core Language In the spirit of keeping the core language as un-
derdetermined as possible, the only interesting type- eima-tevel
construct considered here is thath P, which is a module variable
X followed by zero or more component projections. As a matter
of notation, | will write X.¢;...¢,, as shorthand foK.e.¢1...4,. In
particular,X is shorthand foiX..c.

As in ML, type constructorgon either have kindT (the base
kind of types) or are functions from arguments of kindT' to
a single result of kindI', wheren > 0. For uniformity, in some
typing rulesT® — T is treated as synonymous with, and con()
as synonymous withon (whencon has kindT). | use the overbar
syntax to denote a sequence of zero or more objects sepdated
commas €.9.,con = coni,. .., CONy).

Signatures In order to simplify and regularize the syntax of mod-
ules and signatures, | model type components and value compo
nents asatomic modules. Corresponding to ML's notion of an

8This is in stark contrast to Crary et al.’s original propdsealirds’s, which
requiresthem to be fully transparent specifically so that tieay be imple-
mented internally using equi-recursive types. No subseigpmposal has
followed their approach.

Type Variables  «,
Module Var's X, Y
Labels L
Label Sequences {s::= ¢ | {s.l
Paths Pu= XUs
Kinds K,L:=T|T"—=T (n>0)
Type Constr's con := P | a|A@).con | con(con) | ...
Terms erp = e
Signatures sig == [K] | [eon] | [~ con: K] |
[6>X: sig] | (X:sigy) — sigy |
rec (X) sig | sig where £s= con
Modules mod ::= [con] | [exp] | [{ = con: K] |
[l>X=mod] | P |
let X =modi in modz |
A(X:sig).mod | P1(P2) |
rec (X : sig) mod |
mod :> sig | mod : sig
[=con:K] % [K]wheree=con
modi(modz) L et Xy =mod; in

let Xo = mods in X4 (Xz)
Figure 3. RMC Syntax

opaque type specificatiofi] denotes the signature of an atomic
module containing a single type component of Kikddwhile there

is no primitive signature corresponding to a transpargpe tgpec-
ification, RMC does support ML'shere type (or with type)
construct (abbreviated here @sere), and Figure 3 shows how to
define the transparent type signatfizecon : K] as a derived form.
(This is how the Definition of SML defines transparent typecspe
fications as well (Milner et al. 1997).)

The signatures of RMC structures have the fditn X : sig].

As in ML, these structure signatures are dependently-typeith
each internal nam&; bound in the subsequesig;’s. The reason
for distinguishing betweeaxternallabels¢ (which are immutable)
and internal variablesX (which area-convertible) is explained
by Harper and Lillibridge (1994). Although SML does not make
such a syntactic distinction, | maintain it here in orderitoify
the presentation of typechecking. | also assume for siiityplicat

all the label’ and variableX are distinct.

The signature]¢ = con : K] represents aon-recursiveSML
datatype specification. It describes a module providing a type
component’ of kind K that is isomorphic taon. (Following the
style of Harper and Stone (2000), this isomorphism is wiads
via two value components—a data constructor callednd a data
destructor calledut—that the module also provides.)

The modeling ofecursivedatatype specifications is achieved
by using thetatatype sighature]¢ ~ con : K] in conjunction with
a recursively dependent signature (rds), writtere (X) sig. For
example, if we were to add unit, sum, and product types to the
language, we could model the SMkatatype declaration

datatype ’a list = Nil | Cons of ’a * ’a list
as
rec (X) [list ® A(@).1+ a x X.1list(a): T—T]

To be able tausesuch adatatype, of course, the term language
needs a mechanism for data constructor application, aswelhta
destructor application (pattern matching). For spaceoread omit



Type Constructors A, B, 7 ::
Base Types b
Signatures PIET

alb| A@).7| AT
V[a].Tl = T2 | e
[=A:K][[r] | [6:%] |
V(allK1).(£1;21)
—>3(a2lK2).(£2;22)

Type Locators L= {a:K—/Uls}
Type Substitutions §:= {a—A}
Type Contexts A= 0]AaTK|A alK
Module Contexts M= 0|I,X:%

1(a) = {alalKeA}

Aea] ¥ A\{alA(e)|acalU{alAla)|aca}
0L E {a:K—lls|a:K—/lse L}
b)) if {s=¢
def ¥/ if 4s=4(s"4
Robs = andx.ls' = [...,0:%',.. ]

undefined otherwise

Figure 4. Semantic Objects and Auxiliary Constructs

this feature, as the details would closely follow Harper &tdne
(2000) and are orthogonal to the focus of the present work.
Lastly, functor signatures are denot€Xi: sig, ) — sig,. Here,
sig, is the argument signature, andy, is the result signature,
which may refer to type components of the argumentia

Modules [con] and [ezp] are the atomic modules representing
type and value components, respectively. The syntax oftstres
parallels that of their signatures, but structure progect{as in
SML) is limited to paths. We include a module-levait construct
with semantics similar to SML'3ocal mechanism. Functors are
modeled as\-abstractions, and, for simplicity, functor application
is limited to applications of paths to paths. Figure 3 defsegac-
tic sugar for general applications of the foravd: (modsz).

The syntax fordatatype modules parallels that afatatype
signatures. Recursivéatatype's are encodable using a com-
bination of datatype modules and recursive modules, written
rec (X: sig) mod. For instance, to implement tHe st datatype
(above), we can write:

rec (X:[list: [T — TJ])
[list =~ A(a).l 4+ a x X.list(a): T — T]

Lastly, RMC provides two sealing constructgpaque sealing
written mod :> sig, andtransparent sealingwritten mod : sig—
which model the corresponding constructs in SML. Transgare
sealing has the effect of “narrowinghod to the target signature
sig, but allows the identity ofmod’s type components to leak
through, even if they are specified opaquelyip.

4.2 Semantic Objects

Following the Definition of SML, the static semantics of RMC
employs a language afemantic objectswhose syntax appears
in Figure 4. As it turns out, these semantic objects areyrgadit
types/signatures (in an “internal” type system) that haaenbdec-
orated with some meta-data that is useful during typechecki
That internal type system is defined in the companion teelnic
report (Dreyer 2007a), but the static semantics of RMC canrbe
derstood perfectly well without it.

Semantic types are similar to RMC types. The only difference
is that semantic types include a base tyfig]. 71 = 72, which
represents the type datatype constructors and destructors.

We assume and maintain the invariant that all types are kept i
(B-normal form.

Semantic signatures are very similar to those in Russo’s the
sis (Russo 1998), which is based closely on the style of tHmbe
tion. In short, semantic signatures are fully transparggmeagures.
Data abstraction is handled separately via universal aistieetial
quantification over type variables—as evidenced in the séma
functor signature—instead of via opaque type specificatioisig-
natures.

Type locatorsC are mappings from type variables to label se-
qguences. The purpose of type locators is discussed below.

Type substitutions map type variables to type constructors. In
order to maintain the invariant that types are kept in norioah,
type substitutions are assumed to implicithnormalize when they
are applied.

Regarding notation: Lef'V(4) mean the free variables of the
type constructors in the range @fAlso, if £ = {a: K+—{s}isa
type locator, thed £ means{da : K +— #s}.

Type contextsA bind type variables as eithendefined(T) or
defined(]). Module context§™ bind module variableX to seman-
tic signatures:. The notation](A) denotes the set of undefined
type variables im\, and the notatiod\ @@ | signifies the result of
changing the bindings af in A from undefined to defined.

4.3 Interpretation of Signatures

Figure 5 shows how RMC type constructors and signatures are
interpreted in terms of their semantic counterparts.

The interpretation of type constructors is straightfovarhe
only interesting point is that, when interpreting a typejected
from a moduleX, we eliminate the dependency on the module
variableX. (Semantic types only depend on type variableAin

RMC signatures are interpreted signature denotationsf the
form3(a | K).(£; X). Here,a | K represent the opaque type com-
ponents of the signature, adtirepresents the signature itself (with
transparent references@). Thetype locator is a mapping from
each of the variables im to a label sequend& that indicates which
type component oE was the “source” of that abstract type in the
original RMC signature. For example, the signatsifeom Figure 1
is interpreted as

HalT,8]T).{a:T—A.t,8: T—B.u}Y)

whereX is as defined in Figure 2. (Note thatand 3 are bound
variables of the denotation.) This approach to signatuespneta-
tion is modeled closely after Russo (1998). The main novsltije
presence of the type locatdr The reason foL is that it makes the
definition of signature matching (see below) more deterstimby
telling the elaborator explicitly where to look in order t iin the
opaque type components of a signature.

The interpretation rules for signatures are standard \nighek-
ception of Rule 13 for rds’s, which follows closely the infieal
description given in Section 3.5. The first premise of the adm-
putes ashallowdenotation ofsig, 3(ao | Ko).(Lo; X0), in which
all its type components are treated as having opaque specifica-
tions and its value components are ignored. Given this gsigaa
for X, the second premise computes the actual denotatiaiyof
I(a | K).(L; ). These two premises set up a system of equations
between the “temporary” variables—which were created to rep-
resent the type componentsX#—and their definitions irt.

To solve this system of equations, the third premise uses the
lookup judgment defined in Figure 6, which in turn uses the type
locator Lo to look up the definitions of ther in ¥ and return a
type substitutiord that solves for them. If there is a transparent type
cycle among the definitions, theokup will fail. The detection of
cycles is implemented as described in Section 3.4.



Well-formed type constructors: A;T F con ~ A : K ‘

AlLa:T A;TEP:[=A:K] Aol T;I'Fcon~7:T a=ai,...,0n 3)
A;FFO(MO(:T( ATHP~ACK ( AT A(@).con ~ A@).7: TV —T
AT F con’ ~ A@).7 : T"—T
A;TFcon~71:T T=Ti,...,Tn A
A;T F con/(eom) ~ {a—=7}7": T @ ... Insert rules for your favorite base types here. ..
‘Well-formed terms: A;T F exp : 7-‘
A;THP 7]
A;THP: T ) ...Insert rules for your favorite core language here. ..
‘Well-formed signatures: A;T' F sig ~ 3(a | K).(L£;X)
) A;T'Fcon~7:T 7
A;TH[K] ~ (el K).({a:K—e}; [=a:K]) A; T+ [eon] ~ 30).(0; [7])
K=T"—-T A;TF con~ A: K B=201,...,0n ()

A;TE U~ con: K]~ F(a ] K).{a:K— £} [ [=a: K], in: [[V[B] A(B) = a(ﬁ)]], out : [[V[B] a(B) :>A(B)]]]])

A;F}_Sigl’\ﬁa(allK1).(£1;21) -
Aoy [ KTy Xy 038 F [0 X sig] ~ (ol K).(L5[€:%])

9 — 10
AT~ 30.0; D) ©) AT E [ > Xy zsigy, 00X sig] ~ (o | Ki,a | K). (0L, L5 [€1 : X1, £:X]) (10)
A; I+ Sigl ad 3(011 LK1).(£1; 21) A, (&%) LK1; F,X:Xh = SiQQ [ d 3(012 i KQ).(,CQ; 22) (11)
AT F (X sigy) — sigy ~ 3().(0; V(a1 | K1).(L£1;51) — F(ae | K2).(L2;X2))
AT F sig ~ F(a | K).(L; ) B:L—tlse L alK=a1 |[Ki,8]L,as | Ko AT con~B:L (12)
A;T F sig where 0s = con ~ F(a1 | K1, a2 | K2).(L\{B: L Ls}; {5+ B}%)
A; T F Shal(sig) ~ (a0 | Ko).(Lo; o)
Ao | Ko T X X0 F osig ~ J(a | K).(L;X) F lookup Lo in X~ § (13)
AT F rec (X) sig ~ J(a | K).(L£;0X)
Shallow version of a signature: Shal(sig)
Shal([K]) %' [K .
al(IKD def [K] Shal((X: sig,) — sigs) = ]
Shal([con]) = I U der .
dot Shal(rec (X) sig) = Shal(sig)
Shal([¢ =~ con:K]) = [¢:[K]] Shal(sig where (s = con) < Shal(sig)
Shal([fo X sig]) % [¢:Shal(sig)] sigwherets=oon) = 5
Figure 5. Well-formedness Rules for Type Constructors, Terms, agda&ures
4.4 Static Semantics of Modules The typing rules for structures (Rules 18 and 19) are self-

explanatory. One point of note is that, after the first bigdof

a structure {1 >X; = mod: in Rule 19) has been typechecked,
the remainder of the bindings are typechecked in a contertavh
the abstract types defined layod; are bound aslefined(namely,

A @a7 ]). To see an instance where this is relevant, look at the
solution to Exercise #b) given at the end of the paper.

The typechecking of module-levekt (Rule 20) is essentially
the same as the typechecking of a structure with two bindifilgs
only difference is that the result signature of thet only exports
the second of the bindings.

Rule 21 for functors is fairly straightforward as well. Ivi@rth
noting that in the signature returned for the functor, thisr@o
type locatorL, for the result (we just writd)). The main reason
is that, due to the so-calleoidance problenma type locator does

Figure 6 shows the typing rules for modules. The main module
typing judgment has the fori; T - mod : ¥ with @ |. The judg-
ment assumes thatrepresent the abstract types thatd is going
to define, and thus they are bound as undefinedK) in the input
contextA. The shaded premises in some of the rules mark the delta
between the regular typing judgment and the static typirmigy{ju
ment, which we discuss below. In particular, static type&irgy is
defined by simply removing the shaded premises and replating
references to the regular typing judgment with the stati on

To begin with, let us focus on ordinary module typing. Rulds 1
through 16 for paths and atomic modules are straightforward

Rule 17 fordatatype modules/ ~ con : K] returns a signature
that matches the interpretation of the correspondiagatype
signature[ ~ con : KJ.



Well-formed modules: A;T' F mod : X with@ | ‘

We omit “with @ |” if @ = () (i.e.,if mod does not define any abstract types).

X:¥el 14 A;T - con~ A: K (15) Ab7:T AT -exp:T
A;FFX.(S:E.(S( ) AT [eon] : [=A:K] AT F [exp] : [7]

(16)

K=T"—-T A;T'F con~ A: K B=701,...,0n alKeA
AT F U~ con:K]: [ [=a:K],in: [V[]. A(B) = a(B)], out : [V[B]. a(B) = A(B)]] with a |
AT Fmody : Sy withar | AQay |5T,Xy: 51 F [0 X =mod] : [€: 3] with @z |
AT F [6>Xq =mod1, 0> X =mod)] : [{1:%1,0: %] with a7, @3 |
A;T'F mody : X1 withag | AQ@ag |[;1,X: X1 F mods : Y2 withaz |
A;T'F let X =mod1 in mods : Yo with a1, a3 | (20)
AT F sig~ I(ar [ K1).(£1;51) Ayar [Ki,a TKo; I, X3 - mod : S withag |
AT F (X sig).mod : V(a1 [ Ki).(£1;51) — (a2 [ K2).(0; 22)
AT R Py V(ar [ Kp).(L£1531) — F(as [ Ka).(L2; 52) AT EPo X
alK: CA F lookup £1 in X~ § FV(@)NT(A) =0 X <63
AT Pi(P2) : 0{az—a}X witha |

(18) (19)

AT ]

(21)

(22)

AT F sig~ (| K).(£; %) Aol KT, XY ey mod : Separ with 8]
F lookup £ in Xstat ~ 0 AT, X: 6% F mod : X with G| FX <62
A;T Frec (X: sig) mod : ¥/ with 8 |
AT Fsig~ (a0 [ Ko).(Lo; %) A=A alKe  (£;%) = {ag— a}(Lo; Xo)
A, BTL; T bstar mod : Segar with 3| F lookup £ in Xgpa ~> & FV(@)NT(A)=0
A BTL; 6T - mod : ¥ with B | FY <62
A;T F mod :>sig : X with@ |

(23)

(24)

AT F sig~ J(a | K).(L;X) A;T F mod : ¥ with 3| F lookup Lin ¥/ ~s 6 FY <62
AT+ mod : sig : 6% with 8 |

(25)

‘ Statically well-formed modules: A; T ktat mod : ¥ with @ | ‘

The rules defining this static judgment are precisely theesasithe rules defining the regular module typing judgmeravgh
excepwith the shaded premises removed, and all occurrences of the regatiule typing judgment replaced by this static judgment.

‘Signature matching: - 31 < X ‘

Y =[(:3] @) Y <5 = 2’_5 [¢:%]

FE<x s <] F Y < [01:5, 03]
F lookup £ in X1 ~+ 61 Y =<6 F lookup L2 in 6135 ~ 82 F 8135 < 9230
- (f TKY)-(£1;51) — F(ag TKE).(£2; 55) = V(ar [K1).(L1; 51) — F(az [Ka).(£2; T)

(26) (28)

(29)

Abstract type lookup: F lookup £ in ¥~ § ‘

L=Aar:Ki—ls1,...,an:Ky—Lls,} So=10
Viel.n: XUts; = [[: A;: KZ]] FV(AZ) M dom([,) - {Oé17 . 7061'71} 0 = 0;i—1 U {Oci — (5L71AZ} 0
F lookup L in X ~» 6y, (30)

Figure 6. Typing Rules for Modules




not necessarily exist (Harper and Lillibridge 1994). Intgadar,

it may be that some of the abstract typegindo not correspond
to any type component specifiediz, so there is no way to locate
them. Fortunately, there is no need to locate them—a sigmanly
needs a type locator if one is going to matgainstit, which is
not the case for the result signatute. In general, we only need
to match against signatures that correspond to RMC sigemtur
that the programmer wrote down, and such signatures alwayes h
type locators (the signature interpretation judgment shbaw to
compute them).

The typing rule for functor applications (Rule 22) first uggs
to look up the definitions ofi7 in the signaturé: of the argument
P2. This results in a substitutiof, which maps the abstract type
components oP’s argument signature to their appropriate instan-
tiations. We then check wheth& matches the reified argument
signaturedX;. We also check that the type variabtesve are sup-
posed to define have the same kififlsas the abstract types in the
result signature oP;. Finally, we check that the types we are us-
ing to fill in the definitions ofaT—i.e.,FV(§)—do not depend on
any undefined variables. This last condition is necessitayethe
avoidance of transparent type cycles, as explained in@e8t#.

For the next two rules, which concern recursive and opaquely
sealed modules, it is useful to refer back to the algorithatecrip-
tions of these rules given in Section 3.1. Beginning witheR2@:
The first three premises implement step 1 of the algorithneic d
scription, resulting in a type substituti@nthat maps the abstract
type components ofig to their definitions inmod. Note that the
computation of the type componentsmabd is achieved by a call
to the static typechecking judgment. Step 2 of the algoritem
achieved by simply applying to X. Steps 3 and 4 correspond to
the remaining two premises, respectively.

Rule 24 for opaque sealing matches the earlier algorithmic
description as follows: The first three premises implemésp 4,
the next two premises implement step 2, and the last two ge=mi
implement steps 3 and 4, respectively. The side conditidib(y)
requires that the internal definitions of the abstract typesot
depend on any undefined types. The reason for this side emmdit
is explained in Section 3.4.

Lastly, note that Rule 24 allows the modutend to internally
define a set of “local” abstract typ@s These must be added to the
context explicitly because they are not in scope outsidaefhtod-
ule. In contrast, the typing rule for transparent sealingléR25)
assumes that theé that mod wants to define are already bound in
the ambient contexi\. Indeed, it is important thag are bound in
A since they may appear free in the resulting signaitreThe key
difference between opaque and transparent sealing ishtadot-
mer leaves the opaque type components:gfabstract, while the
latter uses to reify the specifications of those components with
their definitions inmod.

Static Typechecking The static typechecking judgment is written
A;T ktat mod : 3 with @ |. Static typechecking is formalized
using the same rules as regular module typechecking, extapt
we ignore the shaded premises. This technique undersdoges t
semantic coherence of the two typing judgments.

The purpose of static typechecking is not to ensure thed
is well-typed—it is merely to computeiod’s type components. In
fact, the value components ofod are not necessarily well-typed,
and the types for those value components that appear in $hé re
signatureX may be garbage. This is fine—all that matters are the
typecomponents ofnod, which will be reflected correctly ix.

This point is driven home by the first rule with a shaded premis
Rule 16, the rule for atomic term modules. With the seconthize
removed, the static version of this rule may assign an arlyitype
to the termezp. This renders the static Rule 16 nondeterministic,

but only in a way that doesn’t matter because the nondetésmin
concerns the type of waluecomponent. In practice, for example,
when implementing static typechecking, we can infer the tyt
for all core terms, and still have a complete typechecker.

The shaded premises in the other rules are conditions that ar
relevant to type-correctness in general, but are not iraporfior
computing the type components of a module. In particuldr, al
references to the signature matching judgment; < 3, are
ignored during static typechecking because this judgnsamgeless
in computing type components. The side conditiond'aHd) are
similarly ignored.

The rule with the most shaded premises is Rule 24. The reason
is that, in order to determine the type components of an aggqu
sealed modulerod : > sig, we need only look at the ascribed signa-
ture sig—the premises concerningod are irrelevant. For a trans-
parently sealed module, on the other hand, we must look at the
module’s implementation since its internal type definii¢éeak out.

Finally, one point of note: in the static version of Rule 2&p-
pears that we must statically typechegkd twice, the second time
under a context to whichhas been applied. In practice, the second
typechecking pass can be avoided by observing that statiogy
is preserved under type substitution. Thus, under comteXt: 63,
we know thatmod will (statically) have signaturéXs;az.

Signature Matching The signature matching judgment, written
F 31 < X, checks whethe®; can be coerced t&>. The
definition of this judgment in Figure 6 is fairly standard.€eTh
rules for structure signatures permit both dropping anddering
of components. The rule for functor signatures uses coatiavt
matching on the arguments and covariant matching on thétsesu

4.5 Evidence Translation and Type Soundness

In order to claim that RMC has a sound type system, | must
supply a dynamic semantics and a type soundness resutiniadi
Harper and Stone (2000), | do not provide a dynamic semantics
for RMC directly. Instead, | provide an evidence transhatiof
well-typed RMC modules into an internal language that issdas
closely on the RTG language discussed in Section 2.3. Thiesna

it possible to reuse the type soundness result for RTG, and it
also offers an interpretation of RMC modules in terms of more
primitive constructs. Details of the internal languags, static
and dynamic semantics, and its type soundness are giverein th
companion technical report (Dreyer 2007a).

The evidence translation judgment for modules is simply the
module typing judgment appended with M, indicating that the
moduleM is the internal language translation of the given RMC
module. Similarly, the evidence translation for signatatching
returns an internal language funct®r which coerces the source
signature to the target signature.

Figure 7 displays two of the most interesting evidence teans
tion rules, namely those for recursive and sealed modules.

In the rule for recursive modules, the body of the recursive
module translates tdI, and the functol’ represents the coercion
from X’ (the signature oM) to 5% (the reified forward declaration
signature). The internal language type system does notifptren
forward declaration of a recursive module to differ frometgport
signature. Thus, in order to encode the more general seraanfti
RMC modules (as described in Section 3.2), the internal dodw
declaration®, .. includes both’ and§X. The dynamic semantics
of the internal-language recursive module construct implets
recursive backpatching in the style of Schemesrec.

In the rule for sealed modules, the module underneath the sea
ing translates td/, and the functoF represents the coercion from
Y (the signature of1) to the sealing signatur€g. In the evidence
translation of the sealing, theew construct is used to create the
local abstract types, and thedef construct is used to define the



AT F sig ~ F(a | K).(L;X)
F lookup £ in Xstat ~ &
Yrec = [extern: Y, intern:dX]

A, a [ KT, X X bstar mod : Ssgar with 5|
AT, X: 08 F mod : ¥ with 8] ~ M
Miec = [externtY = {X +— X,ec.intern}M, internt>Z =F(Y)]

FY <68~ F

A;T + rec (X: sig) mod : 3 with B~ (rec (Xrec : Zrec) Mrec).extern

sig ~> H(Oco l Ko).(ﬁo; Zg)
3T bstat mod @ Bgtar with 5]

)

AT H
A,BTL

A = A,7OCTKO
F lookup L in ¥gtat ~ 6
A BTL; 0T F mod : ' with B | ~ M

(£; %) = {as—=a}(Lo; Xo)
FV(5) N 1(A) = 0
FY <68 ~F

A;T F mod :>sig : Y with@ | ~» (new fTL indef a:=0a inlet X=Min F(X):X)

Figure 7. Evidence Translation Rules for Recursive and Sealed Msdule

abstract types& corresponding to the opaque type components of
sig. These are the samew anddef constructs on display in the
encoding from Figure 2.

4.6 Decidability

Itis also important for practical purposes that the RMC typstem
be decidable. It is mostly straightforward to show this heseathe
typing rules are essentially syntax-directed.

There are only two points of apparent nondeterminism. One in
volves the types of value components in the signature retuby
the static typechecking judgment. As discussed above,nibris
determinism is irrelevant because these types are neveedtes.
The other point of potential nondeterminism is that in dartgp-
ing rules—specifically, Rules 21 and 24—we must guess aflist o
abstract types that a module is going to define. In fact, negue
ing is required. It is easy to define a simple prepass over aifeod
which will determine theuniquenumber, order, and kinds of the
abstract types that the module can possibly define. The tefini
of this prepass is omitted for space reasons.

5. Related and Future Work

Earlier sections of the paper contain detailed comparisdRMC
with related work. In this final section, | discuss some otle¢aited
work, and suggest directions for future work.

5.1 Are Forward Declarations a Burden?

Most existing recursive module proposals demand that tbe pr
grammer supply a forward declaration signatuie when defin-
ing a recursive module of the formec (X: sig) mod. The only
one that does not is that of Nakata and Garrigue (2006), who ar
gue that it is burdensome for the programmer to have to wiité s
signatures down. Instead, the typechecker for their Travien-
guage performs two passes: a “reconstruction” pass, felliooy a
“type-correctness” check. The former traverses the whalgnam,
collecting type information about all program identifiechecking
for cyclic type definitions using a term-rewriting algorith and
apparently (I believe) giving globally uniqgue names to allibd
variables. Given this information, the latter pass doestiraly or-
dinary typechecking, although part of its simplicity is digethe
fact that it does not address the double vision problem.

One reason for requiring forward declarations is to makarrec
sive module code easier to read. But the main argument foinfgpr
the programmer to write down a forward declaration is reldate
the implicit support that recursive modules provide patymor-
phic recursion For example, consider this recursive module:

rec (X : sig val £ : ’a -> ’a end) struct
fun f y = ... X.£(3)...X. f(true)...
end

Here,f may refer to itself recursively via. £, and each such recur-
sive reference may instantiate the polymorphic type végiabdif-
ferently. In general, type inference in the presence ofpolyphic
recursion is undecidable (Henglein 1993). Hence, evenahadrd
declaration signature is not required, the programmer negyl mo
write down a type annotation for any function that can berrefe
enced recursively through. Indeed, in order for the first pass of
Nakata and Garrigue’s algorithm to collect type informatabout
value bindings in a recursive module before they have begerty
checked, terms are required to be explicitly annotated whigir
types. This would seem to negate the benefits of not requaing
forward declaratiord.

On balance, in the interest of simplicity, | have opted tdofol
the norm and require the programmer to write down a forwacd de
laration. However, Nakata and Garrigue’s complaint abowdéen-
ing the programmer with unnecessary annotations remaiesa-a r
sonable one. In a previous version of the RMC type systemyg@re
2006), | attempted to alleviate this burden using a diffeten-
tic. Instead of eliminating forward declarations, | trieduse them
to my advantage. In particular, | provided a mechanism,termit
“seal mod”, by which the programmer could opaquely seal a
module using the signature for that module that appearetien t
nearest enclosing forward declaration. For instance,ércise of
the example from Figure 1, one would not need to supply explic
signature ascriptions far andB—rather, one would simplgeal
them and the type system would look to the forward declanagio
for the appropriate sealing signatures.

In the end, theseal mechanism proved to be more trouble than
it was worth. The formalization afeal required a novel form of
bidirectional typechecking for modules, which, while imsting
from a formal point of view, made the typing rules very tricky
to follow. | hope to find a simpler way of supporting thkeal
mechanism within the type system of the present paper.

5.2

Formally, the closest relative of RMC is a type system thaved
oped recently together with Matthias Blume for a seemingiseu
lated purpose—understanding the interaction of ML modales
Damas-Milner type inference (Dreyer and Blume 2007). | veifer
to this type system as DB for short.

In the paper on DB, we demonstrate that subtle aspects of the
interaction of modules and type inference cause all Stankitr
typecheckers to be incomplete with respect to the Definitibn
SML. We show how to regain complete type inference by loos-

Interaction of Recursive Modules and Type Inference

”Nakata and Garrigue briefly sketch a type inference algorithey have
implemented to avoid requiring explicitly-typed core tarin practice, but
it cannot possibly succeed in all cases due to the undetigtaifiinference
in the presence of polymorphic recursion (Henglein 1993).



ening the declarative definition of typing. Interestinglye more
liberal declarative semantics of DB makes critical use efRTG
language, even though DB does not support recursive madules

While there are great formal similarities between RMC and
DB, there are a few major differences. One is that RMC support
recursive modules. Another is RMC'’s novel formalizationtio
regular and static module typechecking judgments usinganee
set of typing rules. Typechecking in DB does not require datics
typechecking judgment due to the lack of recursive modules.

Ironically, the completeness result for DB type inferencesl
not hold up if one (naively) extends the language with RMC's
recursive modules. Consider the following code:

signature S = sig type t; val v : t end

structure Foo =

rec (X : sig structure A : S end) struct
val f = (print "Hello"; fn x => x)
structure A :> S =

struct type t = int; val v = £ 3 end

end

Due to ML's (and DB’s)value restriction the type off here cannot
be polymorphically generalized, bfitan be declaratively assigned
any monomorphic type of the form — 7. However, there are
two inequivalent monotypesnt — int andX.A.t — X.A.t,
which would both be valid types faf given its subsequent use
inside the body o&. Thus, we lose the ability to assign a principal
signature to the moduloo.

In essence, the problem here is that RMC’s solution to the
double vision problem conflates the typesA.t andint inside
the definition ofA, but it does not conflate them outside fgfand
this confuses the type inference engine. One way to handie th
problem is to simply prohibit examples like the one above imclr
the right-hand side of a module-levedl binding is side-effecting
but does not have a unique type. (This is essentially theoaghr
that is taken by the SML/NJ compiler.) | am currently invgating
alternative ways of resolving this issue.

5.3 Modules and Units

Flatt and Felleisen (1998) describe a languagerofs, recursive
modules for Scheme. They show how to extend them with type
components, and their solution successfully avoids théldou-
sion problem, but the unit constructs are syntacticallyieaight
and awkward to use. In more recent work, Owens and Flatt (2006
invest the unit language with features of ML modulesgy(,translu-
cent signatures), introduce a distinction between fissslrecur-
sive units and second-class hierarchical modules, and $loww
to encode a subset of the ML module system in their revised uni
language. Their units remain verbose, however, and theyotlo n
provide any concrete proposal for extending an ML-style nted
system with recursion.

The key advantage offered by Flatt-style units is that they
were designed from the beginning to supm@parate compilation
of recursive components. In contrast, ML's separate caatipit
mechanism—théuncto—while powerful in many respects, does
not generalize naturally to support separate compilatforecur-

sive modules. One of the benefits of basing the RMC type system

on the RTG type system is that RTG provides built-in suppaort f
unit-style recursive linking. Thus, | hope that RMC will seras a
jumping-off point for future work on synthesizing the fuimstality
of modules and units.

5.4 Applicative vs. Generative Functors

Following Standard ML, the semantics of functors in RMC is
what is known agjenerative This means that if a functor contains
abstract type definitions in its body, then every applicatib the

functor will result in the creation of fresh abstract typlescontrast,
OCaml provides aapplicativesemantics of functors (Leroy 1995),
in which every application of a functor to the same argument
returns a module with the same abstract types.

The main reason that RMC supports generative functors is tha
they are simpler to account for in terms of universal andterisal
type quantification than applicative functors are. Howgebath
applicative and generative semantics for functors arecgpiate in
different circumstances, and there have been several gatspfor
combining support for both in one language. (Dreyer et &08)
offer the most comprehensive existing proposal for doirg, ths
well as an overview of related work.) | am currently in thegess
of incorporating applicative functors into RMC.
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Solutions to Exercises from Section 3

Solution to Exercise #1: The key change is in the type compo-
nents of the recursive module body. Whilet remains equal to
«, the removal of8’s sealing means tha.u becomes transpar-
ently equal tobool. Consequently, the reified forward declaration
signature thas is transformed to i3 — bool}¥—i.e., ¥ from
Figure 2 withbool substituted for3. The effect this has on the
typechecking of the recursive module is simply that the fidgof
X.B.u andbool is visible throughout the whole recursive module
definition, not just withirs.

Solution to Exercise #2:

(a) is well-typed. Sealing in this way has no effect on the in-
formation thatA gets to see (vid) about its own type components.
(One should certainly hope as much—if sealing caused aqmobl
here, it would be an instance of the double vision problem!)

(b) is also well-typed. Intuitively, it ought to be, for it shalhot
matter thatmod is originally named before it is named. Step-
ping through: Sinca is just a copy ofB, the type components of
A are transparently equal to the type component. dhus, when
we reify the forward declaration signature, the type congmbs
of X. A will become visibly equal to whatever semantic type vari-
ables are being used to represent the abstract types defiried b
Then, when we go underneath the sealing,ahose variables will
be substituted with their definitions insideandmod will see the
same signature fat. A as it would have seen in the original version
of the recursive module.

(c) is not necessarily well-typed. Intuitively, the reasonhatt
mod is not underneath the sealing anymore. Although it happens
that A is internally defined to be a copy & this information is
only knownwithin the sealed definition of. At the point where
we typecheckmod, it is not public knowledge that’s (and con-
sequentlyX. A’s) abstract type components are implemented inter-
nally by those ofmod, so we run into the double vision problem.
In this case, though, double vision is goodnibd were somehow
able to know thak . A’s type components were equal to its own, the
type system would not be respecting the data abstractiondaoy
erected by the programmer around the implementatian of

Solution to Exercise #3: We could instead define the forward
declaration signaturg to be:

sig
structure A : Sp
structure B : Sp

end

This is sufficient to makeB typecheck because steps 1 and 2 of
the typing rule for recursive modules (in Section 3.1) weilfy the
above forward declaration signature to the sath& which the
original s was reified. Moreover, because RMC does not use the
forward declaration signature as a sealing signature, abetliat
the above signature is less transparent than the origimall not
affect the exported signature of the moduge

It is reasonable, then, to ask: do we need recursively depend
signatures at all? | would argue that we do. For example, cagp
the programmer wishes to write down a source-level RMC signa
ture representing the exported signatura®{e.qg.,if they want to
parameterize another module over it). This cannot be doti®wi
the aid of recursively dependent signatures.

Solution to Exercise #4: Here is one example:

signature S = sig
type ’a t; type n

int; type b = bool

end

rec (X : S8) struct
type ’a t = ’a X.t
type n = int t
type b = bool t

end

The unique solution for the typeis the same as beforan.a.

Solution to Exercise #5:

(a) is ill-typed because of RMC's rule that the internal defini-
tions of abstract types must not depend on undefined typableas.

At the pointA is definedX.B.u (i.e., 3) is bound in the context as
undefined, so the definition afis not allowed to depend on it.

(b) is well-typed. This might seem odd since the situation is
similar to(a). The difference is that the definition Bfcomes after
the definition ofA. Since typechecking processes module bindings
in the order they appear syntactically, the typechecking a$
performed in a context in whick.A.t (i.e., «) has already been
defined (formally speaking, it is bound in the contextcagT).
Sincea is no longer undefined, it is fine for the internal definition
of B.u to depend on it.

(c)is well-typed. By revealing the definition af. t to be depen-
dent onx.B.u, moduleA has placed the burden of ensuring absence
of transparent type cycles @& SinceB.u is defined a®ool, there
is no problem.

(d) is ill-typed. Here, there is actually a transparent typdeyc
which manifests itself as a type error during the typechagkif B.
Specifically, the internal definition of the abstract tygpa depends
on X.A.t, which is transparently equal tmt * X.B.u, which
equalsint * (3. Sincef is whatB is supposed to be defining, this
constitutes a cyclic type definition, which is prohibited.



