
Pilsner: A Compositionally Verified Compiler
for a Higher-Order Imperative Language

Georg Neis
MPI-SWS, Germany
neis@mpi-sws.org

Chung-Kil Hur ∗

Seoul National University,
South Korea

gil.hur@sf.snu.ac.kr

Jan-Oliver Kaiser
MPI-SWS, Germany
janno@mpi-sws.org

Craig McLaughlin
University of Glasgow, UK

mr mcl@live.co.uk

Derek Dreyer
MPI-SWS, Germany
dreyer@mpi-sws.org

Viktor Vafeiadis
MPI-SWS, Germany
viktor@mpi-sws.org

Abstract
Compiler verification is essential for the construction of fully
verified software, but most prior work (such as CompCert) has
focused on verifying whole-program compilers. To support separate
compilation and to enable linking of results from different verified
compilers, it is important to develop a compositional notion of
compiler correctness that is modular (preserved under linking),
transitive (supports multi-pass compilation), and flexible (applicable
to compilers that use different intermediate languages or employ
non-standard program transformations).

In this paper, building on prior work of Hur et al., we develop a
novel approach to compositional compiler verification based on
parametric inter-language simulations (PILS). PILS are modu-
lar: they enable compiler verification in a manner that supports
separate compilation. PILS are transitive: we use them to verify
Pilsner, a simple (but non-trivial) multi-pass optimizing compiler
(programmed in Coq) from an ML-like source language S to an
assembly-like target language T, going through a CPS-based in-
termediate language. Pilsner is the first multi-pass compiler for
a higher-order imperative language to be compositionally veri-
fied. Lastly, PILS are flexible: we use them to additionally verify
(1) Zwickel, a direct non-optimizing compiler for S, and (2) a hand-
coded self-modifying T module, proven correct w.r.t. an S-level
specification. The output of Zwickel and the self-modifying T mod-
ule can then be safely linked together with the output of Pilsner. All
together, this has been a significant undertaking, involving several
person-years of work and over 55,000 lines of Coq.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about
Programs—Mechanical verification

Keywords Compositional compiler verification, parametric simula-
tions, higher-order state, recursive types, abstract types, transitivity

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ICFP’15, August 31 – September 2, 2015, Vancouver, BC, Canada.
ACM 978-1-4503-3669-7/15/08
http://dx.doi.org/10.1145/2784731.2784764

1. Introduction
Most verification tools operate on programs written in high-level lan-
guages, which must be compiled down to machine-level languages
prior to execution. The compiler is simply trusted to “preserve the
semantics” of its source language (and hence preserve confidence
in the high-level verification). Unfortunately, this trust is not well
founded. For instance, recent work of Le et al. [14] identified 147
confirmed bugs in the industrial-strength GCC and LLVM compilers,
of which 95 were violations of semantics preservation.

The goal of compiler verification is to eliminate the need for
trust in compilation by providing a formal, machine-checked guar-
antee that a compiler is semantics-preserving. Toward this end, the
most successful project so far has been CompCert [15], a verified
optimizing compiler for a significant subset of C that was developed
by Leroy and collaborators using the Coq proof assistant. Indeed,
Le et al. [14] report that, despite extensive testing, they were unable
to uncover a single bug in CompCert.

Now one may rightly ask: what does it mean for a compiler to
“preserve the semantics” of the source program it is compiling? The
standard answer, adopted by CompCert, is as follows. Suppose
we are working with a distinguished source language S and a
distinguished target language T. Given a whole S program pS ,
the compiler’s output tr(pS) should be a whole T program pT that
refines pS . Refinement means that any observable behavior of pT
should also be a valid observable behavior of pS , for some common
notion of “observable behavior” that both the S and T languages
share (e.g., termination, I/O events).

Although the above definition of semantics preservation is
perfectly suitable for whole-program compilers, it says nothing
about separate compilation. In practice, many programs are linked
together from multiple separately-compiled modules, some of which
may be compiled using different compilers or even hand-optimized
in assembly. Is it possible to define a compositional notion of
semantics preservation that says what it means for a single module
in a program to be compiled correctly, while assuming as little as
possible about how the other modules in the program are compiled?

We are not the first to broach this question—it has been an active
research topic in recent years. The natural starting point is the no-
tion of contextual refinement: target modulemT contextually refines
source module mS if C[mT] refines C[mS] for all closing program
contexts C. However, contextual refinement fundamentally assumes
that mT and mS are modules written in the same language, since
they are linked with the same program context C. Thus, when defin-
ing semantics preservation between very different source and target
languages, one must either find a way of embedding both languages

1

S I I I

I

IIIT

cps inline contify dce

hoist
commutededupcodegen

Figure 1. Structure of the Pilsner compiler

in a multi-language semantics [19] (so that contextual refinement
remains on the table) or else pursue more complex alternatives to
contextual refinement. We leave a more detailed discussion of prior
work until §8, but we argue that all previously proposed solutions
are lacking in some dimension of compositionality. In particular, we
articulate the following three desiderata for a compositional notion
of semantics preservation:

• Modularity: To enable verified separate compilation, semantics
preservation (aka refinement) should be defined at the level of
modules, not just whole programs, and it should be preserved
under linking. Specifically, suppose that source (S) module mS

is refined by target (T) module mT , and that S module m′S is
refined by T module m′T . We should then be able to conclude
that the S-level linking of mS and m′S is refined by the T-
level linking of mT and m′T . (This is sometimes referred to as
“horizontal compositionality”.)
• Transitivity: Proofs of semantic preservation should be transi-

tively composable. That is, one should be able to prove a com-
piler correct by verifying refinement for its constituent passes
independently and then linking the results together by transitivity.
(This is sometimes referred to as “vertical compositionality”.)
• Flexibility: It should be possible to prove semantics preservation

for a range of different compilers and program transformations,
so that the results of different verified compilers (which might
employ different intermediate languages) can be safely linked
together, and so that hand-optimized and hand-verified machine
code can be safely linked with compiler-generated code.1

In this paper, we present a new technique, particularly suited
to compositional compiler verification for higher-order imperative
(ML-like) languages, which we call parametric inter-language
simulations (PILS). PILS synthesize and improve on two pieces of
prior work: (1) Hur et al.’s work on parametric bisimulations [9, 10]
(originally called “relation transition systems”), and (2) Hur and
Dreyer’s work on a Kripke logical relation (KLR) between ML and
assembly [8].

Parametric bisimulations are a simulation method for higher-
order imperative languages, designed to support proofs that are
modular, transitive, and capable in principle of generalizing to
inter-language reasoning, i.e., reasoning about relations between
programs in different languages. However, Hur et al. only actually
used them to prove contextual equivalences between programs in a

1 Note: In our model of the semantics preservation problem, every module in
a program is represented by both an S and a T version, and we aim to prove
that the T version refines its S counterpart. For modules that are compiled by
a verified compiler, the T version is generated automatically by the compiler.
But for any module that is hand-coded in T, one must also manually supply
its S counterpart, which serves as a “specification” that the hand-coded T
module is then proven to refine. (We will see an example of this in §2.3.)
This means that we can only account for hand-coded T modules that have
some S-level counterpart. This is somewhat of a restriction at present, since
we focus here on the setting where S is a high-level, ML-like language
and T a low-level, assembly-like language, and certainly not all assembly
modules have an ML-level counterpart. However, we do not view this as
a fundamental restriction: there is nothing in principle preventing us from
generalizing our approach to a setting where S itself supports interoperation
between high- and low-level modules. We discuss this point further in §8.

single (high-level) language, leaving open the question of whether
the generalization to inter-language reasoning would pan out.

Hur and Dreyer’s work, on the other hand, was precisely tar-
geted at supporting inter-language reasoning. Their Kripke logical
relations introduced a rich and flexible notion of Kripke structures
(possible worlds), with which they modeled the protocols governing
calling conventions and the invariants connecting the different rep-
resentations of data in the source and target languages of a compiler.
As a proof of concept, they demonstrated the extreme flexibility of
these Kripke structures by using them to verify the correctness of a
deliberately obfuscated piece of self-modifying assembly code with
respect to an ML-level function. However, due to limitations of their
logical-relations method—in particular the lack of transitivity—their
Kripke structures were only applicable to single-pass compilers.

PILS marry the benefits of these approaches together:

• PILS are modular: they enable compiler verification in a way that
supports separate compilation and is preserved under linking.
• PILS are transitive: we use them to verify Pilsner, a simple (but

non-trivial) multi-pass optimizing compiler from an ML-like
source language S (supporting recursive types, abstract types,
and general references) to an idealized assembly-like target
language T, going through a CPS-based intermediate language
I. After CPS conversion, Pilsner performs several optimizations
at the I level prior to code generation. These optimizations
include function inlining, contification, dead code elimination,
and hoisting (Figure 1). Although Pilsner is relatively simple—
it is not nearly as realistic as the (whole-program) verified
CakeML compiler, for instance [13]—it is the first multi-
pass compiler for a higher-order imperative language to be
compositionally verified.
• PILS are flexible: we use them to additionally verify (1) Zwickel,

a direct (one-pass) non-optimizing compiler from S to T, and (2)
Hur and Dreyer’s aforementioned self-modifying code example,
programmed as a T module and proven correct w.r.t. an S-level
specification. Thanks to PILS’ modularity, the output of Zwickel
and the self-modifying T module can then be safely linked
together with the output of Pilsner.

All these results, together with the metatheory of PILS, have been
mechanically verified in Coq—a significant undertaking, involving
several person-years of work and over 55,000 lines of Coq.

In the rest of the paper, we give a high-level overview of our
main results (§2), we review the basic idea behind parametric
bisimulations which is also the core of PILS (§3), we describe the
structure and some details of the PILS used in Pilsner and Zwickel
(§4–§6), we highlight interesting aspects of the Pilsner verification
(§7), and we conclude with discussion and related work (§8).

2. Results
2.1 Modularity
The goal of compiler correctness is to obtain a formal guarantee that
the program that comes out of the compiler behaves the same as (or
refines) the program that went in, according to a mathematical model
of the source and target language in question. Traditionally, research
on compiler correctness has focused on whole program compilation
and does not support separate compilation. In separate compilation,
the source program consists of several source modules, which are
independently compiled to target modules. These target modules are
then linked together, creating the final program. Note that different
source modules may very well be compiled by different compilers.

We now illustrate how our approach, PILS, supports such sepa-
rate compilation (and in fact even more heterogeneous scenarios).
We consider the setting of a high-level ML-like source language S
and a low-level machine target language T (for details, see §4).

2

The main component of our development is a relation between
target modules and source modules: Γ ` MT -TS MS : Γ′

intuitively states that target module MT refines source module MS

and that they import the functions listed in Γ and export those in
Γ′. The first key result, Theorem 1, applies to whole programs,
i.e., well-typed modules that import nothing and export at least a
main function (Fmain) of appropriate type. It states that our relation
implies the standard behavioral refinement.
Theorem 1 (Adequacy for whole programs).

· `MT -TS MS : Γ (Fmain : unit→ τ) ∈ Γ

Behav(MT) ⊆ Behav(MS)

Behav(−) denotes the set of I/O and termination behaviors that
a program can have. The theorem implies for instance that, if MS

always successfully terminates, then so doesMT and moreover they
produce the same outputs.

If we have a compiler that respects our relation -TS, then
Theorem 1 gives us the same result as traditional whole-program
compiler verification would. However, our relation also satisfies the
following crucial property.
Theorem 2 (Preservation under linking, a.k.a. modularity).

Γ `M1
T -TS M

1
S : Γ1 Γ,Γ1 `M2

T -TS M
2
S : Γ2

Γ ` (M1
T ./ M2

T) -TS (M1
S ./ M

2
S) : Γ1,Γ2

(Here, ./ is overloaded notation for the linking operation both in
the source and target language.) The theorem says that if we link two
target modules, each of which is related to a source module, then
the resulting target module is related to the linking of those source
modules. Notice that, for the linking to make sense, the types of the
first module’s exported functions (in Γ1) need to match the second
module’s assumptions. Of course, if a program consists of more
than two modules, this theorem can be iterated as necessary and
once linking results in a whole program, we can apply Theorem 1.

Observe that these properties don’t mention any particular
compiler but are stated in terms of arbitrary related modules. The
missing link is a theorem saying that the desired compilers adhere
to our relation. We prove this for Pilsner and Zwickel, our compilers
from S to T. Their correctness theorems apply to any well-typed
source module:
Theorem 3 (Correctness of Pilsner).

Γ `MS : Γ′

Γ ` Pilsner(MS) -TS MS : Γ′

Theorem 4 (Correctness of Zwickel).
Γ `MS : Γ′

Γ ` Zwickel(MS) -TS MS : Γ′

While Zwickel carries out a straightforward direct translation
from S to T, Pilsner is more sophisticated: as shown in Figure 1,
it compiles via an intermediate language I and performs several
optimizations. We will discuss Pilsner (in detail) and Zwickel
(briefly) in §7.

These results mean that we can preserve correctness not only
by linking, say, Pilsner-produced code with other Pilsner-produced
code, but also by linking it with code produced by Zwickel.

Moreover, we would like to stress two important points. PILS
were designed with flexibility in mind and make only few assump-
tions about the translation of source programs, namely details of the
calling convention and in-memory representation of values (see §5).
Consequently:

1. Nothing stops us from proving a theorem analogous to the
previous two for yet another compiler from S to T, perhaps
even using several different intermediate languages.

2. Nothing stops us from proving the relatedness of a source and
target module by hand, e.g., when the target module is not the

direct result of a compiler run but was manually optimized (see
§2.3 for an extreme example of this, where the target module
overwrites its own code at run time).

Hence, we can also preserve correctness when linking with code that
was produced by other compilers or even hand-translated. We only
have to ensure that these translations are also correct w.r.t. -TS,
such that Theorem 2 applies.

2.2 Transitivity
Proving a property like Theorem 3 can require a lot of effort: the
more complex the compiler, the more complex its correctness proof.
It is thus crucial that a correctness proof can be broken up into
several pieces, e.g., one sub-proof per compiler pass. PILS support
such a decomposition thanks to a transitivity-like property. In our
setting, where Pilsner compiles via one intermediate language I, we
can show the following:

Theorem 5 (Transitivity).

|Γ| `MT -TI MI : |Γ′| |Γ| `MI -∗II M
′
I : |Γ′|

Γ `M ′I -IS MS : Γ′

Γ `MT -TS MS : Γ′

Here, -TI relates target modules to intermediate modules, -II

relates intermediate modules to intermediate modules, and -IS

relates intermediate modules to source modules. All are very similar
to -TS and support similar reasoning principles. We will say more
about them in §5; for now suffice it to say that, since -TI and
-II involve only untyped languages,2 the relations themselves are
“untyped” and we erase the typing annotations in their environments
(e.g., written |Γ|), leaving just a list of function labels. Notice how
using the transitive closure of -II in the second premise of the rule
allows us to verify each IL transformation separately.

2.3 Flexibility
As already mentioned above, PILS make few assumptions about
details of a translation and, as such, can be used not only to
verify multiple different compilers with the same source and target
languages (e.g., Pilsner and Zwickel), but also to account for linking
with hand-optimized low-level code. To substantiate this claim, we
have proven3 the challenging refinement from Hur and Dreyer [8]
mentioned in §1, which relies on tricky manipulations of local state,
far more involved than those of any imaginable compiler.

This example is based on Pitts and Stark’s “awkward” exam-
ple [20], which is easy to explain:

ea := let x = ref 0 in λf. (x := 1; f 〈〉; !x)
eb := λf. (f 〈〉; 1)

Both expressions evaluate to higher-order functions that, when
applied, call the argument “callback” function f and then return
a number. In eb this number is simply 1. In ea it is the result of
dereferencing a local (private) reference x, which is initialized
to 0. Notice, though, that when ea is called for the first time, it
immediately writes 1 to x. Since there are no other writes, the value
of x returned at the end will always be 1 as well. As a result, ea and
eb are equivalent programs (see the next section for a proof sketch).

Hur and Dreyer [8] adapt this example by substituting for eb a
tricky self-modifying machine program that implements the same
behavior, but in a rather baroque way. Figure 2 shows what this
program looks like in memory. It is parameterized by the load
address n and E(−) denotes the encoding of an instruction as a

2 In order to demonstrate that PILS are not inherently tied to typed languages,
we consider a type-erasing compiler, not a completely type-directed one.
3 After slightly modifying the machine code to account for a difference in
calling convention.

3

n+0 E(ld arg 1) n+12 666 + E(ld aux E(jmp n+15))
E(alloc arg arg) 666 + E(ld i n+5)
E(ld aux n+5) 666 + E(sto [i + 0] aux)
E(sto [arg + 0] aux) 666 + E(sto 〈sp + 0〉 ret)
E(jmp ret) 666 + E(bop + sp sp 1)

n+5 E(ld i n+11) n+17 666 + E(ld ret n+20)
E(ld aux [i + 0]) 666 + E(sto clo arg)
E(bop − aux aux 666) 666 + E(jmp [clo + 0])
E(sto [i + 0] aux) 666 + E(bop − sp sp 1)
E(bop + i i 1) 666 + E(ld ret 〈sp + 0〉)

n+10 E(bop − aux n+24 i) n+22 666 + E(ld arg 1)
666 + E(jnz aux n+6) 666 + E(jmp ret)

Figure 2. Self-modifying “awkward” example

machine word. Notice that part of the code has been “encrypted” by
adding 666 to its encoding. We briefly explain how the code works.

The first few lines allocate a new function closure with empty en-
vironment and code pointer n+5, and return it to the context. When
this function gets called the first time, it starts out by decrypting the
encrypted instructions (offsets 5–11), thus replacing the encrypted
code in memory. Subsequently (offsets 12–14), it replaces its first
instruction by a direct jump in order to skip over the decryption loop
in future executions. The remaining code (offsets 15–23), which is
also the target of that jump, simply performs the callback function
call and then returns 1.

Hur and Dreyer showed that this contrived implementation
refines the high-level program ea as a demonstration that their KLR
approach is flexible enough to reason about semantically involved
“transformations”, even ones whose correctness relies on low-level
internal state changes that clearly have no high-level counterpart.
By verifying the same example (with respect to -TS), we aim to
demonstrate that PILS are equally flexible. In fact, the high-level
structure of our proof closely follows that of Hur and Dreyer’s proof
because, as we explain in the next section, PILS and KLRs have a
lot in common.

3. Background
PILS are essentially an inter-language generalization of the earlier
work on parametric bisimulations (PBs) [9], which in turn emerged
from prior work on KLRs [3, 6] in an attempt to overcome its
limitations concerning transitivity. Both PBs and KLRs support the
same high-level reasoning principles for higher-order imperative
programs; they just do so in technically different ways. In this
section, we give a bit of background on KLRs and PBs, and the
similarities and differences between them.

What PBs and KLRs have in common: Protocols. One of the
key features shared by PBs and recent work on KLRs is the ability
to impose protocols on the local state of some functions, which
describe how that local state is permitted to evolve over time. This
idea was articulated most clearly by Dreyer et al. [3, 6], who
proposed the use of various forms of state transition systems (STSs)
to model these protocols and applied them to the verification of
many challenging contextual equivalences.

The basic idea of protocols—and how intuitively one reasons
about them—is easiest to explain by appeal to the simple “awkward”
example presented in the previous section. We thus begin by walking
through a proof of this example, using STS protocols, at a very
informal level. At such a high level of abstraction, there is really no
difference between a proof of the example using PBs vs. KLRs.

Step 1: Recall that we wish to prove ea equivalent to eb. By
symbolically executing ea, we see that it allocates a fresh heap
location—call it lx—which gets bound to x. Since this location is
fresh, and since it is kept private by ea, we can impose a protocol on
it, dictating how its contents may evolve. We choose the following

protocol, initially in state s0:

s0: lx 7→ 0 s1: lx 7→ 1
--

This protocol expresses that the value at lx currently is 0 (which
indeed it is), but that it may eventually change to 1, after which
point it will stay 1 forever.

Remark. This STS is very simple: besides consisting of only two
states and a single transition, it also refers to only one of the two
memories, namely that of ea. In general, an STS may refer to both
memories and even relate them to each other.

Now that we have installed this protocol on lx, the proof reduces
to showing that the function values va and vb returned by ea and eb
“behave equivalently” (and, in so doing, respect the protocol).

va := λf. (lx := 1; f 〈〉; !lx)
vb := λf. (f 〈〉; 1)

(Note that vb is just eb, since eb was already a value.)
So what does it mean to “behave equivalently”? This is really

the big question, for which KLRs and PBs give different answers.
Rather than try to answer it directly, we will instead describe two
informal proof principles concerning behavioral equivalence that,
at the level of abstraction we are working at here, are supported
by both proof methods, and we will finish the proof sketch by just
appealing to these proof principles. After that, we will explain how
the different proof methods implement these principles.

Principle 1 (Showing Behavioral Equivalence): To show that
va and vb behave equivalently, it suffices to show that they behave
equivalently when applied to any arguments fa and fb passed in
from the environment, which we may assume are equivalent.

Principle 2 (Using Assumed Equivalence): If fa and fb are
assumed equivalent, then fa 〈〉 and fb 〈〉 behave equivalently.

Note that these proof principles make a distinction between when
two functions behave equivalently and when they are assumed
equivalent. We explain the difference between these notions below.
Note also that we restricted Principle 2 here to functions with unit
argument; this is merely to simplify our informal discussion.

Step 2: By Principle 1, suppose that we are given fa and fb,
passed in from the environment, that are assumed equivalent; it
remains to show that va fa and vb fb behave equivalently. When
the execution of these functions begins, the state of lx’s protocol
could be either in s0 or s1, since the functions could be called at
some point in the future. In either case, va fa first sets lx to 1,
thereby either updating the state of the protocol to s1 (if it was in s0
to start) or leaving it as is—either way, a legal transition.

Step 3: We are now trying to show that (fa 〈〉; !lx) and (fb 〈〉; 1)
behave equivalently, given that the protocol is now in state s1. Since
fa and fb were assumed equivalent, we know by Principle 2 that
fa 〈〉 and fb 〈〉 behave equivalently. The result therefore reduces to
showing that !lx and 1 behave equivalently. We may assume that
these expressions are executed starting in state s1, because that is
the only state accessible from the state s1 we were in previously
(i.e., we assume the protocol has been respected by fa and fb).

Step 4: Since we know we are still in state s1, we know that !lx
evaluates to 1. Thus, !lx and 1 behave equivalently, so we are done.

Logical relations. Both KLRs and PBs allow one to turn the above
proof sketch into a proper proof. The key difference between them
is how they formalize behavioral vs. assumed equivalence.

KLRs formalize this by defining a relation, which says—once
and for all—what it means for two expressions to be indistinguish-
able at a certain type. One then uses this same “logical” relation
as the definition of both behavioral and assumed equivalence. For
expressions, the logical relation says that they are equivalent if they
either both run forever or they both evaluate to equivalent values.

4

For function values, which both the v’s and the f ’s in our example
are, the logical relation says that they are equivalent if they map
logically-related arguments to logically-related results. Principles 1
and 2 both fall out of this definition as immediate consequences.

The main difficulty with logical relations is that, by conflating
behavioral and assumed equivalence, they introduce an inherent
circularity in the construction of the logical relation. In particular,
the definition of equivalence of function values refers recursively
to itself in a negative position (when quantifying over equivalent
arguments). Traditionally, for simpler languages (e.g., without
recursive types or higher-order state), this circularity is handled
by defining the logical relation by induction on the type structure.
For richer languages, such as our source language S, induction on
types is no longer sufficient, but step-indexing can be used instead
to stratify the construction by the number of steps of computation
in the programs being related [3]. This is the approach taken by
Hur and Dreyer [9] in their earlier work on compositional compiler
correctness. However, it is not known how to prove transitivity of
logical relations for step-indexed models (at least in a way that is
capable of scaling to handle inter-language reasoning, which we
need for compiler verification).4

Parametric bisimulations. This problem with transitivity was one
of the key motivations for parametric bisimulations (PBs). Unlike
logical relations, PBs treat behavioral and assumed equivalence as
distinct concepts. In particular, rather than trying to define assumed
equivalence, PBs take assumed equivalence as a parameter of
the model (hence the name “parametric bisimulations”). That is,
a PB proof that two expressions are behaviorally equivalent is
parameterized by an arbitrary unknown relation U representing
assumed equivalence,5 and U could relate any functions fa and fb!

To make use of this unknown U parameter, PBs update the defi-
nition of behavioral equivalence accordingly. For function values,
one can show them behaviorally equivalent precisely as suggested
by Principle 1, i.e., if they map U -related (assumed equivalent)
arguments to behaviorally equivalent results. For expressions, be-
havioral equivalence extends the definition from logical relations
with a new possibility, namely that the expressions may call func-
tions fa and fb related by U . This amounts to baking Principle 2
directly into the definition of behavioral equivalence. The reason this
is necessary—i.e., the reason Principle 2 does not just fall out of the
definition otherwise—is that U is a parameter of behavioral equiva-
lence. Knowing that fa and fb are assumed equivalent according to
U tells us absolutely nothing about them! Consequently, Principle 2
must be explicitly added to the definition of behavioral equivalence
as an extra case (called the “external call” case, as it concerns calls
to “external” functions passed in from the environment).

One can understand PBs as defining a “local” notion of behav-
ioral equivalence: two expressions are behaviorally equivalent if they
behave the same in their local computations, ignoring what happens
during calls to (U -related) external functions passed in from the
environment. Intuitively, this is perfectly sound: it just means each
module in a program is responsible for its own local computations,
not the local computations of other modules. Moreover, as we have
observed already, it is largely a technical detail: PBs can support the
same high-level protocol-based reasoning as KLRs do.6

4 Transitivity for logical relations can be achieved via methods such as >>-
closure [6], or by restricting the relations to well-typed terms [2], but such
approaches depend on the relations relating terms in the same language.
5 Hur et al. [9] called this the “global knowledge”, in contrast to the “local
knowledge”. We feel our terminology is more intuitive, and does not conflict
with the global/local distinction as it pertains to worlds (§5.1).
6 There is one exception: PBs do not admit the eta law for function values.
This is a known problem [9], with a known solution [11], but we leave it as
future work to incorporate this solution into PILS.

The major benefit of PBs over KLRs is that they avoid the
problems with the circularity of KLRs which necessitated step-
indexing. In particular, note that by taking Principle 1 as the
definition of behavioral equivalence for function values, we avoid the
negative self-reference that plagues logical relations: the arguments
fa and fb are simply drawn from the unknown relation U . This
avoidance of step-indexing was essential in making it possible to
establish that PBs do in fact support transitivity, but it does not mean
that the proof of transitivity was easy. The interested reader can find
further details in an earlier technical report [10].

4. PILS, Part 1: Languages
PILS generalize PBs to the inter-language setting of compiler
verification. Recall from §2 that we are interested in compiling
from an ML-like source language S to a machine language T,
and that the more complex of our two compilers, Pilsner, employs
an intermediate language I. As argued before, besides the main
similarity relation -TS between T and S modules, we also need
PILS to provide a similarity relation for each pair of languages
adjacent in Pilsner’s compilation chain (Figure 1), i.e., -TI, -II,
and -IS.

4.1 Language-Generic Approach
In order to avoid duplicate work, we define PILS in a language-
generic way, i.e., we define similarity -AB for two abstract lan-
guages A and B (for some notion of abstract language to be de-
scribed), and then instantiate it with different language pairs in order
to obtain the desired relations. This has two important benefits:

1. Most of the metatheory, which is quite involved, can be es-
tablished once and for all. This is particularly crucial because
PILS were developed from the start in Coq, and over time the
definitions—and thus proofs—had to undergo countless changes.
This might simply have been infeasible if it weren’t for the
language-generic setup.

2. One can instantiate PILS with a different intermediate language
(or several of them) in order to verify a different compiler. Using
modularity (Theorem 2), one can then of course safely link T
code produced by this compiler with Pilsner-produced and/or
Zwickel-produced code.

In (1), we say “most of the metatheory” because transitivity and
the parts of modularity and adequacy that deal with details of module
loading are actually not proven generically. Ultimately, it would be
nice to do so but it would require some effort to properly axiomatize
various properties of the abstract language that these proofs rely
on. Moreover, it might require a distinction between intermediate
language and non-intermediate language, with slightly different
sets of requirements. For now, it is much easier to simply prove the
theorems for the concrete instances (of course this involves many
generically proven lemmas). The downside of this is that, in order to
verify a compiler using different intermediate languages, one needs
to reprove the corresponding transitivity property. Adequacy and
modularity, on the other hand, do not need to be reproven as they do
not involve the intermediate languages.

To instantiate the generic PILS model and obtain one of the
desired similarity relations requires us to provide: (i) the pair of
concrete languages, and (ii) the global world for this pair. The latter
can be seen as a predefined protocol (in the sense of §3) responsible
for fixing calling conventions and data representations. We will
discuss global worlds further in §5.

One point that we glossed over so far is that our generic defini-
tion is also not entirely generic—as we will see in the next section,
it still essentially bakes in our source language’s type structure. Con-
sequently, instantiating PILS as-is with a different source language

5

Domains: Val,Cont,Conf ,Mach,Mod,Anch

Operators and relations:
• cload ∈ Mod→ Anch→ (Lbl×Val)∗ → P(Conf)
• vload ∈ Mod→ Anch→ (Lbl×Val)∗ → Lbl→ P(Val)
• · ∈ Conf → Conf → Conf (commutative and associative)
• ∅ ∈ Conf (neutral for ·)
• ↪→ ∈ P(Evt×Mach×Mach)
• real ∈ Conf → P(Mach)
• error := {m ∈Mach | ∀c. m /∈ real(c)}

Figure 3. Language specification

most likely won’t make much sense. This is fine, because we focus
on a single source language in this work. Extending this to multiple
source languages, perhaps even allowing interoperability between
them, is clearly important but left to future work.

Another point we glossed over is that we actually define two
generic models: a typed one and an untyped one. The former is used
when the input language is S, the latter is used in all other cases
(where no involved language has static types). However, we will
continue to refer to them as just “the generic model”, because the
untyped one is obtained simply by erasing all the type arguments
from the typed one (highlighted in brown in the figures in §5).

4.2 Language Specification
We now describe the language abstraction in terms of which PILS
are defined. In the subsequent sections, we then briefly present the
concrete languages under consideration (S, I, T). Common to all
languages are a set of events and a countably infinite set of labels:

t ∈ Evt ::= ε | ?n | !n F1, F2, . . . ∈ Lbl

Events are produced by an executing program; they consist of
internal computation (ε) and I/O operations (reading or writing
a number n, respectively). Labels are used to identify module
components; in this work, we consider a simplistic notion of module
as the unit of compilation.

Figure 3 presents the abstract language in terms of a signature
that any concrete language must implement. Keep in mind that
we need to account for a very high-level language (S) on the one
extreme and a very low-level language (T) on the other extreme.

A language must come with a set Val of values, a set Cont
of continuations, a set Conf of configurations, a set Mach of
machines, a set Mod of modules, and a set Anch of anchors
(think: load addresses). The core of the operational semantics is
given in the form of a transition system (↪→) of machines, whose
transitions are labelled with events t. Configurations can be thought
of as partial machines—they play different roles in different contexts
(e.g., they might represent just a heap or just an expression, or even
a full machine). If a configuration c is complete, it is realized by
a set of machines real(c). (In all our instantiations, this is either
empty, meaning the configuration is invalid or incomplete, or it
contains exactly one machine.) Configurations must form a partial
commutative monoid with composition · and neutral element ∅,
except that the partiality is implicit via real. (Having · be total is
more convenient for mechanization [18]). We say a machine denotes
an error, m ∈ error, iff it does not realize any configuration.

Intuitively, modules are sets of labelled function values (the
exports), which may refer to external functions (the imports) by
their unique labels. In the language specification, the module
interface consists of two operations, cload and vload. The former,
cload, takes an anchor saying “where” the module is to be loaded
and values for each of its imports. It then returns a set of initial
configurations in which the module is considered loaded. Given
the same inputs and additionally the label of one of the exported
functions, vload returns the module’s corresponding function value.

τ ::= α | unit | nat | τ1 → τ2 | τ1 × τ2 | τ1 + τ2 | µα. τ |
∀α. τ | ∃α. τ | ref τ

e ::= x | F | 〈〉 | n | e1 ◦ e2 | ifnz e then e1 else e2 | 〈e1, e2〉 |
e.1 | e.2 | inl e | inr e | case e (x. e1) (x. e2) | roll e | unroll e |
fix f(x). e | e1 e2 | Λ. e | e[] | pack e | unpack e1 as x in e2 |
l | ref e | !e | e1 := e2 | e1 == e2 | input | output e

v ::= 〈〉 | n | 〈v1, v2〉 | inl v | inr v | roll v | fix f(x).e | Λ.e | pack v | l

Val := {v | FV(v) = ∅}
Cont 3 K ::= • |K e | v K | . . .
Mod 3M ::= [F1=e1, ..., Fn=en] Anch := 1
Env := Lbl ⇀ Val Heap := (Loc ⇀ Val)⊥
Mach := Heap× Env × Exp
Conf := Heap× Env⊥,∅ × Exp⊥,∅

(h, σ,K[input])
?n
↪→(h, σ,K[n])

(h, σ,K[F]) ↪→(h, σ,K[v]) (if σ(F) = v)
(h, σ,K[ref v]) ↪→(h·{l 7→v}, σ,K[l]) (if h·{l 7→v} 6= ⊥)

· · ·
(h, σ, e) ↪→(⊥, σ, e) (if e 6= v and no other rule applicable)

Figure 4. Source language S

4.3 Source Language S

The source language S is a standard PCF-like language extended
with products, sums, universals, existentials, general recursive types,
general reference types, and numeric I/O. Its type and term syntax
is given in Figure 4.

Continuations are the evaluation contexts K in terms of which
the language semantics is defined. Machines consist of a heap h,
a read-only environment σ for resolving labels to values, and an
expression e. Heaps are either undefined (⊥) or partial maps from
locations to values. We assume the obvious composition operation ·
for heaps (overloading notation) that returns the union of two heaps
iff both are defined and they don’t overlap (otherwise it returns
⊥). Note that the empty heap ∅ is its neutral element. The step
relation between machines is a pretty standard substitution-based
left-to-right call-by-value reduction and we state only a few rules. If
a machine cannot take a successful step (according to the usual rules
such as beta reduction), then it steps to an error state by invalidating
its heap component.

Configurations are machines where one or more components may
be missing or invalid. For a machine m to realize a configuration
c, it must match the configuration (m = c with the obvious
embedding of Mach in Conf). Moreover, it must carry a valid
and finite heap (finiteness guarantees that allocation will succeed).
We define Conf and their composition operation (·) such that
heaps can successfully be split across several configurations, but
environments and expressions cannot—they must be defined in
exactly one component in order for the composition to be realizable.

We assume a standard typing judgment Γ ` e : τ , where Γ
assigns types to both labels and variables. It implies that τ and the
types in Γ are closed and that all labels and free variables in e are in
the domain of Γ.

A module M is simply an ordered list of uniquely labelled
function definitions. The above typing judgment is lifted to modules
as Γ ` M : Γ′, but requires that both Γ and Γ′ only contain
labels and, for simplicity, that the module components are all
functions (fix f(x). e or Λ. e). Moreover it imposes a strict left-
to-right dependency order on the module components.7 As there is
no need for anchors in the source language, we define them as a
singleton set.

Linking two modules (./) simply concatenates them (assuming
their labels are disjoint). Note that this is an asymmetric operation

7 This is merely to keep the module semantics simple. PILS themselves,
being a coinductive method, are perfectly compatible with mutual recursion.

6

a ::= 〈〉 | n | 〈x1, x2〉 | x.1 | x.2 | inl x | inr x |
fix f(y, k). e | Λk. e | x1 == x2 | x1 ◦ x2

e ::= let y = a in e | let k y = e1 in e2 | y ← input; e | output x; e |
y ← ref x; e | x1 := x2; e | y ← !x; e | ifnz x then e1 else e2 |
casex (y. e1) (y. e2) | x1 x2 k | x[] k | k x

Val 3 v ::= 〈〉 | n | l | 〈v1, v2〉 | inl v | inr v |
〈σ, fix f(y, k).e〉 | 〈σ, λy.e〉

Cont := Val
Env := Lbl] TVar]KVar ⇀ Val
Mach := Heap× (Env × Exp)

(h, (σ, let k y = e1 in e2)) ↪→(h, (σ[k 7→〈σ, λy.e1〉], e2))

(h, (σ, k x)) ↪→(h, (σ′[y 7→σ(x)], e))
(if σ(k) = 〈σ′, λy.e〉)

· · ·
(h, (σ, e)) ↪→(⊥, (σ, e)) (if no other rule applicable)

Figure 5. Intermediate language I

as it may resolve imports of the right module, but not of the left.
The semantics of a program, i.e., a complete module containing a
designated main function (Fmain) of type unit→ τ , is the semantics
of the machine consisting of an empty heap, the module itself as
environment, and the call of the main function as the expression
component.

4.4 Intermediate Language I

I is an untyped, or rather, dynamically typed CPS-variant of S,
inspired by Kennedy’s intermediate language [12]. Parts of it are
shown in Figure 5.

In contrast to the source language, I is defined using an
environment-based semantics where continuations and functions
evaluate to closures of code and environment. This avoids the need
to reason about substitutions when verifying optimizations, which
is often a hassle.

Being in continuation-passing style, every subexpression is
explicitly named and functions never “return”. Concretely, we
distinguish between (i) pure expressions a, which are evaluated
in let-bindings and always yield a value without any side-effects,
and (ii) control expressions e. Ignoring conditionals, every control
expression is essentially a sequence of bindings ending in a function
or continuation call. For instance, let k y = e1 in e2 defines a
new continuation k with argument y and body e1, and then executes
e2 (which may use k). Here y ∈ TVar is term variable, while
k ∈ KVar is a continuation variable. Any x in the language syntax
stands for either a term variable or a label.

Modules, anchors, configurations, etc. are similar to those in
the source language. We define Cont simply as Val because
continuations are already values in the language.

4.5 Target Language T

As shown in Figure 6, our target language T is an idealized assembly
language featuring instructions for arithmetic, control flow, memory
access, and I/O. Some of them support multiple addressing modes.
For instance, if o = 〈r1 ± n〉, then sto o r2 stores the contents of
register r2 on the stack at the address contained in register r2, offset
by±n. If o = [r1±n], then it stores it on the heap instead. The lpc
instruction loads the current program counter into the given register.

T is idealized for instance in the sense that machine words are
unbounded natural numbers and stack and heap are unbounded as
well. The set of registers, though, is fixed (their names, by the way,
are merely suggestive and do not matter for the language semantics).
Moreover, code is encoded as data and can be modified. We assume
a deterministic (but otherwise arbitrary) memory allocator.

Machines consist of heap, stack, register file, and current pro-
gram counter (pointing to the heap). We omit the transition rules
for brevity, as they are straightforward. The configuration monoid is

Reg 3 r ::= sp | clo | arg | env | ret | aux | i
Oper 3 o ::= n | r | 〈r ± n〉 | [r ± n]
Instr 3 z ::= jmp o | jnz r o | ld r o | sto o r | lpc r |

bop ◦ r o1 o2 | input r | output r | alloc r1 r2

Val := Word
Anch := Word
Cont := Word
RegFile := Reg→Word
Stack := (Word ⇀ Word)⊥
Heap := (Word ⇀ Word)⊥
Mach := Heap× Stack× RegFile×Word

real(c) := {m |m = c ∧ c.hp 6= ⊥ ∧ c.hp finite ∧ c.st 6= ⊥}

Figure 6. Target language T

defined analogously to the previous languages (heap and stack can
be split, the rest cannot).

In order to abstract away the distracting details of relocation, we
model target modules as (meta-level) functions. A module thus takes
a load address (the role of anchors in T) and imports (a value for
each imported label), and returns a data segment from which one can
obtain the exported values as well as an initial heap (containing all
the code) in which they make sense. Linking two modules essentially
just concatenates their data segments.

Finally, we dictate the following contract (“calling convention”)
for calls to module-level functions, both intra- and inter-module:
To call a function, (1) write its value into register clo, (2) write its
argument into register arg, (3) write its return address into register
ret, and (4) jump to [clo+0], i.e., to wherever the value in the heap
at address clo points to. If and when control eventually reaches the
return address, (5) the function’s result must reside in register arg.
Moreover, (6) registers env and sp must have been preserved (i.e.,
these are callee-save registers while the rest are caller-save), and the
stack must have been preserved as well.

5. PILS, Part 2: Worlds and Similarity
5.1 Worlds
Worlds are the formalism used by KLRs and PILS to incorporate
the idea of protocols described in §3. Their shape is shown in
Figure 7. The account of worlds and PILS we present here is
somewhat simplified for the sake of presentation. For example, we
omit an important distinction between public and private transitions
in protocols, because it is inherited directly from the prior work
on KLRs [8] and PBs [9]. At various points, we will discuss
several ways in which our actual model (verified in Coq) is more
sophisticated. Full details are given in the technical appendix [1].

We distinguish between global worlds and local worlds. Ulti-
mately we relate programs under a full world, which is the compo-
sition of a global and a local one. The global world is a parameter
of the definitions and needs to be instantiated together with the
language implementations—we define exactly one global world for
each language pair of interest (WTI, WII, WIS, and WTS). Its task
is to describe the calling convention and data representation that all
modules have to follow. It also governs the global references, i.e.,
values being passed around at reference type, and the memory that
those point to. A local world, on the other hand, is what one gets to
pick in the proof of module similarity. It can assert properties about
the modules’ local state, e.g., as illustrated in §3.

Global and full worlds have the same structure. They consist
of a transition system T , a configuration relation crel, and several
methods for “querying” the global state (to be discussed in §5.2).

A transition system defines a protocol state space S with (in-
verted) transition relation w, and the configuration relation defines
the interpretation of the states as relational constraints on the two
programs’ memories. For instance, in the example from §3, S would

7

VRelFA,B := TypeF→P(A.Val×B.Val)
VRelA,B := Type→P(A.Val×B.Val)

T ∈ TrSys := {(S,w) ∈ Set× P(S× S) | w is preorder}

QHTA,B := {(vqha ∈ T.S mon−→ VQryA → P(A.Val)

, vqhb ∈ T.S mon−→ VQryB → P(B.Val)
, cqha ∈ T.S→ CQryA → P(A.Conf)
, cqhb ∈ T.S→ CQryB → P(B.Conf)

, rqh ∈ T.S mon−→ VRelA,B)}
CRTA,B := {crel ∈ (T.S→ VRelFA,B)

mon−→
T.S→ P(A.Conf ×B.Conf)}

WorldA,B := {(T ∈ TrSys, ∈ CRTA,B , ∈ QHTA,B)}
WorldLA,B := {(T ∈ TrSys, ∈ CRTA,B)}

Figure 7. Worlds (simplified)

be a two-element set {s0, s1}, w would be {(s1, s0)}∗, and crel
would map state sn to a singleton heap that stores n at location lx.
The fact that crel takes the unknown relation U as argument matters
when the protocol involves higher-order state (see [9]).

Local worlds are like full worlds except that they don’t con-
tain the global query handlers. Combining a local world w ∈
WorldLA,B with a global world W works straightforwardly by
taking the product of their transition systems, the separating con-
junction of their configuration relations, and passing all state queries
on to W .

5.2 Similarity
At the top-level, PILS define module similarity, which we instantiate
to obtain -TS and so on. The main ingredient of this is E, the
coinductively defined behavioral similarity for “expressions”, which
is parameterized over the unknown relation U representing assumed
similarity (as discussed in §3). In our generic setting there is
no notion of expressions, but we find it helpful to refer to the
configurations related by E as such. Indeed, for the source language
S these configurations will usually just be expressions (i.e., heap
and environment are missing). For T, on the other hand, they will
usually just be program counters (i.e., heap, stack, and register
file are missing). The missing parts will be provided by the world.
In particular, in T, the global part of the world always owns the
register file, because it is a global resource accessible by any module.
Concretely this means that the state of the two global worlds
involving T (for -TS and for -TI) contains the current register file
R and their crel only allows machine configurations whose register
file is precisely R.

Let us now analyze the simplified presentation of E in Figure 8,
first at a high level and then in more detail. Very roughly, it relates
two programs ea (the “target” of a transformation) and eb (the
“source” of a transformation) iff one of three cases holds:

(ERR) eb can silently (i.e., without I/O) produce an error.

(RET) ea is finished, and eb can silently finish returning a related
value.

(STEP) ea can take a step and eb can match it (perhaps after some
internal computation). “Match” means that both steps produce
the same event and that the remaining computations either (REC)
are again related by E, or (CALL) are about to call related “exter-
nal” functions, i.e., functions related by the unknown relation U .
This “external call” case is the characteristic feature of PBs, as
discussed in §3. (K, not shown here, relates continuations and
is defined in terms of E.)

In the explanation above, we glossed over many details. For a start,
E is indexed implicitly by a full world W and explicitly by several

parameters including the unknown relation U . We now take a closer
look at the definition and discuss the key parameters.

Asymmetric small-step formulation. In contrast to the symmetric
big-step formulation of E in Hur et al. [9], PILS employ an
asymmetric small-step formulation. Notice how E’s STEP case asks
us to consider each possible step of the “target” program ea in
turn (using REC repeatedly), each time demanding us to match
it with several steps of the “source” program eb. Besides being
seemingly necessary to properly deal with events (here: I/O), such an
asymmetric small-step formulation is also important in the context
of compiler verification because it gives the compiler the flexibility
to remove erroneous behaviors of the source program and resolve
some of its nondeterminism.

In this simplified presentation of E, eb is forced to take at least as
many steps as ea. Of course, this is overly restrictive and the actual
definition relaxes this—more or less in the usual way (allowing
stuttering), but with perhaps unusual implications. We discuss this
in §6.1.

Protocol conformance. In order to talk about the execution of ea
and eb, we first need to “complete” these configurations and convert
them into physical machines. These completions should not be
completely arbitrary; they should adhere to the world’s constraints
at the current state s. Hence we quantify over ca and cb, representing
the portion of the machine state constrained by the world W , and
require—in the helper definition configure—that they are indeed
related byW.crel(U)(s). We then attach these to ea and eb, together
with arbitrary frame configurations ηa and ηb representing the rest
of the running program state. Finally, we only consider machines
ma and mb that realize these composed configurations.

The two other occurrences of configure (in STEP and RET) are
proof obligations. For instance, STEP requires us to show that, after
the step, each resulting machine can again be decomposed into a
(possibly new) expression e′a, a (possibly new) configuration c′a, and
the original frame configuration ηa (similarly for the b-side), since
we should not have touched the frame’s private state. Moreover, c′a
and c′b must again satisfy W ’s constraints, but we may advance s to
a future state s′ in order to achieve that.

Configuration queries. The RET case has to assert (in a language-
generic way) that the two computations have finished and returned
similar values. In our source language, termination is a syntactic
property and is trivial to check. But what does it mean for a T
computation to be “finished”? We take it to mean that control has
reached the original return address. In order to determine whether
this is the case, we need to know the return address in the first place.
This is why E takes as arguments initial continuations k0a and k0b .

The actual check is then performed with the help of the world.
Its global part provides configuration query handlers cqha and
cqhb that answer questions such as “in state s′, does e′a con-
stitute a return of value va to continuation k0a?”, written e′a ∈
W.cqha(s′)(ret va k

0
a). For T, this amounts to checking that the

program counter of e′a (typically its only component) equals k0a and
that the return register contains va. The latter requires inspecting
the given state s′, because it contains the register file.

A different query, app, is used by the STEP/CALL case to test if
both configurations represent function calls. In effect, this means
that the global world’s implementation of cqha and cqhb determines
a major part of the calling conventions.

Value closure and value queries. Both the RET and STEP/CALL
cases also require that certain values are related, e.g., the returned
results: (va, vb) ∈ 〈〈U(s′)〉〉s

′
(τ). But what is this relation exactly?

As in PBs, U is intuitively only needed to relate unknown “exter-
nal” functions passed in from the environment. The value closure
operation 〈〈−〉〉 lifts it to other value forms in a straightforward way,

8

E ∈ A.Cont×B.Cont→ (W.S→ VRelFA,B)→W.S→ Type→ P(A.Conf ×B.Conf)
E(k0a, k

0
b)(U)(s)(τ) = {(ea, eb) | U ∈ U =⇒ ∀ca, cb, ηa, ηb. ∀(ma,mb) ∈ configure(U)(s)(ca, cb)(ea · ηa, eb · ηb).
(ERR) ∃m′b. mb

ε
↪→
∗
m′b ∧m′b ∈ B.error

∨ (RET) ∃m′b, s′, va, vb, e′a, e′b, c′a, c′b. mb
ε
↪→
∗
m′b ∧ s′ w s ∧ (ma,m

′
b) ∈ configure(U)(s′)(c′a, c

′
b)(e

′
a · ηa, e′b · ηb) ∧

(va, vb) ∈ 〈〈U(s′)〉〉s
′
(τ) ∧ (e′a, e

′
b) ∈W.cqha(s′)(ret va k

0
a)×W.cqhb(s′)(ret vb k

0
b)

∨ (STEP) (∃t,m′a. ma
t
↪→ m′a) ∧ ∀t,m′a. ma

t
↪→ m′a =⇒ ∃e′a, e′b, c′a, c′b,m′b,m′′b , s′.

mb
ε
↪→
∗
m′b

t
↪→ m′′b ∧ s′ w s ∧ (m′a,m

′′
b) ∈ configure(U)(s′)(c′a, c

′
b)(e

′
a · ηa, e′b · ηb) ∧

(REC) (e′a, e
′
b) ∈ E(k0a, k

0
b)(U)(s′)(τ)

∨ (CALL) ∃τv, τ ′, fa, fb, va, vb, ka, kb. (e′a, e
′
b) ∈W.cqha(s′)(app fa va ka)×W.cqhb(s′)(app fb vb kb) ∧

(fa, fb) ∈ 〈〈U(s′)〉〉s
′
(τv → τ ′) ∧ (va, vb) ∈ 〈〈U(s′)〉〉s

′
(τv) ∧ (ka, kb) ∈ K(k0a, k

0
b)(U)(s′)(τ ′)(τ)

configure ∈ (W.S→ VRelFA,B)→W.S→ (A.Conf ×B.Conf)→ (A.Conf ×B.Conf)→ P(A.Mach×B.Mach)
configure(U)(s)(c′a, c

′
b)(ca, cb) = {(ma,mb) ∈ A.real(ca · c′a)×B.real(cb · c′b) | (c′a, c′b) ∈W.crel(U)(s)}

〈〈−〉〉(−) ∈ VRelFA,B →W.S→ VRelA,B
〈〈R〉〉s = . . . ∪ {(τ → τ ′, va, vb) ∈ R | va ∈W.vqha(s)(fun) ∧ vb ∈W.vqhb(s)(fun)}

∪ {(nat, va, vb) | ∃n. va ∈W.vqha(s)(natn) ∧ vb ∈W.vqhb(s)(natn)}
∪ {(τ1 × τ2, va, vb) | ∃v1a, v2a, v1b , v2b . (v1a, v

1
b) ∈ 〈〈R〉〉s(τ1) ∧ (v2a, v

2
b) ∈ 〈〈R〉〉s(τ2) ∧

va ∈W.vqha(s)(pair v1a v
2
a) ∧ vb ∈W.vqhb(s)(pair v1b v

2
b)}

Figure 8. Key components of PILS (simplified)

e.g., by saying that two pairs are related iff their first projections are
related (recursively) and their second projections as well.

When defining the value closure relation generically, we need to
have a way of determining how S’s value forms are represented
by languages A and B. Since all modules must agree on the
representations of values passed by external functions, it makes
sense that the global world governs them. This is exactly the purpose
of the global world’s value query handlers vqha and vqhb.

As an example, consider pairs. In T, we choose to represent
a pair 〈v1, v2〉 such that address a holds the representation of v1
and address a + 1 holds the representation of v2. Since pairs are
immutable in the source language, we must ensure that a will
continue to represent 〈v1, v2〉 in the future.

We achieve this by having the global worlds involving T main-
tain as part of their state a database of allocated values. Their query
handler for T then checks for a matching entry in this database.
Moreover, their crel requires that each value from the database actu-
ally exists in memory, with the expected address and representation.
Finally, the associated transition system ensures that the database
can only ever grow, thus implying that all registered values stay
allocated forever. With this in place, the value closure operation can
be defined analogously to the one for PBs (as a least fixed point).
Some representative cases are shown in Figure 8.

The reader may wonder how we can show that two functions are
related by 〈〈U(s′)〉〉s

′
if they were defined by us and not passed in

from the outside, i.e., not known to be related by U . To do so, it
suffices to show they are “similar”. This is because PBs (and PILS)
impose a “validity” condition on U , namely that it relates at least
all functions that behave “similarly”. Function similarity is defined
essentially via Principle 1 in §3, that is: two functions are similar if
they map arguments that are assumed-related (roughly, related by
U) to results that are behaviorally-related by E.

5.3 A Note on the Untyped Model
Since our source language is type-safe and therefore its well-typed
programs “don’t go wrong”, neither will correctly produced IL or
target programs. One may thus wonder why our model takes faulty
programs into account (the ERR case in E). The answer is that
this feature is actually crucial for verifying transformations in the

untyped version of the model. (Recall that we obtain this version by
erasing all the type arguments from the definitions in Figures 7–8.)

To see this, first consider the following optimization at the source
level (where x is a variable of type nat):

fix f(x). ifnz x then e else e ; fix f(x). e

In the process of showing that fix f(x). e is similar to the original
function, we will be given arguments related at some unknown
relation U and state s, (nat, va, vb) ∈ 〈〈U(s)〉〉s. Now, by inverting
the definition of 〈〈U(s)〉〉s, we learn that ∃n. va = vb = n.

Let us ignore the remaining proof steps and instead consider this
transformation at the IL level, where we would be working in the
untyped version of the model. There, we will still be given related
arguments, (va, vb) ∈ 〈〈U(s)〉〉s, but this time the type information
is missing. Consequently, when inverting the value closure, we don’t
end up with the single case above (where va = vb = n), but must
also consider all the other cases, such as va and vb being pairs. Now,
note two important points: First, the global world WII’s value query
handlers ensure that whenever vb is a number, then so is va. In that
case we can proceed as we would above in the typed model. Second,
if vb is not a number, then the original program produces an error
and, thanks to ERR, there is nothing more to show.

6. Improved Reasoning Principles
We explained in §5.2 that PILS necessarily employ an asymmetric
small-step formulation of E. However, the particular formulation
that we used results in a somewhat limited and inconvenient reason-
ing principle. Here we explain how to improve on it.

6.1 Allowing Stuttering in a Compositional Way
As mentioned before, our naive asymmetric small-step formulation
forces the “source” program eb to take at least as many steps as the
“target” program ea. This can be seen easily when looking at the
reasoning principle inherent in E’s STEP/REC case at a very high
level: in order to show ea ∼ eb, it suffices to show

∀e′a. ea ↪→ e′a =⇒ ∃e′b. eb ↪→
+
e′b ∧ e′a ∼ e′b.

Note the use of ↪→+, which requires eb to take at least one step for
each step of ea (here, eb ↪→+

e′b corresponds to mb
ε
↪→
∗
m′b

t
↪→

m′′b in the formal definition of E in Figure 8).

9

Naturally, we want to allow the source to “stutter” by replacing
↪→+ with ↪→∗, but simply doing so would relate a diverging target
program to any source program and thus render the model unsound.
To solve this, we follow the standard approach [17] of indexing
E by an element of a (proof-local) well-founded partially-ordered
set (poset), and then demand that this element be decreased in the
case of stuttering.

However, in order to support certain “compatibility” lemmas
that are used in our compiler verification (see §7.1), we require a
monoid structure on the order (technically speaking, we use non-
trivial well-founded positive strictly ordered monoids, or “NWPS
monoids” [5]). For example, the compatibility lemma for pairs is
roughly as follows:

ea ∼n eb ∧ e′a ∼n′ e′b =⇒ 〈ea, e′a〉 ∼n+n′ 〈eb, e′b〉
Here eb and e′b can stutter at most n and n′ “times” respectively,
and thus 〈eb, e′b〉 can do so at most n+ n′ times. We therefore need
not just the well-founded poset structure for n, but also a notion of
addition, which NWPS monoids provide.

In order to maximize the user’s flexibility, we provide a way
to lift an arbitrary well-founded poset to an NWPS monoid. More
specifically, given a well-founded poset X , we construct an NWPS
monoidX with an embedding ofX intoX (i.e., an order preserving
and reflecting map from X to X). Thanks to this, the user can
pick an arbitrary well-founded poset without worrying about the
additional monoid structure required by our proof framework.

6.2 Unchaining Internal Computation
A second shortcoming of the definition of E is that it does not
recognize internal steps of computation, treating each step as if it
might result in control being passed to the environment. Concretely,
after each step of the target program and matching steps of the
source program, we are obliged to show that the memory constraints
currently imposed by the world are again met. And then, in reasoning
about the next step of the target program, we are forced to quantify
over completely new configurations yet again.

This is unnecessarily strict. Intuitively, we should not need to
show that the world’s conditions are satisfied again until the point
where we pass control to the environment; similarly, we should not
need to quantify over new configurations except at points where
control is passed to us, because there is no way that the state could
have changed in between the internal steps of our local computation.

To solve this problem, we parameterize E with a boolean flag,
signalling whether we are currently engaged in internal computation
or not. The idea is that when we start a computation and are given
configurations related by the world, we temporarily acquire them
by merging them into our own configurations and setting the flag
to true. As we continue executing local steps, we are freed from
any worldly obligations. However, before we are allowed to use the
RET or CALL case—i.e., when we want to pass control back to the
environment—we will be forced to release our grip on the world by
setting the internal flag to false, at which point we must show that
all the world’s constraints are again satisfied.

6.3 Exploiting Local Determinism
Recall that E asks us to consider a single step of the target program
at a time and that such a formulation is generally necessary because
of non-determinism in the target language. However, reasoning in
such a way can be extremely tedious since T programs are typically
very long. Moreover, usually a single source step translates into
many target steps, so for most of the target steps one would simply
stutter on the source side.

Often one actually knows exactly how the given target program
will execute. In these cases, one would like to just take a number of
steps on the target side and a number of steps on the source side, and

then continue reasoning with the resulting programs. In other words,
instead of doing asymmetric small-step reasoning, one would like
to do symmetric big-step reasoning, which says: in order to show
ea ∼ eb, it suffices to show

ea ↪→∗ e′a ∧ eb ↪→∗ e′b ∧ e′a ∼ e′b.
Fortunately, based on the previous two changes to E, we can

prove a lemma that allows us to do such reasoning when it is sound
to do so, namely when the target execution in question is guaranteed
to behave deterministically. That is, the lemma rests on the idea of
lowering determinism from being a property of a language to being
a property of a machine configuration.

Consequently, we do not need to impose any restrictions on the
languages. This is in contrast to the CompCert compiler, which, in
order to enable forward reasoning, uses languages that are internally
completely deterministic.

7. The Pilsner and Zwickel Compilers
Using PILS, we have proven in Coq the correctness of two compilers
from S to T: Pilsner and Zwickel. Pilsner’s structure is depicted in
Figure 1. It uses a CPS-based intermediate language and performs
several optimizations. Zwickel, on the other hand, is more simplistic:
it directly translates S code into T code in a straightforward way,
similar to Hur and Dreyer’s one-pass compiler [9]. In particular,
Zwickel neither uses an intermediate language nor performs any
CPS transformation. In the remainder of this section, we focus solely
on Pilsner, which is by far the more interesting compiler.

Given a source module, Pilsner first translates it to I via a CPS
transformation. It also takes care to alpha-rename all bound variables
such that in the resulting I module, every variable is bound at most
once. This uniqueness condition simplifies the implementation of
most of the subsequent optimization passes, as one does not have to
worry about accidental variable capturing when rearranging code.
Another nice characteristic of the produced intermediate code (not
of I per se) is that continuations are used in an affine fashion [12],
i.e., called at most once. This property is preserved by all other
transformations at the intermediate level and enables a more efficient
treatment of continuation variables compared to ordinary variables
in the code generation pass.

At the intermediate level, Pilsner performs six optimizations. It
first inlines selected top-level functions. For instance, if a module
defines F = fix f(y, k). e, then a call to F inside a subsequently
defined function will be rewritten as follows:

F x k′ ; e[F/f][x/y][k′/k]

(If the function is recursive, i.e., if f is used in e, this is essentially
just an unrolling.) Since inlining destroys the uniqueness property
of bound variables, we immediately follow it with a “freshening”
pass that re-establishes uniqueness.

Next comes contification, which we discuss in §7.2. Subse-
quently, Pilsner performs a simple dead code (and variable) elimina-
tion, rewriting let x = a in e to e whenever x does not occur in e.
This is justified because, in our IL, evaluation of an atomic expres-
sion a does not have any observable side effects. In the same manner,
it also eliminates unused read operations and unused allocations
(but not write operations because that would be unsound). Follow-
ing DCE, it hoists let-bindings out of function and continuation
definitions, subject to some syntactic constraints. For example:

let f = (fix f(y, k). let z = x.1 in e) in e′

; let z = x.1 in let f = (fix f(y, k). e) in e′

if x is none of f, y, k. This avoids recomputation of the projection
each time f is called.

Next comes a pass that commutes let-bindings (where possible)
in order to group together bindings that assign names to the same

10

expression. For instance:

let x = a in let y = b in let z = a in e
; let x = a in let z = a in let y = b in e

The last IL transformation, deduplication, gets rid of such consecu-
tive duplicate bindings by rewriting the above expression as follows:

; let x = a in let y = b in e[x/z]

This can be seen as a common subexpression elimination.
Code generation, the final pass in the chain, translates to the

machine language T. Recall that there are three kinds of “variables”
in I: term variables x, continuation variables k, and labels F . Labels
are translated to absolute addresses according to the import table.
Term variable accesses are translated to lookups (based on position)
in a linked list on the heap, pointed to by the env register. Functions
are converted to closures, i.e., pairs of environment and code pointer
(module-level functions simply have an empty environment), which
live on the heap. A closure’s environment is loaded into the env
register when the function is called. Finally, continuations are
allocated on the stack. Accordingly, continuation variable accesses
are translated to lookups (based on position) on the stack, with the
side effect that the continuation in question, as well as all more-
recently defined ones (above it on the stack), are popped. This is
safe because the affinity property mentioned earlier ensures that they
won’t be needed anymore.

7.1 Infrastructure for IL Transformations
For the local IL transformations in Pilsner, we developed a sim-
ple framework of transformations as expression annotations. The
idea is to split module-level transformations into two parts: (1) an
analysis that is applied to each top-level function and annotates se-
lected subexpressions with to-be-performed micro-transformations
(but does not actually rewrite the code); and (2) the micro-
transformations themselves, together with their correctness proofs.
Given these, we automatically produce a verified module transfor-
mation that analyzes the input module and performs transformations
according to the generated annotations in a bottom-up manner.

A micro-transformation is a partial function on expressions—
it must fail if the preconditions for its correctness do not hold.
For instance, here is the (only) micro-transformation used in the
commute-pass of Pilsner:

commute ∈ exp ⇀ exp
commute(e) := let y = b in let x = a in e0

if e is (let x = a in let y = b in e0) and x /∈ FV(b)

In the case that a micro-transformation fails (for which the anal-
ysis is to blame), the subexpression that was being transformed
simply stays unchanged, or, alternatively, the whole module trans-
formation (and thus the compiler) fails. In either case, if the module
transformation succeeds, the output module is guaranteed to cor-
rectly implement the input module. This means that the analysis
does not need to be verified—in the worst case, the transformation
doesn’t optimize the code.

The concrete correctness property demanded by the framework
for each micro-transformation f is twofold. Syntactic correctness
says that f preserves well-formedness (including affinity of continu-
ation variables) and the uniqueness condition. Semantic correctness
states the following:

f(e) = e′ Γ ` e unique(BV(e),Γ)

Γ ` e′ 4∗II e

The relation in the conclusion is the reflexive transitive closure of
4II, a fairly straightforward lifting of E from configurations to open
I expressions (not to be confused with module similarity -II). Its
definition considers the expressions under an arbitrary unknown

relation and state, with pointwise-related environments8 providing
values for the term variables and labels in Γ as well as continuations
for the continuation variables in Γ. The local world that it uses is
empty, which suffices for reasoning about Pilsner’s optimizations.

In order to ease the proofs of semantic correctness, we provide
typical compatibility lemmas about 4II. They state that the relation
is preserved by each language construct of I, and are very helpful in
verifying transformations that leave parts of the module unchanged
(even outside our annotation framework). The lemmas are straight-
forward but tedious to show. Only the one about recursive functions
requires a proof by coinduction, as one would expect.

7.2 Contification
Pilsner includes a (very simplistic) contification pass. Contifica-
tion [7] is an optimization that turns a function into a continuation
when the function is only ever called with the same continuation
argument. This makes control flow more explicit, thus potentially
enabling subsequent optimizations. In Pilsner, it has the additional
benefit that continuations don’t need to be heap-allocated.

Contification in Pilsner uses the framework described above, i.e.,
it first runs an untrusted analysis that annotates places in the module
where the expression-level contification should happen. This saves
a lot of work because only the expression-level contification needs
to be verified. This transformation consists of two steps. Given a
contifiable function binding

let f = (fix f(x, k). e) in e′

(for simplicity we gloss over the issue of variable uniqueness here),
we first extend it with a fresh continuation definition, namely the
contification of f :

let f = (fix f(x, k). e) in
let kf y = e[y/x][k′/k] in e′

Here, k′ is the continuation being passed in all invocations of f
within e′. In the second step, these invocations of f are turned into
calls of the newly added continuation kf (e.g., f z k′ ; kf z).
Note that contification does not purge the definition of f , but leaves
this to the dead code elimination pass. If the analysis is incorrect,
then either the expression-level contification will fail or it will
succeed but dead code elimination won’t be able to remove the
original function binding.

Regarding verification of the expression-level transformation,
obviously the first step is trivially correct as it only introduces an
unused binding, and so the hard work lies in dealing with the second
stage. The core property we need to show is that calls of kf are
related to calls of f , i.e., something along the lines of:

Γ ` kf z 4∗II f z k
′

Of course this does not hold in such general form, because the
connection between kf and f would be lost. We must restrict
attention to environments in which kf (in the “target” program)
actually maps to the contified version of whatever f maps to (in
the “source” program). To do so, we generalize the Γ ` e′ 4II e
judgment to the form Γ; Σa; Σb ` e′ 4II e, where Σa and Σb each
map a subset of Γ to closure values with concrete code expressions
(if these subsets are empty, we obtain the original judgment). The
property we then prove roughly looks as follows:

Σa(kf) = λy. e[y/x][k′/k] Σb(f) = fix f(x, k). e

Γ; Σa; Σb ` kf z 4∗II f z k
′

The generalized judgment is crucial because it supports the same
compatibility properties as the original one did (modulo some new

8 We actually allow variables in the “target” expression to be renamings of
those in the “source” expression, as needed e.g. in the proof of deduplication.

11

side conditions). These compatibility properties enable us to lift the
above correctness result, which says we can rewrite f z k′ to kf z,
to a result which says we can rewrite all calls of f to calls of kf
inside the expression e′ in which f is bound.

7.3 Verification of Code Generation
Code generation is the most radical transformation in Pilsner, and
so it comes as no surprise that its proof is also the longest. Here we
give a brief overview.

The goal is to show codegen(M) -TI M (ignoring contexts)
for well-formed I module M . With two simple inductions following
the recursive definition of code generation (one on module well-
formedness, one on expression well-formedness), the goal reduces
to showing a collection of compatibility-like lemmas. Each of these
states that one particular I expression form is related to the code
generated for it. The hard work lies in defining this relation—let’s
call it 4TI (not to be confused with module similarity -TI)—and
then proving the lemmas.

In 4TI, we must ultimately say that the two programs are
similar according to E. But clearly the generated code makes
many assumptions about its environment, e.g., where term variables
can be looked up, how continuations are laid out on the stack,
where temporary results are placed, etc. In order to restrict the
environments in which the code is placed, we must therefore
express parts of the compiler-internal protocol that the code follows.
Naturally, the world plays a critical role here.

While the proofs of all other passes are oblivious to the local
world, for the code generation proof it is critical that we can choose a
particular one. We construct it such that its state is always a pair of a
heap and a stack, representing the memory used internally by Pilsner.
This memory is used for storing (i) code, (ii) variable environment,
and (iii) continuations.

Regarding (i), we use our local world in 4TI to express the initial
assumption that the generated code resides in memory and that the
program counter points to the first instruction. This alone is not
sufficient, though: when reasoning about an external function call
we need to know that, when the function returns, our code is still in
memory—otherwise, we wouldn’t even know which instructions get
run next. To achieve this, we define our world’s transition relation
such that it rules out any mutation of Pilsner-generated code residing
on the heap. (Note that this does not prevent other modules that we
link with from using self-modifying code themselves.)

Regarding (ii), we use our local world in 4TI to express that
the env register points to a linked list in the heap—the variable
environment—and that each of the values stored there is related
to its counterpart in the I program’s environment by (the value
closure of) U . When reasoning about code involving a variable
lookup, we can then be sure to get the correct value. Of course,
when reasoning about code that extends the variable environment
(e.g., code for a regular let-binding), we must be able to update the
state accordingly. For this reason, while disallowing transitions that
mutate the environment list, we do allow transitions that extend it.

Regarding (iii), we use our local world in 4TI to express that
for each continuation in the I program’s environment there is a
corresponding continuation (code pointer and environment) on the
machine stack. This correspondence is not trivial, as it must in
turn describe the assumptions that code generated for continuations
makes. For instance, such code assumes that before it gets executed
the stack is popped as described at the beginning of the section.

7.4 Extraction
Our Coq development contains a script that extracts Pilsner (and
Zwickel) as OCaml code and couples it with code for parsing
command-line arguments as well as a lexer and parser for the
source language. In order to execute target machine code, we have

implemented a single-step interpretation function in Coq and proved
that it conforms to the operational semantics. This function is
extracted to OCaml and wrapped in a loop.

Pilsner provides command-line flags to selectively disable opti-
mizations (more precisely, one flag per IL transformation). Accord-
ingly, the extracted Pilsner function takes not only a source module
as argument but also a selection, a record of booleans indicating
for each transformation whether it is to be performed. We have
proven that Pilsner is correct for any such selection and thus for any
combination of compiler flags (not shown in Theorem 3).

8. Discussion and Related Work
Proof of transitivity. Recall the statement of Theorem 5. We
actually derive this as a corollary of two properties:

Lemma 1 (Transitivity, decomposed).
|Γ| `MT -TI MI : |Γ′| Γ `MI -IS MS : Γ′

Γ `MT -TS MS : Γ′
(1)

|Γ| `MI -II M
′
I : |Γ′| Γ `M ′I -IS MS : Γ′

Γ `MI -IS MS : Γ′
(2)

Note that we do not need to show transitivity of -II itself because
we can simply iterate (2).

Thanks to our uniform setup, the proofs of (1) and (2) mirror
each other. They also closely follow the transitivity proof of the
original PB model [10]. However, since our language “in the middle”
is untyped, the complexity having to do with abstract types can
be avoided. On the other hand, due to our asymmetric small-step
formulation of E and the possibility of stuttering, the part of the
proof dealing with E becomes significantly more tricky.

As for PBs, one of the main complexities in the PILS transitivity
proof lies in dealing with an ambiguity regarding reference alloca-
tion: while in one of the two given proofs, an allocation of the middle
program may be treated as public (extending the global state), the
same allocation may be treated as private (extending the local state)
in the other proof. This is a result of transitivity being proven for
completely arbitrary local worlds! One might wonder if we could
not simplify matters significantly by resorting to an instrumentation
of the IL that makes the choice of public vs. private allocation ex-
plicit in the program code. It seems to us that this approach only
makes sense if one is willing to a priori decide on all subsequent
optimizations. The issue is that a later added optimization might, for
instance, figure out that some reference is never used and therefore
can be removed. Such can only be proven correct if the reference
was allocated as private, which it may not have been. For the sake
of modularity, we therefore believe it is better to bite the bullet and
deal with the ambiguity issue semantically, e.g., in the way we did.

Parametric bisimulations. PBs [9] were inspired by a number
of different methods for relational reasoning about higher-order
stateful languages: notably, Kripke logical relations [6], normal form
bisimulations [23], and environmental bisimulations [24, 21]. From
Kripke logical relations, PBs adapted the mechanism of possible
worlds as state transition systems, enabling the enforcement of
protocols on local or global state. From normal form bisimulations,
PBs took the central idea of viewing unknown functions as black
boxes—in particular, the CALL case in Figure 8 is highly reminiscent
of a similar case in normal form bisimulations. From environmental
bisimulations, PBs borrowed the treatment of abstract types and
polymorphism via type names (which we have glossed over here).

The key advance of PBs was to show how to combine all
these mechanisms in a way that supported transitive composition
and did not rely on “syntactic” devices employed by the other
higher-order simulation methods (e.g., modeling related unknown
functions as a common free variable [23], or using context closure

12

operations [24, 21]), because such syntactic devices would preclude
a generalization to inter-language reasoning. But it was far from
obvious whether PBs would necessarily fare any better in this regard.

In this paper, we have demonstrated through PILS that the claims
of Hur et al. [9] were indeed correct, and that PBs do in fact
generalize to inter-language reasoning as promised.

Multi-language semantics. Motivated by the goal of supporting
compiler verification for programs that interoperate between differ-
ent languages, Perconti and Ahmed [19] propose an approach based
on multi-language semantics [16]. In particular, they define a “big-
tent” language that comprises the source, target, and intermediate
languages of a compiler, and provides “wrapping” operations for
embedding terms of each language within the others. They then use
logical relations to prove that every source module is contextually
equivalent to a suitably wrapped version of the target module to
which it is compiled. In this way, their method synthesizes the bene-
fits of logical relations (modularity and different source and target
languages) and contextual equivalence (transitivity).

One downside of their approach is that the intermediate lan-
guages (ILs) used in a compiler show up explicitly in the statement
of compiler correctness. This leads to a loss of flexibility: the se-
mantics of source-level linking is not preserved when linking the
results of compilers that have different ILs. Another limitation with
respect to flexibility is that their approach seems to be restricted
to compilers that use typed intermediate and assembly languages,
and has only so far been applied to a purely functional source lan-
guage. On the other hand, Perconti and Ahmed are more flexible
than we are with respect to multi-language interoperation. One of
their explicit goals is to reason about the linking of ML code with
arbitrary typed assembly code, whereas we only support verified
linking with assembly modules that refine some source-level coun-
terpart. As we observed in footnote 1, we do not believe this is a
fundamental limitation of our approach: it should in principle be
possible to develop PILS for a different source language in which
high- and low-level modules may interoperate, in which case the
“source”-level specification of a “target”-level module could be the
target-level module itself. But we leave that to future work.

Compositional verified compilation for C. Motivated by the goal
of compositional compiler verification, Beringer et al. [4, 22]
propose an adaptation of the CompCert framework based on a novel
“interaction” semantics that differentiates between internal (intra-
module) and external (inter-module) function calls. They introduce
a notion of “structured simulation” that assumes little about the
memory transformations performed by external function calls.

Beringer et al.’s approach is transitive, and like Perconti and
Ahmed’s (but unlike ours), it supports verified compilation of multi-
language programs—in this case, programs that link C and assem-
bly modules. However, also like Perconti and Ahmed’s approach,
Beringer et al.’s is somewhat lacking in flexibility. It depends
on compiler passes only performing a restricted set of memory
transformations—additional transformations could potentially break
the transitivity property. In addition, their method appears to be
geared specifically toward compilers à la CompCert, which employ
a uniform memory model across source, intermediate, and target
languages. It is not clear how to generalize their technique to support
richer (e.g., ML-like) source languages, or compilers whose source
and target languages have different memory models.

Wang et al. [25] have also recently explored compositional com-
piler verification for a restricted C-like language called Cito. Their
approach embeds the verification statement within a Hoare logic
for partial correctness of assembly modules, thus enabling support
for verified cross-language linking, but without guaranteeing preser-
vation of termination behavior. Further work is needed to better

understand the relationship between this approach and traditional
refinement-based compiler verification.

Acknowledgements
This research has been supported in part by a Google European
Doctoral Fellowship granted to the first author, by the Engineering
Research Center of Excellence Program of Korea Ministry of Sci-
ence, ICT & Future Planning(MSIP) / National Research Foundation
of Korea(NRF) (Grant NRF-2008-0062609), and by an internship
from MPI-SWS.

References
[1] Appendix and Coq development. http://plv.mpi-sws.org/pils.
[2] A. Ahmed. Step-indexed syntactic logical relations for recursive and

quantified types. In ESOP, 2006.
[3] A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent representation

independence. In POPL, 2009.
[4] L. Beringer, G. Stewart, R. Dockins, and A. W. Appel. Verified

compilation for shared-memory C. In ESOP, 2014.
[5] D. Dobbs, M. Fontana, and S.-E. Kabbaj, editors. Advances in

Commutative Ring Theory. CRC Press, 1999.
[6] D. Dreyer, G. Neis, and L. Birkedal. The impact of higher-order state

and control effects on local relational reasoning. JFP, 22(4-5), 2012.
[7] M. Fluet and S. Weeks. Contification using dominators. In ICFP,

2001.
[8] C.-K. Hur and D. Dreyer. A Kripke logical relation between ML and

assembly. In POPL, 2011.
[9] C.-K. Hur, D. Dreyer, G. Neis, and V. Vafeiadis. The marriage of

bisimulations and Kripke logical relations. In POPL, 2012.
[10] C.-K. Hur, G. Neis, D. Dreyer, and V. Vafeiadis. The transitive

composability of relation transition systems. Technical Report MPI-
SWS-2012-002, MPI-SWS, 2012.

[11] C.-K. Hur, G. Neis, D. Dreyer, and V. Vafeiadis. A logical step forward
in parametric bisimulations. Technical Report MPI-SWS-2014-003,
MPI-SWS, 2014.

[12] A. Kennedy. Compiling with continuations, continued. In ICFP, 2007.
[13] R. Kumar, M. Myreen, M. Norrish, and S. Owens. CakeML: A verified

implementation of ML. In POPL, 2014.
[14] V. Le, M. Afshari, and Z. Su. Compiler validation via equivalence

modulo inputs. In PLDI, 2014.
[15] X. Leroy. A formally verified compiler back-end. Journal of Automated

Reasoning, 43(4):363–446, 2009.
[16] J. Matthews and R. B. Findler. Operational semantics for multi-

language programs. In POPL, 2007.
[17] K. S. Namjoshi. A simple characterization of stuttering bisimulation.

In FSTTCS, pages 284–296, 1997.
[18] A. Nanevski, V. Vafeiadis, and J. Berdine. Structuring the verification

of heap-manipulating programs. In POPL, 2010.
[19] J. T. Perconti and A. Ahmed. Verifying an open compiler using multi-

language semantics. In ESOP, 2014.
[20] A. Pitts and I. Stark. Operational reasoning for functions with local

state. In HOOTS, 1998.
[21] D. Sangiorgi, N. Kobayashi, and E. Sumii. Environmental bisimula-

tions for higher-order languages. In LICS, 2007.
[22] G. Stewart, L. Beringer, S. Cuellar, and A. W. Appel. Compositional

CompCert. In POPL, 2015.
[23] K. Støvring and S. Lassen. A complete, co-inductive syntactic theory

of sequential control and state. In POPL, 2007.
[24] E. Sumii and B. Pierce. A bisimulation for type abstraction and

recursion. Journal of the ACM, 54(5):1–43, 2007.
[25] P. Wang, S. Cuellar, and A. Chlipala. Compiler verification meets

cross-language linking via data abstraction. In OOPSLA, 2014.

13

