
Non-Parametric Parametricity

Georg Neis
MPI-SWS

neis@mpi-sws.org

Derek Dreyer
MPI-SWS

dreyer@mpi-sws.org

Andreas Rossberg
MPI-SWS

rossberg@mpi-sws.org

Abstract
Type abstraction and intensional type analysis are features seem-
ingly at odds—type abstraction is intended to guarantee para-
metricity and representation independence, while type analysis is
inherently non-parametric. Recently, however, several researchers
have proposed and implemented “dynamic type generation” asa
way to reconcile these features. The idea is that, when one defines
an abstract type, one should also be able to generate at run time a
fresh type name, which may be used as a dynamic representative
of the abstract type for purposes of type analysis. The question
remains: in a language with non-parametric polymorphism, does
dynamic type generation provide us with the same kinds of ab-
straction guarantees that we get from parametric polymorphism?

Our goal is to provide a rigorous answer to this question. We
define a step-indexed Kripke logical relation for a languagewith
both non-parametric polymorphism (in the form of type-safecast)
and dynamic type generation. Our logical relation enables us to es-
tablish parametricity and representation independence results, even
in a non-parametric setting, by attaching arbitrary relational inter-
pretations to dynamically-generated type names. In addition, we
explore how programs that are provably equivalent in a more tradi-
tional parametric logical relation may be “wrapped” systematically
to produce terms that are related by our non-parametric relation,
and vice versa. This leads us to a novel “polarized” form of our
logical relation, which enables us to distinguish formallybetween
positive and negative notions of parametricity.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Abstract data types;
F.3.1 [Logics and Meanings of Programs]: Specifying and Verify-
ing and Reasoning about Programs

General Terms Languages, Theory, Verification

Keywords Parametricity, intensional type analysis, representation
independence, step-indexed logical relations, type-safecast

1. Introduction
When we say that a language supportsparametric polymorphism,
we mean that “abstract” types in that language are really abstract—
that is, no client of an abstract type can guess or depend on its
underlying implementation [20]. Traditionally, the parametric na-
ture of polymorphism is guaranteed statically by the language’s

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’09, August 31–September 2, 2009, Edinburgh, Scotland, UK.
Copyright c© 2009 ACM 978-1-60558-332-7/09/08. . . $5.00
Reprinted from ICFP’09,, [Unknown Proceedings], August 31–September 2, 2009,
Edinburgh, Scotland, UK., pp. 1–14.

type system, thus enabling the so-calledtype-erasureinterpretation
of polymorphism by which type abstractions and instantiations are
erased during compilation.

However, some modern programming languages include a use-
ful feature that appears to be in direct conflict with parametric poly-
morphism, namely the ability to performintensional type analy-
sis [12]. Probably the simplest and most common instance of in-
tensional type analysis is found in the implementation of languages
supporting a typeDynamic [1]. In such languages, any valuev may
be castto typeDynamic, but the castfromtypeDynamic to any type
τ requires a runtime check to ensure thatv’s actual type equalsτ .
Other languages such as Acute [25] and Alice ML [23], which are
designed to support dynamic loading of modules, require theabil-
ity to check dynamically whether a module implements an expected
interface, which in turn involves runtime inspection of themodule’s
type components. There have also been a number of more experi-
mental proposals for languages that employ atypecase construct
to facilitatepolytypicprogramming (e.g.,[32, 29]).

There is a fundamental tension between type analysis and type
abstraction. If one can inspect the identity of an unknown type at
run time, then the type is not really abstract, so any invariants con-
cerning values of that type may be broken [32]. Consequently, lan-
guages with a typeDynamic often distinguish betweencastable
andnon-castabletypes—with types that mention user-defined ab-
stract types belonging to the latter category—and prohibitvalues
with non-castable types from being cast to typeDynamic.

This is, however, an unnecessarily severe restriction, which ef-
fectively penalizes programmers for using type abstraction. Given
a user-defined abstract typet—implemented internally, say, as
int—it is perfectly reasonable to cast a value of typet → t to
Dynamic, so long as we can ensure that it will subsequently be cast
back only tot → t (not to, say,int → int or int → t), i.e.,
so long as the cast isabstraction-safe. Moreover, such casts are use-
ful when marshalling (or “pickling”) a modular component whose
interface refers to abstract types defined in other components [23].
That said, in order to ensure that casts are abstraction-safe, it is
necessary to have some way of distinguishing (dynamically,when
a cast occurs) between an abstract type and its implementation.

Thus, several researchers have proposed that languages with
type analysis facilities should also supportdynamic type genera-
tion [24, 21, 29, 22]. The idea is simple: when one defines an ab-
stract type, one should also be able to generate at run time a “fresh”
type name, which may be used as a dynamic representative of the
abstract type for purposes of type analysis.1 (We will see a con-
crete example of this in Section 2.) Intuitively, the freshness of type
name generation ensures that user-defined abstract types are viewed
dynamically in the same way that they are viewed statically—i.e.,
as distinct from all other types.

1 In languages with simple module mechanisms, such as Haskell, it is
possible to generate unique type names statically. However, this is not
sufficient in the presence of functors and local or first-class modules.

1

The question remains: how do we know that dynamic type
generationworks? In a language with intensional type analysis—
i.e., non-parametricpolymorphism—can the systematic use of dy-
namic type generation provably ensure abstraction safety and pro-
vide us with the same kinds of abstraction guarantees that weget
from traditional parametric polymorphism?

Our goal is to provide a rigorous answer to this question. We
study an extension of System F, supporting (1) a type-safe cast
mechanism, which is essentially a variant of Girard’s J operator [9],
and (2) a facility for dynamic generation of fresh type names. For
brevity, we will call this languageG. As a practical language mech-
anism, the cast operator is somewhat crude in comparison to the
more expressivetypecase-style constructs proposed in the liter-
ature,2 but it nonetheless renders polymorphismnon-parametric.
Our main technical result is that, in a language with non-parametric
polymorphism, parametricity may be provably regained via judi-
cious use of dynamic type generation.

The rest of the paper is structured as follows. In Section 2,
we present our language under consideration, G, and also give an
example to illustrate how dynamic type generation is useful.

In Section 3, we explain informally the approach that we have
developed for reasoning about G. Our approach employs astep-
indexed Kripke logical relation, with an unusual form ofpossible
world that is a close relative of Sumii and Pierce’s [26]. This section
is intended to be broadly accessible to readers who are generally
familiar with the basic idea of relational parametricity but not with
the details of (advanced) logical relations techniques.

In Section 4, we formalize our logical relation for G and show
how it may be used to reason about parametricity and represen-
tation independence. A particularly appealing feature of our for-
malization is that thenon-parametricity of G is encapsulated in the
notion of what it means for twotypesto be logically related to each
other when viewed asdata. The definition of this type-level log-
ical relation is a one-liner, which can easily be replaced with an
alternative “parametric” version.

In Sections 5–8, we explore how terms related by the paramet-
ric version of our logical relation may be “wrapped” systemati-
cally to produce terms related by the non-parametric version (and
vice versa), thus clarifying how dynamic type generation facilitates
parametric reasoning. This leads us to a novel “polarized” form of
our logical relation, which enables us to distinguish formally be-
tween positive and negative notions of parametricity.

In Section 9, we extend G with iso-recursive types to form Gµ

and adapt the previous development accordingly. Then, in Sec-
tion 10, we discuss how the abovementioned “wrapping” function
can be seen as an embedding of System F (+ recursive types) into
Gµ, which we conjecture to be fully abstract.

Finally, in Section 11, we discuss related work, including recent
work on the relevant concepts of dynamic sealing [27] and multi-
language interoperation [13], and in Section 12, we conclude and
suggest directions for future work.

2. The Language G
Figure 1 defines our non-parametric language G. For the most part,
G is a standard call-by-valueλ-calculus, consisting of the usual
types and terms from System F [9], including pairs and existential
types.3 We also assume an unspecified set of base typesb, along
with suitable constantsc of those types.

Two additional, non-standard constructs isolate the essential
aspects of the class of languages we are interested in:

2 That said, the implementation of dynamic modules in Alice ML, for
instance, employs a very similar construct [23].
3 We could use a Church encoding of existentials through universals, but
distinguishing them gives us more leeway later (cf. Section5).

Types τ ::= α | b | τ → τ | τ × τ | ∀α.τ | ∃α.τ
Values v ::= x | c | λx:τ.e | 〈v1, v2〉 | λα.e | pack 〈τ, v〉 as τ
Terms e ::= v | e e | 〈e1, e2〉 | e.1 | e.2 | e τ |

pack 〈τ, e〉 as τ | unpack 〈α, x〉=e in e |
cast τ τ | newα≈τ in e

Stores σ ::= ǫ | σ, α≈τ
Config’s ζ ::= σ; e

Type Contexts∆ ::= ǫ | ∆, α | ∆, α≈τ
Value ContextsΓ ::= ǫ | Γ, x:τ

∆;Γ ⊢ e : τ · · ·

(ECAST)
∆ ⊢ τ1 ∆ ⊢ τ2

∆;Γ ⊢ cast τ1 τ2 : τ1 → τ2 → τ2

(ENEW)
∆ ⊢ τ ∆, α≈τ ; Γ ⊢ e : τ ′ ∆ ⊢ τ ′

∆;Γ ⊢ newα≈τ in e : τ ′

(ECONV)
∆; Γ ⊢ e : τ ′ ∆ ⊢ τ ≈ τ ′

∆;Γ ⊢ e : τ

∆ ⊢ τ

(TNAME)
α≈τ ∈ ∆

∆ ⊢ α
· · ·

∆ ⊢ τ ≈ τ

(CNAME)
α≈τ ∈ ∆

∆ ⊢ α ≈ τ
· · ·

⊢ ζ : τ

(CONF)
⊢ σ σ; ǫ ⊢ e : τ ǫ ⊢ τ

⊢ σ; e : τ

σ; (λx:τ.e) v →֒ σ; e[v/x]
σ; 〈v1, v2〉.i →֒ σ; vi
σ; (λα.e) τ →֒ σ; e[τ/α]

σ; unpack 〈α, x〉=(pack 〈τ, v〉) in e →֒ σ; e[τ/α][v/x]
(α /∈ dom(σ)) σ; newα≈τ in e →֒ σ, α≈τ ; e
(τ1 = τ2) σ; cast τ1 τ2 →֒ σ;λx1:τ1.λx2:τ2.x1

(τ1 6= τ2) σ; cast τ1 τ2 →֒ σ;λx1:τ1.λx2:τ2.x2

(. . . plus standard “search” rules . . .)

Figure 1. Syntax and Semantics of G (excerpt)

• cast τ1 τ2 v1 v2 convertsv1 from typeτ1 to τ2. It checks that
those two types are the same at the time of evaluation. If so,
the operatorsucceedsand returnsv1. Otherwise, itfails and
defaults tov2, which acts as anelse clause of the target typeτ2.

• newα≈τ in e generates a fresh abstract type nameα. Values
of typeα can be formed using itsrepresentation typeτ . Both
types are deemedcompatible, but not equivalent. That is, they
are considered equal asclassifiers, but not asdata. In particular,
castα τ v v′ will not succeed (i.e., it will return v′).

Our cast operator is essentially the same as Harper and Mitchell’s
TypeCondoperator [11], which was itself a variant of the non-
parametric J operator that Girard studied in his thesis [9].Ournew
construct is similar to previously proposed constructs fordynamic
type generation [21, 29, 22]. However, we do not requireexplicit
term-level type coercions to witness the isomorphism between an
abstract type nameα and its representationτ . Instead, our type
system is simple enough that we perform this conversionimplicitly.

2

For convenience, we will occasionally use expressions of the
form let x=e1 in e2, which abbreviate the term(λx:τ1.e2) e1 (with
τ1 being an appropriate type fore1). We omit the type annotation
for existential packages where clear from context. Moreover, we
take the liberty to generalize binary tuples ton-ary ones where
necessary and to use pattern matching notation to decomposetuples
in the obvious manner.

2.1 Typing Rules

The typing rules for the System F fragment of G are completely
standard and thus omitted from Figure 1. We focus on the non-
standard rules related tocast andnew. Full formal details of the
type system appear in the expanded version of this paper [16].

Typing of casts is straightforward (Rule ECAST): cast τ1 τ2 is
simply treated as a function of typeτ1 → τ2 → τ2. Its first
argument is the value to be converted, and its second argument is
the default value returned in the case of failure. The rule merely
requires that the two types be well-formed.

For an expressionnewα≈τ in e, which bindsα in e, Rule
ENEW checks that the bodye is well-typed under the assumption
thatα is implemented by the representation typeτ . For that pur-
pose, we enrich type contexts∆ with entries of the formα≈τ that
keep track of the representation types tied to abstract typenames.
Note thatτ may not mentionα.

Syntactically, type names are just type variables. When viewed
as data, (i.e., when inspected by thecast operator), types are con-
sidered equivalent iff they are syntactically equal. In contrast, when
viewed as classifiers for terms, knowledge about the representation
of type names may be taken into account. Rule ECONV says that
if a terme has a typeτ ′, it may be assigned any other type that is
compatiblewith τ ′. Type compatibility, in turn, is defined by the
judgment∆ ⊢ τ1 ≈ τ2. We only show the rule CNAME, which
discharges a compatibility assumptionα≈τ from the context; the
other rules implement the congruence closure of this axiom.The
important point here is that equivalent types are compatible, but
compatible types are not necessarily equivalent.

Finally, Rule ENEW also requires that the typeτ ′ of the bodye
does not containα (i.e.,τ ′ must be well formed in∆ alone). A type
of this form can always be derived by applying ECONV to convert
τ ′ to τ ′[τ/α].

2.2 Dynamic Semantics

The operational semantics has to deal with generation of fresh type
names. To that end, we introduce atype storeσ to record generated
type names. Hence, reduction is defined onconfigurations(σ; e)
instead of plain terms. Figure 1 shows the main reduction rules.
We omit the standard “search” rules for descending into subterms
according to call-by-value, left-to-right evaluation order.

The reduction rules for the F fragment are as usual and do not
actually touch the store. However, types occurring in F constructs
can contain type names bound in the store.

Reducing the expressionnewα≈τ in e creates a new entry for
α in the type store. We rely on the usual hygiene convention for
bound variables to ensure thatα is fresh with respect to the current
store (which can always be achieved byα-renaming).4

The two remaining rules are for casts. A cast takes two types
and checks that they are equivalent (i.e., syntactically equal). In
either case, the expression reduces to a function that will return the
appropriate one of the additional value arguments,i.e., the value to
be converted in case of success, and the default value otherwise. In
the former case, type preservation is ensured because source and
target types are known to be equivalent.

4 A well-known alternative approach would omit the type storein favor of
using scope extrusion rules fornew binders, as in Rossberg [21].

Type preservation can be expressed using the typing ruleCONF
for configurations. We formulate this rule by treating the type store
as a type context, which is possible because type stores are a
syntactic subclass of type contexts. (In a similar manner, we can
write ⊢ σ for well-formedness of storeσ, by viewing it as a type
context.) It is worth noting that the representation types in the store
are actually never inspected by the dynamic semantics. Theyare
only needed for specifying well-formedness of configurations and
proving type soundness.

2.3 Motivating Example

Consider the following attempt to write a simple functional“binary
semaphore” ADT [17] in G. Following Mitchell and Plotkin [15],
we use an existential type, as we would in System F:

τsem := ∃α.α× (α → α)× (α → bool)
esem := pack 〈int, 〈1, λx: int .(1− x), λx: int .(x 6= 0)〉〉 as τsem

A semaphore essentially is a flag that can be in two states: either
lockedor unlocked. The state can be toggled using the first function
of the ADT, and it can be polled using the second. Our little module
uses an integer value for representing the state, taking1 for locked
and0 for unlocked. It is an invariant of the implementation that the
integer never takes any other value—otherwise, the toggle function
would no longer operate correctly.

In System F, the implementation invariant would be protected
by the fact that existential types are parametric: there is no way to
inspect the witness ofα after opening the package, and hence no
client could produce values of typeα other than those returned by
the module (nor could she apply integer operations to them).

Not so in G. The following program usescast to forge a value
s of the abstract semaphore typeα:

eclient := unpack 〈α, 〈s0, toggle , poll〉〉 = esem in
let s = cast int α 666 s0 in
〈poll s, poll (toggle s)〉

Because reduction ofunpack simply substitutes the representation
type int for α, the consecutive cast succeeds, and the whole ex-
pression evaluates to〈true, true〉—although the second component
should have toggleds and thus be different from the first.

The way to prevent this in G is to create a fresh type name as
witness of the abstract type:

esem1 := newα′ ≈ int in
pack 〈α′, 〈1, λx: int .(1− x), λx: int .(x 6= 0)〉〉 as τsem

After replacing the initial semaphore implementation withthis one,
eclient will evaluate to〈true, false〉 as desired—thecast expression
will no longer succeed, becauseα will be substituted by the dy-
namic type nameα′, andα′ 6= int. (Moreover, sinceα′ is only
visible statically in the scope of thenew expression, the client has
no access toα′, and thus cannotconvertfrom int toα′ either.)

Now, while it is clear thatnew ensures proper type abstraction
in the client programeclient, we want to prove that it does so for
any client program. A standard way of doing so is by showing a
more general property, namelyrepresentation independence[20]:
we show that the moduleesem1is contextually equivalentto another
module of the same type, meaning that no G program can observe
any difference between the two modules. By choosing that other
module to be a suitable reference implementation of the ADT in
question, we can conclude that the “real” one behaves properly
under all circumstances.

The obvious candidate for a reference implementation of the
semaphore ADT is the following:

esem2 := newα′ ≈ bool in
pack 〈α′, 〈true, λx:bool .¬x, λx: bool .x〉〉 as τsem

3

Here, the semaphore state is represented directly by a Boolean flag
and does not rely on any additional invariant. If we can show that
esem1 is contextually equivalent toesem2, then we can conclude that
esem1’s type representation is truly being held abstract.

2.4 Contextual Equivalence

In order to be able to reason about representation independence, we
need to make precise the notion of contextual equivalence.

A context C is an expression with a single hole[], defined
in the usual manner. Typing of contexts is defined by a judgment
form ⊢ C : (∆; Γ; τ) (∆′; Γ′; τ ′), where the triple(∆; Γ; τ)
indicates the type of the hole. The judgment implies that forany
expressione with ∆;Γ ⊢ e : τ we have∆′; Γ′ ⊢ C[e] : τ ′. The
rules are straightforward, the key rule being the one for holes:

∆ ⊆ ∆′ Γ ⊆ Γ′

⊢ [] : (∆; Γ; τ) (∆′; Γ′; τ)

We can now define contextual approximation and contextual
equivalence as follows (withσ; e ↓ asserting thatσ; e terminates):

Definition 2.1 (Contextual Approximation and Equivalence)
Let∆;Γ ⊢ e1 : τ and∆;Γ ⊢ e2 : τ .

∆; Γ ⊢ e1 � e2 : τ
def
⇔ ∀C, τ ′, σ.

⊢ σ ∧ ⊢ C : (∆; Γ; τ) (σ; ǫ; τ ′) ∧
σ;C[e1] ↓ =⇒ σ;C[e2] ↓

∆; Γ ⊢ e1 ≃ e2 : τ
def
⇔ ∆;Γ ⊢ e1 � e2 : τ ∧

∆;Γ ⊢ e2 � e1 : τ

That is, contextual approximation∆;Γ ⊢ e1 � e2 : τ means that
for any well-typed program contextC with a hole of appropriate
type, the termination ofC[e1] implies the termination ofC[e2].
Contextual equivalence∆;Γ ⊢ e1 ≃ e2 : τ is just approximation
in both directions.

Considering that G does not explicitly contain any recursive
or looping constructs, the reader may wonder why termination is
used as the notion of “distinguishing observation” in our defini-
tion of contextual equivalence. The reason is that thecast opera-
tor, together with impredicative polymorphism, makes it possible
to write well-typed non-terminating programs [11]. (This was Gi-
rard’s reason for studying the J operator in the first place [9].) More-
over, usingcast, one can encode arbitrary recursive function defi-
nitions. Other forms of observation may then be encoded in terms
of (non-)termination. See the expanded version of this paper for
details [16].

3. A Logical Relation for G: Main Ideas
Following Reynolds [20] and Mitchell [14], our general approach
to reasoning about parametricity and representation independence
is to define alogical relation. Essentially, logical relations give us a
tractable way of proving that two terms are contextually equivalent,
which in turn gives us a way of proving that abstract types arereally
abstract. Of course, since polymorphism in G is non-parametric,
the definition of our logical relation in the cases of universal and
existential types is somewhat unusual. To place our approach in
context, we first review the traditional approach to defininglogical
relations for languages with parametric polymorphism, such as
System F.

3.1 Logical Relations for Parametric Polymorphism

Although the technical meaning of “logical relation” is rather
woolly, the basic idea is to define an equivalence (or approxima-
tion) relation on programs inductively, following the structure of
their types. To take the canonical example of arrow types, wewould

say that two functions are logically related at the typeτ1 → τ2 if,
when passed arguments that are logically related atτ1, either they
both diverge or they both converge to values that are logically re-
lated atτ2. Thefundamental theoremof logical relations states that
the logical relation is a congruence with respect to the constructs of
the language. Together with what Pitts [17] callsadequacy—i.e.,
the fact that logically related terms have equivalent termination
behavior—the fundamental theorem implies that logically related
terms are contextually equivalent, since contextual equivalence is
defined precisely to be the largest adequate congruence.

Traditionally, the parametric nature of polymorphism is made
clear by the definition of the logical relation for universaland ex-
istential types. Intuitively, two type abstractions,λα.e1 andλα.e2,
are logically related at type∀α.τ if they map relatedtype argu-
ments to related results. But what does it mean for two type argu-
ments to be related? Moreover, once we settle on two related type
argumentsτ ′

1 andτ ′
2, at what type do we relate the resultse1[τ

′
1/α]

ande2[τ ′
2/α]?

One approach would be to restrict “related type arguments” to
be thesametype τ ′. Thus,λα.e1 andλα.e2 would be logically
related at∀α.τ iff, for any (closed) typeτ ′, it is the case that
e1[τ

′/α] and e2[τ
′/α] are logically related at the typeτ [τ ′/α].

A key problem with this definition, however, is that, due to the
quantification overany argument typeτ ′, the typeτ [τ ′/α] may
in fact be larger than the type∀α.τ , and thus the definition of the
logical relation is no longer inductive in the structure of the type.
Another problem is that this definition does not tell us anything
about the parametric nature of polymorphism.

Reynolds’ alternative approach is a generalization of Girard’s
“candidates” method for proving strong normalization for System
F [9]. The idea is simple: instead of defining two type arguments
to be related only if they are the same, allowany two different
type arguments to be related by an (almost) arbitrary relational
interpretation (subject to certainadmissibilityconstraints). That is,
we parameterize the logical relation at typeτ by an interpretation
function ρ, which maps each free type variable ofτ to a pair
of typesτ ′

1, τ
′
2 together with some (admissible) relation between

values of those types. Then, we say thatλα.e1 and λα.e2 are
logically related at type∀α.τ under interpretationρ iff, for any
closed typesτ ′

1 andτ ′
2 and any relationR between values of those

types, it is the case thate1[τ ′
1/α] ande2[τ ′

2/α] are logically related
at typeτ under interpretationρ, α 7→ (τ ′

1, τ
′
2, R).

The miracle of Reynolds/Girard’s method is that it simultane-
ously (1) renders the logical relation inductively well-defined in
the structure of the type, and (2) demonstrates the parametricity
of polymorphism: logically related type abstractions mustbehave
the same even when passed completely different type arguments,
so their behavior may not analyze the type argument and behave
in different ways for different arguments. Dually, we can show that
two ADTs pack 〈τ1, v1〉 as ∃α.τ andpack 〈τ2, v2〉 as ∃α.τ are
logically related (and thus contextually equivalent) by exhibiting
somerelational interpretationR for the abstract typeα, even if the
underlying type representationsτ1 andτ2 are different. This is the
essence of what is meant by “representation independence”.

Unfortunately, in the setting of G, Reynolds/Girard’s method
is not directly applicable, precisely because polymorphism in G is
not parametric! This essentially forces us back to the first approach
suggested above, namely to only consider type arguments to be
logically related if they are equal. Moreover, it makes sense: the
cast operator views types as data, so types may only be logically
related if they are indistinguishable as data.

The natural questions, then, are: (1) what metric do we use to
define the logical relation inductively, since the structure of the
type no longer suffices, and (2) how do we establish that dynamic

4

type generation regains a form of parametricity? We addressthese
questions in the next two sections, respectively.

3.2 Step-Indexed Logical Relations for Non-Parametricity

First, in order to provide a metric for inductively defining the
logical relation, we employstep-indexing. Step-indexed logical
relations were proposed originally by Appel and McAllester[7]
as a way of giving a simple operational-semantics-based model
for general recursive types in the context of foundational proof-
carrying code. In subsequent work by Ahmed and others [3, 6],
the method has been adapted to support relational reasoningin a
variety of settings, including untyped and imperative languages.

The key idea of step-indexed logical relations is to index the
definition of the logical relation not only by the type of the pro-
grams being related, but also by a natural numbern representing
(intuitively) “the number of steps left in the computation”. That is,
if two termse1 ande2 are logically related at typeτ for n steps,
then if we place them in any program contextC and run the re-
sulting programs forn steps of computation, we should not be able
to produce observably different results (e.g.,C[e1] evaluating to 5
andC[e2] evaluating to 7). To show thate1 ande2 are contextually
equivalent, then, it suffices to show that they are logicallyrelated
for n steps, for anyn.

To see how step-indexing helps us, consider how we might
define a step-indexed logical relation for G in the case of universal
types: two type abstractionsλα.e1 andλα.e2 are logically related
at∀α.τ for n steps iff, for any type argumentτ ′, it is the case that
e1[τ

′/α] ande2[τ ′/α] are logically related atτ [τ ′/α] for n − 1
steps. This reasoning is sound because the only way a program
context can distinguish betweenλα.e1 and λα.e2 in n steps is
by first applying them to a type argumentτ ′—which incurs a step
of computation for theβ-reduction(λα.ei) τ ′ →֒ ei[τ

′/α]—and
then distinguishing betweene1[τ ′/α] ande2[τ ′/α] within the next
n − 1 steps. Moreover, although the typeτ [τ ′/α] may be larger
than∀α.τ , the step indexn− 1 is smaller, so the logical relation is
inductively well-defined.

3.3 Kripke Logical Relations for Dynamic Parametricity

Second, in order to establish the parametricity propertiesof dy-
namic type generation, we employKripke logical relations, i.e.,
logical relations that are indexed bypossible worlds.5 Kripke log-
ical relations are appropriate when reasoning about properties that
are true only under certain conditions, such as equivalenceof mod-
ules with local mutable state. For instance, an imperative ADT
might only behave according to its specification if its localdata
structures obey certain invariants. Possible worlds allowone to cod-
ify such local invariantson the machine store [18].

In our setting, the local invariant we want to establish is what
a dynamically generated type namemeans. That is, we will use
possible worlds to assign relational interpretations to dynamically
generated type names. For example, consider the programsesem1

andesem2from Section 2. We want to show they are logically related
at ∃α. α × (α → α) × (α → bool) in an empty initial world
w0 (i.e., under empty type stores). The proof proceeds roughly as
follows. First, we evaluate the two programs. This will havethe
effect of generating a fresh type nameα′, with α′ ≈ int extending
the type store of the first program andα′ ≈ bool extending the
type store of the second program. At this point, we correspondingly
extend the initial worldw0 with a mapping fromα′ to the relation
R = {(1, true), (0, false)}, thus forming a new worldw that
specifies the semantic meaning ofα′.

5 In fact, step-indexed logical relations may already be understood as a
special case of Kripke logical relations, in which the step index serves as
the notion of possible world, and wheren is a future world ofm iff n ≤ m.

We now must show that the values

pack 〈α′, 〈1, λx: int .(1− x), λx: int .(x 6= 0)〉〉 as τsem

and

pack 〈α′, 〈true, λx:bool .¬x, λx: bool .x〉〉 as τsem

are logically related in the worldw. Since G’s logical relation for
existential types is non-parametric, the two packages musthave the
sametype representation, but of course the whole point of using
new was to ensure that they do (namely, it isα′). The remainder
of the proof is showing that the value components of the packages
are related at the typeα′ × (α′ → α′) × (α′ → bool) under the
interpretationρ = α′ 7→ (int, bool, R) derived from the worldw.
This last part is completely analogous to what one would showin a
standard representation independence proof.

In short, the possible worlds in our Kripke logical relations
bring back the ability to assign arbitrary relational interpretations
R to abstract types, an ability that was seemingly lost when we
moved to a non-parametric logical relation. The only catch is that
we can only assign arbitrary interpretations todynamictype names,
not tostatic, universally/existentially quantified type variables.

There is one minor technical matter that we glossed over in the
above proof sketch but is worth mentioning. Due to nondetermin-
ism of type name allocation, the evaluation ofesem1andesem2may
result inα′ being replaced byα′

1 in the former andα′
2 in the lat-

ter (for some freshα′
1 6= α′

2). Moreover, we are also interested in
proving equivalence of programs that do not necessarily allocate
exactly the same number of type names in the same order.

Consequently, we also include in our possible worlds a partial
bijectionη between the type names of the first program and the type
names of the second program, which specifies how each dynami-
cally generated abstract type is concretely represented inthe stores
of the two programs. We require them to be in 1-1 correspondence
because thecast construct permits the program context to observe
equality on type names, as follows:

equal? : ∀α.∀β. bool
def
=

Λα.Λβ. cast ((α → α) → bool) ((β → β) → bool)
(λx:(α → α). true)(λx:(β → β). false)(λx:β.x)

We then consider types to be logically related if they are thesame
up to this bijection. For instance, in our running example, when
extendingw0 to w, we would not only extend its relational in-
terpretation withα′ 7→ (int, bool, R) but also extend itsη with
α′ 7→ (α′

1, α
′
2). Thus, the type representations of the two existen-

tial packages,α′
1 andα′

2, though syntactically distinct, would still
be logically related underw.

4. A Logical Relation for G: Formal Details
Figure 2 displays our step-indexed Kripke logical relationfor G
in full gory detail. It is easiest to understand this definition by
making two passes over it. First, as the step indices have a way
of infecting the whole definition in a superficially complex—but
really very straightforward—way, we will first walk throughthe
whole definitionignoringall occurrences ofn’s andk’s (as well as
auxiliary functions like the⌊·⌋n operator). Second, we will pinpoint
the few places where step indices actually play an importantrole in
ensuring that the logical relation is inductively well-founded.

4.1 Highlights of the Logical Relation

The first section of Figure 2 defines the kinds of semantic objects
that are used in the construction of the logical relation. Relations
R are sets ofatoms, which are pairs of terms,e1 ande2, indexed
by a possible worldw. The definition ofAtom[τ1, τ2] requires that
e1 ande2 have the typesτ1 andτ2 under the type storesw.σ1 and
w.σ2, respectively. (We use the dot notationw.σi to denote thei-th

5

Atomn[τ1, τ2]
def
= {(k, w, e1, e2) | k < n ∧ w ∈ Worldk ∧ ⊢ w.σ1; e1 : τ1 ∧ ⊢ w.σ2; e2 : τ2}

Reln[τ1, τ2]
def
= {R ⊆ Atomval

n [τ1, τ2] | ∀(k,w, v1, v2) ∈ R. ∀(k′, w′) ⊒ (k,w). (k′, w′, v1, v2) ∈ R}

SomeReln
def
= {r = (τ1, τ2, R) | fv(τ1, τ2) = ∅ ∧R ∈ Reln[τ1, τ2]}

Interpn

def
= {ρ ∈ TVar

fin
→ SomeReln}

Conc
def
= {η ∈ TVar

fin
→ TVar×TVar | ∀α, α′ ∈ dom(η). α 6= α′ ⇒ η1(α) 6= η1(α′) ∧ η2(α) 6= η2(α′)}

Worldn
def
= {w = (σ1, σ2, η, ρ) | ⊢ σ1 ∧ ⊢ σ2 ∧ η ∈ Conc∧ ρ ∈ Interpn ∧ dom(η) = dom(ρ) ∧

∀α ∈ dom(ρ). σ1 ⊢ ρ1(α) ≈ η1(α) ∧ σ2 ⊢ ρ2(α) ≈ η2(α)}

⌊(σ1, σ2, η, ρ)⌋n
def
= (σ1, σ2, η, ⌊ρ⌋n)

⌊ρ⌋n
def
= {α7→⌊r⌋n | ρ(α) = r}

⌊(τ1, τ2, R)⌋n
def
= (τ1, τ2, ⌊R⌋n)

⌊R⌋n
def
= {(k, w, e1, e2) ∈ R | k < n}

⊲R
def
= {(k, w, e1, e2) | k = 0 ∨

(k − 1, ⌊w⌋k−1, e1, e2) ∈ R}

(k′, w′) ⊒ (k,w)
def
⇔ k′ ≤ k ∧ w′ ∈ Worldk′ ∧

w′.η ⊒ w.η ∧ w′.ρ ⊒ ⌊w.ρ⌋k′ ∧
∀i ∈ {1, 2}. w′.σi ⊇ w.σi ∧
rng(w′.ηi)− rng(w.ηi) ⊆
dom(w′.σi)− dom(w.σi)

η′ ⊒ η
def
⇔ ∀α ∈ dom(η). η′(α) = η(α)

ρ′ ⊒ ρ
def
⇔ ∀α ∈ dom(ρ). ρ′(α) = ρ(α)

Vn[[α]]ρ
def
= ⌊ρ(α).R⌋n

Vn[[b]]ρ
def
= {(k, w, c, c) ∈ Atomn[b, b]}

Vn[[τ × τ ′]]ρ
def
= {(k, w, 〈v1, v

′
1〉, 〈v2, v

′
2〉) ∈ Atomn[ρ

1(τ × τ ′), ρ2(τ × τ ′)] |
(k,w, v1, v2) ∈ Vn[[τ]]ρ ∧ (k, w, v′1, v

′
2) ∈ Vn[[τ

′]]ρ}

Vn[[τ
′ → τ]]ρ

def
= {(k, w, λx:τ1.e1, λx:τ2.e2) ∈ Atomn[ρ

1(τ ′ → τ), ρ2(τ ′ → τ)] |
∀(k′, w′, v1, v2) ∈ Vn[[τ

′]]ρ. (k′, w′) ⊒ (k,w) ⇒
(k′, w′, e1[v1/x], e2[v2/x]) ∈ En[[τ]]ρ}

Vn[[∀α.τ]]ρ
def
= {(k, w, λα.e1, λα.e2) ∈ Atomn[ρ

1(∀α.τ), ρ2(∀α.τ)] |
∀(k′, w′) ⊒ (k,w). ∀(τ1, τ2, r) ∈ Tk′ [[Ω]]w′.
(k′, w′, e1[τ1/α], e2[τ2/α]) ∈ ⊲En[[τ]]ρ, α7→r}

Vn[[∃α.τ]]ρ
def
= {(k, w, pack 〈τ1, v1〉, pack 〈τ2, v2〉) ∈ Atomn[ρ

1(∃α.τ), ρ2(∃α.τ)] |
∃r. (τ1, τ2, r) ∈ Tk[[Ω]]w ∧ (k, w, v1, v2) ∈ ⊲Vn[[τ]]ρ, α7→r}

En[[τ]]ρ
def
= {(k, w, e1, e2) ∈ Atomn[ρ

1(τ), ρ2(τ)] |
∀j < k. ∀σ1, v1. (w.σ1; e1 →֒j σ1; v1) ⇒
∃w′, v2. (k − j, w′) ⊒ (k,w) ∧ w′.σ1 = σ1 ∧ (w.σ2; e2 →֒∗ w′.σ2; v2) ∧ (k − j, w′, v1, v2) ∈ Vn[[τ]]ρ}

Tn[[Ω]]w
def
= {(w.η1(τ), w.η2(τ), (w.ρ1(τ), w.ρ2(τ), Vn[[τ]]w.ρ)) | fv(τ) ⊆ dom(w.ρ)}

Gn[[ǫ]]ρ
def
= {(k, w, ∅, ∅) | k < n ∧ w ∈ Worldk}

Gn[[Γ, x:τ]]ρ
def
= {(k, w, (γ1, x 7→v1), (γ2, x 7→v2)) |

(k,w, γ1, γ2) ∈ Gn[[Γ]]ρ ∧ (k,w, v1, v2) ∈ Vn[[τ]]ρ}

Dn[[ǫ]]w
def
= {(∅, ∅, ∅)}

Dn[[∆, α]]w
def
= {((δ1, α7→τ1), (δ2, α7→τ2), (ρ,α7→r)) |

(δ1, δ2, ρ) ∈ Dn[[∆]]w ∧ (τ1, τ2, r) ∈ Tn[[Ω]]w}

Dn[[∆, α≈τ]]w
def
= {((δ1, α7→β1), (δ2, α7→β2), (ρ, α7→r)) |

(δ1, δ2, ρ) ∈ Dn[[∆]]w ∧
∃α′. w.ρ(α′) = r ∧ w.η(α′) = (β1, β2) ∧
w.σ1(β1) = δ1(τ) ∧ w.σ2(β2) = δ2(τ) ∧ r.R = Vn[[τ]]ρ}

∆;Γ ⊢ e1 - e2 : τ
def
⇔ ∆;Γ ⊢ e1 : τ ∧∆;Γ ⊢ e2 : τ ∧

∀n ≥ 0. ∀w0 ∈ Worldn. ∀(δ1, δ2, ρ) ∈ Dn[[∆]]w0. ∀(k,w, γ1, γ2) ∈ Gn[[Γ]]ρ.
(k,w) ⊒ (n, w0) ⇒ (k,w, δ1γ1(e1), δ2γ2(e2)) ∈ En[[τ]]ρ

Figure 2. Logical Relation for G

type store component ofw, and analogous notation for projecting
out the other components of worlds.)

Rel[τ1, τ2] defines the set ofadmissiblerelations, which are
permitted to be used as the semantic interpretations of abstract
types. For our purposes, admissibility is simplymonotonicity—i.e.,
closure under world extension. That is, if a relation inRel relates

two valuesv1 andv2 under a worldw, then the relation must relate
those values in any future world ofw. (We discuss the definition of
world extension below.) Monotonicity is needed in order to ensure
that we can extend worlds with interpretations of new dynamic type
names, without interfering somehow with the interpretations of the
old ones.

6

Worlds w are 4-tuples(σ1, σ2, η, ρ), which describe a set of
assumptions under which pairs of terms are related. Here,σ1 and
σ2 are the type stores under which the terms are typechecked and
evaluated. The finite mappingsη andρ share a common domain,
which can be understood as the set of abstract type names that
have been generated dynamically. These “semantic” type names
do not exist in either storeσ1 or σ2.6 Rather, they provide a way
of referring to an abstract type that is represented bysometype
nameα1 in σ1 andsometype nameα2 in σ2. Thus, for each name
α ∈ dom(η) = dom(ρ), theconcretizationη maps the “semantic”
nameα to a pair of “concrete” names from the storesσ1 andσ2,
respectively. (See the end of Section 3.3 for an example of such
an η.) As the definition ofConc makes clear, distinct semantic
type names must have distinct concretizations; consequently, η
represents apartial bijectionbetweenσ1 andσ2.

The last component of the worldw is ρ, which assigns rela-
tional interpretations to the aforementioned semantic type names.
Formally,ρ maps eachα to a tripler = (τ1, τ2, R), whereR is a
monotone relation between values of typesτ1 andτ2. (Again, see
the end of Section 3.3 for an example of such aρ.) The final con-
dition in the definition ofWorld stipulates that the closed syntactic
types in the range ofρ and the concrete type names in the range of
η are compatible. As a matter of notation, we will writeηi andρi

to denote the type substitutions{α 7→ αi | η(α) = (α1, α2)} and
{α 7→ τi | ρ(α) = (τ1, τ2, R)}, respectively.

The second section of Figure 2 displays the definition of world
extension. In order forw′ to extendw (writtenw′ ⊒ w), it must
be the case that (1)w′ specifies semantic interpretations for a
superset of the type names thatw interprets, (2) for the names that
w interprets,w′ must interpret them in the same way, and (3) any
new semantic type names thatw′ interprets may only correspond
to new concrete type names that did not exist in the stores of
w. Although the third condition is not strictly necessary, wehave
found it to be useful when proving certain examples (e.g.,the “order
independence” example in Section 4.4).

The last section of Figure 2 defines the logical relation itself.
V [[τ]]ρ is the logical relation for values,E[[τ]]ρ is the one for terms,
andT [[Ω]]w is the one fortypes as data, as described in Section 3
(here,Ω represents thekind of types).

V [[τ]]ρ relates values at the typeτ , where the free type variables
of τ are given relational interpretations byρ. Ignoring the step
indices,V [[τ]]ρ is mostly very standard. For instance, at certain
points (namely, in the→ and ∀ cases), when we quantify over
logically related (value or type) arguments, we must allow them
to come from an arbitrary future worldw′ in order to ensure
monotonicity. This kind of quantification over future worlds is
commonplace in Kripke logical relations.

The only really interesting bit in the definition ofV [[τ]]ρ is the
use ofT [[Ω]]w to characterize when the twotypearguments (resp.
components) of a universal (resp. existential) are logically related.
As explained in Section 3.3, we consider two types to be logically
related in worldw iff they are the same up to the partial bijection
w.η. Formally, we defineT [[Ω]]w as a relation on triples(τ1, τ2, r),
whereτ1 andτ2 are the two logically related types andr is a rela-
tion telling us how to relate values of those types. To be logically
related means thatτ1 andτ2 are the concretizations (according to
w.η) of some “semantic” typeτ ′. Correspondingly,r is the logi-
cal relationV [[τ ′]]w.ρ at that semantic type. Thus, when we write
E[[τ]]ρ, α 7→ r in the definition ofV [[∀α.τ]]ρ, this is roughly equiv-
alent to writingE[[τ [τ ′/α]]]ρ (which our discussion in Section 3.2
might have led the reader to expect to see here instead). The reason
for our present formulation is thatE[[τ [τ ′/α]]]ρ is not quite right:

6 In fact, technically speaking, we considerdom(η) = dom(ρ) to be
bound variables of the worldw.

the free variables ofτ are interpreted byρ, but the free variables of
τ ′ aredynamictype names whose interpretations are given byw.ρ.
It is possible to mergeρ andw.ρ into a unified interpretationρ′, but
we feel our present approach is cleaner.

Another point of note: sincer is uniquely determined from
τ1 and τ2, it is not really necessary to include it in theT [[Ω]]w
relation. However, as we shall see in Section 6, formulatingthe
logical relation in this way has the benefit of isolating all of the non-
parametricity of our logical relation in the definition ofT [[Ω]]w.

The term relationE[[τ]]ρ is very similar to that in previous step-
indexed Kripke logical relations [6]. Briefly, it says that two terms
are related in an initial worldw if whenever the first evaluates to a
value underw.σ1, the second evaluates to a value underw.σ2, and
the resulting stores and values are related in some future world w′.

The remainder of the definitions in Figure 2 serve to formalize
a logical relation foropenterms.G[[Γ]]ρ is the logical relation on
value substitutionsγ, which asserts that relatedγ’s must map vari-
ables indom(Γ) to related values.D[[∆]]w is the logical relation on
type substitutions. It asserts that relatedδ’s must map variables in
dom(∆) to types that are related inw. For type variablesα bound
asα ≈ τ , theδ’s must mapα to a type name whose semantic in-
terpretation inw is precisely the logical relation atτ . Analogously
to T [[Ω]]w, the relationD[[∆]]w also includes a relational interpre-
tationρ, which may be uniquely determined from theδ’s.

Finally, the open logical relation∆;Γ ⊢ e1 - e2 : τ is defined
in a fairly standard way. It says that for any starting worldw0, and
any type substitutionsδ1 and δ2 related in that world, if we are
given related value substitutionsγ1 andγ2 in any future worldw,
thenδ1γ1e1 andδ2γ2e2 are related inw as well.

4.2 Why and Where the Steps Matter

As we explained in Section 3.2, step indices play a critical role in
making the logical relation well-founded. Essentially, whenever we
run into an apparent circularity, we “go down a step” by defining
ann-level property in terms of an (n−1)-level one. Of course, this
trick only works if, at all such “stepping points”, the only way that
an adversarial program context could possibly tell whetherthen-
level property holds or not is by taking one step of computation and
then checking whether the underlying (n−1)-level property holds.
Fortunately, this is the case.

Since worlds contain relations, and relations contain setsof
tuples that include worlds, a naı̈ve construction of these objects
would have an inconsistent cardinality. We thus stratify both worlds
and relations by a step index:n-level worldsw ∈ Worldn contain
n-level interpretationsρ ∈ Interpn, which map type variables to
n-level relations;n-level relationsR ∈ Reln[τ1, τ2] only contain
atoms indexed by a step levelk < n and a worldw ∈ Worldk. Al-
though our possible worlds have a different structure than in previ-
ous work, the technique of mutual world and relation stratification
is similar to that used in Ahmed’s thesis [2], as well as recent work
by Ahmed, Dreyer and Rossberg [6].

Intuitively, the reason this works in our setting is as follows.
Viewed as a judgment, our logical relation asserts that two terms
e1 ande2 are logically related fork steps in a worldw at a type
τ under an interpretationρ (whose domain contains the free type
variables ofτ). Clearly, in order to handle the case whereτ is just a
type variableα, the relationsr in the range ofρ must include atoms
at step indexk (i.e., ther’s must be inSomeRelk+1).

But what about the relations in the range ofw.ρ? Those relations
only come into play in the universal and existential cases ofthe log-
ical relation for values. Consider the existential case (the universal
one is analogous). There,w.ρ pops up in the definition of the rela-
tion r that comes fromTk[[Ω]]w. However, thatr is only needed in
defining the relatedness of the valuesv1 andv2 at step levelk−1
(note the definition of⊲R in the second section of Figure 2). Con-

7

sequently, we only needr to include atoms at stepk−1 and lower
(i.e., r must be inSomeRelk), so the worldw from which r is
derived need only be inWorldk.

As this discussion suggests, it isimperativethat we “go down
a step” in the universal and existential cases of the logicalrelation.
For the other cases, it is not necessary to go down a step, although
we have the option of doing so. For example, we could define
k-level relatedness at pair typeτ1 × τ2 in terms of (k−1)-level
relatedness atτ1 andτ2. But since the type gets smaller, there is no
need to. For clarity, we have only gone down a step in the logical
relation at the points where it is absolutely necessary, andwe have
used the⊲ notation to underscore those points.

4.3 Key Properties

The main results concerning our logical relation are as follows:

Theorem 4.1 (Fundamental Property for-)
If ∆; Γ ⊢ e : τ , then∆;Γ ⊢ e - e : τ .

Theorem 4.2 (Soundness of- wrt. Contextual Approximation)
If ∆; Γ ⊢ e1 - e2 : τ , then∆;Γ ⊢ e1 � e2 : τ .

These theorems establish that our logical relation provides a
sound technique for proving contextual equivalence of G programs.
The proofs of these theorems rely on many technical lemmas, most
of which are standard and straightforward to prove. We highlight a
few of them here, and refer the reader to the expanded versionof
this paper for full details of the proofs [16].

One key lemma we have mentioned already is themonotonicity
lemma, which states that the logical relation for values is closed
under world extension, and therefore belongs to theRel class of
relations. Another key lemma istransitivity of world extension.

There are also a group of lemmas—Pitts terms themcompati-
bility lemmas [17]—which show that the logical relation is a pre-
congruence with respect to the constructs of the G language.Of
particular note among these are the ones forcast andnew.

For cast, we must show thatcast τ1 τ2 is logically related to
itself under a type context∆ assuming thatτ1 and τ2 are well-
formed in∆. This boils down to showing that, for logically related
type substitutionsδ1 and δ2, it is the case thatδ1τ1 = δ1τ2 if
and only if δ2τ1 = δ2τ2. This follows easily from the fact that
δ1 andδ2, by virtue of being logically related, map the variables
in dom(∆) to types that are syntactically identical up to some
bijection on type names.

For new, we must show that, if∆, α≈τ ′; Γ ⊢ e1 - e2 : τ ,
then∆; Γ ⊢ newα≈τ ′ in e1 - newα≈τ ′ in e2 : τ (assuming
∆ ⊢ Γ and ∆ ⊢ τ). The proof involves extending theη and
ρ components of some given initial worldw0 with bindings for
the fresh dynamically-generated type nameα. Theη is extended
with α 7→ (α1, α2), whereα1 and α2 are the concrete fresh
names that are chosen when evaluating the left and rightnew
expressions. Theρ is extended so that the relational interpretation
of α is simply the logical relation at typeτ ′. The proof of this
lemma is highly reminiscent of the proof of compatibility for ref
(reference allocation) in a language with mutable references [6].

Finally, another important compatibility property istype com-
patibility, i.e.,that if∆ ⊢ τ1 ≈ τ2 and(δ1, δ2, ρ) ∈ Dn[[∆]]w, then
Vn[[τ1]]ρ = Vn[[τ2]]ρ andEn[[τ1]]ρ = En[[τ2]]ρ. The interesting
case is whenτ1 is a variableα bound in∆ asα ≈ τ2, and the result
in this case follows easily from the definition ofD[[∆, α ≈ τ]]w.

4.4 Examples

Semaphore. We now return to our semaphore example from Sec-
tion 2 and show how to prove representation independence for
the two different implementationsesem1 andesem2. Recall that the

former usesint, the latterbool. To show that they are contextu-
ally equivalent, it suffices by Soundness to show that each logi-
cally approximates the other. We prove only one direction, namely
⊢ esem1- esem2 : τsem; the other is proven analogously.

Expanding the definitions, we need to show(k,w, esem1, esem2) ∈
En[[τsem]]∅. Note how each term generates a fresh type nameαi in
one step, resulting in a package value. Hence all we need to dois
come up with a worldw′ satisfying

• (k − 1, w′) ⊒ (k,w),

• w′.σ1 = w.σ1, α1≈int andw′.σ2 = w.σ2, α2≈bool,

• (k − 1, w′, pack〈α1, v1〉, pack〈α2, v2〉) ∈ Vn[[τsem]]∅.

where vi is the term component ofesemi’s implementation. We
constructw′ by extendingw with mappings that establish the
relation between the new type names:

R := {(k′′, w′′, vint, vbool) ∈ Atomval

k−1[int, bool] |

(vint, vbool) = (1, true) ∨ (vint, vbool) = (0, false)}

r := (int, bool, R)

w′ := ⌊w⌋k−1 ⊎ (α1≈int, α2≈bool, α7→(α1, α2), α7→r)

The first two conditions above are satisfied by construction.To
show that the packages are related we need to show the exis-
tence of anr′ with (α1, α2, r

′) ∈ Tk−1[[Ω]]w
′ such that(k −

2, ⌊w′⌋k−2, v1, v2) ∈ Vn[[τ
′
sem]]ρ, α7→r′, where τ ′

sem = α ×
(α → α) × (α → bool). Sinceαi = w′.ηi(α), r′ must be
(int, bool, Vk−1[[α]]w

′.ρ) by definition of T [[Ω]]. Of course, we
definedw′ the way we did so that thisr′ is exactlyr.

The proof of(k − 2, ⌊w′⌋k−2, v1, v2) ∈ Vn[[τ
′
sem]]ρ, α7→r de-

composes into three parts, following the structure ofτ ′
sem:

1. (k − 2, ⌊w′⌋k−2, 1, true) ∈ Vn[[α]]ρ, α7→r
This holds becauseVn[[α]]ρ, α7→r = R.

2. (k − 2, ⌊w′⌋k−2, λx:int.(1− x), λx:bool.¬x)
∈ Vn[[α → α]]ρ, α7→r

• Suppose we are given related arguments in a future world:
(k′′, w′′, v′1, v

′
2) ∈ Vn[[α]]ρ, α7→r = R.

• Hence either(v′1, v
′
2) = (1, true) or (v′1, v

′
2) = (0, false).

• Consequently,1 − v′1 and¬v′2 will evaluate in one step,
without effects, to values again related byR.

• In other words,(k′′, w′′, 1− v′1,¬v
′
2) ∈ En[[α]]ρ, α7→r.

3. (k− 2, ⌊w′⌋k−2, λx.(x 6= 0), λx.x) ∈ Vn[[α → bool]]ρ, α7→r

Like in the previous part, the argumentsv′1 and v′2 will be
related byR in some future(k′′, w′′). Thereforev′1 6= 0 will
reduce in one step without effects tov′2, which already is a
value. Because of the definition of the logical relation at type
bool, this implies(k′′, w′′, v′1 6= 0, v′2) ∈ En[[bool]]ρ, α7→r.

Partly Benign Effects. When side effects are introduced into a
pure language, they often falsify various equational laws concern-
ing repeatability and order independence of computations.In this
section, we offer some evidence that the effect of dynamic type
generation is partlybenign in that it does not invalidate some of
these equational laws.

First, consider the following functions:

v1 := λx:(unit → τ). let x′ = x () in x ()

v2 := λx:(unit → τ). x ()

The only difference betweenv1 andv2 is whether the argumentx is
applied once or twice. Intuitively, eitherx () diverges, in which case
both programs diverge, or else the first application ofx terminates,
in which case so should the second.

8

Second, consider the following functions:

v′1 := λx:(unit → τ).λy:(unit → τ ′). let y′ = y () in 〈x (), y′〉

v′2 := λx:(unit → τ).λy:(unit → τ ′).〈x (), y ()〉

The only difference betweenv′1 andv′2 is the order in which they
call their argument callbacksx andy. Those calls may both result
in the generation of fresh type names, but the order in which the
names are generated should not matter.

Using our logical relation, we can prove thatv1 andv2 are con-
textually equivalent, and so arev′1 andv′2. (Due to space considera-
tions, we refer the interested reader to the expanded version of this
paper for full proof details [16].)

However, as we shall see in the example ofe′1 ande′2 in the next
section, our G language doesnot enjoy referential transparency.
This is to be expected, of course, sincenew is an effectful operation
and (in-)equality of type names is observable in the language.

5. Wrapping
We have seen that parametricity can be re-established in G by
introducing name generation in the right place. But what is the
“right place” in general? That is, given an arbritrary expressione
with polymorphic typeτe, how can wesystematicallytransform it
into an expressione′ of the same typeτe that is parametric?

One obvious—but unfortunately bogus—idea is the following:
transforme such that every existentialintroductionand every uni-
versaleliminationcreates a fresh name for the respective witness
or instance type. Formally, apply the following rewrite rules toe:

pack 〈τ, e〉 as τ ′ newα≈τ in pack 〈α, e〉 as τ ′

e τ newα≈τ in e α

Obviously, this would make every quantified type abstract, so that
any cast that tries to inspect it would fail.

Or would it? Perhaps surprisingly, the answer is no. To see why,
consider the following expressions of type(∃α.τ ′)× (∃α.τ ′):

e1 := let x = pack 〈τ, v〉 in 〈x, x〉
e2 := 〈pack 〈τ, v〉, pack 〈τ, v〉〉

They are clearly equivalent in a parametric language (and infact
they are even equivalent in G). Yet rewriting yields:

e′1 := let x = (newα≈τ in pack 〈α, v〉) in 〈x, x〉
e′2 := 〈newα≈τ in pack 〈α, v〉, newα≈τ in pack 〈α, v〉〉

The resulting expressions arenotequivalent anymore, because they
perform different effects. Here is one distinguishing context:

let p = [] in unpack 〈α1, x1〉 = p.1 in
unpack 〈α2, x2〉 = p.2 in equal? α1 α2

Although the representation typeτ is not disclosed as such,sharing
between the two abstract types ine′1 is. In a parametric language,
that would not be possible.

In order to introduce effects uniformly, and to hide internal
sharing, the transformation we are looking for needs to be defined
on the structure of types, not terms. Roughly, for each quantifier
occurring inτe we need to generate one fresh type name. That
is, instead of transforminge itself, we simplywrap it with some
expression that introduces the necessary names at the boundary, by
induction on the typeτe.

In fact, we can refine the problem further. When looking at a G
expressione, what do we actually mean by “making it parametric”?
We can mean two different things: either ensuring thate behaves
parametrically, or dually, that any contexttreatse parametrically.
In the former case, we are protecting thecontextagainste, in the
latter we protecte against malicious contexts. The latter is what is
sometimes referred to asabstraction safety.

Wr±τ (e)
def
= let x=e in Wr±τ (x) (if e not a value)

Wr±α (v)
def
= v

Wr±b (v)
def
= v

Wr±τ1×τ2
(v)

def
= 〈Wr±τ1(v.1),Wr±τ2(v.2)〉

Wr±τ1→τ2
(v)

def
= λx1:τ1.Wr±τ2(v Wr∓τ1(x1))

Wr±∀α.τ (v)
def
= λα. new∓ α in Wr±τ (v α)

Wr±∃α.τ (v)
def
= unpack 〈α, x〉=v in

new± α in pack 〈α,Wr±τ (x)〉 as ∃α.τ

new+ α in e
def
= newα′≈α in e[α′/α]

new− α in e
def
= e

Figure 3. Wrapping

Figure 3 defines a pair of wrapping operators that correspond
to these two dual requirements:Wr+ protects an expressione : τe
from beingusedin a non-parametric way, by inserting fresh names
for each existential quantifier. Dually,Wr− forcese to behavepara-
metrically by creating a fresh name for each polymorphic instanti-
ation. The definitions extend to other types in the usual functorial
manner. Both definitions are interdependent, because rolesswitch
for function arguments. These operators are similar to the type-
directed translation that Sumii and Pierce suggest for establishing
type abstraction in an untyped language [27] (they propose the de-
scriptive terms “firewall” forWr+, and “sandbox” forWr−). How-
ever, their use of dynamic sealing instead of type generation results
in the insertion of runtime coercions to seal/unseal each individual
value of abstract type, while our wrapping leaves such values alone.

Given these operators, we can go back to our semaphore ex-
ample:esem1 can now be obtained asWr+τsem(esem) (modulo some
harmlessη-expansions). This generalises to any ADT: wrapping its
implementation positively will guarantee abstraction by making it
parametric. We prove that in the next section.

Positive wrapping is reminiscent ofmodule sealing(or opaque
signature ascription) in ML-style module languages. If we view e as
a module and its typeτe as a signature, thenWr+τe(e) corresponds
to the sealing operatione :> τe. While module sealing typically
only performs static abstraction, wrapping describes the dynamic
equivalent [22]. In fact, positive wrapping is precisely how sealing
is implemented in Alice ML [23], where the module language is
non-parametric otherwise.

The correspondence to module sealing motivates our treatment
of existential types. Notice thatWr+ causes a fresh type name to
be created only once for each existentially quantified type—that
is, corresponding to each existentialintroduction. Another option
would be to generate type names with each existentialelimination.
In fact, such a semantics would arise naturally were we to usea
Church encoding of existentials in conjunction with our wrapping
for universals. However, in such a semantics, unpacking an existen-
tial value twice would have the effect of producing two distinct ab-
stract types. While this corresponds intuitively to the “generativity”
of unpack in System F, it is undesirable in the context of dynamic,
first-class modules. In particular, in order for an abstracttypet de-
fined by some dynamic module M to have some permanent identity
(so that it can be referenced by other dynamic modules), it isim-
portant that each unpacking of M yields a handle to the same name
for t. Moreover, as we show in the next section, our approach to
defining wrapping is sufficient to ensure abstraction safety.

6. Parametric Reasoning
The logical relation developed in Section 4 enables us to donon-
parametric reasoning about equivalence of G programs. It also

9

T ◦
n [[Ω]]w

def
= {(τ1, τ2, (τ

′
1, τ

′
2, R)) | ⊢ τ ′

i ∧ w.σi ⊢ τi ≈ τ ′
i ∧ R ∈ Reln[τ

′
1, τ

′
2]}

(everything else as in Figure 2)

Figure 4. Parametric Logical Relation

enables us to doparametricreasoning, but only indirectly: we have
to explicitly deal with the effects ofnew and to define worlds
containing relations between type names. It would be preferable
if we were able to do parametric reasoning directly. For example,
given two expressionse1, e2 that do not use casts, and assuming
that the context does not do so either, we should be able to reason
about equivalence ofe1 ande2 in a manner similar to what we do
when reasoning about System F.

6.1 A Parametric Logical Relation

Thanks to the modular formulation of our logical relation inFig-
ure 2, it is easy to modify it so that it becomes parametric. All we
need to do is swap out the definition ofT [[Ω]]w, which relates types
as data. Figure 4 gives an alternative definition that allowschoos-
ing an arbitrary relation between arbitrary types. Everything else
stays exactly the same. We decorate the set ofparametric logical
relations thus obtained with◦ (i.e., V ◦, E◦, etc.) to distinguish
them from the original ones. Likewise, we write-◦ for the notion
of parametric logical approximationdefined as in Figure 2 but in
terms of the parametric relations. For clarity, we will refer to the
original definition as thenon-parametriclogical relation.

This modification gives us a seemingly parametric definition
of logical approximation for G terms. But what does that actually
mean? What is the relation between parametric and non-parametric
logical approximation and, ultimately,contextualapproximation?
Since the language is not parametric, clearly, parametrically equiv-
alent terms generally are not contextually equivalent.

The answer is given by the wrapping functions we defined in the
previous section. The following theorem connects the two notions
of logical relation and approximation that we have introduced:

Theorem 6.1 (Wrapping for-◦)

1. If ⊢ e1 -
◦ e2 : τ , then⊢ Wr+τ (e1) -Wr+τ (e2) : τ .

2. If ⊢ e1 - e2 : τ , then⊢ Wr−τ (e1) -
◦ Wr−τ (e2) : τ .

This theorem justifies the definition of the parametric logical re-
lation. At the same time it can be read as a correctness resultfor
the wrapping operators: it says that whenever we can relate two
terms using parametric reasoning, then the positive wrappings of
the first term contextually approximates the positive wrapping of
the second. Dually, once any properly related terms are wrapped
negatively, they can safely be passed to any term that depends on
its context behaving parametrically.

What can we say about the content of the parametric relation?
Obviously, it cannot contain arbitrary non-parametric G terms—
e.g.,cast τ1 τ2 is not even related to itself inE◦. However, we still
obtain the following restricted form of the fundamental property:

Theorem 6.2 (Fundamental Property for-◦)
If ∆; Γ ⊢ e : τ ande is cast-free, then∆;Γ ⊢ e -◦ e : τ .

In particular, this implies that any well-typed System F term is
parametrically related to itself. The relation will also contain terms
with cast, but only if the use ofcast does not violate parametricity.
(We discuss this further in Section 7.)

Along the same lines, we can show that our parametric logical
relation is sound w.r.t. contextual approximation,if the definition
of the latter is limited to quantifying only overcast-free contexts.

6.2 Examples

Semaphore. Consider our running example of the semaphore
module again. Using the parametric relation, we can prove that the
two implementations are related without actually reasoning about
type generation. That aspect is covered once and for all by the
Wrapping Theorem.

Recall the two implementations, here given in unwrapped form:

e′sem1 := pack 〈int, 〈1, λx: int .(1− x), λx: int .(x 6= 0)〉〉 as τsem

e′sem2 := pack 〈bool, 〈true, λx: bool .¬x, λx:bool .x〉〉 as τsem

We can prove⊢ e′sem1 -
◦ e′sem2 : τsem using conventional para-

metric reasoning about polymorphic terms. Now defineesem1 =
Wr+τsem(e

′
sem1) andesem2 = Wr+τsem(e

′
sem2), which are semantically

equivalent to the original definitions in Section 2.3. The Wrapping
Theorem then immediately tells us that⊢ esem1- esem2 : τsem.

A Free Theorem. We can use the parametric relation for proving
free theorems [30] in G. For example, for any⊢ g : ∀α.α → α in
G it holds thatWr−(g) either diverges for all possible arguments
τ and ⊢ v : τ , or it returnsv in all cases. We first apply the
Fundamental Property for- to relateg to itself inE, then transfer
this toE◦ for Wr−(g) using the Wrapping Theorem. From there
the proof proceeds in the usual way.

7. Syntactic vs. Semantic Parametricity
The primary motivation for our parametric relation in the previous
section was to enable more direct parametric reasoning about the
result of (positively) wrapping System F terms. However, itis
also possible to use our parametric relation to reason aboutterms
that aresyntactically, or intensionally, non-parametric (i.e., that
use cast’s), so long as they aresemantically, or extensionally,
parametric (i.e., the use ofcast is not externally observable).

For example, consider the following two polymorphic functions
of type∀α.τα (here, letb2i = λx:bool. if x then 1 else 0):

τα := ∃β. (α× α → β)× (β → α)× (β → α)
g1 := λα. pack 〈α× α, 〈λp.p, λx.(x.1), λx.(x.2)〉〉 as τα
g2 := λα. cast τbool τα

(pack 〈int, 〈λp:(bool× bool). b2i(p.1) + 2×b2i(p.2),
λx:int. x mod 2 6= 0,
λx:int. x div 2 6= 0〉〉 as τbool)

(g1 α)

These two functions take a type argumentα and return a simple
generic ADT for pairs overα. But g2 is more clever about it
and specializes the representation forα = bool. In that case,
it packs both components into the two least significant bits of a
single integer. For all other types,g2 falls back to the generic
implementation fromg1.

Using the parametric relation, we will be able to show that
⊢ Wr+(g1) � Wr+(g2) : ∀α.τα. One might find this surprising,
sinceg2 is syntactically non-parametric, returning different imple-
mentations for different instantiations of its type argument. How-
ever, since the two possible implementationsg2 returns are exten-
sionally equivalent to each other,g2 is semantically indistinguish-
able from the syntactically parametricg1.

Formally: Assume thatτ1, τ2 are the types andRα ∈ Rel[τ1, τ2]
is the relation the context picks, parametrically, forα. If τ2 6= bool,
the rest of the proof is straightforward. Otherwise, we do not know

10

V ±
n [[α]]ρ

def
= ⌊ρ(α).R⌋n

V ±
n [[b]]ρ

def
= {(k,w, c, c) ∈ Atomn[b, b]}

V ±
n [[τ × τ ′]]ρ

def
= {(k,w, 〈v1, v

′
1〉, 〈v2, v

′
2〉) ∈ Atomn[ρ

1(τ × τ ′), ρ2(τ × τ ′)] |
(k,w, v1, v2) ∈ V ±

n [[τ]]ρ ∧ (k,w, v′1, v
′
2) ∈ V ±

n [[τ ′]]ρ}

V ±
n [[τ ′ → τ]]ρ

def
= {(k,w, λx:τ1.e1, λx:τ2.e2) ∈ Atomn[ρ

1(τ ′ → τ), ρ2(τ ′ → τ)] |
∀(k′, w′, v1, v2) ∈ V ∓

n [[τ ′]]ρ. (k′, w′) ⊒ (k, w) ⇒
(k′, w′, e1[v1/x], e2[v2/x]) ∈ E±

n [[τ]]ρ}

V ±
n [[∀α.τ]]ρ

def
= {(k,w, λα.e1, λα.e2) ∈ Atomn[ρ

1(∀α.τ), ρ2(∀α.τ)] |
∀(k′, w′) ⊒ (k,w). ∀(τ1, τ2, r) ∈ T∓

k′ [[Ω]]w
′ .

(k′, w′, e1[τ1/α], e2[τ2/α]) ∈ ⊲E±
n [[τ]]ρ, α7→r}

V ±
n [[∃α.τ]]ρ

def
= {(k,w, pack 〈τ1, v1〉, pack 〈τ2, v2〉) ∈ Atomn[ρ

1(∃α.τ), ρ2(∃α.τ)] |
∃r. (τ1, τ2, r) ∈ T±

k [[Ω]]w ∧ (k,w, v1, v2) ∈ ⊲V ±
n [[τ]]ρ, α7→r}

E±
n [[τ]]ρ

def
= {(k,w, e1, e2) ∈ Atomn[ρ

1(τ), ρ2(τ)] |
∀j < k. ∀σ1, v1. (w.σ1; e1 →֒j σ1; v1) ⇒
∃w′, v2. (k − j, w′) ⊒ (k,w) ∧ w′.σ1 = σ1 ∧ (w.σ2; e2 →֒∗ w′.σ2; v2) ∧ (k − j, w′, v1, v2) ∈ V ±

n [[τ]]ρ}

T+
n [[Ω]]w

def
= T ◦

n [[Ω]]w D+
n [[∆]]w

def
= D◦

n[[∆]]w

T−
n [[Ω]]w

def
= Tn[[Ω]]w D−

n [[∆]]w
def
= Dn[[∆]]w

∆;Γ ⊢ e1 -
± e2 : τ

def
⇔ ∆; Γ ⊢ e1 : τ ∧∆;Γ ⊢ e2 : τ ∧

∀n ≥ 0,∀w0 ∈ Worldn .∀(δ1, δ2, ρ) ∈ D∓
n [[∆]]w0.∀(k,w, γ1, γ2) ∈ G∓

n [[Γ]]ρ.
(k, w) ⊒ (n,w0) ⇒ (k,w, δ1γ1(e1), δ2γ2(e2)) ∈ E±

n [[τ]]ρ

Figure 5. Polarized Logical Relations

anything aboutτ1 andRα, becauseτ1 and τ2 are related inT ◦.
Nevertheless, we can construct a suitable relational interpretation
Rβ ∈ Rel[τ1 × τ1, int] for the typeβ:

Rβ := {(k, w, 〈v, v′〉, 0) | (k, w, v, false), (k,w, v′, false) ∈ Rα}
∪ {(k, w, 〈v, v′〉, 1) | (k, w, v, true), (k,w, v′, false) ∈ Rα}
∪ {(k, w, 〈v, v′〉, 2) | (k, w, v, false), (k,w, v′, true) ∈ Rα}
∪ {(k, w, 〈v, v′〉, 3) | (k, w, v, true), (k,w, v′, true) ∈ Rα}

As it turns out, we do not need to know much about the structure
of Rα to defineRβ . What we are relying on here is only the
knowledge that all values inRα are well-typed, which is built into
our definition ofRel. From that we know that there can never be
any other value thantrue or false on the right side of the relation
Rα. Hence we can still enumerate all possible cases to defineRβ ,
and do a respective case distinction when proving equivalence of
the projection operations.

Interestingly, it seems that our proof relies critically onthe fact
that our logical relations are restricted to syntacticallywell-typed
terms. Were we to lift this restriction, we would be forced (it seems)
to extend the definition ofRβ with a “junk” case, but the calls to
b2i in g2 would get stuck if applied to non-boolean values. We
leave further investigation of this observation to future work.

8. Polarized Logical Relations
The parametric relation is useful for proving parametricity proper-
ties about (the positive wrappings of) G terms. However, it is all-or-
nothing: it can only be used to prove parametricity for termsthat ex-
pect to betreatedparametrically and alsobehaveparametrically—
cf. the two dual aspects of parametricity described in Section 5. We
might also be interested in proving representation independence
for terms that donot behave parametrically themselves (in either
the syntactic or semantic sense considered in the previous section).
One situation where this might show up is if we want to show rep-
resentation independence for generic ADTs that (like the ones in
Section 7) return different results for different instantiations of their
type arguments, but where (unlike in Section 7) the difference is not
only syntactic but also semantic.

Here is a somewhat contrived example to illustrate the point.
Consider the following two polymorphic functions of type∀α.τα:

τα := ∃β. (α → β) × (β → α)
f1 := λα. cast τint τα (pack 〈int, 〈λx:int.x+1, λx:int.x〉〉 as τint)

(pack 〈α, 〈λx:α.x, λx:α.x〉〉 as τα)
f2 := λα. cast τint τα (pack 〈int, 〈λx:int.x, λx:int.x+1〉〉 as τint)

(pack 〈α, 〈λx:α.x, λx:α.x〉〉 as τα)

These functions take a type argumentα and return a simple ADT
β. Values of typeα can be injected intoβ, and projected out again.
However, both functions specialize the behavior of this ADTfor
type int—for integers, injectingn and projecting again will give
back notn, but rathern + 1. This is true for both functions, but
they implement it in a different way.

We want to prove that both implementations are equivalent
under wrapping using a form of parametric reasoning. However,
we cannot do that using the parametric relation from the previ-
ous section—since the functions do notbehaveparametrically (i.e.,
they return observably different packages for different instantia-
tions of their type argument), they will not be related inE◦.

To support that kind of reasoning, we need a more refined treat-
ment of parametricity in the logical relation. The idea is toseparate
the two aforementioned aspects of parametricity. Consequently, we
are going to have a pair of separate relations,E+ andE−. The
former enforces parametric usage, the latter parametric behavior.

Figure 5 gives the definition of these relations. We call them
polarized, because they are mutually dependent and the polarity
(+ or −) switches for contravariant positions,i.e., for function
arguments and for universal quantifiers. Intuitively, in these places,
term and context switch roles.

Except for the consistent addition of polarities, the definition of
the polarized relations again only represents a minor modification
of the original one.7 We merely refine the definition of the type re-

7 In fact, all four relations can easily be formulated in a single unified
definition indexed byι ::= ǫ | ◦ |+ | −. We refrained from doing so here
for the sake of clarity; see the expanded version of this paper for details [16].

11

E+

E E◦

E−

eG ∈

eG∈

∋ eF

Wr+ Wr−

Wr− Wr+

Figure 6. Relating the Relations

lationT [[Ω]]w to distinguish polarity: in the positive case it behaves
parametrically (i.e.,allowing an arbitrary relation) and in the nega-
tive case non-parametrically (i.e.,demandingr be thelogical rela-
tion at some type). Thus, existential types behave parametrically in
E+ but non-parametrically inE−, and vice versa for universals.

8.1 Key Properties

The way in which polarities switch in the polarized relations mir-
rors what is going on in the definition of wrapping. That of course
is no accident, and we can show the following theorem that relates
the polarized relations with the non-parametric and parametric ones
through uses of wrapping:

Theorem 8.1 (Wrapping for-±)

1. If ⊢ e1 -
+ e2 : τ , then⊢ Wr+τ (e1) -Wr+τ (e2) : τ .

2. If ⊢ e1 - e2 : τ , then⊢ Wr−τ (e1) -
− Wr−τ (e2) : τ .

3. If ⊢ e1 -
+ e2 : τ , then⊢ Wr−τ (e1) -

◦ Wr−τ (e2) : τ .
4. If ⊢ e1 -

◦ e2 : τ , then⊢ Wr+τ (e1) -
− Wr+τ (e2) : τ .

Moreover, we can show that the inverse directions of these impli-
cations require no wrapping at all:

Theorem 8.2 (Inclusion for-±)

1. If ⊢ e1 - e2 : τ or ⊢ e1 -
◦ e2 : τ , then⊢ e1 -

+ e2 : τ .
2. If ⊢ e1 -

− e2 : τ , then⊢ e1 - e2 : τ and⊢ e1 -
◦ e2 : τ .

This theorem can equivalently be stated as:E− ⊆ E ⊆ E+ and
E− ⊆ E◦ ⊆ E+.

Note that Theorem 6.1 follows directly from Theorems 8.1 and
8.2. Similarly, the following property follows from Theorem 8.2
together with Theorem 4.1:

Corollary 8.3 (Fundamental Property for -+)
If ∆; Γ ⊢ e : τ , then∆;Γ ⊢ e -+ e : τ .

Interestingly, compatibility does not hold for-± (consider the
polarities in the rule for application), which has the consequence
that we cannot show Corollary 8.3 directly. For a similar reason,
we cannot show any such property for-− at all.

Figure 6 depicts all of the above properties in a single diagram.
Unlabeled arrows denote inclusion, while labeled arrows denote the
wrapping that maps one relation to the other. The∈-operators show
the fundamental properties for the respective relations,i.e., which
class of terms are included (G terms or F terms).

8.2 Example

Getting back to our motivating example from the beginning ofthe
section, it is essentially straightforward to prove that⊢ f1 -

+

f2 : ∀α.τα. The proof proceeds as usual, except that we have to
make a case distinction when we want to show that the function
bodies are related inE+. At that point, we are given a triple
(τ1, τ2, r) ∈ T−[[Ω]]w.

If τ1 = int, then we know from the definition ofT− that
τ2 = int, too. We hence know that both sides will evaluate to the
specialized version of the ADT. Since we are inE+, we get to pick
some(τ ′

1, τ
′
2, r

′) ∈ T+[[Ω]]w as the interpretation ofβ, where the
choice ofr′ is up to us. The natural choice is to useτ ′

1 = τ ′
2 = int

with the relationr′ = (int, int, {(k, w, n + 1, n) | n ∈ Z}). The
rest of the proof is then straightforward.

If τ1 6= int we similarly know thatτ2 6= int from the definition
of T−. Hence, both sides use the default implementations, which
are trivially related inE+, thanks to Corollary 8.3.

Finally, applying the Wrapping Theorem 8.1, we can conclude
that⊢ Wr+(f1) - Wr+(f2) : ∀α.τα, and hence by Soundness,
⊢ Wr+(f1) � Wr+(f2) : ∀α.τα.

Note how we relied on the knowledge thatτ1 andτ2 can only be
int at the same time. This holds for types related inT− but not in
T+ or T ◦. If we had tried to do this proof inE◦, the typesτ1 and
τ2 would have been related byT ◦ only, which would give us too
little information to proceed with the necessary case distinction.

9. Recursive Types
We now add iso-recursive types to G and call the result Gµ:

Types τ ::= . . . | µα.τ
Values v ::= . . . | roll v as τ
Terms e ::= . . . | roll e as τ | unroll e

The extensions to the semantics are standard and therefore omitted—
they do not affect the type store. Also, the definition of contextual
equivalence does not change (except there are more contexts).

9.1 Extending the Logical Relations

The step-indexing that we used in defining our logical relations
makes it very easy to adapt them to Gµ. There are two natural ways
in which we could define the value relation at a recursive type:

1. V ι
n[[µα.τ]]ρ

def
= {(k, w, roll v1, roll v2) ∈ Atomn[. . .] |

(k, w, v1, v2) ∈ ⊲V ι
k [[τ]]ρ, α7→V ι

k [[µα.τ]]ρ}

2. V ι
n[[µα.τ]]ρ

def
= {(k, w, roll v1, roll v2) ∈ Atomn[. . .] |

(k, w, v1, v2) ∈ ⊲V ι
k [[τ [µα.τ/α]]]ρ}

For ι ∈ {ǫ, ◦}—i.e., for the non-parametric and parametric forms
of the logical relation—the above two formulations are equivalent
due to the validity of a standard substitution property. Unfortu-
nately, though, we do not have such a property for the polarized
relation. In fact, forι ∈ {+,−}, the first definition wrongly records
a fixed polarity forα. It is thus crucial that we choose the second
one; only then do all key properties continue to hold in Gµ.

9.2 Extending the Wrapping

How can we upgrade the wrapping to account for recursive types?
Given an argument of typeµα.τ , the basic idea is to first unfold
it to typeτ [µα.τ/α], then wrap it at that type, and finally fold the
result back to typeµα.τ . Of course, sinceτ [µα.τ/α] may be larger
thanµα.τ , a direct implementation of this idea will not result in a
well-founded definition.

The solution is to use a fixed-point (definable in terms of re-
cursive types, of course), which gives us a handle on the wrapping
function we are in the middle of defining. Figure 7 shows the new
definition. We first index the wrapping by an environmentϕ that
maps recursive type variablesα to wrappings for those variables.
Roughly, the wrapping at typeµα.τ under environmentϕ is a re-
cursive functionF , defined in terms of the wrapping at typeτ un-
der environmentϕ, α 7→ F . Since the bound variable of a recursive
type may occur in positions of different polarity, we actually need
two mutually recursive functions and then select the right one de-
pending on the polarity. The cognoscenti will recognize this as a

12

Wr±α;ϕ(v)
def
= v (if α /∈ dom(ϕ))

Wr±α;ϕ(v)
def
= ϕ±(α) v (if α ∈ dom(ϕ))

Wr±µα.τ ;ϕ(v)
def
= letrec f+ =λx. roll (Wr+

τ ;ϕ′(unrollx)[µα.τ/α])

and f− =λx. roll (Wr−
τ ;ϕ′(unrollx)[µα.τ/α])

in f± v (whereϕ′ = ϕ,α7→(f+, f−))

(other cases as before except for the consistent addition ofϕ)

Figure 7. Wrapping for Gµ

polarized variant of the so-calledsyntactic projectionfunction as-
sociated with a recursive type [8].

Note that the environment only plays a role for recursive types,
and that for anyτ that does not involve recursive types,Wr±

τ ;∅ is
the same as our old wrappingWr±τ from Section 5. TakingWr±τ
to be shorthand forWr±

τ ;∅, all our old wrapping theorems for G
continue to hold for Gµ. Full proofs of these theorems are given in
the expanded version of this paper [16].

10. Towards Full Abstraction
The definition of the parametric relationE◦ (including the exten-
sion for recursive types) is largely very similar to that of atypical
step-indexed logical relationEFµ for Fµ, i.e., System F extended
with pairs, existentials and iso-recursive types [3]. The main dif-
ference is the presence of worlds, but they are not actually used in
a particularly interesting way inE◦. Therefore, one might expect
that any two Fµ terms related by the hypotheticalEFµ would also
be related byE◦ and vice versa.

However, this is not obvious: Gµ is more expressive than Fµ,
i.e., terms in the parametric relation can contain non-trivial uses of
casts (e.g.,the generic ADT for pairs from Section 7), and there is
no evident way to back-translate these terms into Fµ, as would be
needed for function arguments. That invalidates a proof approach
like the one taken by Ahmed and Blume [5].

Ultimately, the property we would like to be able to show is that
the embedding of Fµ into Gµ by positive wrapping isfully abstract:

⊢ e1 ≃Fµ e2 : τ ⇐⇒ ⊢ Wr+τ (e1) ≃ Wr+τ (e2) : τ

This equivalence is even stronger than the one about logicalrelat-
edness inEFµ andE◦, because- is only sound w.r.t. contextual
approximation, not complete.

Since Fµ is a fragment of Gµ, and Fµ contexts cannot observe
any difference between an Fµ term and its wrapping, the direction
from right to left, calledequivalence reflection, is not hard to show.

Theorem 10.1 (Equivalence Reflection)
If ∆; Γ ⊢Fµ e1 : τ and∆;Γ ⊢Fµ e2 : τ
and∆;Γ ⊢ Wr+τ (e1) ≃ Wr+τ (e2) : τ , then∆;Γ ⊢ e1 ≃Fµ e2 : τ .

Unfortunately, it is not known to us whether the other direction,
equivalence preservation, holds as well. We conjecture that it does,
but are not aware of any suitable technique to prove it.

Note that while equivalence reflection also holds for F and G—
i.e., in the absence of recursive types—equivalence preservation
does not, because non-termination is encodable in G but not in F.

11. Related Work
Type Generation vs. Other Forms of Data Abstraction. Tradi-
tionally, authors have distinguished between two complementary
forms of data abstraction, sometimes dubbed thestaticand thedy-
namic approach [13]. The former is tied to the type system and

relies on parametricity (especially for existential types) to hide an
ADT’s representation from clients [15]. The latter approach is typi-
cally employed in untyped languages, which do not have the ability
to place static restrictions on clients. Consequently, data hiding has
to be enforced on the level of individual values. For that, languages
provide means for generating unique names and using them askeys
for dynamically sealingvalues. A value sealed by a given key can
only be inspected by principals that have access to the key [27].

Dynamic type generation as we employ it [21, 29, 22] can be
seen as a middle ground, because it bears resemblance to bothap-
proaches. As in the dynamic approach, we cannot rely on para-
metricity and instead generate dynamic names to protect abstrac-
tions. However, these are type-level names, not term-levelnames,
and they only “seal” type information. In particular, individual val-
ues of abstract type are still directly represented by the underlying
representation type, so that crossing abstraction boundaries has no
runtime cost. In that sense, we are closer to the static approach.

Another approach to reconciling type abstraction and type anal-
ysis has been proposed by Washburn and Weirich [31]. They in-
troduce a type system that tracks information flow for terms and
types-as-data. By distinguishing security levels, the type system
can statically prevent unauthorized inspection of types byclients.

Multi-Language Interoperation. The closest work to ours is that
of Matthews and Ahmed [13]. They describe a pair of mutually re-
cursive logical relations that deal with the interoperation between a
typed language (“ML”) and an untyped language (“Scheme”). Un-
like in G, parametric behavior is hard-wired into their ML side:
polymorphic instantiation unconditionally performs a form of dy-
namic sealing to protect against the non-parametric Schemeside.
(In contrast, we treatnew as its own language construct, orthog-
onal to universal types.) Dynamic sealing can then be definedin
terms of the primitive coercion operators that bridge between the
ML and Scheme sides. These coercions are similar to our (meta-
level) wrapping operators, but ours perform type-level sealing, not
term-level sealing.

The logical relations in Matthews and Ahmed’s formalism are
somewhat reminiscent ofE◦ andE, although theirs are distinct
logical relations for two languages, while ours are for a single
language and differ only in the definition ofT [[Ω]]w. In order to
prove the fundamental property for their relations, they prove a
“bridge lemma” transferring relatedness in one language tothe
other via coercions. This is analogous to our Wrapping Theorem
for-◦, but the latter is an independent theorem, not a lemma. Also,
they do not propose anything like our polarized logical relations.

A key technical difference is that their formulation of the logical
relations does not use possible worlds to capture the type store (the
latter is left implicit in their operational semantics). Unfortunately,
this resulted in a significant flaw in their paper [4]. They have since
reportedly fixed the problem—independently of our work—using a
technique similar to ours, but they have yet to write up the details.

Proof Methods. Logical relations in various forms are routinely
used to reason about program equivalence and type abstraction [20,
14, 17, 3]. In particular, Ahmed, Dreyer and Rossberg recently ap-
plied step-indexed logical relations with possible worldsto reason
about type abstraction for a language with higher-order state [6].
State in G is comparatively benign, but still requires a circular def-
inition of worlds that we stratify using steps.

Pitts and Stark used logical relations to reason about program
equivalence in a language with (term-level) name generation [18]
and subsequently generalized their technique to handle mutable ref-
erences [19]. Sumii and Pierce use them for proving secrecy re-
sults for a language with dynamic sealing [26], where generated
names are used as keys. Their logical relation uses a form of possi-
ble world very similar to ours, but tying relational interpretations to

13

term-level private keys instead of to type names. Their worlds come
into play in the interpretation of the typebits of encrypted data,
whereas in our setup the worlds are important in the interpretation
of universal and existential types. In another line of work,Sumii
and Pierce have usedbisimulationsto establish abstraction results
for both untyped and polymorphic languages [27, 28]. However,
none of the languages they investigate mixes the two paradigms.

Grossman, Morrisett and Zdancewic have proposed the use of
abstraction bracketsfor syntactically tracing abstraction bound-
aries [10] during program execution. However, this is a compar-
atively weak method that does not seem to help in proving para-
metricity or representation independence results.

12. Conclusion and Future Work
In traditional static languages, type abstraction is established by
parametric polymorphism. This approach no longer works when
dynamic typing features like casts,typecase, or reflection are
added to the mix. Dynamic type generation addresses this problem.

In this paper, we have shown that dynamic type generation suc-
ceeds in recovering type abstraction. More specifically: (1) we pre-
sented a step-indexed logical relation for reasoning aboutprogram
equivalence in a non-parametric language withcast and type gen-
eration; (2) we showed that parametricity can be re-established sys-
tematically using a simple type-directed wrapping, which then can
be reasoned about using a parametric variant of the logical relation;
(3) we showed that parametricity can be refined into parametric be-
havior and parametricusageand gave a polarized logical relation
that distinguishes these dual notions, thereby handling more subtle
examples. The concept of a polarized logical relation seemsnovel,
and it remains to be seen what else it might be useful for. Inter-
estingly, all our logical relations can be defined as a singlefamily
differing only in the interpretationT of types-as-data.

An open question is whether the wrapping, when seen as an
embedding of Fµ into Gµ, is fully abstract. We conjecture that it is,
but we were only able to show equivalence reflection, not equiva-
lence preservation. Proving full abstraction remains an interesting
challenge for future work.

On the practical side, we would like to scale our logical rela-
tion to handle a more realistic language like ML. Unfortunately,
wrapping cannot easily be extended to a type of mutable refer-
ences. However, we believe that our approach still scales toa large
class of languages, so long as we instrument it with a distinc-
tion between module and core levels. Specifically, note thatwrap-
ping only does something “interesting” for universal and existential
types, and is the identity (moduloη-expansion) otherwise. Thus,
for a language like Standard ML, which does not support first-
class polymorphism—or Alice ML, which supports modules-as-
first-class-values, but not existentials—wrapping could be confined
to the module level (as part of the implementation of opaque sig-
nature ascription). For core-level types it could just be the identity.
This is a real advantage of type generation over dynamic sealing
since, for the latter, the need to seal/unseal individual values of ab-
stract type precludes any attempt to confine wrapping to modules.

References
[1] Martı́n Abadi, Luca Cardelli, Benjamin Pierce, and Didier Rémy.

Dynamic typing in polymorphic languages.JFP, 5(1):111–130, 1995.

[2] Amal Ahmed. Semantics of Types for Mutable State. PhD thesis,
Princeton University, 2004.

[3] Amal Ahmed. Step-indexed syntactic logical relations for recursive
and quantified types. InESOP, 2006.

[4] Amal Ahmed. Personal communication, 2009.

[5] Amal Ahmed and Matthias Blume. Typed closure conversion
preserves observational equivalence. InICFP, 2008.

[6] Amal Ahmed, Derek Dreyer, and Andreas Rossberg. State-dependent
representation independence. InPOPL, 2009.

[7] Andrew W. Appel and David McAllester. An indexed model of
recursive types for foundational proof-carrying code.TOPLAS,
23(5):657–683, 2001.

[8] Karl Crary and Robert Harper. Syntactic logical relations for
polymorphic and recursive types. InComputation, Meaning and
Logic: Articles dedicated to Gordon Plotkin. 2007.

[9] Jean-Yves Girard. Interprétation fonctionelle et élimination des
coupures de l’arithmétique d’ordre supérieur. PhD thesis, Université
Paris VII, 1972.

[10] Dan Grossman, Greg Morrisett, and Steve Zdancewic. Syntactic type
abstraction.TOPLAS, 22(6):1037–1080, 2000.

[11] Robert Harper and John C. Mitchell. Parametricity and variants of
Girard’s J operator.Information Processing Letters, 1999.

[12] Robert Harper and Greg Morrisett. Compiling polymorphism using
intensional type analysis. InPOPL, 1995.

[13] Jacob Matthews and Amal Ahmed. Parametric polymorphism through
run-time sealing, or, theorems for low, low prices! InESOP, 2008.

[14] John C. Mitchell. Representation independence and data abstraction.
In POPL, 1986.

[15] John C. Mitchell and Gordon D. Plotkin. Abstract types have
existential type.TOPLAS, 10(3):470–502, 1988.

[16] Georg Neis. Non-parametric parametricity. Master’s thesis,
Universität des Saarlandes, 2009.

[17] Andrew Pitts. Typed operational reasoning. In Benjamin C. Pierce,
editor, Advanced Topics in Types and Programming Languages,
chapter 7. MIT Press, 2005.

[18] Andrew Pitts and Ian Stark. Observable properties of higher order
functions that dynamically create local names, or: What’s new? In
MFCS, volume 711 ofLNCS, 1993.

[19] Andrew Pitts and Ian Stark. Operational reasoning for functions with
local state. InHOOTS, 1998.

[20] John C. Reynolds. Types, abstraction and parametric polymorphism.
In Information Processing, 1983.

[21] Andreas Rossberg. Generativity and dynamic opacity for abstract
types. InPPDP, 2003.

[22] Andreas Rossberg. Dynamic translucency with abstraction kinds and
higher-order coercions. InMFPS, 2008.

[23] Andreas Rossberg, Didier Le Botlan, Guido Tack, Thorsten Brunk-
laus, and Gert Smolka. Alice ML through the looking glass. InTFP,
volume 5, 2004.

[24] Peter Sewell. Modules, abstract types, and distributed versioning. In
POPL, 2001.

[25] Peter Sewell, James Leifer, Keith Wansbrough, Francesco Zappa
Nardelli, Mair Allen-Williams, Pierre Habouzit, and Viktor Vafeiadis.
Acute: High-level programming language design for distributed
computation.JFP, 17(4&5):547–612, 2007.

[26] Eijiro Sumii and Benjamin C. Pierce. Logical relationsfor encryption.
JCS, 11(4):521–554, 2003.

[27] Eijiro Sumii and Benjamin C. Pierce. A bisimulation fordynamic
sealing.TCS, 375(1–3):161–192, 2007.

[28] Eijiro Sumii and Benjamin C. Pierce. A bisimulation fortype
abstraction and recursion.JACM, 54(5):1–43, 2007.

[29] Dimitrios Vytiniotis, Geoffrey Washburn, and Stephanie Weirich. An
open and shut typecase. InTLDI, 2005.

[30] Philip Wadler. Theorems for free! InFPCA, 1989.

[31] Geoffrey Washburn and Stephanie Weirich. Generalizing parametric-
ity using information flow. InLICS, 2005.

[32] Stephanie Weirich. Type-safe cast.JFP, 14(6):681–695, 2004.

14

