How to Make Ad Hoc Proof Automation Less Ad Hoc

Georges Gonthier ${ }^{1} \quad$ Beta Ziliani ${ }^{2}$ Aleks Nanevski ${ }^{3}$ Derek Dreyer ${ }^{2}$

${ }^{1}$ Microsoft Research Cambridge
${ }^{2}$ Max Planck Institute for Software Systems (MPI-SWS)
${ }^{3}$ IMDEA Software Institute, Madrid
ICFP 2011, Tokyo

Why proof automation at ICFP?

Ad hoc polymorphism $\quad \approx$ Overloading terms
Ad hoc proof automation \approx Overloading lemmas
"How to make ad hoc polymorphism less ad hoc"

- Haskell type classes (Wadler \& Blott '89)
"How to make ad hoc proof automation less ad hoc"
- Canonical structures: A generalization of type classes that's already present in Coq

Motivating example from program verification

Lemma noalias:
If pointers x_{1} and x_{2} appear in disjoint heaps, they do not alias.

In formal syntax:
noalias : $\forall h$: heap. $\forall x_{1} x_{2}$: ptr. $\forall v_{1}: A_{1} . \forall v_{2}: A_{2}$. def $\left(x_{1} \mapsto v_{1} \uplus x_{2} \mapsto v_{2} \uplus h\right) \rightarrow x_{1}!=x_{2}$

Motivating example from program verification

Lemma noalias:
If pointers x_{1} and x_{2} appear in disjoint heaps, they do not alias.

In formal syntax:
noalias : $\forall h$: heap. $\forall x_{1} x_{2}$: ptr. $\forall v_{1}: A_{1} . \forall v_{2}: A_{2}$. def $\left(x_{1} \mapsto v_{1} \uplus x_{2} \mapsto v_{2} \uplus h\right) \rightarrow x_{1}!=x_{2}$

singleton heaps

Motivating example from program verification

Lemma noalias:
If pointers x_{1} and x_{2} appear in disjoint heaps, they do not alias.

In formal syntax:
noalias : $\forall h$: heap. $\forall x_{1} x_{2}$: ptr. $\forall v_{1}: A_{1} . \forall v_{2}: A_{2}$. def $\left(x_{1} \mapsto v_{1} \uplus x_{2} \mapsto v_{2} \uplus h\right) \rightarrow x_{1}!=x_{2}$

disjoint union (undefined if heaps overlap)

Motivating example from program verification

Lemma noalias:
If pointers x_{1} and x_{2} appear in disjoint heaps, they do not alias.

In formal syntax:
noalias : $\forall h$: heap. $\forall x_{1} x_{2}$: ptr. $\forall v_{1}: A_{1} . \forall v_{2}: A_{2}$. def $\left(x_{1} \mapsto v_{1} \uplus x_{2} \mapsto v_{2} \uplus h\right) \rightarrow x_{1}!=x_{2}$

Motivating example from program verification

Lemma noalias:
If pointers x_{1} and x_{2} appear in disjoint heaps, they do not alias.

In formal syntax:
noalias : $\forall h$: heap. $\forall x_{1} x_{2}$: ptr. $\forall v_{1}: A_{1} . \forall v_{2}: A_{2}$. def $\left(x_{1} \mapsto v_{1} \uplus x_{2} \mapsto v_{2} \uplus h\right) \rightarrow x_{1}!=x_{2}$

Using noalias requires a lot of "glue proof"

noalias: $\forall h x_{1} x_{2} v_{1} v_{2}$.

$$
\operatorname{def}\left(x_{1} \mapsto v_{1} \uplus x_{2} \mapsto v_{2} \uplus h\right) \rightarrow x_{1}!=x_{2}
$$

$D: \operatorname{def}\left(h_{1} \uplus\left(y_{1} \mapsto w_{1} \uplus y_{2} \mapsto w_{2}\right) \uplus\left(h_{2} \uplus y_{3} \mapsto w_{3}\right)\right)$

$$
\left(y_{1}!=y_{2}\right) \& \&\left(y_{2}!=y_{3}\right) \& \&\left(y_{3}!=y_{1}\right)
$$

Using noalias requires a lot of "glue proof"

noalias: $\forall h x_{1} x_{2} v_{1} v_{2}$.

$$
\operatorname{def}\left(x_{1} \mapsto v_{1} \uplus x_{2} \mapsto v_{2} \uplus h\right) \rightarrow x_{1}!=x_{2}
$$

$D: \operatorname{def}\left(h_{1} \uplus\left(y_{1} \mapsto w_{1} \uplus y_{2} \mapsto w_{2}\right) \uplus\left(h_{2} \uplus y_{3} \mapsto w_{3}\right)\right)$

$$
\left(y_{1}!=y_{2}\right) \& \&\left(y_{2}!=y_{3}\right) \& \&\left(y_{3}!=y_{1}\right)
$$

Using noalias requires a lot of "glue proof"

noalias: $\forall h x_{1} x_{2} v_{1} v_{2}$.

$$
\operatorname{def}\left(x_{1} \mapsto v_{1} \uplus x_{2} \mapsto v_{2} \uplus h\right) \rightarrow x_{1}!=x_{2}
$$

$D: \operatorname{def}\left(h_{1} \uplus\left(y_{1} \mapsto w_{1} \uplus y_{2} \mapsto w_{2}\right) \uplus\left(h_{2} \uplus y_{3} \mapsto w_{3}\right)\right)$

$$
\left(y_{1}!=y_{2}\right) \& \&\left(y_{2}!=y_{3}\right) \& \&\left(y_{3}!=y_{1}\right)
$$

Using noalias requires a lot of "glue proof"

noalias: $\forall h x_{1} x_{2} v_{1} v_{2}$.

$$
\operatorname{def}\left(x_{1} \mapsto v_{1} \uplus x_{2} \mapsto v_{2} \uplus h\right) \rightarrow x_{1}!=x_{2}
$$

$D: \operatorname{def}\left(h_{1} \uplus\left(y_{1} \mapsto w_{1} \uplus y_{2} \mapsto w_{2}\right) \uplus\left(h_{2} \uplus y_{3} \mapsto w_{3}\right)\right)$

$$
\left(y_{1}!=y_{2}\right) \& \&\left(y_{2}!=y_{3}\right) \& \&\left(y_{3}!=y_{1}\right)
$$

Using noalias requires a lot of "glue proof"

noalias: $\forall h x_{1} x_{2} v_{1} v_{2}$.

$$
\operatorname{def}\left(x_{1} \mapsto v_{1} \uplus x_{2} \mapsto v_{2} \uplus h\right) \rightarrow x_{1}!=x_{2}
$$

$$
D: \operatorname{def}\left(y_{1} \mapsto w_{1} \uplus y_{2} \mapsto w_{2} \uplus\left(h_{1} \uplus\left(h_{2} \uplus y_{3} \mapsto w_{3}\right)\right)\right)
$$

$$
\left(y_{1}!=y_{2}\right) \& \&\left(y_{2}!=y_{3}\right) \& \&\left(y_{3}!=y_{1}\right)
$$

Using noalias requires a lot of "glue proof"

noalias: $\forall h x_{1} x_{2} v_{1} v_{2}$.

$$
\operatorname{def}\left(x_{1} \mapsto v_{1} \uplus x_{2} \mapsto v_{2} \uplus h\right) \rightarrow x_{1}!=x_{2}
$$

$$
D: \operatorname{def}\left(y_{1} \mapsto w_{1} \uplus y_{2} \mapsto w_{2} \uplus\left(h_{1} \uplus\left(h_{2} \uplus y_{3} \mapsto w_{3}\right)\right)\right)
$$

$$
\text { true \&\& }\left(y_{2}!=y_{3}\right) \& \&\left(y_{3}!=y_{1}\right)
$$

Using noalias requires a lot of "glue proof"

noalias: $\forall h x_{1} x_{2} v_{1} v_{2}$.

$$
\operatorname{def}\left(x_{1} \mapsto v_{1} \uplus x_{2} \mapsto v_{2} \uplus h\right) \rightarrow x_{1}!=x_{2}
$$

$$
D: \operatorname{def}\left(y_{1} \mapsto w_{1} \uplus y_{2} \mapsto w_{2} \uplus\left(h_{1} \uplus\left(h_{2} \uplus y_{3} \mapsto w_{3}\right)\right)\right)
$$

$$
\text { true \&\& }\left(y_{2}!=y_{3}\right) \& \&\left(y_{3}!=y_{1}\right)
$$

Using noalias requires a lot of "glue proof"

noalias: $\forall h x_{1} x_{2} v_{1} v_{2}$.

$$
\operatorname{def}\left(x_{1} \mapsto v_{1} \uplus x_{2} \mapsto v_{2} \uplus h\right) \rightarrow x_{1}!=x_{2}
$$

$$
D: \operatorname{def}\left(y_{1} \mapsto w_{1} \uplus y_{2} \mapsto w_{2} \uplus\left(h_{1} \uplus\left(h_{2} \uplus y_{3} \mapsto w_{3}\right)\right)\right)
$$

$$
\text { true \&\& }\left(y_{2}!=y_{3}\right) \& \&\left(y_{3}!=y_{1}\right)
$$

Using noalias requires a lot of "glue proof"

noalias: $\forall h x_{1} x_{2} v_{1} v_{2}$. $\operatorname{def}\left(x_{1} \mapsto v_{1} \uplus x_{2} \mapsto v_{2} \uplus h\right) \rightarrow x_{1}!=x_{2}$
$D: \operatorname{def}\left(y_{2} \mapsto w_{2} \uplus y_{3} \mapsto w_{3} \uplus\left(y_{1} \mapsto w_{1} \uplus h_{1} \uplus h_{2}\right)\right)$
true \&\& $\left(y_{2}!=y_{3}\right) \& \&\left(y_{3}!=y_{1}\right)$

Using noalias requires a lot of "glue proof"

noalias: $\forall h x_{1} x_{2} v_{1} v_{2}$. $\operatorname{def}\left(x_{1} \mapsto v_{1} \uplus x_{2} \mapsto v_{2} \uplus h\right) \rightarrow x_{1}!=x_{2}$
$D: \operatorname{def}\left(y_{2} \mapsto w_{2} \uplus y_{3} \mapsto w_{3} \uplus\left(y_{1} \mapsto w_{1} \uplus h_{1} \uplus h_{2}\right)\right)$
true \&\& true \&\& $\left(y_{3}!=y_{1}\right)$

Using noalias requires a lot of "glue proof"

noalias: $\forall h x_{1} x_{2} v_{1} v_{2}$. $\operatorname{def}\left(x_{1} \mapsto v_{1} \uplus x_{2} \mapsto v_{2} \uplus h\right) \rightarrow x_{1}!=x_{2}$
$D: \operatorname{def}\left(y_{2} \mapsto w_{2} \uplus y_{3} \mapsto w_{3} \uplus\left(y_{1} \mapsto w_{1} \uplus h_{1} \uplus h_{2}\right)\right)$
true \&\& true \&\& $\left(y_{3}!=y_{1}\right)$

Using noalias requires a lot of "glue proof"

noalias: $\forall h x_{1} x_{2} v_{1} v_{2}$. $\operatorname{def}\left(x_{1} \mapsto v_{1} \uplus x_{2} \mapsto v_{2} \uplus h\right) \rightarrow x_{1}!=x_{2}$
$D: \operatorname{def}\left(y_{2} \mapsto w_{2} \uplus y_{3} \mapsto w_{3} \uplus\left(y_{1} \mapsto w_{1} \uplus h_{1} \uplus h_{2}\right)\right)$
true \&\& true \&\& $\left(y_{3}!=y_{1}\right)$

Using noalias requires a lot of "glue proof"

noalias: $\forall h x_{1} x_{2} v_{1} v_{2}$. $\operatorname{def}\left(x_{1} \mapsto v_{1} \uplus x_{2} \mapsto v_{2} \uplus h\right) \rightarrow x_{1}!=x_{2}$
$D: \operatorname{def}\left(y_{3} \mapsto w_{3} \uplus y_{1} \mapsto w_{1} \uplus\left(y_{2} \mapsto w_{2} \uplus h_{1} \uplus h_{2}\right)\right)$
true \&\& true \&\& $\left(y_{3}!=y_{1}\right)$

Using noalias requires a lot of "glue proof"

noalias: $\forall h x_{1} x_{2} v_{1} v_{2}$. $\operatorname{def}\left(x_{1} \mapsto v_{1} \uplus x_{2} \mapsto v_{2} \uplus h\right) \rightarrow x_{1}!=x_{2}$
$D: \operatorname{def}\left(y_{3} \mapsto w_{3} \uplus y_{1} \mapsto w_{1} \uplus\left(y_{2} \mapsto w_{2} \uplus h_{1} \uplus h_{2}\right)\right)$
true \&\& true \& \& true

Glue proof, formally (in Coq)

rewrite -!unA -!(unCA $\left(y_{2} \mapsto_{-}\right)-!\left(u n C A\left(y_{1} \mapsto{ }_{-}\right)\right)$unA in D. rewrite (noalias D).
rewrite -! unA - $\left(\right.$ unC $\left.\left(y_{3} \mapsto \mapsto_{-}\right)\right)-!\left(\right.$unCA $\left.\left(y_{3} \mapsto_{-}\right)\right)$in D.
rewrite - !(unCA $\left.\left(y_{2} \mapsto\right)_{-}\right)$) unA in D.
rewrite (noalias D).
rewrite - !unA $-!\left(\right.$ unCA $\left.\left(y_{1} \mapsto_{-}\right)\right)-!\left(\right.$unCA $\left.\left(y_{3} \mapsto_{-}\right)\right)$unA in D.
rewrite (noalias D).

Glue proof, formally (in Coq)

rewrite -!unA -!(unCA $\left(y_{2} \mapsto_{-}\right)-!\left(u n C A\left(y_{1} \mapsto{ }_{-}\right)\right)$unA in D. rewrite (noalias D).
rewrite -! unA - $\left(\right.$ unC $\left.\left(y_{3} \mapsto \mapsto_{-}\right)\right)-!\left(\right.$unCA $\left.\left(y_{3} \mapsto_{-}\right)\right)$in D.
rewrite - !(unCA $\left.\left(y_{2} \mapsto\right)_{-}\right)$unA in D.
rewrite (noalias D).
rewrite - !unA - ! (unCA $\left.\left(y_{1} \mapsto-\right)\right)-!\left(\right.$ unCA $\left.\left.\left(y_{3} \mapsto\right)_{-}\right)\right)$unA in D.
rewrite (noalias D).

Automation as it is today

Write custom tactic:

For each $x_{i}!=x_{j}$ in the goal:

- rearrange hypothesis, to bring x_{i} and x_{j} to the front
- apply the noalias lemma
- repeat

Automation as it is today

Write custom tactic:
For each $x_{i}!=x_{j}$ in the goal:

- rearrange hypothesis, to bring x_{i} and x_{j} to the front
- apply the noalias lemma
- repeat

However, custom tactics have several limitations

- Can be untyped or weakly specified
- Automation as a second class citizen

We really want an automated version of the noalias lemma:

$$
\text { noaliasA : } \forall \ldots ? ? ? \ldots x_{1}!=x_{2}
$$

where ??? asks type inference to construct glue proof.

Why?

- Strongly-typed custom automation!
- Composable, modular custom automation!

Using and composing automated lemmas

$$
\left(y_{1}!=y_{2}\right) \& \&\left(y_{2}!=y_{3}\right) \& \&\left(y_{3}!=y_{1}\right)
$$

Using and composing automated lemmas

$$
\begin{gathered}
\left(y_{1}!=y_{2}\right) \& \&\left(y_{2}!=y_{3}\right) \& \&\left(y_{3}!=y_{1}\right) \\
\downarrow
\end{gathered}
$$

true \&\& true \&\& true

Using and composing automated lemmas

$$
\begin{gathered}
\left(y_{1}!=y_{2}\right) \& \&\left(y_{2}!=y_{3}\right) \& \&\left(y_{3}!=y_{1}\right) \\
\downarrow
\end{gathered}
$$

true \&\& true \&\& true
by performing
rewrite ! (noaliasA D)

Using and composing automated lemmas

$$
\begin{gathered}
\left(y_{1}!=y_{2}\right) \& \&\left(y_{2}!=y_{3}\right) \& \&\left(y_{3}!=y_{1}\right) \\
\downarrow
\end{gathered}
$$

true \&\& true \&\& true
by performing
rewrite ! (noaliasA D) multiple times

Using and composing automated lemmas

$$
\left(y_{1}==y_{2}\right) \& \&\left(y_{2}!=y_{3}\right) \& \&\left(y_{3}!=y_{1}\right)
$$

Using and composing automated lemmas

$$
\begin{gathered}
\left(y_{1}==y_{2}\right) \& \&\left(y_{2}!=y_{3}\right) \& \&\left(y_{3}!=y_{1}\right) \\
\downarrow
\end{gathered}
$$

false \&\& $\left(y_{2}!=y_{3}\right) \& \&\left(y_{3}!=y_{1}\right)=$ false

Using and composing automated lemmas

$$
\begin{gathered}
\left(y_{1}==y_{2}\right) \& \&\left(y_{2}!=y_{3}\right) \& \&\left(y_{3}!=y_{1}\right) \\
\downarrow
\end{gathered}
$$

false \&\& $\left(y_{2}!=y_{3}\right) \& \&\left(y_{3}!=y_{1}\right)=$ false
by performing

$$
\text { rewrite (negate (noaliasA } D \text {) }
$$

where
negate : $\forall b$: bool. $!b=$ true $\rightarrow b=$ false

Curry-Howard correspondence!

- Overloading: infer code for a function based on arguments
- Lemma overloading:
infer proof for a lemma based on arguments

Our Main Contributions

Idea: proof automation through lemma overloading
Realizing this idea by Coq's canonical structures:

- A generalization of Haskell type classes
- Instances pattern-match terms as well as types
"Design patterns" for controlling Coq type inference
- Several interesting examples from HTT

Our Main Contributions

Idea: proof automation through lemma overloading
Realizing this idea by Coq's canonical structures:

- A generalization of Haskell type classes
- Instances pattern-match terms as well as types
"Design patterns" for controlling Coq type inference
- Several interesting examples from HTT

See the paper for details!

Haskell overloading: equality type class

class Eq a where

$$
\text { (==) }:: a \rightarrow a \rightarrow \text { Bool }
$$

instance Eq Bool where

$$
(==)=\lambda x y \cdot(x \& \& y) \|(!x \& \&!y)
$$

instance $(\mathrm{Eq} a, \mathrm{Eq} b) \Rightarrow \mathrm{Eq}(a \times b)$ where

$$
(==)=\lambda x y \cdot(\text { fst } x==\text { fst } y) \& \&(\text { snd } x==\text { snd } y)
$$

Haskell overloading: equality type class

class Eq a where

$$
\text { (==) }:: a \rightarrow a \rightarrow \text { Bool }
$$

instance Eq Bool where

$$
(==)=\text { eq_bool }
$$

instance $\left(f_{1}: \mathrm{Eq} a, f_{2}: \mathrm{Eq} b\right) \Rightarrow \mathrm{Eq}(a \times b)$ where

$$
(==)=\text { eq_pair } f_{1} f_{2}
$$

Haskell overloading: equality type class

Example:

$$
(x, \text { true })==(\text { false }, y)
$$

class Eq a where

$$
(==):: a \rightarrow a \rightarrow \text { Bool }
$$

instance Eq Bool where

$$
(==)=\text { eq_bool }
$$

instance $\left(f_{1}: \mathrm{Eq} a, f_{2}: \mathrm{Eq} b\right) \Rightarrow \mathrm{Eq}(a \times b)$ where

$$
(==)=\text { eq_pair } f_{1} f_{2}
$$

Haskell overloading: equality type class

Example:

$$
(x, \text { true }) \underbrace{==}_{\text {eq_pair eq_bool eq_bool }}(\text { false }, y)
$$

class Eq a where

$$
(==):: a \rightarrow a \rightarrow \text { Bool }
$$

instance Eq Bool where

$$
(==)=\text { eq_bool }
$$

instance $\left(f_{1}: \mathrm{Eq} a, f_{2}: \mathrm{Eq} b\right) \Rightarrow \mathrm{Eq}(a \times b)$ where

$$
(==)=\text { eq_pair } f_{1} f_{2}
$$

Coq overloading: equality type class

Coq structure: just a dependent record type

Coq overloading: equality type class

Coq structure: just a dependent record type

Coq overloading: equality type class

Coq structure: just a dependent record type

Creates projectors for each field, e.g.:

$$
\begin{array}{ll}
\text { sort } & : \text { Eq } \rightarrow \text { Type } \\
\left.(-==)_{-}\right) & : \forall e: \text { Eq. sort } e \rightarrow \text { sort } e \rightarrow \text { bool }
\end{array}
$$

Canonical instances

Instances defined as in Haskell

Example of instance inference

$$
(x, \text { true })==(\text { false }, y)
$$

Example of instance inference

$$
(x, \text { true })==(\text { false }, y)
$$

Remember

$$
(-==-): \forall e: \text { Eq . sort } e \rightarrow \text { sort } e \rightarrow \text { bool }
$$

Example of instance inference

$$
(x, \text { true })=(\text { false }, y)
$$

Remember

$$
\left(__{-}={ }_{-}\right): \forall e: \text { Eq . sort } e \rightarrow \text { sort } e \rightarrow \text { bool }
$$

Example of instance inference

$$
(x, \text { true })==(\text { false }, y)
$$

Remember

$$
\left({ }_{-}=={ }_{-}\right): \forall e: \text { Eq . sort } e \rightarrow \text { sort } e \rightarrow \text { bool }
$$

Coq finds an instance of e : Eq that unifies

$$
\text { sort e with } \quad \text { (bool } \times \text { bool })
$$

Example of instance inference

$$
(x, \text { true })==(\text { false }, y)
$$

Remember

$$
\left({ }_{-}=={ }_{-}\right): \forall e: \text { Eq . sort } e \rightarrow \text { sort } e \rightarrow \text { bool }
$$

Coq finds an instance of e : Eq that unifies

$$
\text { sort e with (bool } \times \text { bool) }
$$

$$
e=\text { pair_inst bool_inst bool_inst }
$$

Adding a proof

We add the proof that $\left({ }_{-}==_{-}\right)$is equivalent to Coq's $\left({ }_{-}={ }_{-}\right)$
name
structure $\overbrace{\text { Eq }}:=$
constructor
fields
$\overbrace{\text { mkEq }}$ \{sort : Type;
(- == _) : sort \rightarrow sort \rightarrow bool;
proof: $\forall x y$: sort. $x==y \leftrightarrow x=y\}$

Adding a proof

We add the proof that $\left({ }_{-}={ }_{-}\right)$is equivalent to Coq's $\left({ }_{-}={ }_{-}\right)$ name
structure $\overbrace{\text { Eq }}:=$
constructor
fields
$\overbrace{\text { mkEq }}$ \{sort : Type;
(= = _) : sort \rightarrow sort \rightarrow bool;
proof : $\forall x y$: sort. $x==y \leftrightarrow x=y\}$
Now instances also compute the proof:
canonical bool_inst := mkEq bool eq_bool pf_bool
canonical pair_inst $(A B: E q):=$ mkEq (sort $A \times$ sort B) (eq_pair $A B$) (pf_pair $A B$)

Lemma overloading

Overloading a simple lemma

Goal: Prove x is in the domain of

$$
\cdots \uplus(\cdots \uplus x \mapsto v \uplus \cdots) \uplus \cdots
$$

Overloading a simple lemma

Goal: Prove x is in the domain of

$$
\cdots \uplus(\cdots \uplus x \mapsto v \uplus \cdots) \uplus \cdots
$$

Naïve lemma:

$$
\begin{aligned}
\text { indom }: & \forall x: \text { ptr. } \forall v: A . \forall h: \text { heap. } \\
& x \in \operatorname{dom}(x \mapsto v \uplus h)
\end{aligned}
$$

Overloading a simple lemma

Goal: Prove x is in the domain of

$$
\cdots \uplus(\cdots \uplus x \mapsto v \uplus \cdots) \uplus \cdots
$$

Naïve lemma:

$$
\begin{aligned}
\text { indom }: & \forall x: \operatorname{ptr} . \forall v: A . \forall h: \text { heap. } \\
& x \in \operatorname{dom}(x \mapsto v \uplus h)
\end{aligned}
$$

Let's overload it!

indom overloaded

Define structure contains x, of heaps that contain x :
structure contains (x : ptr) :=
Contains \{ heap_of : heap;
indomO : $x \in$ dom heap_of $\}$

indom overloaded

Define structure contains x, of heaps that contain x :
structure contains (x : ptr) :=

$$
\begin{aligned}
\text { Contains }\{ & \text { heap_of : heap; } \\
& \text { indomO : } x \in \text { dom heap_of }\}
\end{aligned}
$$

Induced projections:
heap_of : $\forall x$: ptr. contains $x \rightarrow$ heap
indomO : $\forall x:$ ptr. $\forall c:$ contains $x . x \in$ dom (heap_of c)

The second one is our overloaded lemma

When solving

$$
x \in \operatorname{dom} h
$$

indomO algorithm, informally

When solving

$$
x \in \operatorname{dom} h
$$

type inference should proceed as follows:

- If h is $x \mapsto v$, succeed with
singleton_pf : $\forall x v . x \in \operatorname{dom}(x \mapsto v)$

indomO algorithm, informally

When solving

$$
x \in \operatorname{dom} h
$$

type inference should proceed as follows:

- If h is $x \mapsto v$, succeed with

$$
\text { singleton_pf }: \forall x v . x \in \operatorname{dom}(x \mapsto v)
$$

- If h is $h_{1} \uplus h_{2}$:
- If $x \in \operatorname{dom} h_{1}$, compose with

$$
\text { left_pf : } \forall h_{1} h_{2} . x \in \operatorname{dom} h_{1} \rightarrow x \in \operatorname{dom}\left(h_{1} \uplus h_{2}\right)
$$

indomO algorithm, informally

When solving

$$
x \in \operatorname{dom} h
$$

type inference should proceed as follows:

- If h is $x \mapsto v$, succeed with

$$
\text { singleton_pf }: \forall x v . x \in \operatorname{dom}(x \mapsto v)
$$

- If h is $h_{1} \uplus h_{2}$:
- If $x \in \operatorname{dom} h_{1}$, compose with
left_pf : $\forall h_{1} h_{2} . x \in \operatorname{dom} h_{1} \rightarrow x \in \operatorname{dom}\left(h_{1} \uplus h_{2}\right)$
- If $x \in \operatorname{dom} h_{2}$, compose with

$$
\text { right_pf : } \forall h_{1} h_{2} . x \in \operatorname{dom} h_{2} \rightarrow x \in \operatorname{dom}\left(h_{1} \uplus h_{2}\right)
$$

Implementation of indomO

Algorithm encoded in canonical instances of contains x :
canonical found $A \times(v: A):=$
Contains $x(x \mapsto v)$ singleton_pf
canonical left $x h(c$: contains $x):=$
Contains $x(($ heap_of $c) \uplus h)($ left_pf (indomO $c))$
canonical right $x h(c$: contains $x):=$
Contains $x(h \uplus($ heap_of $c))$ (right_pf (indomO $c)$)

Implementation of indomO

Algorithm encoded in canonical instances of contains x :
canonical found $A \times(v: A):=$
Contains $x(x \mapsto v)$ singleton_pf
canonical left $x h(c$: contains $x):=$
Contains $x(($ heap_of $c) \uplus h)($ left_pf (indomO $c))$
canonical right $x h(c$: contains $x):=$
Contains $x(h \uplus($ heap_of $c))$ (right_pf (indomO $c)$)

Implementation of indomO

Algorithm encoded in canonical instances of contains x :

As a logic program

canonical found $A \times(v: A):=$
Contains $x(x \mapsto v)$ singleton_pf
canonical left $\times h(c$: contains $x):=$
Contains $x(($ heap_of $c) \uplus h)($ left_pf $($ indomO $c))$
canonical right $x h(c$: contains $x):=$
Contains $x(h \uplus($ heap_of $c))$ (right_pf (indomO $c))$

Implementation of indomO

Algorithm encoded in canonical instances of contains x :

Canonical structures \approx term classes

canonical found $A \times(v: A):=$
Contains $x(x \mapsto v)$ singleton_pf
canonical left $\times h(c$: contains $x):=$
Contains $x(($ heap_of $c) \uplus h)($ left_pf $($ indomO $c))$
canonical right $x h(c$: contains $x):=$
Contains $x(h \uplus($ heap_of $c))$ (right_pf (indomO c))

Example application of indomO

indomO : $\forall x$: ptr. $\forall c$: contains $x . x \in$ dom (heap_of c)

$$
y \in \operatorname{dom}(z \mapsto u \uplus y \mapsto v)
$$

Example application of indomO

indomO : $\forall x$: ptr. $\forall c$: contains $x . x \in$ dom (heap_of c)

$$
y \in \operatorname{dom}(z \mapsto u \uplus y \mapsto v)
$$

Solve it by apply indomO

Example application of indomO

indomO : $\forall x$: ptr. $\forall c$: contains $x . x \in$ dom (heap_of c)

$$
y \in \operatorname{dom}(z \mapsto u \uplus y \mapsto v)
$$

Solve it by apply indomO

Example application of indomO

indomO : $\forall x$: ptr. $\forall c$: contains $x . x \in$ dom (heap_of c)

$$
y \in \operatorname{dom}(z \mapsto u \uplus y \mapsto v)
$$

Solve it by apply indomO, unifying:
x with y

Example application of indomO

indomO : $\forall x$: ptr. $\forall c$: contains $x . x \in$ dom (heap_of c)

$$
y \in \operatorname{dom}(z \mapsto u \uplus y \mapsto v)
$$

Solve it by apply indomO, unifying:
x with y heap_of c with $(z \mapsto u \uplus y \mapsto v)$

Example application of indomO

indomO : $\forall x$: ptr. $\forall c$: contains $x . x \in$ dom (heap_of c)

$$
y \in \operatorname{dom}(z \mapsto u \uplus y \mapsto v)
$$

Solve it by apply indomO, unifying:
x with y heap_of c with $(z \mapsto u \uplus y \mapsto v)$

Result:

$$
c=\text { right } y(z \mapsto u) \text { (found } y v)
$$

Example application of indomO

indomO : $\forall x$: ptr. $\forall c$: contains $x . x \in$ dom (heap_of c)

$$
y \in \operatorname{dom}(z \mapsto u \uplus y \mapsto v)
$$

Solve it by apply indomO, unifying:
x with y heap_of c with $(z \mapsto u \uplus y \mapsto v)$

Result:

$$
c=\text { right } y(z \mapsto u) \text { (found } y v \text {) }
$$

Example application of indomO

indomO : $\forall x$: ptr. $\forall c$: contains $x . x \in$ dom (heap_of c)

$$
y \in \operatorname{dom}(z \mapsto u \uplus y \mapsto v)
$$

Solve it by apply indomO, unifying:
x with y heap_of c with $(z \mapsto u \uplus y \mapsto v)$

Result:

$$
c=\text { right } y(z \mapsto u) \text { (found } y v)
$$

Overlapping instances not allowed in Coq!

canonical left $\times h(c$: contains $x):=$
Contains $x(($ heap_of $c) \uplus h)($ left_pf $($ indomO $c))$
canonical right $x h(c$: contains $x):=$
Contains $x(h \uplus($ heap_of $c))$ (right_pf (indomO c))

Overlapping instances not allowed in Coq!
"Tagging" pattern for instance disambiguation!
canonical left $\times h(c$: contains $x):=$
Contains $x(($ heap_of $c) \uplus h)$ (left_pf (indomO c))
canonical right $x h(c$: contains $x):=$
Contains $x(h \uplus($ heap_of $c))$ (right_pf (indomO c))

What else is in the paper

"Tagging" pattern for instance disambiguation

Example of proof by reflection
"Hoisting" pattern for ordering unification subproblems
"Search-and-replace" pattern for structural in-place-update

Proof automation by lemma overloading
Curry-Howard correspondence!

- Overloading:
infer code for a function based on arguments
- Lemma overloading: infer proof for a lemma based on arguments

Robust, verifiable, composable automation routines

Questions?

Comparison with Coq Type Classes

Coq Type Classes (CTC) [Sozeau and Oury, TPHOLs '08]

- Similar to canonical structures, which predated them
- Instance resolution for CTC guided by proof search, rather than by Coq unification
- They're in beta and it's not my fault!
- Overlapping instances resolved by weighted backtracking

We've ported a number of our examples to CTC

- Could not figure out how to port "search-and-replace" pattern
- Sometimes CTC is faster, sometimes CS is faster
- Further investigation of the tradeoffs is needed
- Future work: unify the two concepts?

A word on performance

Performance for lemma overloading currently not great:

- Time to perform a simple assignment to a unification variable is quadratic in the number of variables in the context, and linear in the size of the term being assigned
- With tactics, it's nearly constant-time

Clearly a bug in the implementation of Coq unification:

- Not always a problem, since interactive proofs often keep variable contexts short
- But it needs to be fixed. . .

Solution: The "Tagging" Pattern

Present different constants for each instance:
canonical found $A \times(v: A):=$ Contains $x($ found_tag $(x \mapsto v)) \ldots$
canonical left $\times h(c$: contains $x):=$
Contains x (left_tag $(($ heap_of $f) \uplus h)) \ldots$
canonical right $x h(c$: contains $x):=$
Contains x (right_tag $(h \uplus($ heap_of $f))) \ldots$

No overlap anymore! Where:

$$
\text { found_tag }=\text { left_tag }=\text { right_tag }
$$

Lazy unification algorithm unrolls them upon matching failure!

The Tagging Pattern

We employ the "tagging" design pattern to disambiguate instances.

- Rely on lazy expansion of constant definitions by the unification algorithm.

$$
\underline{\text { structure tagged_heap }:=\text { Tag \{untag : heap\} }}
$$

$\left.\begin{array}{l}\text { right_tag } h:=\operatorname{Tag} h \\ \text { left_tag } h:=\text { right_tag } h \\ \text { canonical found_tag } h:=\text { left_tag } h\end{array}\right\}$ all synonyms of Tag

- One synonym of Tag for each canonical instance of find x
- Listed in the reverse order in which we want them to be considered during pattern matching
- Last one marked as a canonical instance of tagged_heap

The Tagging Pattern

And we tag each canonical instance of find x accordingly:
canonical found $A \times(v: A):=$ Contains x (found_tag $(x \mapsto v)) \ldots$
canonical left $\times h\left(f^{\prime}:\right.$ contains $\left.x\right):=$
Contains \times (left_tag $\left(\right.$ untag $\left(\right.$ heap_of $\left.\left.\left.f^{\prime}\right) \uplus h\right)\right) .$.
canonical right $x h\left(f^{\prime \prime}:\right.$ contains $\left.x\right):=$
Contains x (right_tag $\left(h \uplus\right.$ untag (heap_of $\left.\left.f^{\prime \prime}\right)\right)$) ...
No overlap! Each instance has a different constant.

Example

Where f : contains y

$$
\text { heap_of ?f } \widehat{=} \text { found_tag }(x \mapsto u \uplus y \mapsto v)
$$

Try instance found and fail

Example

Where f : contains y

$$
\text { heap_of ?f } \widehat{=} \text { left_tag }(x \mapsto u \uplus y \mapsto v)
$$

Try instance left and fail

Example

Where f : contains y
heap_of ?f $\widehat{=}$ right_tag $(x \mapsto u \uplus y \mapsto v)$

Try instance right and succeed

Overloaded cancellation lemma for heaps

Applying lemma cancelO on a heap equation

$$
x \mapsto v_{1} \uplus\left(h_{3} \uplus h_{4}\right)=h_{4} \uplus x \mapsto v_{2}
$$

cancels common terms to produce

$$
v_{1}=v_{2} \wedge h_{3}=\emptyset
$$

Steps:
(1) Logic program turn equations into abstract syntax trees

- Executed during type inference by unification engine
- Equal variables turn into equal natural indices
(2) Functional program cancels common terms
- Functional program translate back into equations

Requires only the tagging pattern

Overloaded version of noalias

noalias : $\forall h$:heap. $\forall x_{1} x_{2}$:ptr. $\forall v_{1}: A_{1} . \forall v_{2}: A_{2}$.

$$
\operatorname{def}\left(x_{1} \mapsto v_{1} \uplus x_{2} \mapsto v_{2} \uplus h\right) \rightarrow x_{1}!=x_{2}
$$

noaliasO :
$\forall x y:$ ptr. $\forall s$: seq ptr. $\forall f:$ scan $s . \forall g$: check x y s. def (heap_of $f) \rightarrow x!=\left(y _o f g\right)$

- Requires two recursive logic programs
- scan traverses a heap collecting all pointers into a list s
- then check traverses s searching for x and y
- Somewhat tricky to pass arguments from scan to check
- Employs the hoisting pattern to reorder unification subproblems.

Search-and-replace pattern

Useful lemma for verifying "Hoare triples":

But we'd like to do "in-place update" on the initial heap, rather than shifting $x \mapsto$? to the front of the heap and then back again.

Search-and-replace pattern: example

Example 1: To prove the goal

$$
G: \text { verify }\left(h_{1} \uplus\left(x_{1} \mapsto 1 \uplus x_{2} \mapsto 2\right)\right)\left(\text { write } x_{2} 4 ; e\right) q
$$

we can apply bnd_writeO to reduce it to:

$$
G: \text { verify }\left(h_{1} \uplus\left(x_{1} \mapsto 1 \uplus x_{2} \mapsto 4\right)\right) \text { e } q
$$

Search-and-replace pattern: idea

Build a logic program that turns a heap into a function that abstracts the wanted pointer.

Example: Turn $h_{1} \uplus\left(x_{1} \mapsto 1 \uplus x_{2} \mapsto 2\right)$ into

$$
f=\text { fun } k . h_{1} \uplus\left(x_{1} \mapsto 1 \uplus k\right)
$$

Then the bnd_writeO lemma can be stated roughly as

$$
\begin{aligned}
& \text { verify }(f(x \mapsto v)) \text { e } q \rightarrow \\
& \text { verify }(f(x \mapsto w))(\text { write } x v ; e) q
\end{aligned}
$$

Search-and-replace pattern: more formally

It turns out that f must have a dependent function type.
structure partition ($k r$: heap) $:=$
Partition \{heap_of : tagged_heap;

$$
-: \text { heap_of }=k \uplus r\}
$$

bnd_writeO : $\forall r$: heap. $\forall f:(\Pi k$: heap. partition $k r) . \forall \ldots$

$$
\begin{aligned}
& \text { verify }(\text { untag (heap_of }(f(x \mapsto v)))) \text { e } q \rightarrow \\
& \text { verify }(\text { untag }(\text { heap_of }(f(x \mapsto w)))) \text { (write } \times v \text {; e) } q
\end{aligned}
$$

Search-and-replace pattern: forward reasoning

Example 2: Given hypothesis

$$
H \text { : verify }\left(h_{1} \uplus\left(x_{1} \mapsto 1 \uplus x_{2} \mapsto 4\right)\right) \text { e } q
$$

we can apply (bnd_writeO $\left.\left(x:=x_{2}\right)(w:=2)\right)$ to it:

$$
H: \text { verify }\left(h_{1} \uplus\left(x_{1} \mapsto 1 \uplus x_{2} \mapsto 2\right)\right)\left(\text { write } x_{2} 4 ; e\right) q
$$

Note: this duality of use is not possible with tactics

