Separation Logic
in the Presence of Garbage Collection

Chung-Kil Hur Derek Dreyer Viktor Vafeiadis

Max Planck Institute for Software Systems (MPI-SWS)
Kaiserslautern and Saarbriicken, Germany

LICS 2011
Toronto, Canada

Separation logic

Separation Logic =
Hoare Logic

{P} C{Q}
<= Vs, hsuch that s,h = P,
1. C,s, h does not get stuck
2. if C,s,h~*skip,s’,
then s/, 0" = Q

+ Separating Conjunction “x

s,hiEPxQ
<= dhy,hp. h=hiWhy A S,hl):P VAN S,hz):Q

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Frame rule

P *{g g }g}* R] FV(R)NMod(C) =0

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Two main settings of separation logic

Low-level languages with manual memory management:

e e.g., C with malloc(), free()

High-level languages with automatic memory management:

@ e.g., Java, ML
@ Garbage collection not observable in operational semantics

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Our focus: Low-level languages with garbage collection

Want to support local reasoning about low-level programs that
interface to a garbage collector (GC)

@ e.g., the output of a compiler for a garbage-collected
language, linked with some hand-coded assembly

Want to allow programs to violate the GC's invariants in between
calls to the memory allocator

@ e.g., creating dangling pointers, performing address arithmetic

Informal local reasoning principles clearly exist,
so we should be able to codify them in separation logic!

@ Only work on the topic: [Calcagno, O'Hearn, & Bornat 2003]
and [McCreight, Shao, Lin & Li 2007]

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Motivating example: Array initialization

x := ALLOC(n);
ti=x+4n
while x < t do
[x] :=0;
x:=x+4
od;
x:=x—4n;

t:=0

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Motivating example: Array initialization

GC safe —
x := ALLOC(n);

t:=x+4n;
while x < t do
[x] :==0;
x:=x+4
GC unsafe —
od;
x:=x—4n;

t:=0
GC safe —

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Key Challenges

{P} GC() {P}
e Want to give a clean specification for the GC,
essentially viewing it as equivalent to skip

The frame rule

@ Soundness somewhat subtle due to lack of “heap locality”

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

High-level ideas

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Problem 1: Unreachable blocks may be reclaimed

Conundrum due to [Reynolds 2000]:

{true}
x = new(); [x] :=5; x:=null;
{x=nullA3¢. ¢ — 5}

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Problem 1: Unreachable blocks may be reclaimed

Conundrum due to [Reynolds 2000]:

{true}

x = new(); [x] :=5; x:=null;
{x=nullA3¢. ¢ — 5}

GC()

{x=null A3t £ = 5}

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Problem 1: Unreachable blocks may be reclaimed

Conundrum due to [Reynolds 2000]:

{true}

x = new(); [x] :=5; x:=null;
{x=nullA3¢. ¢ — 5}

cC()

{x=nullA 3. ¢ — 5}

Approach by [Calcagno et al. 2003]:
Impose “monster-barring” syntactic restriction on assertions P.

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Problem 2: Pointers can be relocated

This triple is easy to validate, even if the GC relocates x:

{x=>7} GC() {x—=T7}

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Problem 2: Pointers can be relocated

This triple is hard to validate, because the GC could move /:

{x=lxl—7} GC() {x—=lxl—T}

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Problem 2: Pointers can be relocated

This triple is hard to validate, because the GC could move ¢:

{x=slxl—T7} GC() {x—=/0xl T}

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Problem 2: Pointers can be relocated

This triple is hard to validate, because the GC could move /:

{x=lxl =7 GC() {x—=/V x0T}

One approach: Avoid logical variables like ¢, and use auxiliary
program variables instead

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Problem 2: Pointers can be relocated

This triple is hard to validate, because the GC could move /:

{x=lxl =7 GC() {x—=/V x0T}

One approach: Avoid logical variables like ¢, and use auxiliary
program variables instead

@ But we would prefer to use logical variables

@ Worse, auxiliary variables may affect the reachability of data

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Logical memory (adapted from [McCreight et al. 2007])

LM M: isomorphism between reachable blocks of LM and M

LM
A
GC

i
M M’

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Logical memory (adapted from [McCreight et al. 2007])

LM M: isomorphism between reachable blocks of LM and M

(<5 LM
7N
0x80 < 5 M—CC W

{true}

x = new(); [x] :=5; x:=null;

{x=nullA 3. ¢ — 5}

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Logical memory (adapted from [McCreight et al. 2007])

LM M: isomorphism between reachable blocks of LM and M

{5 LM {5
7 N
0x80 < 5 M—CC W emp

{true}

x = new(); [x] :=5; x:=null;
{x=nullA 3. ¢ — 5}

cC()

{x=null A3C. £ = 5}

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Logical memory (adapted from [McCreight et al. 2007])

LM M: isomorphism between reachable blocks of LM and M

LM
A
GC

x — 0x40 % 0x40 — 7 M M’

x—=lxl =7

{x=lxl—T}

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Logical memory (adapted from [McCreight et al. 2007])

LM M: isomorphism between reachable blocks of LM and M

LM
A
GC

x> 0x40 x0x40 -7 M M’ x < 0x60 * 0x60 — 7

x=>lxl=7 x=lxl =7

{x=lxl =7} GC() {x—=lxl—T}

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Semantics of Hoare triples with logical memories

{Ph c{{Qy

= VYM,LM such that LM =P A LM 'S M
1. C, M does not get stuck
2. if C, M ~~* skip, M’
then ILM'. LM = Q A LM 2 M

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Semantics of Hoare triples with logical memories

{Ph c{{Qy

= VYM,LM such that LM =P A LM 'S M
1. C, M does not get stuck
2. if C, M ~~* skip, M’
then ILM'. LM’ = Q A LM' 2 M’

But in order to guarantee {{P}} GC() {{P}}, we need to ensure
that we only invoke the GC under GC-safe memories

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Semantics of Hoare triples with logical memories

{Ph c{{Qy

&= VM, LM such that LM = P A LM 'S M A LM safe
1. C, M does not get stuck
2. if C, M ~~* skip, M’
then ILM'. LM’ = Q A LM' 2 M' A LM’ safe

But in order to guarantee {{P}} GC() {{P}}, we need to ensure
that we only invoke the GC under GC-safe memories

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

GC safety

LM = (s, h)
v safe . v is either a non-pointer word

or a pointer to the head of an allocated block.
s safe : all program variables in s contain safe values.
h safe : all reachable blocks in h contain safe values.

LM safe : LM.s safe A LM.h safe.

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Semantics of Hoare triples with logical memories

{Ph c{{Qy

&= VM, LM such that LM = P A LM 'S M A LM safe
1. C, M does not get stuck
2. if C, M ~~* skip, M’
then ILM'. LM’ = Q A LM' ' M' A LM’ safe

But in order to guarantee {{P}} GC() {{P}}, we need to ensure
that we only invoke the GC under GC-safe memories

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Motivating example: Array initialization

GC safe —
x := ALLOC(n);

t:=x+4n;
while x < t do
[x] :==0;
x:=x+4
GC unsafe —
od;
x:=x—4n;

t:=0
GC safe —

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Two-level logic

@ Outer-level logic
{Ph CcQp

> VM, LM such that LM =P A LM S M A LM safe
1. C, M does not get stuck
2. if C, M ~* skip, M’
then ILM'. LM’ = Q A LM’ M' A LM’ safe

@ Inner-level logic
{P} C{@Q}

= VYM,LM such that LM =P A LM'Z M
1. C, M does not get stuck
2. if C, M ~~* skip, M’
then ILM'. LM' = Q A LM' 2 M

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Obviously unsound:

{P} C{Q}
{Ph C i@y

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Towards an “inclusion” rule

We want something like this ...

{P A mem is GC-safe} C {Q A mem is GC-safe}
{PH C{{Q}

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Towards an “inclusion” rule

We want something like this ...

{P A mem is GC-safe} C {Q A mem is GC-safe}
{PH C{{Q}

... but how do we characterize mem is GC-safe?

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Towards an “inclusion” rule

We want something like this ...

{P A mem is GC-safe} C {Q A mem is GC-safe}
{PH C{{Q}

... but how do we characterize mem is GC-safe?

Solution: We make a simplifying assumption.

@ In the inner-level logic, the store may contain unsafe values,
but the heap may not.

e This is OK, given how interior pointers are typically used.

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Towards an “inclusion” rule

We want something like this ...

{P A is GC-safe} C {Q A is GC-safe}
{PH C{{Q}

... but how do we characterize is GC-safe?

Solution: We make a simplifying assumption.

@ In the inner-level logic, the store may contain unsafe values,
but the heap may not.

@ This is OK, given how interior pointers are typically used.

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Inclusion rule

{P A safe(V)} C {Q A safe(Mod(C))}
{Py C @i

V C ProgVars

@ safe is a new primitive predicate in our inner-level logic.

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Two-level logic (revisited)

@ Outer-level logic

{{Ph c @}y

& VM,LM such that LM = P A LM 2 M A LM safe
1. C, M does not get stuck
2. if C, M ~* skip, M’
then ILM'. LM' = Q A LM’ M' A LM’ safe

@ Inner-level logic
{P} C{Q}

= VYM,LM such that LM =P A LMZ M
1. C, M does not get stuck
2. if C, M ~~* skip, M’
then ILM'. LM' = Q A LM' 2 M

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Two-level logic (revisited)

@ Outer-level logic

{{Ph c @}y

& VM,LM such that LM = P A LM 2 M A LM safe
1. C, M does not get stuck
2. if C, M ~* skip, M’
then ILM'. LM' = Q A LM’ M' A LM’ safe

@ Inner-level logic
{P} C{Q}

<= VM, LM such that LM =P A LM % M A LM.h safe
1. C, M does not get stuck
2. if C, M ~~* skip, M’
then ILM'. LM' = Q A LM’ M’ A LM'.h safe

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Frame rule

{Pr C{Q}

{P+xR} C{Qx* R} 0

FV(R) N Mod(C)

Our semantics so far doesn't support frame,
because the presence of a GC violates “heap locality”

@ Solution: Following [Birkedal et al. 2006],
we bake the frame rule into the semantics of triples

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Baking the frame rule in

@ Outer-level logic

{{Ph C @}

= VM, LM such that LM =P A LM M A LM safe
1. C, M does not get stuck
2. if C, M ~* skip, M’
then ILM'. LM' = Q A LM’ M' A LM’ safe

@ Inner-level logic
{P} C{Q}

<= VM, LM such that LM =P A LM M A LM.h safe
1. C, M does not get stuck
2. if C, M ~~* skip, M’
then ILM'. LM =Q A LM’ M A LM .h safe

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Baking the frame rule in

@ Outer-level logic
{PY C Qi
< VM, LM, LM such that LM =P A LMW LM CMA LMy LM safe
1. C, M does not get stuck

2. if C, M ~~* skip, M’ ‘
then ILM'. LM" = Q A LM' W& LMy X M' A LM’ & LM safe

@ Inner-level logic
{P} C{Q}
< VM, LM, LM such that LM = P A LMW LM M A (LM @ LMg).h safe
1. C, M does not get stuck

2. if C, M ~~* skip, M’ _
then ILM'. LM’ }= Q A LM’ & LM X M A (LM’ & LM;).h safe

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Proof rules & Examples

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Logical entities

Words % {welZ}
Locs & {1,62,...}

LogPtrs def {£¥i|LecLocsnicZ}

LogVals def {v € Words & LogPtrs }
LStores %' {'s € ProgVars — LogVals }

LHeaps def {h € Locs —g, N —g, LogVals }

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Assertions

@ Outer-level assertions
P := E | logptr(E) | word(E)

| ESE | PxP | P—=xP
| P=P | PAP | PVP | YW.P | Jv.P

@ Inner-level assertions

P := safe(E)
| E | logptr(E) | word(E)
| E;>E | PxP | PP
| P=P | PAP | PVP | Yv.P | 3v.P

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Selected proof rules

{(x=vAE=E)}x:=E {x=E[v/x]} (Assign)

{x=uNE > v}x:=[E]{x=VvAE[u/x] = v} (Read)

{E — — nsafe(E)} [E] := E' {E — E'} (Write)
n>0
{true}} x := ALLOC(n) {x <=, —,...,—}} (Alloc)

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Example 1: Array initialization

x := ALLOC(n);
t:=x+4n
while x < t do
[x] :==0;
x:=x+4
od;
x:=x—4n;

t =

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Example 1: Array initialization

x := ALLOC(n);

n times
7\

Z[x] =0; x:=x+4); ...; ([x]:==0; x:=x+4)

Xx:=x—4n

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Example 1: Array initialization

{{true}}
x := ALLOC(n);

{x—=n—...,—}}

n times
7\

Z[x] =0; x:=x+4); ...; ([x]:==0; x:=x+4)

Xx:=x—4n

{x—=,0,...,0}}

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Example 1: Array initialization

{P Asafe(V)} C {Q A safe(Mod(C))}

{{truel} {Pi c ey
x := ALLOC(n);
{zx—=n—....—}}
{x —=n,—,...,— Asafe(x)}
Z[x] =0; x:=x+4) A (%] =0, x:=x+4)

Xx:=x—4n

{x—=,0,...,0 Asafe(x)}
{x—=,0,...,0}}

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Example 1: Array initialization

{P Asafe(V)} C {Q A safe(Mod(C))}

{true}} {Ph € {Qy
x := ALLOC(n);
{x—=n— ...,
{x —=n,—,...,— Asafe(x)}
Z[x] =0; x:=x+4); A (%] :=0; x:=x+4)

{x—4n<—,0,...,0 Asafe(x — 4n)}

X:=x—4n

{x—=,0,...,0 Asafe(x)}
{x—=,0,...,0}}

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Example 1: Array initialization

For the original example, note that the setting of t to a safe value
is important, since t is modified by the program.

x := ALLOC(n);
t:=x+4n;
while x < t do
[x] :=0;
x=x+4
od;

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

i=1+j-2)+2

i=ixi; i:=2xi+1

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Example 2: Add & Square

{i=2n+1Aj=2m+1}}
i=(1+j—-2)+2

i=ixi; i:=2x1i+1

fi=2(n+mP+1Aj=2m+1}}

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Example 2: Add & Square

{i=2n+1Aj=2m+1}}
{i=2n+1ANj=2m+1Aword(n,m)}

i=(1+j—-2)+2
{i=n+mAj=2m+1Aword(n,m)}
i=ixi; i:=2x1i+1

{i=2(n+m?+1Aj=2m+1}
{i=2(n+m)>2+1Aj=2m+1Asafe(i)}
fi=2(n+mP?+1Aj=2m+1}

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Conclusion

@ Summary

e Separation logic to reason about low-level programs that might
violate GC safety in between calls to the GC

o Key ideas:
- Logical memory
- Two-level logic with “inclusion” rule & safe predicate

o Detailed soundness proof (in the technical appendix)

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Conclusion

@ Summary

e Separation logic to reason about low-level programs that might
violate GC safety in between calls to the GC
o Key ideas:

- Logical memory
- Two-level logic with “inclusion” rule & safe predicate
o Detailed soundness proof (in the technical appendix)

e Limitations
e Only accounts for stop-the-world collectors
e Conjunction rule is unsound
e Example we should but can’t prove in general:

{x=vAy=w}
X=X XOry, y:=XXOry, X:=XXOry
{x=wAy=v}

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

