Separation Logic in the Presence of Garbage Collection

Technical Appendix

Chung-Kil Hur Derek Dreyer Viktor Vafeiadis

Max Planck Institute for Software Systems (MPI-SWS)
{gil,dreyer,viktor}Ompi-sws.org

April 2011

Contents

1 anguage,

1.1 Storage Model|

..

[1.3 Operational Semantics| Lo
I1.4 Garbage Collector Specification| L Lo oo

Program Specifications|

2.1 Logical Storage Model] o

13

4

xamples
4.1 Array Assignment| e e e e
4.2 Word Swap| e
4.3 Linking of Assignment and Swap| oL Lo
4.4 Simple Addition]
4.5 Integer Arithmetic| o
E6 Tist Reversall . . . o o v v oot
.7 Array Copyl . . - . o e e

Soundness of Program Logic|

.1 Basic Lemmasl. e

B34 TFrameo 46
....................................... 47
B36 _FEX . . o oo 47
B3 _Genl . . . oo e 48
BE38Totall. oo 48
5 D R 49
B30 WhHIld oo 50
.4 Soundness of Assertion Entailmentsl 53
B41 NPtxSafd 53
B42 BoolWordl 53
0.4.3 PointstoNZerol 53
BAA EXDOALE . « o o o o e e e 54
p.4.5 Heapdate] 54
54

54

55

55

55

55

56

57

57

58

59

59

1 Language
1.1 Storage Model

ProgVars < {z,y,...}

Words & {welZ}

Ptrs def {p € Words | p > 0 A p is a multiple of 4 }
NonPtrs < {a € Words \ Ptrs }

Stores {'s € ProgVars — Words }

Heaps def {h € Ptrs =g, Words }

1.2 Syntax

Expressions

where x € ProgVars, w € Words and x € {+, —, x, =+, <,=,and }

E, or Ey f ot (not £ and not E5)
B # By % not (B = B»)

By < B, ¥ (B = Ey) or (By < Ey)
ENC(E) % 2x B +1

Commands

C . :=x=F
x = [E]
[E] .=F

|

|

| skip
| if E then C else C fi

| while E do C od

| C;C

| allocx

where x € ProgVars and ¢ € N

x := ALLOC(E) Ly = E; alloc x

Free variables

FPV(E) 2f the set of program variables appearing in the expression F
FPV(C) 2 the set of program variables appearing in the command C

{x} ifC=x:=FE)vC=(x:=[E])VvC=allocx
Mod(C) det) Mod(C") %f C= Yvhile E do C’ od _

Mod(C")UMod(C”) if C =if E then C’ else C" fiv C = C";C”

0 otherwise

1.3 Operational Semantics

‘ [E] € Stores — Words‘

. o= s(x)
[[wﬂs

HEl *Eg]]s L=

undef otherwise
where x € {+, —, x,+,<,=,and },w + 0 = undef,

w
{ Wy * Wo if [Er]s = w1 A [E2]s = w2

def o . .
wy < wg = 1if wy < wg; 0 otherwise,

def . . .
w; = wy = 1 if w; = wsy; 0 otherwise,

w1 and wy defq if wy # 0 Aws # 0; 0 otherwise
oL, = { PR 1L

undef otherwise
where not w % 1 if w = 0; 0 otherwise

C,s,h~C' s N

[E]s # undef
x:= E,s,h~ skip, (s | x — [E]s), h
[E]s = p € dom(h)
x:=[E], s,h ~ skip, (s | x — h(p)),h
[E]s = p € dom(h) [E']s # undef
[E] := FE’,s,h ~ skip, s, (h | p— [E']s)
[E]s € Words\{0}
if £ then C else Cs fi,s,h ~ C1,s,h

HEHS =0
if £ then C; else Cs fi,s,h ~ Cy,s,h

while E do C od, s, h ~> skip, s, h
[E]s € Words\{0}
while E do C od, s, h ~» (C;while E do C od), s, h
Cy,8,h~ Cl, s, 1
(skip; C),s,h ~ C, s, h (C1;Cs),8,h ~ (C1;Cq), s, W

Notation
C,s,h~ — iff AC’, s\ W.C,s,h~C", s I
C, s, h diverges iff 3{ Cj, s, hi tien. (Co, 50, ho) = (C,s,h) AVi. Cy, 84, hi ~» Ciy1, 8it1, higa

1.4 Garbage Collector Specification

Shapes := {0 € Ptrs =4, Nt }
dom(o) = Wocdom{P+4%x0,....p+4(c(p) - 1)}
roots(s) Lef {p€Ptrs|Ix. p=s(x) }
reachg(R, h, o) L
reach,+1(R, h,0) ef reach, (R, h,o) U
{p € Ptrs | I’ € reach, (R, h,0). Fi < o(p'). p=hp +4i)}
reach(R, h, o) Lot Unen reach, (R, h, o)

(s,h,0) 2 (s',h,0’) = Ir € Bij(reach(roots(s), h, o), reach(roots(s’), k', o’)).
Vx. (s(x),s'(x)) €7) A
V(p,p') €r. In.o(p) =o' (p)) =nAVi.0<i<n = (h(p+4i), 1 (p/ +4i)) €7)
where 7 & U {(a,a) | a € NonPtrs }

[p’_’nwOw"?wn—l] = (@|p+4><0r—>wo||p+4(n*1)r—>wn_1) GI_Iea})s’
(@] prn) if n>0Ap € Ptrs
[p — n] & 0 ifn=0Ap=0 € Shapes

undef otherwise

Note that if n =0 and [p +— n] is defined, then p = 0.

I, € Pgy(Ptrs) x Heaps — Shapes satisfying
(GCAxiom,)
VR, h,0 = Iy(R, h).
dom(c) C dom(h) A reach(R, h,o) C dom(o)
(GCAxiomsy)
VR, h,0 = I4(R, h).
VR, 1. dom(c) C dom(h') Areach(R', k', o) C dom(c) A (Vp ¢ dom(a). k' (p) = h(p)) =
Jo’' Co. o' = L (R, 1)

Vs, h,o,x,n. 0= Iz (roots(s),h) As(x) =2n+1An>0 =
(alloc x,8,h ~» —) A
(VC', s’ 1. alloc x,8,h ~~ C', ',)/ =
dp,h’,0". C" = skip A o” W [p — n] = Iyc(roots(s'), M) Ns'(x) =p AR =h"W[pr—y 0,...,00 A
(s,h,0) 2 ((|x—2n+1),h", d"))

2 Program Specifications

2.1 Logical Storage Model

def {£ € {locy,locy, ... } }

LogPtrs e {£Fi|LecLocsnicZ}
LogVals e {v € LogPtrs ¥ Words }
LStores

&f {'s € ProgVars — LogVals }
Span(h) def {(#,i) € Locs x N |i € dom(h(£))} for h € Locs — (N —g, LogVals)
def

= {h € Locs — N —g, LogVals | Span(h) is finite }

Table def {T € Locs —gy, Ptrs x Nt }

{w if v.=w € Words

Locs

LHeaps

def

phyvp(v) € { p+i if v=LFiATE) = (p,n)

undef otherwise
phybe () < W,) ey [P0 Phyva(h(£)(0)), .. phyve(B(€)(n — 1))
shape(T) = L*J(p,n):T(e) [p—n]
Safe(L) def {£30|£ € L}UNonPtrs for L C Locs
S~ 8 iff Vx. s(x) = phyvy(s(x))
s~rps iff s~r sAVz. s(x)e€ Safe(dom(T))
h:T iff V€. V(p,n) =T(£). dom(h(€)) ={0,...,n—1}
h~ph iff h:TAphyhp(h) Ch
h:T iff Ve. V(p,n) =T(£). Vi < n. h(£)(i) € Safe(dom(T))
h~th iff h~g hAh: T Ashape(T) C Iy (dom(shape(T)), h)
hi #hy % Span(hy) N Span(hy) = 6

M. h; (f) W hso (Z) if hy # hy

def
hywhy = { undef otherwise

2.2 Syntax

Logical Expressions ‘

LogVars Lef {u,v,...}
E € LExps = v

| x

| v

| ExE

| not E

where v € LogVars, x € ProgVars, v € LogVals and x € {+, —, X, =, <,=,and }

Note that Exps C LExps.

Assertions

P € Asserts := E
| E-E | PxP | P—=xP
| P=P | P\P | PVP
| Vo.P | Jv.P

Assertions with safety

P € AssertsL := safe(E)

| E

| E-E | PxP | PP
| P=P | PAP | PVP
|

Yo.P | Ju.P

false %' 0; true def 1, -P LIp s false
defined (E) Y E=E
word(E) “E-0VE
logptr(E) def defined(E) A =(word(E))
nonptr(E) Y E=—0VvIE=2x0v+1
offsafe(E) Lof word(E) Vv Ji. safe(E +)

def
p{E1,...,E,}) = p(E)A ... Ap(E,)

for p = safe, logptr, word, defined, nonptr, offsafe

E— — ECE S o R

def

E—,Ey....,.E, 1 = E4+4x0>Ej*x...«xE+4(n—-1)—E,_;
Note that Asserts C AssertsL.

Free variables

0 =0 M3 T

Program Specifications ‘

{P}C{Q}
[P C Q]
{ry ¢ {Q}
[P]] ¢ [[Q]]

PV(E) 2 the set of program variables appearing in the logical expression E
LV(E) L the set of free logical variables appearing in the assertion E
PV(P) 2f the set of program variables appearing in the assertion P

LV(P) L the set of free logical variables appearing in the assertion P

Inner-level partial correctness
Inner-level total correctness
Outer-level partial correctness

Outer-level total correctness

2.3 Semantics

‘ [[E] € LStores — LogVals‘

[v]ls ::= undef

M=1s = s(x)

Mvis n=v
Wy * Way if [E1]]s = w1 € Words A [[Eq]]s = we € Words
L¥(i+w) ifk=+A[Erls = £Ti A [Ez_g]]ls = w for k= 1,2
L5 —w) ifk=—A[[E]ls = £Fi A [Eo]ls = w
i—j if = — A[[Ei]ls = £5i A [Ealls = £F]

[E1 *Eols o= { i<j if = < A [[Ei]ls = £Fi A [Eo]]ls = €5
i=j if x ==A[[Ei]]ls = £Fi A [Eo]]s = £+5
=12 if x==A[Ei]ls = £50 A [Eq]Js = £ 50
0 if x==A[E]ls = LF4iNi > 0N [Es—_x]ls € NonPtrs for k= 1,2
undef otherwise

where x € { +, —, X, +,<,=,and },w + 0 = undef,
w1 < Wy d:efl if wy < wy; 0 otherwise,
w1 = Wy defq it wy = wa; 0 otherwise,
w1 and wy def it wy # 0 Aws # 0; 0 otherwise

1 if [EJs=0
[[not EfJs LV if [[Els € NonPtrs\{0}
undef otherwise

s, h |=1, safe(E) iff [[E[]s € Safe(L)

s,hi=L E iff [[E]ls € Words\{0}

s,h =L By — Ey iff 3,4 [Eq]ls = £+4i A [Ez]ls = h(£) (i) # undef
sshi=p P+Q iff Shy,ho. h=h; WhyAs,hy . P As hy =1, Q
sshEL P+ Q iff V. W #hAsh L P = s,hwh' £ Q
shELP=Q iff VW Dh s,h' L P — s, = Q
s,hELPAQ ifft s,hi=L PAs,hLQ

s,hiEL PvQ iff s,hiELPVvshlrQ

s,h =1, Yu. P iff Vv € LogVals. s, h =y, P[v/v]

s,h =L Jv. P iff 3v € LogVals. s, h =1, P[v/v]

Note that
s,h Er logptr(E) <= [E[s € LogPtrs

s,h =L word(E) < [[E]ls € Words

s,shEP iff sshigg P

Notation
P[p] Lef Plp(v1)/v1]...[p(vn)/vn] where dom(p) = {vy,...,v, } for p € LogVars —g, LogVals
Env(V) & {p € LogVars —g, LogVals | dom(p) DV} for V Cg, LogVars

, p(x) if x € dom(p)
plV (%) = 0 elseifx eV
undef otherwise

P L Q iff Vpe Env(FIV(P,Q)),s,h, he, T, s, h.
s~t s ANhWhyp ~1t hAs h Fqomr) Plp] = s,h Faom(r) Qlp)

{P} C{Q}

{P} C {Q} iff Vp € Env(FLV(P,Q)),s,h,hr, T,s,h,C" s K.
s,h Egom(r) Plp]As~r s \Nhwhp ~p hAC,s,h ~* C' 8", =
(C', 8" b ~ =)V
(3s',h’. C" = skip A8’ h' Egom(T) Qlp] A
(Vx ¢ Mod(C). s'(x) =s(x)) As' ~r s Ah' Whyp =1 h')

10

[P C Q]

[P} C[Q] iff {P}C{Q}A
Vp € Env(FLV(P,Q)),s,h,hg, T, s, h.
s,h Egom(r) PlpJ]As~r s \Nhwhp ~p h = —(C, s, h diverges)

{rj ¢ {{Qy

{P} C {QY iff Vpe Env(FLV(P,Q)),s,h,hg, T,s,h,C' s K.
s,hE PlplAsx~t s ANhWhp ~r hAC,s,h ~*C' s h =
(C',s' b~ =)V
(3,0, T. C' =skipAs',h' = Qlp] A
(Vx ¢ Mod(C). §'(x) = s(x)) As’ ~p s’ ANh' Whg a1/ h')

([P]] € [IQl

([Pl C Q] iff {PY C {Q} A
Vp € Env(FLV(P,Q)),s,h,hp, T, s, h.
s,h = Plp|As~r s ANhWhp =7t h = —(C, s, h diverges)

11

3 Program Logic

3.1 Inner-level rules

[true] skip [true] (Skip)

[x = v A defined(E)] x := E [x = E[v/x]] (Assign)
[x=uAE —] x:=[E] [x=vA E[u/x] — 0] (Read)
[E — — Asafe(E')] [E] .= E' [E — E] (Write)

(PAEYC,L{Q} {PAnotE}C,{Q} [PAE|Ci[Q [P AnotE]C, Q]

{P Aword(E)} if E then C else Cs fi {Q} [P Aword(E)] if E then C; else Cs fi [Q] (1)
{PAE} C {P Aword(E)} (While)
{P Aword(E)} while E do C' od {P Anot E}
[PAEANO<E =0 C [PAword(E) A0 < E' <] v ¢ FLV(P,E) (WhileT)
[P A word(E) A0 < E’] while E do C od [P A not E]
PIC Q) (QGER [PGQ QMR Sea)
{P} C1;C2 {R} [P] C1;C2 [R]
{P} C {Q} FPV(R)NMod(C)=0 [P] C [Q] FPV(R) N Mod(C) =0 (Frame)
{P+R} C {Q«+R} [P xR] C [Qx*R]
PEP (P}C{Q) QEQ PEP [PIC] QEQ o0
{P} C{Q} Pl C Q]
P} C (@) PlC[Q -
{Fv.P} C {Fv.Q} [Fv.P] C [Fv. Q]
Vv € LogVals. {P[v/v]} C {Q[v/v]} Vv € LogVals. [P[v/v]] C [Q[v/v]] (Gen)
{P} C{Q} [P} C Q]
_PIeiQl (Total)
{P} C{Q}

12

3.2 Outer-level rules
n>0

[x=2n + 1]] alloc x [[x < 0,...,0]] (Alloc)
V Cgn ProgVars {P Nsafe(V)} C {Q A safe(Mod(C))}
{pPi ¢ {Q} (In)
V Ctin ProgVars [P A safe(V)] C [Q A safe(Mod(C))]
[P]) ¢ [[Q]]

{rPrEy G {@R} {PAnot B} G {QF [[PAE]C Q] [[PAnot E]] Cs [[Q]]

{P Aword(E)}} if E then Cy else Cs fi {Q}} [P Aword(E)]] if E then C; else Cs fi [[Q]]
(If)
{PAE}Y C {P Aword(E)}} (While)

{P A word(E)}} while E do C od {{P A not E}}
[PAEAO<E =] C[[PAword(E)AO<E <v]] v¢FLV(P,E) (WhileT)
[P Aword(E) A0 < E']] while E do C od [[P A not E]]

ey a i@y ey G {ry [PIG Q] [Q] C: [[R]] (Seq)

{P}} C1;: Gy {RY} ([P]] C1; C2 [[R]

{ryc{fely FPV(R)NMod(C) =0 [[PIC[[Q]] FPV(R) N Mod(C) =0

{{(P R} C{(Q+RY (PrRTCTe A
PEP {PROUQY QEQ PEP [PICIQN @EQ oo
Py C {Q) P) O @]
{PY C feh 1P} € [[@) (Ex)
3P} C {30-Q) [Bv- Pl C [Be. <]
Vv € LogVals. {{P[v/v]}} C {Q[v/v]}} Vv € LogVals. [[P[v/v]]] C [[Q[v/v]]] (Gen)
Py C {Qn Pl C (1@l
1P} C [[@) Total
Py C {Q

13

3.3 Assertion entailments

nonptr(E) = safe(E) (NPtrSafe)
E = word(E) (BoolWord)
E—-E EE#0 (PointstoNZero)
defined(E) = offsafe(E) (ExpSafe)
E — E’ A offsafe(E) |= safe(E’) (HeapSafe)
E — E' |= safe(E') (ExpHeapSafe)
safe(E,E') = defined(E = E') (SafeEq)
3.4 Derived rules
PyC{Q} v¢FIVQ [PIC[Q vgFLV(Q) -
{3v.P} C {Q} [Bv. Pl C[Q]
(PHC Q) veFV@Q (PICQI véFV(Q -
{3v. P} C {Q} [Bo. P] C [[Q]]
PJC{Q (P)C{Q) [PICIQ] [P C[Q Di)
{P1VPs} C{Q} [P1 VP C[Q]
{ag ey {rpofen [(Alcll [l C] (Disj)
{Pv R} C (e [PV Pl C[[Q]]
{P)C{Q) FPV(E)NMod(C)=0 [PIC[Q) FPV(E)NMod(C)=0
{P[E/v] A defined(E)} C {Q[E/v]} [P[E/v] A defined(E)] C [Q[E/v]]
{PY C {QF} FPV(E)NMod(C)=0 [[P]]C[Q]] FPV(E)NMod(C)=0 (Inst)
{P[E/v] A defined(E)}} C {Q[E/v]}} ([P[E/v] A defined(E)]] C [[Q[E/v]]]
[P[E/x] A defined(E)] x := E [P] (Assign’)
x ¢ FPV(E) UFPV(E) (Read)
[FE—E|x:=[F] x=EANE — E]
x ¢ FPV(E') UFPV(E") (Read”)

x=E AE—E'] x:=|E| [x=E'AE[E /x] — E]

14

[Ply/x]]] x:=y [[P]

[P[E/x] A nonptr(E)]] x := E [[P]
x ¢ FPV(E) UFPV(E/)
[FE—E] x:=[F] [[x=E AE — E

x ¢ FPV(E') UFPV(E")
[x=E ANE—E"] x:=E] [x=E" A E[E /x] — E"]]

([E— —]] [E] :=x [[E —]|

[[E — — Anonptr(E")]] [E] := E' [[E — E']]

n>0
[[F =2n+1]] x:=ALLOC(E) [[x —, 0,..., 0]]

3.5 Problematic rules
{P}C{Qi} {P}C{Q} [PIC[Qi] [P]C[Qg]
{P} C {Q:1 N Q2} [P] C Q1 AN Q2]

{Ph ety {rPR @)t [(PIC@]] [[P]C Q]
{Ph} € {@ A Qa1 [P]] C [[Q1 A Q2]
{P} ¢ {Q} [Pl C Q]
{Vv.P} C {Vv.Q} Vo.P] C [Vu. Q]

{rh ¢ {Qy ([P ¢ @l
{ve. P}y C {{vo.Q}} [[Vu. P]] C [[v0.Q]]

Counter example. According to the semantics of {—} — {—}, the following hold:

{x=0Ay—= 0} x:=x{x=0}
{x=0Ay <= 0} x:=x {logptr(z)}

However, the following conjunction does NOT hold:

{x=0Ay =0} x:=x {x=0Alogptr(z)}

15

(ASSIGN)

(ASSIGN")

(READ)

(READ)
(WRITE)

(WRITE’)

(ALLOC)

(Conj)

(Conj)

(All)

(All)

4 Examples

4.1 Array Assignment

{y+8—=-}

{y+8 — — Asafe(y)} (Incl)
yi=y+38;

{y & — Asafe(y — 8)} (Assign’)
{y — — Asafe(y — 8,0)}

[yl = 0;

{y — 0 Asafe(y — 8)} (Write)
yi=y =8

{y +8 — 0 Asafe(y)} (Assign’)
{y+8—=0} (Incl)

4.2 Word Swap

{x =2 u,v}}

t := ALLOC(ENC(0))

{x =2 u,vxt —q -} (ALLOC)
{{x 2 u,0)

t = [x];

{x —2u,v At =u}} (READ)
r:=[x+4];

{x—2u,vAt=uAr=vuv}} (READ)
[x] := 13

{x—or,vAt=uAr=0}} (WRITE)
[x+4] == t;

{x—or,tAt=uAr=0}} (WRITE)
{x =2 v,u}}

16

4.3 Linking of Assignment and Swap
From Sections [£.1] and [£.2] we have the following results.
Assign de yi=y+8 [y]:=0; yi=y—8
Swap < £ .=1; alloc t; ti=[x); ri=[x+4]; [x] =1 x+4] =t
H{y +8— —J} Assign {{y +8 — 0}}
{x —2 u,v}} Swap {{x —2 v,u}}
From these, we can reason about the linked program as follows.

{y+8— —}} Assign {{y+8 — 0}} FPV(x <3 u,v) N Mod(Assign) = ()

F
{x =2 u,v*y+8— —}} Assign {{x =3 u,v*xy+8— 0}} (Frame)
{x —2 u,v}} Swap {{x —2 v,u}} FPV(y + 8 — 0) N Mod(Swap) = 0
(Frame)
{x =2 u,v *y+8 — 0}} Swap {{x —3 v,u*xy+ 8 0}
{x —2u,v*y+8— —}} Assign {{x —2 u,v xy+8 — 0}}
{x =2 u,v *y+ 8 — 0}} Swap {{x —2v,u*xy+8— 0} Seq)
eq

{x —2 u,v *y+8 — —}} Assign; Swap {{x —sv,u*xy+8— 0} (

4.4 Simple Addition

{x=2xn+1Ay=2xm+1}
{x=2xn+1Ay=2xm+1} (Incl)
{x+y=2xn+m)+2Ax=2xn+1Ay=2xm+1}

z:=x+Y;

{z=2xn+m)+2Ax=2xn+1Ay=2xm+1} (Assign’)
{z—1=2x(n+m)+1Ax=2xn+1Ay=2xm+1}

z:=z—1;

{z=2x(n4+m)+1Ax=2xn+1Ay=2xm+1} (Assign’)
{z=2xn+m)+1Ax=2xn+1Ay=2xm+1Asafe(z)}
H{z=2x(n+m)+1Ax=2xn+1Ay=2xm+1}} (Incl)

4.5 Integer Arithmetic

Simple version

{x=2xn+1Ay=2xm+1}

17

L2x((x+24+y+2)x (xZ+24+y+2) X (x+24+y+2)x (x+2+y+2))+1=

2x (m+n)x (m+n)x (m+n)x (m+n)+1}

x=2X ((x+24y+2)x(x+2+y+2)x(x+2+y+2)x(x+2+y+2))+1
{zx=2x(m+n)x(m+n)x(m+n)x(m+n)+1}} (ASSIGN)

‘ Optimized version ‘

{x=2xn+1Ay=2xm+1}
{x=2xn+1Ay=2xm+1} (Incl)
{x+y=2x(n+m)+2}

X:=xX+Yy;

{x=2x(n+m)+2} (Assign’)
{x+2-1=n+mAword(n,m)}

x:=x+2-1;

{x =n+m Aword(n,m)} (Assign’)

{xxx=(n+m)x(n+m)}

X =X X X;

{x=(Mm+m)x (n+m)} (Assign’)
{xxzx=(n+m)x(n+m)x (n+m)x(n+m)}

{x=Mm+m)x (n+m)x (n+m)x (n+m)} (Assign’)
{2xx+1=2x(n+m)x(n+m)x(n+m)xn+m)+1}

x:=2xx+1

{x=2x(n+m)Xx(n+m) X (n+m)x(n+m)+1} (Assign’)
{x=2x(m+n)x (m+n)x (m+n)x (m+n)+1Asafe(x)}
{zx=2xm+n)x(m+n)x(m+n)x (m+n)+1} (Incl)

4.6 List Reversal

def
€T = €

(va)t ¥ afw
listeE < E=0
list (v-a) E L 3, (E =9 v,2) xlistaz

{{list oo x}}

18

{(listag x * 0 = 0) A defined(0)}}

y =0

{(listagx xy=0)}}
{(listap x * listey)}}
{30, B. (listax * list By) A af) = af-3 A word(x # 0)}}

while x # 0 do
{30, B. (listax * list By) A afy = af-BAx # 0}

{30, o, B. (list (v-a) x * list By) A af = (v-a)t-81}
{30, , B, 2. (x =9 v,z % lista z * list By) A of) = (v-0)T-5}}

{30, 0, . (x =9 v,z x lista z * list By) A of) = (v-0)T-B}}
= [x+4];
{30, 0,8.2=2A (x =g v,z % listaz * list 3y) A of) = (v-a)T-B)}
{Fv,a, 8. (x =2 v,z * listaz * list S y) /\oz0 = (v-a)t-B}}
x+4]:=y;
{3, 0, 8. (x =2 v,y * listaz list By) A afy = (v-a)T-5Y}
{30, o, B. (listaz * list (v-8) x) A o = afv-8)}
{30, 8. (listaz * list Bx) A o)) = af-3 A defined () }}
Y =X
{30, 8. (listaz « list By) A) = at-B A defined(z) }}
{30, B. (listax * list By) A o)) = af-3 A word(x # 0)}}
od;
{30, B. (listax * list By) A afy = al-BAx =0}}
{{listaf v}

4.7 Array Copy

{{X —n U1y... ,Un}}
y := ALLOC(ENC(n));

HEx—=np v, ., *y =, 0,...,0)}}

19

(ASSIGN')

(While)

(Ex’)

(READ)

(WRITE)

(ASSIGN)

(ASSIGN)

(While)

(ALLOC)

{(x—=nv1,...,00 7y —, 0,...,0) Asafe(x,y,t)}
{(x—=nv1,...,0p %y =, 0,...,0) Ax+4n = x + 4n Asafe(x, y, t) A defined(x + 4n)}

z =X+ 4n;

{x—=pv1,...,0nxy—,0,...,0) Az =x+4n Asafe(x,y,t)}

{Fk.(x—4k >, v1,...,0p xy— 4k S vy, ., 0 %Y —pn_k 0,...,0) A
0<k<nAz=x+4(n—k)Asafe(x —4k,y —4k,t) Aword(x # z)}

while x # z do
{Fk.(x =4k >, v1,...,op xy — 4k Spv1,.., 0 %y —p_ 0,...,0) A
0<k<nAz=x+4(n—k)ANsafe(x —4k,y —4k,t) Ax # z}
{Fk. (x =4k —pv1,...,vn ¥y —4dk —p v, xy = 0%y +4 =, _441)0,...,0) A
0<k<nAz=x+4(n—k)Asafe(x —4k,y —4k)}

t = [x];
{Fk. (x =4k —pv1,.. ;v xy —4dk =g v, vk y = 0%y +4 =, _41)0,...,0) A
0<k<nAz=x+4(n—k)ANsafe(x —4k,y —4k) ANt = vp41}

{Fk. (x =4k —pv1,...,vp 5y =4k —pvr,.., kY = 0%y +4 =, _41)0,...,0) A
0<k<nAz=x+4(n—k)Asafe(x —4k,y — 4k, t) ANt = vp41}

[y] :=t;
{3k (x =4k —pv1,...,vn ¥y =4k =g v, xy = try+4 =, 1) 0,...,0) A
0<k<nAz=x+4(n—k)ANsafe(x —4k,y —4k) ANt = v41}

{3k (x =4k —pv1, v ¥y — 4k =g V1, Uk Vg1 Y 4 = or1) 0,...,0) A
0<k<nAz=x+4(n—k)Asafe(x —4k,y — 4k, t) A defined(x + 4)}

X :=x+4;

{Fk. (x—4(k+1) =pv1,..., 0 ¥y —4k —pp1 V1, Vg1 ¥ Y +4 —p_41) 0,...,0) A
0<k<nAz=x+4(n—(k+1)) Asafe(x —4(k+ 1),y — 4k, t) Adefined(y +4)}

yi=y
{3]€(X—4(/€+1) —n ’l)1,...,’l)n*y—4(k+].) k41 Vs Ukl ¥ Y i (k+1) 0,...70)/\
0<k<nAz=x+4(n—(k+1))Asafe(x —4(k+1),y—4(k+1),t)}

{Fk. (x—4k —pv1,...,0p xy— 4k =g v, .0 x Y —p_k 0,...,0) A
0<k<nAz=x+4(n—k)ANsafe(x —4k,y —4k,t) Aword(x # z)}

od;

{Fk.(x—4dk =, v1,...,0p %y —4dk Sp vy, .., 0 %Y —pn_k 0,...,0) A
0<k<nAz=x+4(n—k)Asafe(x —4k,y —4k,t) Ax =z}

{x—4n—pv1,...,0p %y —4n —, v1,...,0,) Asafe(x —4dn,y —4n, t)}

20

(Incl)

(Assign’)

(While)

(Read’)

(Write)

(Assign’)

(Assign’)

(While)

x:=x—4n;

{(x —=p V1,0, 0 %y —4n =, v1,...,0,) Asafe(x,y —4n,t)} (Assign’)
yi=y—dn;

{(x =p V1, .y Up ¥ Y <y V1,...,0,) Asafe(x, y,t,0)} (Assign’)
z =

{(x —p V1, Up ¥ Y 5 V1, .., 0,) Asafe(x,y,t,2)} (Assign’)
{x —=n V1, 0 %y Sp U1, U0) (Incl)

21

5 Soundness of Program Logic

5.1 Basic Lemmas

Lemma 1.

[defined(E)[Js € Words\{0} iff [[E[ls # undef

Proof. By a case analysis on [[E]]s: when [[E]]s € LogVals, we have [[E = E]]s = 1 € Words\{0};
when [[EJ}s = undef, we have [[E = E]Js = undef ¢ Words\{0}. O

Lemma 2.
s ~1 s A [[E]ls # undef = [E]s = phyvp([E]s) # undef

Proof. Tt can be shown by induction over F.

e When F = x:
From s ~ s, we have phyvp(s(x)) = s(x) # undef.

e When F = w:
phyvyp([w]s) = phyve(w) = w = [w]s # undef.

e When FE = (E; x Es):
From [[E]Js # undef, we have the following cases:

— When [[E;]]s = w1 € Words A [[E2]ls = wa € Words A [[E]|s = w1 * wa # undef:

By induction hypothesis, we have [E]s = phyvp(wy) = wy for & =1,2.

Thus, we have phyv ([E]ls) = phyvp(wi x wa) = wy x wy = [E]s # undef.
— When % = + A [Ex]ls = £+i A [Es_]ls = w A [E]ls = £+(i + w):

By induction hypothesis, we have [E]s = phyvy(€+i) = p+ i for (p,n) = T(£); and

[E3-&]s = phyvyp(w) = w. R

So we have phyvy ([E]ls) = phyvp(£+(i+w)) = p+(i+w) = (p+i)+w = [E]s # undef.
— When « = — A [[E1]ls = €5 A [[Ex]ls = w A [[E]ls = €+ (i — w):

By induction hypothesis, we have [E;], = phyvp(€+i) = p + i for (p,n) = T(£); and

[E2]s = phyvep(w) = w. R

So we have phyvy ([E]ls) = phyvp(£+(i—w)) = p+(i—w) = (p+i) —w = [E]s # undef.
— When % = — A [Ei]ls = £4i A [Ex]ls = €+ A [Ells = i — j: ~

By induction hypothesis, we have [E;]s = phyvyp(€+i) = p+i and [Ez2]s = phyvp(€+)) =

p+ j for (p,n) = T(€).

So we have phyvr([E]ls) = phyvp(i —j) =i —j=(p+1i) — (p+Jj) = [E]s # undef.
When:</\|]IE1]]]S:K—/F’L/\I]IEQ]]]S:Z—/F]/\IHEH]/S\:’L<] N

By induction hypothesis, we have [E1] s = phyvyp(€+i) = p+i and [Ez2]s = phyvp(€+)) =

p+j for (p,n) = T(L).

So we have phyvp([E]ls) = phyvp(i < j)=i<j=(p+1i) < (p+j) = [E]s # undef.
— When » = = A [[E1]Js = €54 A [E2]ls = €55 A [E]s = (i = j):

By induction hypothesis, we have [E]; = phyvp(£+i) = p+i and [E»]s = phyvp(€+7) =

p+ j for (p,n) = T(€).

So we have phyv([[E]s) = phyvr(i = j) = (i = j) = ((p+i) = (p+J)) = [E]s # undef.

22

— When « = =A[[E1]ls = £¥0A [[Ex]]ls = £ FONA[[E]ls = (£ = £):
By induction hypothesis, we have [E;]s = phyvp(£+0) = p and [E»]s = phyv (€ F0) =
p' for (p,n) = T(£) and (p',n') = T(£).
So we have phyv([[E]ls) = phyvp(£ =€) = (£ =€) = (p = p') = [E]s # undef.

— When x = = A [[Ex]ls = £74i Ai > 0 A [[Ez_i]ls € NonPtrs A [[EJs = 0
By induction hypothesis, we have [Ej]s = phyvp(€+4i) = p + 4i € Ptrs for (p,n) =
T(£), and [E5_1]s = phyve([[Ex]ls) = [Ex]ls € NonPtrs.
So we have phyvp([[E]ls) = phyvyp(0) = 0 = ([Ex]s = [Fs—k]s) = [F]s # undef.

e When E = not E':
From [[E]s # undef, we have [[E']]s = w € Words A [[E]]s = not w.
By induction hypothesis, we have [E’']; = phyvy(w) = w.
Thus, we have phyvy([[E]ls) = phyvrp(not w) = not w = [E]s # undef.

Corollary 3.
s ~r s A [[E]ls = £+i = £ € dom(T)

Proof. By Lemma we have phyv.p(£34) # undef, from which it follows that £ € dom(T). O
Lemma 4. When [[E']Js # undef,

(1) [EE/x]s = [ED)« o110

(2) s,hEL PE /x] if (s|x— [[E]s),h=LP

Proof. (1) can be shown by an induction on E. When E = y: if y = x, then both LHS and RHS
are equal to [[E'Js; otherwise, both are equal to s(y). The other cases are straightforward.
(2) follows from (1) by a simple induction on P. O

Lemma 5.

(1) (vx € FPV(E). s(x) = §'(x)) = [Els = [Elly

(2) (Vx e FPV(P). s(x) =5'(x)) = (s,hFLP <= s hLP)
Proof.

(1) : By a simple induction on E.

(2) : By a simple induction on P using (1).

Lemma 6. s,h=, P <= shEP
Proof. By a simple induction on P. O

Lemma 7.
s,h =L (Fuv.P)[p] <= 3FveLogVals.s,h =L Pl(p|v— V)

Proof. Choose a fresh v ¢ dom(p). Then the goal follows from

23

o (3v.P)lp] =a (Fu. Plu/v])[p] = Fu. Plu/v][p],
e s,h =r Fu.Plu/v][p] <= 3Iv € LogVals. s,h =1, Plu/v][p][v/u],

o Plu/v][pllv/u] = Plu/v][v/ullp] = Plv/v][p] = Pl(p | v v)].

Lemma 8.
RCR ARCH Ao Co' = reach(R,h,o) C reach(R',h/,0")

Proof. One can easily show that reach, (R, h,o) C reach, (R, h’,¢’) by induction on n. O
Lemma 9. When dom(c) C dom(h) and o C o,

reach(dom(c), h,0’) C dom(c) <= Vp € dom(o). h(p) € dom(c) UNonPtrs
Proof.

e — part:
Let p € dom(o). As dom(c) C dom(h), we have h(p) € Words.
If h(p) € NonPtrs, then trivially h(p) € dom(o) U NonPtrs.
If h(p) € Ptrs, then h(p) € reach;(dom(c), h,o’) C dom(o) C dom(o) U NonPtrs.

e < part:
We prove reach, (dom(c), h,o’) C dom(c) by induction on n.
Base case: reachg(dom(o), h,o’) = dom(o) C dom(o).
Inductive step: reach,11(dom(c),h,c’) C dom(o) directly follows from
(1) the induction hypothesis: reach,,(dom(o),h,o’) C dom(o); and
(2) the fact that Vp € dom(o). h(p) € Ptrs = h(p) € dom(o).

Lemma 10.
h~phAh:TAo Dshape(T) = reach(dom(shape(T)),h,o) C dom(shape(T))
Proof.
e Assume: h ~r h and let o O shape(T).

As phyhr(h) C h, we have dom(shape(T)) = dom(phyhr(h)) C dom(h).

e To show: reach(dom(shape(T)), h,o) C dom(shape(T)).

By Lemma@, it suffices to show that Vp € dom(shape(T)). h(p) € dom(shape(T)) UNonPtrs.

Let p € dom(shape(T)).
Since phyh(h) C h, there exists £, p/,n’,i such that (p/,n') = T@)Ai<n' Ap=p +4iA
h(p) = phyvy(h(€)(7)).

From h :: T, it follows that h(£')(i) € Safe(dom(T)). Thus, we have two cases.

24

— When h(€')(i) € NonPtrs:

h(p) = phyvy(h(€)(i)) = h(€')(i) € NonPtrs C dom(shape(T)) U NonPtrs.
— When h(£)(i) = €30 for £’ € dom(T):

h(p) = phyv(€'+0) = p” for (p”,n") = T(£").

Thus, h(p) € dom(shape(T)) C dom(shape(T)) U NonPtrs.

5.2 Soundness of Inner-level Rules
Definition 1 (Generalized triple).
{P} C{Q}: k iff Vj<k.Vpe€Env(FLV(P,Q)),s,h,hp,T,s,h,C' s K.
Svh ':dom(T) P[p] NS~ S/\hH'JhF ~T h/\C;Sah ~ed 0/75/7}1’/ =
(C' 8 b~ =)V
(3',h’. C" = skip As’, h' Fqom(T) Qlp] A
(Vx ¢ Mod(C). s'(x) =s(x)) As’ ~r s’ A\h' Whp ~1 1)

5.2.1 Skip

Theorem 1 (Soundness: Skip).

[true] skip [true]
Proof.

e Assume: s,h,hp,T,s, h,C’, s’ h' such that
v 8, h Fqom(T) true As ~p s ANhWhyp = h Askip,s,h ~* C', s’

skip, s, h does not diverge as it takes no step.

To show:
(%) C", ' b/ ~ —; or
(x#) 3s',h’. C" = skip A s’ h' [=qom(T) true A
(Vy ¢ Mod(C). s'(y) =s(y)) As’ ~r s’ ANh' Whg ~p I/

e From skip, s, h ~* C',s', ', we have C' = skip, s’ = s and h’ = h.

(*%) holds by letting s’ =s and h’ = h.

5.2.2 Assign

Theorem 2 (Soundness: Assign).

[x = v Adefined(E)] x := E [x = E[v/x]]
Proof.

e Substitute the logical variables v with an arbitrary logical words v.

25

e Assume: s,h, hy,T,s, h,C’,s’, i such that
v 8, h Fdom(T) (x = v Adefined(E)) As ~p s ANhwhp mp hAx = E,5,h ~* C', s 1/

e x:= F s h does not diverge as it takes at most one step.

e To show:
(%) C", ' b/ ~> —; or
(xx) 3s',h’. C" = skip A8’ h' Fqom(T) (X = E[v/x]) A
(Vy ¢ Mod(C). s'(y) =s(y)) As’ ~r s’ A\h' Whg ~1 I/

e As s, h Fgom(T) (x = v Adefined(E)) and s ~t s, by Lemmas (1| and [2| we have
vV s(x)=v
v [E]s = phyvp([E]ls) # undef

e From x := E,s,h ~* C',s', h’, we have the following two cases:

e When ¢ = (x:=E)As' =sAh =k
As [E]s # undef, it follows that x := E, s, h ~> skip, (s | x — [E]s), h. Thus, (*) holds.

e When ¢’ =skipAs' = (s|x— [E]s) AR = h:
(#) holds by letting s’ = (s | x — [[E]]s) and h’ = h because

— s, b’ Fqom(T) (x = E[v/x]) follows from
s'(x) = [Ells = [E](s |x—v) = [E[v/x][s # undef,

which holds by Lemmas [5| and |4] as s(x) = v; and
— s’ ~p ¢ holds since s ~t s and [E]s = phyvp([E]s)-

5.2.3 Read
Theorem 3 (Soundness: Read).

x=uAFE —v]x:=[E] [x=vA Eu/x] —]
Proof.

e Substitute the logical variables u, v with two arbitrary logical words vy, vs.

e Assume: s,h . hy,T,s,h,C’,s’, i such that
vV s, h Fgom(r) (x=ViAE — vVvo)As~p sANhWhp ~p hAx:=[E],s,h ~*C' s}

e x:=[E], s, h does not diverge as it takes at most one step.
e To show:
(x) C',s',h ~» —; or
(xx) Is',h’. C" = skip A8’ h' Fgom(T) (x = Vo A E[vi/x] — va) A
(Vy ¢ Mod(C). s'(y) =s(y)) As' ~1r s Ah" Whp =1 I/

26

e From s, h Fqom(T) (x = vi A E <= v3), by Corollary [3| we have
v s(x) =vi A [[E]ls = £¥4i Ah(£)(i) = vo A £ € dom(T).

e Ass ~p s and [[E]s = £34i, by Lemmawe have
v [E]s = phyvp(£+4i) = p+ 4i for (p,n) = T(£).
e From hwhyp : T A (p,n) = T(£) Ah(£)(i) # undef, we have
vii<n.
e From phyhp(hwWhg) ChA (p,n) = T(£) Ai < n, we have
v h(p+ 4i) = phyvyp(h(€)(i)) # undef.
e From x := [E],s,h ~* C',s', i/, we have the following two cases:
o When C' = (x:=[E])As'=sAKN =h:

As [E]s = p+ 4i A h(p + 44) # undef, we have x := [E], s, h ~ skip, (s | x — h(p + 47)), h.
Thus, (*) holds.

e When ¢" =skipAs' = (s|x— h(p+4i)) AW =h
(*+) holds by letting s’ = (s | x — h(£)(7)) and h’ = h because
— 8’ ~1 ¢ holds since s ~r s and h(p + 47) = phyvp(h(£)(%));
— 8',h’ Fqom(T) X = V2 holds since s'(x) = h(£)(i) = v2; and

— 8, b’ Fqom(T) E[v1/%] — V2 follows from

(1) [Evi/x]ls = [Els |x—vy) (by Lemmalfd)
= [Elsixmvy (as(s'|x—vi)=(s]|x— V1))
= [[[Ems (by Lemmal [5] as s(x) = vq)
— 0344,

(2) W/(£)(i) = h(€)(i) = vo # undef.

5.2.4 Write
Theorem 4 (Soundness: Write).

[E — — Nsafe(E')] [E] := F' [E — E']
Proof.

e Assume: s,h,hp,T,s, h,C’, s’ h' such that
v 8, h Fgom(r) (B — — Asafe(E')) As ~p s Nhwhp =p h A [E] == E',s,h ~* C', s I/

e [E]:=E', s, h does not diverge as it takes at most one step.
e To show:
(x) C", ' b/ ~ —; or
(%x) 3s',h’. C" = skip A8’ h' Fqom(T) B — E' A
(Vy ¢ Mod(C). s'(y) =s(y)) As' ~r s Ah' Why =1 I/

27

From s, h Fgom(T) (E — — Asafe(E’)), by Corollary [3| we have
v [[E]ls = £¥4i A h(£)(i) # undef A £ € dom(T) A [[E']ls € Safe(dom(T)).

As s ~p s and [[E]ls = £34i, by Lemma we have
v [E]s = phyvp(£+4i) = p+ 4i for (p,n) = T(£).

As s ~r s and A [[E']ls # undef, by Lemma we have
v [E']s = phyvy([E]ls) # undef.

From hwhyp : T A (p,n) = T(£) A h(£)() # undef, we have
vii<n.

From phyhp(hwhgp) ChA (p,n) = T(£) Ai < nAh(€)(i) # undef, we have
v phyvp(h(€) (7)) = h(p + 41) # undef.

From [E] := E',s,h ~* C’,s', 1/, we have the following two cases:

When C' = ([E]:=E')As'=sAh =h:
As [E]s = p+4i A h(p + 44) # undef A [E']s # undef, we have

[E] := E',s,h ~ skip, s, (h | p+ 4i— [E']s).
Thus, (*) holds.

When C" =skipAs'=sAhW = (h|p+4i— [E']s):
Let s’ =sand h' = (h | (£,7) — [E']s)-

To prove (*x), it suffices to show that

(1) s, h’' Fqom(T) £ — E'; and

(2) b’ Why ~r 1.

s', b’ Egom(T) £ — E’ follows from

— [E]ls = [E]ls = £+43;

— [[E'Ts = [[E']ls = 1’ (£) () # undef.
We show h/ & hyp =~ A’ as follows.

From hwhy : T A Span(h’) = Span(h), we have
vV hwhyp:T.

From phyhp(hwhg) C h A [E']s = phyve([[E']ls), we have
¢ phyhp(h' & hg) C B,

From hwhy :: T A [[E]ls € Safe(dom(T)), we have
vV hWwhgp:: T.

Now it suffices to show shape(T) C I.(dom(shape(T)),h’).

From h W hg ~1 h, we have o such that
v 0 = Iy.(dom(shape(T)), h) A shape(T) C o.

28

e By GCAxiom; for o = I,.(dom(shape(T)), k), we have ¢’ such that
v 0’ = Iy.(dom(shape(T)),h') Ao’ C o
because
— dom(o) C dom(h) = dom(h’) holds by GCAxiomy;

— reach(dom(shape(T)), ', o) C dom(shape(T)) C dom(o) follows, by Lemma from
h' Whp ~r A/ Ah' Whp :: T and shape(T) C o3

— Vp' ¢ dom(c). B/ (p") = h(p') holds since p + 4i € dom(shape(T)) C dom(o).

e Now it suffices to show that shape(T) C ¢’, which follows from

(1) shape(T) Co Ao’ Co; and
(2) dom(shape(T)) C reach(dom(shape(T)), k', o) C dom(c’) by GCAxiomy.

5.2.5 Seq
Lemma 11 (Soundness: Generalized Seq).

{P} C1 {Q}: k {Q} C2 {R} 1 k

Proof.
e Assume: {P} C1 {Q} : k
o Assume: {Q} C2 {R} : k

e Assume: p € Env(FLV(P,R)), j,s,h, hg, T, s, h,C’,s', b’ such that
Jj <kAshEqmer) PlplAs~r s AN hwhp =7 h A (Cy;Ca,8,h ~I C' 8 h)

e To show:
(x) (C',8,h ~ =)V
(xx) (3s', . C'" = skip As’,h’ Fqom(T) Rlp] A
(Vy ¢ Mod(C4; Cs). s'(y) =s(y)) As' ~p ¢ Ah' Whp =1 1)

Let p/ := p[FV(Q),

Then, as P[p] = P[p'], we have
v S, h ':dom(T) P[p/]

From C;;Ca,s,h ~J C’,s' h', we have two cases.

When Cy,s,h ~7 C},s',h' NC" = C4; Co:

— By assumption we have two cases.
— When C1,s', b/ ~ —:
(*) holds because (Cf1;Cs), s, h/ ~» —.

29

— When C] = skip A (s',h' Fgom(r) Q[p']) A (Vy ¢ Mod(Ch). s'(y) = s(y)) As' ~1 ' A
h' W hp ~1 h' for some s’, h’:
(*) holds because (skip; Ca),s’,h’ ~» Co, 8", h'.

e When Cy, s, h ~71 skip, s7, h) A Co, sy, hy ~32 C' s W Nj=j1+ 2+ 1:

— As j1 <k ACy,s,h~J1 by assumption, we have s/, h] such that
v st Edomr) QY] A (Vy ¢ Mod(Ch). s1(y) = s(y)) Ast ~r s1 Ahy Bhp ~r Ay

— As jo <k ACy, 84, b} ~32 C' s’ W', by assumption we have two cases.

— When C’, s, b/ ~» —:
(*) holds.

— When C" = skip As’,h' Egomer) Rlp'] A (Vy ¢ Mod(Cy). s'(y) = si(y)) As' ~1s' A
h'whp ~1 h/:
(+%) holds because
(1) ', 1’ Egom(T) R[p] holds since R[p'] = R][p];
(2) (Vy ¢ Mod(C1;Cs). s'(y) = s(y)) follows from (Vy ¢ Mod(Cs). s'(y) = si(y)) and

(Vy ¢ Mod(C4). s} (y) = s(y)) since Mod(Cy; C3) = Mod(C1) U Mod(Cy).

Theorem 5 (Soundness: Seq (partial)).

{P} C1 {Q} {Q} G2 {R}
{P} C1;C2 {R}

Proof. Tt holds by Lemma [T1] O

Theorem 6 (Soundness: Seq (total)).

Pl C1 Q] [Q] C2 [R]
[P] C1;Cs [R]

Proof.
e Assume [P] C; [Q].
e Assume [Q] C3 [R].
e By Theorem [5 we have {P} C1;C> {R}.

e Assume: p € Env(FLV(P,R)),s, h, hg, T, s, h such that
S»h ':dom(T) P[P] NS~ sA hw hF ~T h.

e Now we show —(C1; Ca, s, h diverges) by contradiction.

e Assume { D;, s;, h; }ien such that
v (Do, s0,ho) = (C1;Ca,8,h) AVi. Di, siyhi ~ Diy1, 841, hit1-

o Let p/ := p|FV(Q),

30

e Then, as P[p] = P[p'], we have s,h |=gom(T) P[p'].

e By [P] Cy [Q], we have =(C1, s, h diverges).

e Thus, we have some k such that Dy, = (skip; Cy) and C4, s, h ~* skip, sy, hg.
e As Dy = (skip; C2), we have Dyy1 = Cs, Sp11 = Sk, and hgy1 = hyg.

e By [P] C1 [Q], we have s, hy such that
V' 8k, i Fdom(r) Q'] A (Vy ¢ Mod(Ch). si(y) = s(y)) A sk ~1 sk Ahy & hp =7 hy.

e By [Q] C [R], we have =(Cy, s, hy, diverges).

e Thus we have =(Dg41, Sk+1, hi+1 diverges), which is a contradiction.

5.2.6 Frame

Theorem 7 (Soundness: Frame).

(PYC{Q} FPV(R)NMod(C)=0 P]C[Q] FPV(R)NMod(C) =0
{P+R} C {Q=*R} [P xR] C [Q*R]

Proof.
e Assume: FPV(R) N Mod(C) =0

e Assume: Vp € Env(FLV(P,Q)),s,h,hy, T, s,h,C’, s I/
s,h Fgom(m) Plp]As~r s Nhwhp ~p hAC,s,h ~*C', 8" b =
((C", ' W~ =) Vv
(3',h’. C" = skip A8’ h' Fqom(T) Qlp] A
(Vy ¢ Mod(C). s'(y) = s(y)) As’ ~1 s’ AW Whp ~1 1))
[# A-(C,s,h diverges) #]

e Assume: p € Env(FLV(P,Q,R)),s,h,hr, T, s, h,C’, s’ A’ such that
s,h ':dom(T) (P[p] * R[p]) As~psANhWhp~p hAC, s, h~*C' s N

e To show:
[# —(C, s, h diverges); and #]
(x) (C',¢',h ~ =)V
(+4) (35, 0. C" = skip A 8", B [gomer) (Ql6] * Rlp]) A
(Vy ¢ Mod(C). s'(y) =s(y)) As’ ~1 s Ah' Whp =1 1)

e From s, h Fqom(T) (P[p] * R[p]), we have h; and hy such that
v h=h; Why,

v Svhl):dom(T) P[p]7
v Sah2 ‘:dom(T) R[p]

o [# —(C, s, h diverges) holds by assumption since hwhr = hyW(hawhyp)As, hy Fgomer) Plp] #]

e Also by assumption we have two cases since h W hp = h; W (hy & hg) As,hy Fgom(T) Plp]-

31

e When ¢/, s', b/ ~ —:
(*) holds.

e When C' = skip A (s',h' Fgomm) Q[p]) A (Vy ¢ Mod(C). s'(y) = s(y)) As" ~p s A
h/ ¥ hy Why ~1 h' for some s’, h’:
() is shown as follows.

e To show (xx), it suffices to show that s’, h’ Why Fqom(T) Qlp] * Rlp].
e We split the heap h’ ¥ hy into h’ and hs.

e As s, h' Egom(r) Qlp] holds, we need to show s’,hy Egomer) R[p], which follows from
(s, h2 Fdom(r) Rlp]) A (Vy ¢ Mod(C). 8'(y) = s(y)) AFPV(R) N Mod(C) = 0 by Lemmalj]

O

5.2.7 Conseq

Theorem 8 (Soundness: Conseq).

PP {P}C{Q} QFQ PP [PlCQ] QFQ
{P} C{Q} [P} C Q]

Proof.
e Assume: P EP and Q' = Q.

e Assume: Vp € Env(FLV(P’,Q’)),s,h,hg, T,s,h,C" ' /.
s,h Egom(m) P'[p] As ~r s ANhwhp ~p hAC,s5,h ~* C', 8",) =
((C', ' W~ =) Vv
(3',h’. C" = skip A s’ h' Eqom(T) Q'lp] A
(Vy ¢ Mod(C). s'(y) = s(y)) As’ ~1 s AW Whp ~1 1))
[# A-(C,s,h diverges) #]

e Assume: p € Env(FLV(P,Q)),s,h, hg, T,s,h, C’, s, b’ such that
s,h Fgom(r) PlpJAs~r s Nhwhp ~p h AC,s,h ~* C' s W

e To show:
[# —(C, s, h diverges); and #]
(x) (C',8' W ~ =)V
(xx) (3s',h". C'" = skip As’,h’ Fqom(T) Qlp] A
(Vy ¢ Mod(C). s'(y) =s(y)) As’ ~1 s Ah' Whp ~ 1)

o Let p/ = p|FLV(PI’Q/).

e From P =P’ and s ~r s ANhWhp ~1 h As, h Fqom(T) P[0'] (as Plp'] = Pp]), we have
v S, h ':dom(T) P/[p/}

o [# —(C, s, h diverges) holds by assumption. #]

e Also by assumption we have two cases.

32

e When ¢/, s', b/ ~ —:
(*) holds.

e When €’ = skip A (s",h" Fqom(r)y Q'[p]) A (Vy ¢ Mod(C). s'(y) = s(y)) As’ ~1 " A
h' W hy ~1 h' for some s’, h’:
(+*) holds because s’,h’ |=qom(T) Q[p] follows from Q' = Q and s’ ~p s’ Ah' W hp ~¢ h' A
§' 0 Egomr) Q1] (a5 QU] = Qlp)).

O

5.2.8 Ex

Theorem 9 (Soundness: Ex).

{P} C{Q} Pl C[Q]
{Fv. P} C {Fv.Q} [Fv.P] C [Fv.Q]

Proof.

e Assume: Vp € Env(FLV(P,Q)),s,h,hg, T,s,h,C" s’ 1.
s,h ':dom(T) Plp)As~t sANhWhp =p hAC, s, h ~* c' s h =
((C', 8, ~ =)V
(3',h’. C" = skip A8’ h' Egom(T) Qlp] A
(Vy & Mod(C). §'(y) =s(y)) As' ~r s AW Whp ~1 }))
[# A-(C,s,h diverges) #|

e Assume: p € Env(FLV(Fv. P, 3. Q)),s,h,hy, T,s,h,C’,s', ' such that
(s,h):dom(T) (Fo. P)[p]) As~tsANhWhp =~ hAC, s, h~*C' s I

e To show:
[# —(C, s, h diverges); and #]
(x) (C',8,h ~ =)V
(xx) (3s',h'. C" = skip As', b’ Eqom(T) (Fv. Q)[p] A
(Vy ¢ Mod(C). s'(y) =s(y)) As' ~t s Ah' Whp =1 h')

From s, h Fqom(T) (Fv. P)[p], by Lemma m we have
v' 8, h Fdom(T) Pl(p | v +— v)] for some v € LogVals.

Let o/ :==(p| v V).

[# —(C, s, h diverges) holds by assumption. #]

Also by assumption we have two cases.

When C’, s’ h/ ~ —:

(*) holds.

e When C’ = skip A (s, b’ Egqomer) Q[P']) A (Vy ¢ Mod(C). s'(y) = s(y)) As’ ~1 s A
h' W hp ~1 I’ for some s’,h’:

(+*) holds because ', h’ |=qom(T) (Fv. Q)[p] follows from s, h’ =4omeT) Q[p'] by Lemma

O

33

5.2.9 Gen
Theorem 10 (Soundness: Gen).

Vv € LogVals. {P[v/v]} C {Q[v/v]} Vv € LogVals. [P[v/v]] C [Q[v/v]]
{P} C{Q} [Pl C Q]
Proof. The goal directly follows by definition because P[p] = P[p(v)/v][p] and Q[p] = Q[p(v)/v][p]
for any p € Env(FLV(P,Q)). O

5.2.10 Total
Theorem 11 (Soundness: Total).

[Pl C Q]
{P} C{Q}
Proof. It holds vacuously by definition. O
5.2.11 If
Theorem 12 (Soundness: If).
{PAE} C {Q} {P Anot E} Cy {Q} [PAE]C Q) [P Anot E] Cs [Q]
{P Aword(E)} if E then C; else C5 fi {Q} [P Aword(E)] if E then Cy else Cs fi [Q]

Proof.

e Assume: Vp € Env(FLV(P,Q)),s,h,hg, T,s,h,C’" s’ 1.
(S,h }Zdom(T) P[p] /\E) As~psAhWhp~p hACL,s,h~*C' s NN —
((C', 8, ~ =)V
(3s',h’. C" = skip A8’ h' =gom(T) Qlp] A
(Vy & Mod(C1). s'(y) =s(y)) As' ~1 s’ AW Why =7)
[# A —(Ch,s,h diverges) #]
(P

e Assume: Vp € Env(FLV(P,Q)),s,h,hg, T, s,h,C’, s’ 1.
(s,h Edom(r) Plp) Anot E) As ~p s ANhwWhyp ~p h A Ca,s,h ~* C', 8",/ =
((C', 8, ~ =)V
(3',h’. C" = skip A8’ h' Eqom(T) Qlp] A
(Vy & Mod(Cy). s'(y) =s(y)) As' ~1 s’ AW Whg =1 1))
[# A—(Chq,s,h diverges) #]

e Assume: p € Env(FLV(P,Q)),s,h,hp, T, s, h,C’,s', b’ such that
(s,h FEdom(T) Plp]Aword(E)) As ~1 sAhWhy ~1 hAif E then C else Cy fi, s, h ~* C’, 5", 1/

e To show:
[# —(if E then C; else Cs fi, s, h diverges); and #]
(x) (C',s',h ~ =)V
(xx) (3s',h'. C" = skip As’,h’ =gom(T) Qlp] A
(Vy ¢ Mod(Cy,C3). s'(y) =s(y)) As’ ~1 s AW Whg =~ /)

34

From s, h =qom (1) word(E), we have
v [[E]ls € Words.

By Lemma 2] we have
v [E]s = phyvp([ETs) = [E]s-

Thus, we have two cases.

When [[E]s € Words\{0}:
— [# Since we have if E then C; else C; fi,s,h ~» C1,s,h and s,h Fgom(T) P[p] A E, by
assumption we have =(C4, s, h diverges) and thus —(C, s, h diverges) holds. #|
— From if E then Cj else Cs fi,s, h ~* C',s’, h’ we have two cases.

— When C" = if E then C; else Cy fiANs’ =sA K =h:
(*) holds as we have if E then C else Cs fi, s, h ~> C1, s, h.

— When Cq,s,h ~*C',s' I:
(¥) or (x*) holds by assumption since we have s, h Fqom(T) Plo] A E.
e When [[E]ls = 0:
— [# Since we have if E then C; else C5 fi,s,h ~» C2,s,h and s, h =gom(T) P[p] A not £,
by assumption we have =(Cs, s, h diverges) and thus —(C, s, h diverges) holds. #]
— From if E then Cj else Cs fi, s, h ~* C’,s’, h’ we have two cases.

— When C’' = if E then C else Cy fiAs' =sAK = h:
(%) holds as we have if E then C; else C5 fi, s, h ~~ Ca, s, h.

— When Cs, s, h ~* C', s, /s
() or (x*) holds by assumption since we have s, h =qom(T) P[p] A not E.

5.2.12 While
Theorem 13 (Soundness: While).

{PAE} C {P Aword(E)}
{P Aword(E)} while E do C od {P A not E}

Proof.
e Assume: {P A E} C {P Aword(E)}
e To show: Vk. {P Aword(E)} while E do C od {P Anot E} : k
e We prove the goal by induction on k.
e (Base case) when k =0,

— Assume: p € Env(FLV(P)),s,h, hg, T,s,h,C’, s, b’ such that
(s, h Edom(t) P[] Aword(E))As ~r sAhwhp ~1 hAwhile E do C od,s,h ~* C', s/ .

35

— It suffices to show
(*) Cl,sl,h/ ~—.
— From s, h |=gom(T) word(E), we have
v [[E]s € Words.
— By Lemma [2| we have
v [E]s = phyve([ETs) = [E]s-
— (%) holds because C’" = while E do C od A s’ = s A K =h and [E]s # undef.

o (Inductive step) when k > 0AYj < k. {P Aword(E)} while E do C od {P Anot E} : j,

— Assume: p € Env(FLV(P)),s,h,hg, T,s,h,C’,s', b’ such that
(s, h Edom(t) P[p]Aword(E))As ~r sAhwhp ~1 hAwhile E do C od,s,h ~* C', s/, .
— To show:
(%) (C',s',h ~ =)V
(#x) (3s',h'. C" = skip A (s, h' Fqom(T) P[p] A not E) A
(Vy ¢ Mod(C). s'(y) =s(y)) As’ ~r s Ah/ Whg ~p 1)
— From s, h |Fqom(T) Word(E), we have
v [[E]s € Words.
— By Lemma [2| we have
v [E]s = phyvp([E]ls) = [ETs-
Thus we have two cases.
When [E]s = [[E])s = O:
& We have while E do C od, s, h ~~ skip, s, h.
o Thus we have skip, s, h ~*~1 C’ s, b/, from which it follows that
vV ' =skipAs' =sAK =h.
o Thus (+*) holds because we have s, h [=qom(T) not E from [[not EfJs = 1.
— When [E]; = [[E]]s € Words\{0}:
¢ We have while £ do C od, s,h ~ (C;while E do C od), s, h, from which we have
v (C;while E do C od),s,h ~*=1C" s K.
o From {PAE} C {PAword(E)} and {PAword(E)} while E do C od {PAnot E} : k—1,

by Lemma [TI] we have
v {PAE} C;while Edo Cod{PAnotE}:k—1.

o Thus (%) V (**) holds since we have s,h Fgom(r) E from [E]ls € Words\{0}.

Theorem 14 (Soundness: WhileT).

[PAEANO<E =v] C[PAword(E) A0 < E <] v ¢ FLV(P,E')
[P Aword(E) A0 < E’] while E do C od [P A not E]

Proof.

o Assume: [PAEAO<E =0] C [PAword(E) A0 < E' <v] and v ¢ FLV(P,E’).

36

e By Theorems [8] [0} [[1] and [13] we have

[PAEAO<E =v] C[PAword(E) A0 < E' <] (Fx)

X

[Fv.PAEAO<E =v] C [Fv.P Aword(E) A0 < E' < 9]
(Conseq)
[PAO<E AE|C[PAO<E Aword(E)]

(PAO<E AE}C {PAO<E Aword(E)}
{PAO0<E Aword(E)} while E do C od {P A0 < E Anot E}

{P Aword(E) A0 < E'} while E do C od {P Anot E}

(Total)

(While)
(Conseq)

e Assume: p € Env(FLV(P,E')),s,h, hr, T, s, h such that
(s,h Edom(T) Plp] Aword(E) A0 < E'[p]) As ~r s ANhwhp =1 h.

e Now we show —(while E do C od, s, h diverges) by contradiction.

e Assume: { D, s;, h; }ien such that
v (Do, S0, ho) = (while FE do C od, s, h) AYi. Dy, s, hi ~~ Diy1,8i41, hi+1.

e We show the following, which is a contradiction because ng > n1 > ny ... > 0 is not possible.

e By induction on i, we find { k;, n;,s;, h; hien (with n; € Words) such that
v Dy, = while E do C od;
v (Si, h;):dom(T) P[p] A WOFd(E) A0 < E/[,D} = nl) N8; ~1 Sk, N h; ¥ hy ~p hki;
v ifi>0then 0 <n; <n;_1.

(Base Case)

e From (s,h Fgom(T) 0 < E'[p]), we have
v TE'[p]]ls € Words.

e Let kg =0, s0 =s, hg = h and ny = [[E'[p]]ls, € Words.

e Then by assumption we have
v Dy, = while E do C od,
v (S()7 hg ':dom(T) P[p} A WOFd(E) N0 < E/[p] = no) NSg ~T Sk N hy W hp ~1 hko-

(Inductive step)

e Assume:
v Dy, = while E¥ do C od,
v (Si7 h;):dom(T) P[p] N WOFd(E) ANO < E/[,D} = nl) As; ~r Sk, ANy Whe ~p hy,.

o As (Dy,, Sk, , hi,) diverges, we have
v [E]s,, € Words\{0},
v (Dki+173ki+17 hki+1) = (C’;while E do C 0d73ki7hki)~

e From s;, h; Fgom(T) word(E), we have
v [E]ls;, € Words.

e By Lemma we have [E]]s, = phyvp([E]ls,) = [£]s,, € Words\{0}, and thus we have
v Sivhi):dom(T) E.

37

e By[PAEANO<E =] C [P Aword(E) A0 < E' < v], we have
v (C, Sk41, i, 41 diverges).

e Thus, we have some j such that
V' Dy, 4j+1 = (skip; while E do C' od),
VO Skt P11~ SKip, Sk 41, Pk 41
e Then, by PAEAO<E =] C [P Aword(E) A0 < E < wv], we have s;;1, h;;1 such that
V' (si+1, i1 Fdom(r) Plp] Aword(E) A0 < E'[p] <ni) Asit1 ~r Skitj41 Ahipr Whe & Ay g
e Also we have
V' (D j+2, Skitj+2, I 1j42) = (while E do C od, s, 141, g 4j+1)-
e From s;11,hi11 Faomer) 0 < E'[p] < n;, we have
v [E'[p]ls,.. € Words A0 < [E'[p]]ls,., < -
o Let ki1 =k;i+j+2and njy1 = mE/[p]]]]Si+1'

e Then, we have
v Dy,,, = while E do C od,
v (Si+1,hi+1 |:dom(T) P[p}/\word(E)/\O < E/[p] = ni+1)/\si+1 ~T Sk Ah;1Why =1 hy
vV i< N1 < Ny

i1
O

5.3 Soundness of Outer-level Rules
Definition 2 (Generalized triple).

{P} C {Q} : k iff Vj <k.VpeEnv(FLV(P,Q)),s,h,hp, T,s,h,C' s h.
s,hiE Plp)As~t sAhWhp ~p hAC, s,h ~73 O 8", =
(C', 8" b~ =)V
(3,0, T'. C' =skipAs’,h' = Qlp] A
(Vx ¢ Mod(C). s'(x) =s(x)) As' = 8 ANh' Why ~1/ h)

5.3.1 Alloc
Theorem 15 (Soundness: Alloc).

m >0
[[x =2m + 1]] alloc x [[x <, 0, ...,0]]

Proof.

e Assume: m,s,h, hy,T,s,h,C’, s’ k' such that
vm>0AsshiEx=2m+1As~r sANhWhp ~1 hAalloc x,s,h ~*C', s b

e alloc x, s, h does not diverge as it takes at most one step.

e To show:
(%) C", ' b/ ~ —; or
(xx) 38", W/, T". C' =skipAs’,h Ex—,, 0,...,0A
(Vy ¢ Mod(C). s'(y) =s(y)) As’ =p s AW Whg ~p/ A

38

From s,h = x =2m+ 1, we have
v s(x)=2m+1.

From s(x) =2m+ 1 A's = s, we have
v os(x) =2m+ 1.

From h W hg ~1 h, we have oy such that
v 0o = Iz.(dom(shape(T)), h) A shape(T) C op.

From s ~1 s, we have
v roots(s) C dom(shape(T)) C reach(dom(shape(T)), h, 0g).

Thus, by GCAxiomg, we have o, such that
v 0, = Iz (roots(s), h) A ajy C oy.

By GCAxiom;, we have
reach(roots(s), h, () C dom(cy).

By Lemmas [§] and [10] we have
v reach(roots(s), h, o)) C reach(dom(shape(T)), h,0¢) C dom(shape(T))

By the specification of garbage collector, from alloc x, s, h ~* C’, s’, ' we have the following
two cases.

When C" =allocxAs’'=sAh =h:

(*) holds by the specification of garbage collector.
When C’ = skip A

v o1 W [p1 = m] = Ig.(roots(s’), h') A

v 8/(}() =p1 A

v h/:hlﬂﬂ[pl —m O,...,O]/\

vV (s, h,o) 2 (8" | x—2m+1),hy,01)

for some p1, h1,07:

() is shown as follows.

Let s1 =(s' | x—2m+1).
From (s, h,0{,) = (s1, h1,01), we have r such that

v r € Bij(reach(roots(s), h, o{,), reach(roots(s1), h1, 01))

v vy (s(y),si(y)) €7
v Y(p,p') €r.In. of(p) = o1(p") = n AVi <n. (h(p+4i),h(p' +47)) €T

where 7 & U {(a,a) | a € NonPtrs }.

We define T; as follows:

df [(p,n) T =(p\n) A p)ET
v) = undef otherwise
T, is well-defined because r is bijective.

39

e By definition, we have
v dom(shape(T;)) C reach(roots(s1), hi,01).

e v shape(T;) C oy is shown as follows.

— To have shape(T;) # undef, we need to show that p # p’ for any (p,n) = T1(£) and
(p',n') = T1(£) with £ # £'.
By definition of Ty, we have p”, p”’ such that
V(") =TE) A", p) €rA@") =TE) NP p)eEr
From shape(T) # undef A £ # £, we have
\/ p// #p///'
Since r is bijective, we conclude p # p’ from (p”,p) € r A (p",p') € r ANp" #£ p"”.

— Now it remains to show o1(p) = n for any p, n such that
v shape(T1)(p) = n.
By definition of shape(T;) and T;, we have £,p’ such that
v (p'in) =TE AP p) T
We thus have the equality

oip) = op(p') (by (¢',p) €7)
= oo(p) (by of, C o9 Ap' € reach(roots(s), h, o) C dom(ay))
= shape(T)(p) (by shape(T) C o9 A p’ € dom(shape(T)))

e v s~m, s1 is shown as follows.

— s1(x) = phyvy, (s(x)) As(x) € Safe(dom(T1)) holds since s(x) = s1(x) = 2m + 1.
— Now we need to show that s1(y) = phyvy, (s(y)) As(y) € Safe(dom(Ty)) for any y # x.
— From s &~ s, we have s(y) € Safe(dom(T)) and thus have the following two cases.
— When s(y) = a € NonPtrs:

We have s(y) = a from s ~ s.

Thus we have s1(y) = a from (s(y), s1(y)) € T.

Thus we have s1(y) = a = phyvy, (s(y)) As(y) = a € Safe(dom(T1)).
— When s(y) = £30 for £ € dom(T):

We have s(y) = p for (p,n) = T(£) from s ~t s.

Thus we have s1(y) = p’ for p’ with (p,p’) € r from (s(y), s1(y)) € .

Thus we have T4 (£) = (p', n).

Thus we have s1(y) = p’ = phyvy, (s(y)) As(y) = £+0 € Safe(dom(T1)).

o From hwhyp : T AVL € dom(Ty). m2(T1(€)) = m2(T(£)), we have
vV hihg: T;.

e vV hwhg :: Ty Aphyhy (hwhy) C Ay is shown as follows.
— Since shape(T;) C o7 and dom(oy W [p; — m]) # undef by GCAxiom;, we have
v dom(shape(T;)) # undef.

40

— Thus it suffices to show that for any £, (p,n) = T1(€) and ¢ < n, the following holds:
(hw hp)(£)(i) € Safe(dom(T1)) A hi(p + 4i) = phyvy, (hwhy)(£)(i)) # undef
— By definition of T; we have p’ such that
v (p',n) =T(£) and (p',p) € r.
— From o, C o9 A p' € reach(roots(s), h, o() C dom(c()) A shape(T) C og, we have
v 00(p') = 00(p’) = shape(T)(p') = n.
— From (p/,p) € r Ao((p') =n Ai<n, we have
v (h(p +41),hi(p+47)) €T.
— (hwhg)(£)(i) € Safe(dom(T)) follows from h W hg :: T, and thus we have two cases.
— When (hWhyp)(£)(i) = a € NonPtrs:
v (hwhyp)(£)(i) = a € Safe(dom(Ty)).
From h W hp ~1 h, we have
v h(p' +4i) = phyvp((hwWhp)(€)(i)) = a.
From (h(p' +41),h1(p + 47)) € 7, we have
v hi(p+4i) = a = phyvy ((h& hg)(£)(i)) # undef
— When (h hg)(£)(i) = €30 for £ € dom(T):
From h @ hg ~1 h, we have
v h(p' + 4i) = phyvp((hwhg)(£) (i) = p” for (p”,n') = T(£).
From (h(p' +41),h1(p + 47)) € 7, we have
v hi(p+4i) =p" for (p",p") er.
Since T1(€') = (p'',n’), we have
v (hwhp)(£)(i) € Safe(dom(T))
v hi(p+4i) =p" = phyvy (hwhp)(£)(i)) # undef.

e Now we do case analysis on m and show ().

e When m = 0:

— We have
\/plz()/\h/:hl.

— Let
v s'=(s|x—0),
v h'=h,
v TV =T;.

— s, h' Ex<,,0,...,0 follows from (x < €) = true.

— s’ ~p s’ follows from
(1) s =T, s1; and
(2) §'(x) =p1 =0=phyvy (s'(x)) As'(x) = 0 € Safe(dom(T")).

— To show h' W hp ~¢/ &/, it suffices to show shape(T’) C I .(dom(shape(T’)), ') since
we already have hw hp : Ty Ah W hp :: Ty A phyhp (hwhg) C hy.

By GCAxioms, from o1 = I (roots(s’), h') and dom(shape(T’)) = dom(shape(T;)) C
reach(roots(sy), h1,01) = reach(roots(s’), ', o1), we have o3 such that

41

v 09 = Iy.(dom(shape(T”)),h') Aoa C 0;.

Now it suffices to show shape(T') C o3, which follows from

(1) shape(T’) = shape(T1) C 01 Aoz C o1; and

(2) dom(shape(T')) C reach(dom(shape(T’)),h’, 02) C dom(os) by GCAxiom;.

e When m > 0:

— Choose a fresh £; such that £; ¢ dom(T;) A dom((hwhg)(£;)) = 0.
— Let
vV s'=(s]|x— £,40),
v h=hw[t—,0,...,0],
v T = T1 (] [Zl = (pl,m)]
— s, W Ex<,,0,...,0 follows from s'(x) = £,+0 and [€; >, 0,...,0] C h'.
— s’ =1/ s follows from
(1) s~1, s1 ATy CT’; and
(2) §'(x) = p1 = phyvp (s'(x)) As'(x) = £, 70 € Safe(dom(T")).
— h/ Wwhg =1 A holds because
(1) W Why : T/ follows from hw hy : T; Adom((h' Whr)(£;)) ={0,...,m—1}
(2) h'Whyg :: T follows from hwhg :: T1AV: < m. (h'Whg)(£;)(i) = 0 € Safe(dom(T’));
(3) phyhp/(h' W hg) C A/ follows from phyh[elH(phm)]([El —m 0,...,0]) = [p1 —m
0,...,0] and phyhp (hwhg) C h;; and
(4) shape(T’) C Iyc(dom(shape(T’)), h’) is shown as follows.
Since dom(shape(T;)) C reach(roots(sy1),h1,01) C reach(roots(s’),h', o1 W [p1 +— m])
holds by Lemma[§] and since p; € roots(s’) holds, we have
v dom(shape(T')) = (dom(shape(T1)) U {p1}) C reach(roots(s’), k', o1 W [p1 +— m]).

Thus from o1 W [p1 — m] = Ig.(roots(s’), h'), by GCAxiomy we have o such that
v 09 = Izc(dom(shape(T')), h') Aoy C o1 & [p1 — m].

Now it suffices to show shape(T') C o9, which follows from

(1) shape(T’) C 01 W [p1 — m] by shape(T;) C o1;

(2) o2 C o1 W[p1 — m]; and

(3) dom(shape(T')) C reach(dom(shape(T’)), h',02) C dom(os) by GCAxiom;.

5.3.2 Incl

Theorem 16 (Soundness: Incl).

V Csn ProgVars {P Asafe(V)} C {Q A safe(Mod(C))}
{rh ¢ {@Q}

V' Ctin ProgVars [P Asafe(V)] C [Q A safe(Mod(C))]
[(P]] € [IQ]

42

Proof.
e Assume: Vp € Env(FLV(P,Q)),s,h,hr, T, s,h,C’ s 1.
s,h FEgom(r) (Pp] Asafe(V)) As ~p s ANhwhp ~p hAC,s,h~*C", s 0 =
((C', ' W~ =) Vv
(3',h’. C" = skip A s’ h' Fqom(T) (Q[p] A safe(Mod(C))) A
(Vy ¢ Mod(C). s'(y) = s(y)) As’ ~1 s’ AW Whp ~1 1))
[# A-(C,s,h diverges) #]
e Assume: p € Env(FLV(P,Q)),s,h,hg, T,s,h,C’, s’ b’ such that
v s,hE PplAs~rsAhWhp mp hAC,s,h~*C' s b

e To show:
[# —(C, s, h diverges); and #]
(x) C',s',h ~ —; or
(xx) 3/, h', T". C" = skip As’,h' = Q[p] A
(Vy ¢ Mod(C). s'(y) =s(y)) As’ =1 s AW/ Why =~/ K/
e From s, h = P[p] and s ~r s, by Lemma [6] we have
v s,h):dom(T) P[p] A safe(V).

o [# —(C, s, h diverges) by assumption #]
e Also by assumption we have two cases.

e When C’, 5" h/ ~ —:
(*) holds.

e When C" = skipAs’, h' Fgom(T) (Q[p] Asafe(Mod(C))) A (Vy ¢ Mod(C). s'(y) = s(y)) As’ ~t
s’ N\h Whg ~1 h' for some s’,h':
(%) is shown as follows.

e To show (xx), it suffices to show that s’,h' = Q[p] A s’ ~T &'.

e s',h' = Q[p] follows from s’, h’ =4om(T) Q[p] by Lemmas @

e s” =~ s’ holds as follows.

— when x € Mod(C):
phyvr(s'(x)) = §'(x) follows from s’ ~p s,
s'(x) € Safe(dom(T)) follows from s, h’ =gom(T) safe(Mod(C)).
— when x ¢ Mod(C):
phyvr(s'(x)) = phyvp(s(x)) = s(x) = s'(x) follows from s ~t s and s(x) = §'(x).
s'(x) = s(x) € Safe(dom(T)) follows from s ~ s.

43

5.3.3 Seq

Lemma 12 (Soundness: Generalized Seq).

{rPh CL QB k {QP C {{RY Kk
{P}} C1;C {R}} K

Proof.
e Assume: {{P}} C1 {Q}}: &k

e Assume: {{Q}} C: {R}}: k

e Assume: p € Env(FLV(P, R)),j,s,h,hy, T, s, h,C’,s', b/ such that
ji<kAs/h ':P[p]/\S%T sANhWhp ~p h/\(C’l;Cg,s,hwj C/,Sl,h/)

e To show:
(x) (C',¢',h ~ =)V
() (3¢, h’ T'. C' =skipAs’,h' = R[p] A
(Vy ¢ MOd(Cl, CQ) () ()) As' ~p s’ Nh W hp = h/)
o Let p/ := p|FV(Q),

e Then, as P[p] = P[p’], we have
)

e From Cy;Cy,s,h ~7 C',s' ', we have two cases.
e When Cy,s,h ~7 C},s',h/ NC" = C}; Cy:

— By assumption we have two cases.

— When C1, s, b ~ —:
(%) holds because (C7;Ca), s, h/ ~» —.

— When C] = skip A (s,h' E Q[p]) A (Vy ¢ Mod(Cy). s'(y) = s(y)) As' = s A
h' ¥ hy ~1 b’ for some s’, h’:
(%) holds because (skip; C2),s’,h' ~> Ca, 8", h'.

e When Cy, s, h ~J1 skip, s}, by A Co, sy, by ~92 C' ')b/ Nj = j1 + jo + 1:

— As j1 <k ACy,s,h~Jt skip, si, b, by assumption we have s}, h, T} such that
¢ S0 F QUY'| \ (vy ¢ Mod(Ca). si(y) = s(y)) A8} ~zy 4 A B 6 he ~ay .

— As jo <k ACy, s, b} ~72 C' s’ I, by assumption we have two cases.

— When C’, s, b/ ~ —:
(*) holds.

— When C’ = skipAs’, h' = R[p/|A(Vy ¢ Mod(Cs). s'(y) = si(y))As’ =1 s'Ah/ Why =1/ h':
(*%) holds because
(1) ¢',h’ = R|p] holds since R[p'] = R|p];

(2) (Vy ¢ Mod(C’l,Cg) "(y) = s(y)) follows from (Vy ¢ Mod(Cs). s'(y) = s{(y)) and
(Vy ¢ Mod(C1). s (y) = s(y)) since Mod(Cy;Cy) = Mod(Ch) UMod(Cy).

44

Theorem 17 (Soundness: Seq (partial)).

{ry ¢ {@) Hep & {R)
{P}} C1;: Gy {RY}

Proof. Tt holds by Lemma

Theorem 18 (Soundness: Seq (total)).

[P C Q) [QN] Co [[R]
[[P]] C1;Co [[R]]

Proof.
e Assume [[P]] C; [[Q]]-
e Assume [[Q]] Cy [[R]].
« By Theorem [T, we have (P} Cv; Cs {(R}}

e Assume: p € Env(FLV(P, R)),s, h,hp, T, s, h such that
s,h = Plp| As ~t s N\hWhp ~t h.

e Now we show —(C4; Co, s, h diverges) by contradiction.

e Assume { D;, $;, h; }ien such that
\/ (Do, S0, ho) = (Cl, CQ, S, h) A Vl Di, Si, hl ~ Di+1, 51'+1, hi+1.

o Let o/ i pFIV(@.

e Then, as P[p] = P[p’], we have s, h = P[p'].

e By [[P]] C: [[Q]], we have =(C1, s, h diverges).

e Thus, we have some k such that Dy, = (skip; Cy) and C4, s, h ~* skip, s, hg.
e As Dy = (skip; C2), we have Dyy1 = Cs, Sp+1 = Sk, and hgy1 = hy.

e By [[P]] C1 [[Q]], we have s’,h’, T such that
v s, E QYA (Vy ¢ Mod(Ch). s'(y) =s(y)) As’ mpr s Ah/ Whp =1/ hy.

e By [[Q]] C2 [[R]], we have —(Cq, si, hy, diverges).

e Thus we have =(Dg1, Sg+1, hip+1 diverges), which is a contradiction.

45

5.3.4 Frame

Theorem 19 (Soundness: Frame).

{ryc ey FPV(R)NMod(C) =0 [P C QN FPV(R) N Mod(C) =0

{P =R} C {{Q* R} [P+ R]] C[[Q * R]

Proof.

Assume: FPV(R) N Mod(C) =

Assume: Vp € Env(FLV(P,Q)),s,h,hg, T,s,h,C", s’ 1.
s,hE Plp|Asx~t s NhWhp =t hAC,s,h ~*C' s W =
((C', s, ~ =)V
(3s',h', T'. C' =skip As’,h' = Qlp] A
(Vy ¢ Mod(C). s'(y) = s(y)) As’ =1 s’ Ah' Why ~p 1))
[# A-(C,s,h diverges) #]

Assume: p € Env(FLV(P,Q, R)),s,h,hg, T s, h,C’, s’ h’ such that
s.h = (Plp] * Rp)) As ~r s AhWhy ~op h A C, s, h ~s* C', s,

To show:
[# —(C, s, h diverges); and #|
(x) (C',8,h ~ =)V
(xx) (3s’, 0/, T'. C" =skipAs’,h' = (Qp] * R[p]) A
(Vy ¢ Mod(C). s'(y) = s(y)) As’ ~p s AW Whg ~p/ B)

From s, h = (P[p] * R[p]), we have h; and hy such that
v h=h, Wh,
v S,hl): P[p]a
v s,hy = R[p].

[# —(C, s, h diverges) holds by assumption since hwWhyp = hy W (hy Whyp) As,hy = Plp] #]
Also by assumption we have two cases since hw hp = h; & (he Why) As,hy = P[p)].

When C', 8" h/ ~ —:
(*) holds.

When C” = skipA(s’,h' E Q[p])A(Vy ¢ Mod(C). s'(y) = s(y))As’ =g s’ Ah' Why W hy =1/ '
for some s’, h’:
(*x) is shown as follows.

To show (%), it suffices to show that s’,h’ Whs = Q[p] * R|p].
We split the heap h’ W hy into h’ and hs.

As §',h' = Q[p] holds, we need to show s’,hy = R[p], which follows from (s,hy = R[p]) A
(Vy ¢ Mod(C). s'(y) = s(y)) AFPV(R) N Mod() = 0 by Lemma [j]

O

46

5.3.5 Conseq

Theorem 20 (Soundness: Conseq).

PEP {PRCHR) QEQ PEP [PIClQ] QFEQ
{rh C {Q} [Pl ¢ [[Q]]

Proof.

Assume: P | P and Q' = Q.

Assume: Vp € Env(FLV(P',Q")),s,h,hg, T, s, h,C", s’ 1.
s,shi=EPplAsmr sAhWhp ~0 hAC,s,h ~*C', ',k —
((C', ¢, ~ =)V
(3,0, T'. C' =skipAs’,h' = Q'[p] A
(Vy ¢ Mod(C). s'(y) =s(y)) As’ =1 s’ Ah' Why ~p 1))
[# A-(C,s,h diverges) #]

Assume: p € Env(FLV(P,Q)),s,h,hg, T,s,h,C’, ', ' such that
S,h |: P[p] NS~ S/\hL—ﬂhF T h/\C,S,hM—)* C/,S/7h/

To show:
[# —(C, s, h diverges); and #]
(x) (C',8,h ~ =)V
(xx) (3s’, 0/, T'. C" =skipAs',h' E Qlp] A
(Vy ¢ Mod(C). s'(y) = s(y)) As’ mp s AW Whg ~p/ B)
Let p/ d:efp‘FLv(P’,Q’)_

From P = P’ and s =t s A\ hWhyp =t h As,h |E P[p] (as P[p'] = P[p]), we have

v s,h = P'[p'].

[# —(C, s, h diverges) holds by assumption. #]

Also by assumption we have two cases.

When C’, s’ b/ ~ —:

(*) holds.

When C" = skip A (s, W/'Q'[p]) A (Vy & Mod(C). s'(y) =s(y)) As’ =1 s’ Ah' Whyp ~1 A’ for

some s’, h':
(%) holds because s’,h' = Q[p] follows from @ | @ and s’ ~p s’ A h'Whp ~1 A A
s".h' = Q'[p] (as Q[p'] = Qlp]).--

O

5.3.6 Ex

Theorem 21 (Soundness: Ex).

{ry ¢ {@h [P ¢ 9l
{3v. P} C {3v.Q} [Bv. P] C [[Bv. Q]

47

Proof.

Assume: Vp € Env(FLV(P,Q)),s,h,hp, T,s,h,C', s, I'.
s,hE PlplAs~t s ANhWhp =~ hAC,s,h ~*C',s',h =
((C', 8, ~ =)V
(3,0, T". C' =skip As’,h' = Q[p] A
(Vy §é MOd(C) Sl(y) = S(y)) As ~1 s ANh' Whp ~1/ h/))
[# A-(C,s,h diverges) #]

Assume: p € Env(FLV(Jv. P,3v.Q)),s,h,hg, T,s,h, C’, s, h' such that
(s,h = (Fv.P)[p)) As~r sANhWhp =p hAC,s,h~*C" s I
To show:
[# —(C, s, h diverges); and #]
(x) (C',8,h ~ =)V
(xx) (3s', W/, TV. C" =skip As’, I/ = (Fv.Q)[p] A
(Vy ¢ Mod(C). s'(y) =s(y)) As’ mp s AW Whg ~p/ B)
From s, h |= (3v. P)[p], by Lemma [7] we have
v s,h = P[(p | v+ v)] for some v € LogVals.

Let p' :i=(p|vr— V).
[# —(C, s, h diverges) holds by assumption. #]
Also by assumption we have two cases.

When C’, s’ b/ ~ —:
(*) holds.

When " = skip A (', b’ = Q[¢']) A (Vy ¢ Mod(C). 8'(y) = s(y)) As' ~ s' A’ Whp ~pe B

for some s’, h’:

(#x) holds because s, h’ |= (Jv. Q)[p] follows from s’,h’ = Q[p'] by Lemma [7]

5.3.7 Gen
Theorem 22 (Soundness: Gen).

Vv € LogVals. {{P[v/v]}} C {Q[v/v]} Vv € LogVals. [[P[v/v]]] C [[Q[v/v]]
[

{ry ¢ {@h ([Pl ¢ (@]

Proof. The goal directly follows by definition because P[p] = Plp(v)/v][p] and Q[p] = Q[p(v)/v][p]
for any p € Env(FLV(P,Q)).

5.3.8 Total

Theorem 23 (Soundness: Total).

_Pyefel
{ry c {en

Proof. Tt holds vacuously by definition.

48

O

5.3.9 If
Theorem 24 (Soundness: If).

{rprEl} G @) {{PAnot EY Oy {Q}} ([P AENCQ [P Anot EJ] Cy [[Q]]
{P Aword(E)}} if E then C; else Cs fi {Q}} [[P Aword(E)]] if E then Cy else Cy fi [[Q]]
Proof.

e Assume: Vp € Env(FLV(P,Q)),s,h,hg, T,s,h,C" s’ 1.
(s,hEPlp)ANE)As~r s NhWhp ~t hACy,s,h ~* C' s, h —
((C', s, b~ =)V

(3s',h', T". C' =skip As’,h' = Qp] A
(Vy ¢ Mod(C4). s'(y) =s(y)) AS = s’ Ah' Whyp =1/ 1))
[# A —(Ch,s,h diverges) #]

e Assume: Vp € Env(FLV(P,Q)),s,h,hg, T,s,h,C" s’ 1.
(s,h =Plp]Anot E)As~t s NhWhp ~p hACs,s,h ~*C" ¢,h =
((C', s, ~ =)V
(38,0, T'. C' =skipAs’,h' E Qlp] A
(Vy ¢ Mod(Cy). s'(y) =s(y)) As' = s Ah' Whyp ~q/ 1))
[# A~—(Ca,s,h diverges) #]

e Assume: p € Env(FLV(P,Q)),s,h,hg, T,s,h, C’, s, b’ such that

(s,h = Plp] Aword(E)) As mr s NhWhy =1 h Aif E then C; else Cs fi,s,h ~* C' s’ 1/
e To show:

[# —(if E then Cy else Cs fi, s, h diverges); and #]

(x) (C',8',h ~ =)V

(xx) (3s', W/, TV. C" =skip As’, 1’ = Qo] A

(Vy ¢ Mod(Cy,Cs). s'(y) =s(y)) As' mp 8 Ah' Why =1/ 1)

e From s, h = word(E), we have

v [[E]ls € Words.

e By Lemma 2] we have
v [E]s = phyvr([E]s) = [E]s-
e Thus, we have two cases.
e When [[E]ls € Words\{0}:
— [# Since we have if E then C else Cs fi,s,h ~» Cy,s,h and s, h = P[p] A E, by assump-
tion we have —(C1, s, h diverges) and thus —(C, s, h diverges) holds. #]

— From if E then C; else Cs fi, s, h ~* C’,s’, h’ we have two cases.

— When C’' = if E then Cy else Cy fiAs' =sAK = h:
(%) holds as we have if E then C; else Cs fi, s, h ~~ Cy, s, h.

— When C1y,s,h ~* C', s b/
(%) or () holds by assumption since we have s,h = P[p] A E.

49

e When [[E]ls = 0:
— [# Since we have if E then C} else Cs fi,s,h ~> Ca,s,h and s, h | P[p] A not E, by as-
sumption we have —(Cy, s, h diverges) and thus —(C, s, h diverges) holds. #]
— From if E then C else Cs fi, s, h ~* C’ s’ h' we have two cases.

— When C' =if £ then C else Cy fins’ =sAh = h:
(*) holds as we have if E then C else Cs fi, s, h ~ Ca, s, h.

— When Cs,s,h ~*C',s' I:
(%) or () holds by assumption since we have s,h |= P[p] A not E.

5.3.10 Wahile
Theorem 25 (Soundness: While).

{PAE} C {P Aword(E)}}
{P A word(E)}} while E do C od {{P Anot E}}

Proof.
o Assume: {{PAE} C {P Aword(E)}}
e To show: Vk. {{P A word(E)}} while E do C od {P Anot E}} : k
e We prove the goal by induction on k.
o (Base case) when k =0,
— Assume: p € Env(FLV(P)),s,h,hg, T,s,h,C’,s', b’ such that
(s,h = Plp] Aword(E)) A's =t s ANhwhgp a1 h Awhile E do C od, s, h ~F C’ s’ h'.

— It suffices to show

(x) C' s, h ~ —.
— From s, h = word(E), we have

v [[E]ls € Words.
— By Lemma [2| we have

v [E]s = phyve([E]s) = [Es-
— (*) holds because C' = while E do C' od A s’ = s AR = h and [E]s # undef.

e (Inductive step) when k > 0 AVj < k. {{P Aword(E)}} while E do C od {{P Anot E}} : j,

— Assume: p € Env(FLV(P)),s,h,hg, T,s,h,C’, s’ b’ such that

(s,h = Plp] Aword(E)) A's =t s ANhwhgp ~p h Awhile E do C od, s, h ~F C’ s’ h'.
— To show:

() (C',8" h/~ =)V

(xx) (3s’, 0/, T. C" =skip A (s, h' = P[p] A not E) A

(Vy ¢ Mod(C). s'(y) =s(y)) As’' 1 s’ A" &hy ~q 1)

50

From s, h = word(E), we have
v [[E]ls € Words.
— By Lemma [2| we have
v [E]s = phyve([E]s) = [E]s-
— Thus we have two cases.
When [E]s = [[E])s = 0:
© We have while E do C' od, s, h ~~ skip, s, h.
o Thus we have skip, s, h ~*~1 C’, s, b/, from which it follows that
vV ' =skipAs' =sAK =h.
¢ Thus (*x) holds because we have s, h |= not E from [[not E]s = 1.
— When [E]; = [[E]]s € Words\{0}:
o We have while E do C od, s, h ~ (C;while E do C od), s, h, from which we have
v (C;while E do C od),s,h ~*=1C" s K.
o From {{PAE}} C {{PAword(E)}} and {{ PAword(E)}} while E do C od {{ PAnot E}} :

k — 1, by Lemma [I2] we have
v {{P A E}} C;while Edo Cod {{PAnot E}} : k—1.

o Thus (*) V (x+) holds since we have s,h = E from [[E]}s € Words\{0}.

Theorem 26 (Soundness: WhileT).

[PANEANO<E =0]] C[[PAword(E) A0 < E <] v ¢ FLV(P,E')
[P Aword(E) A0 < E'l] while E do C od [[P A not E]

Proof.
e Assume: [[PAEANO<E =v]] C [[PAword(E) A0 < E' <v]] and v ¢ FLV(P,E’).

e By Theorems and [25] we have
[PAEAO<E =0]] C[[PAword(E)A0 < E <]

[Bv.PANEAO<E =v]] C[[Fv.P Aword(E) A0 < E < v]] (}éx)]
[PAO<E AE] C[[PAO0<E Aword(E)]] (Total)(onseq)

{PANO<E ANE}} C {PAO0<E Aword(E)}}
{P N0 < E Aword(E)}} while E do C od {{P A0 < E'Anot E}}
{P Aword(E) A0 < E'}} while E do C od {{P Anot E}}

(While)
(Conseq)

e Assume: p € Env(FLV(P,E’)),s, h, hg, T, s, h such that
(s,h = P[p] Aword(E) A0 < E'[p]) As 1t s \hWhp ~T h.

e Now we show —(while E do C od, s, h diverges) by contradiction.

e Assume: { D;, s;, h; }ien such that
v (Do, S0, ho) = (while E doC Od, S, h) A VYi. D,‘, Si, hl ~ Di+1, Si+1, hi+1.

o1

e We show the following, which is a contradiction because ng > n; > ns ... > 0 is not possible.
e By induction on i, we find { k;,n;,s;, h;, T; }ien (with n; € Words) such that
v Dy, = while I do C od;
v (si,h; E Plp] Aword(E) A0 < E'[p] = n;) As; =, s, ANh; Why ~r, hy,;
v ifi>0then 0 <n; <n;_1.
(Base Case)

e From (s,h = 0 < E’[p]), we have
v [E[pllls € Words.

o Let kg =0,80 =s, hg =h, Top =T and ng = [[E'[p]]]s, € Words.

e Then by assumption we have
v’ Dy, = while E do C od,
v (S()7 hg ': P[p] A\ WOI’d(E) N0 < E/[p] = no) N 8o Ry Sko N\ hy W hg T, hko-

(Inductive step)

o Assume:
v' Dy, = while ¥ do C od,
v (siyhy | Plp] Aword(E) A0 < E'[p] = ny) As; =1, sk, A h; Whyp ~r, hy,.

e As (Dy,, Sk, , hi,) diverges, we have
v [E]s,, € Words\{0},
v (Dk,;-i-l, Ski+1, hkq-,-i-l) = (C’;while EdoC Od, 3k,~7hki)~

e From s;,h; | word(E), we have
v [E]ls, € Words.

e By Lemma we have [[E]ls, = phyvy, ([E])s,) = [Els,, € Words\{0}, and thus we have
v S;, h,’): k.

e By [PANEANO<E =v]] C[[PAword(E) A0 < E' < v]], we have
v =(C, Sk, 41, hi;+1 diverges).

e Thus, we have some j such that
V' Dy, 441 = (skip; while E do C od),
V' C, Skyg1s Mgy 11 ~7 SKIp, Sk, 4j 415 Py 41
e Then, by [PAEAO<E =9]] C [[PAword(E) A0 < E' < v]], we have s;41, hj11, Tiq1
such that
v (sit1,hiv1 B Plp] Aword(E) A0 < E'[p] <ni) Asit1 21y, Skitj+1 A Whe 21, By

e Also we have
V' (D42, Ski+j+2, e, +j42) = (while E do C' od, sk, 141, e, 4j+1)-

e From s;;1,h; 1 0 < E'[p] < n;, we have
v [E[p]ls,.. € Words A0 < [E'[p]]ls,., < -

o Let ki—i—l = ki +] + 2 and Ni+1 = MEI[P]]]]S,:+1-

52

e Then, we have
V' Dg,,, = while E do C od,

v (Si-‘rla hi-‘rl ': P[p] /\WOI’d(E) N0 < E/[p} = ni+1) ASit1 ATip1 Skiqa /\hi+1 Whp AT hki+17
vV < Nip1 < Ny
O
5.4 Soundness of Assertion Entailments
5.4.1 NPtrSafe
Theorem 27 (NPtrSafe).
nonptr(E) = safe(E)

Proof. Tt holds vacuously by definition. O

5.4.2 BoolWord

Theorem 28 (BoolWord).
E = word(E)

Proof.

e For any p € Env(FLV(E,E’)),s,h, hg, T, s, h such that s ~r s A\hWhp ~1 h, we need to
show that s,h Fgom(T) E[p] = s,h Fgom(T) word(E[p]).

e From s, h =1 E[p], we have [E[p|]ls € Words\{0} C Words.
e Thus s, h |=4om(T) Word(E[p]) holds.

5.4.3 PointstoNZero

Theorem 29 (PointstoNZero).
E—EEE#£0

Proof.

e For any p € Env(FLV(E,E’)),s,h, hp, T, s, h such that s ~7 s AhWhp ~1 h, we need to
show that s, h ':dom(T) E[p] - E/[p] = s,h ':dom(T) WOI’d(E[p} = 0)

From s,h =1 E[p] — E[p], we have [E[p]s = £+4i and [[E'[p]]ls = h(£)(i) for some
£ € dom(T) and ¢ € Z.

As h(£)(i) # undef, from hwhp : T we have 0 < i < n for (p,n) = T(£).
Thus [[E[p] # 0]]s = [[not (€347 = 0)[]s =1 as i > 0.

Thus S, h }:dom(T) E[p} 7é 0 holds.

53

5.4.4 ExpSafe

Theorem 30 (ExpSafe).
defined(FE) = offsafe(E)

Proof.

e For any s,h,hp, T, s, h such that s ~p s A h W hp =~ h, we need to show that s,h [Fqom(T)
defined(£) = s,h Fgom(T) offsafe(F).

e From s, h Fqom (1) defined(E), we have two cases.

e When [[E]ls = w € Words:
By definition s, h [Fqom () offsafe(E) holds.

e When [[E])s = £+i for some £ € Locs and i € Z:
By Corollary (3} we have £ € dom(T) and thus s, h |=qom () offsafe(E) holds.

5.4.5 HeapSafe

Theorem 31 (HeapSafe).
E — E’ A offsafe(E) |= safe(E’)

Proof.

e For any p € Env(FLV(E,E’)),s,h,hp, T, s, h such that s ~r s AhWhp ~1 h, we need to
show that s,h Fgom(T) E — E' Aoffsafe(E) = s, h [Fqom () safe(E'[p]).

e From s, h Fqom(T) E < E' A offsafe(E), we have [E[p][ls = £+4i and [E'[p][ls = h(€)(i) for
some £ € dom(T) and i € Z.

e As h(£)(i) # undef, from hw hp : T we have 0 < i < n for (p,n) = T(€).
e From hwhy :: T, we have [JE'[p][]s = h(£)(¢) € Safe(dom(T)).
e Thus s, h [Fqom(T) safe(E'[p]) holds.

O
5.4.6 ExpHeapSafe
Corollary 13 (ExpHeapSafe).
E — E' |= safe(E)
Proof. Tt follows as a corollary from (ExpSafe) and (HeapSafe). O
5.4.7 SafeEq
Theorem 32 (SafeEq).
safe(E,E’) |= defined(E = E')
Proof. Tt is obvious by definition. O

54

5.5 Soundness of Derived Rules
5.5.1 Ex’
Theorem 33 (Soundness: Ex’).

For ((,),P,Q) € {({,},P,Q), ([, P,Q),({{, }, ~, Q). ([l.], Q) },
(PYC(Q) v¢FLV(Q)

(Fv.P) C (Q)
Proof.
(Fv.P) C (Fv. Q) v ¢ FLV(Q) (Conseq)
(Fv.P) C (Q) !
5.5.2 Disj

Theorem 34 (Soundness: Disj).
For (<7 >v73157)2’ Q) € { ({7 }a Py, Py, Q)v ([’]a Py, Py, Q)v ({{’ }}a Py, Py, Q)a (H?Ha Py, Py, Q) }7

(P1) C(Q) (Pa2) C(Q)
(P1VP2) C(Q)

Proof. Choose a fresh variable u such that u ¢ FLV(Py, Pa, Q).

(P1) C(Q) (Py) C(Q)
Vv € LogVals. (v=1AP1)V(Vv=2APy)) C(Q)
(u=1AP)V (w=2Py)) C (Q)
(Fu.(u=1AP)V(u=2APy)) C(Q)
(P1VP2) C(Q)

(Gen)

(Ex’)
(Conseq)

5.5.3 Inst

Lemma 14.

For ((,),P,Q) e {({.},P,Q),([],P,Q),{{, }}, P, Q). ([} H PQ)},

(P) C (Q) FPV(E) N Mod(C) v ¢ FLV(E)
(P[E/v] A defined(E)) C [E/v])

(Q
Proof. Assume: (P) C (Q) AFPV(E)NMod(C) =0 Av ¢ FLV(E).

(P[E/v] A defined(E))

(Fv. P[E/v] * v = E)

(P[E/v] ¥ v=E) (Ex’)
(

55

Q

x v = E)
[E/v] xv =
[E/v])

C©©

Theorem 35 (Soundness: Inst
For ((,),7,Q) € {({},P,Q), ([, P, Q). ({{; }, ~, Q). ([l.], ~, Q) },
(P) C (Q) FPV(E) N Mod(C) =0
(P[E/v] A defined(E)) C (Q[E/v])

)-
B

Proof. Choose a fresh variable u such that u ¢ FLV(P, Q,E, v).

(P) C(Q)
(Plu/v] A defined(u)) C (Qu/v])
(Plu/v]) C (Qlu/v])
u] A defined(E)) C (Qlu/v][E/ul) Eg:lij)
v] A defined(E)) C (Q[E/v])

(Lemma

(Conseq)

(Plu/v][E
(

/
PIE/

5.5.4 Assign’

Theorem 36 (Soundness: Assign’).

[P[E/x] A defined(E)] x := E [P]
Proof. Choose a fresh variable v such that v ¢ FLV(P).

(P[E/x] A defined(E))
(Jv. P[E/x] A defined(E) A x = v)
(P[E/x] A defined(E) A x = v) (Ex)

(P[E[v/x]/x] * (defined(E) A x = v))

x:=F

(PlE [/ [/%] % (x = Elv/x])) (Assign)
(PAx= Ev/x])

(P)

56

5.5.5 Read’ and Read”
Theorem 37 (Soundness: Read”).

x ¢ FPV(E') UFPV(E")
x=FE AE—E’ x:=E| |x= E' A E[E /x] — B

Proof. Assume: x ¢ FPV(E’) UFPV(E").
Choose fresh variables u, v such that u,v ¢ FLV(E'|E") A u # v.

x=uAE —v x:=[E] [x=vAE[u/x] — v (Read)

[x=E AE — E” A defined(E') A defined(E”)] x = [E] [x = B A E[E'/x] — E”|
x=EANE —E’|x:=E| [x=E'AE[E/x] — E’]

(Inst)
(Conseq)

Theorem 38 (Soundness: Read’).

x ¢ FPV(E) UFPV(E/)
[E—E|x=|E|[x=FE ANE — E|

Proof. Assume: x ¢ FPV(E) UFPV(E').
Choose a fresh name v such that v ¢ FLV(E').

(Read”)
x=vAE—>E]x:=[E]|[x=E ANE < E] Fx')
Gvx=uvAE—E|x:=[E x=E ANE — E| (CX
[E—FE]x=E [x=EANE — E (Conseq)
5.5.6 ASSIGN and ASSIGN’
Theorem 39 (Soundness: ASSIGN).
([Ply/x]]] x =y [[P]]
Proof.
[[Ply/=]]]
[P[y/x] A safe(y)] (Incl)
[P[y/x] A safe(y) A defined(y)]
x:=y
[P A safe(x)] (Assign’)
[[P]] (Incl)

LY

Theorem 40 (Soundness: ASSIGN’).

[[P[E/x] A nonptr(E)]] x .= E [[P]]

Proof.

[P[E/x] A nonptr(E)]]

[P[E/x] A nonptr(E)]

P[E/x] A nonptr(E) A defined(E)]
x:=F

[P A nonptr(x)]
[P A safe(x)]
[[P]]

5.5.7 READ and READ’
Theorem 41 (Soundness: READ).

x ¢ FPV(E) UFPV(E/)

[E—E] x:=[FE] [[x=E ANE — E

Proof. Asuume: x ¢ FPV(E) UFPV(E’).

B —E]
[

Theorem 42 (Soundness: READ’).
x ¢ FPV(E') UFPV(E")

[x=E AE— E"] x:=E] [x=E" A E[E /x] — E"]]

Proof. Asuume: x ¢ FPV(E') UFPV(E").

58

[x =E" A E[E'/x] — E" x safe(E")]
[x =E" A E[E'/x] — E" A safe(x)]

(Read”)

[x =E"'"AE[E/x] — E"]] (Incl)
5.5.8 WRITE and WRITE’
Theorem 43 (Soundness: WRITE).
([E— -] [E] :=x [[E —]|
Proof.
([— -]
[E — — A safe(x)] (Incl)
[E] :=x
[E — x] (Write)
[E %] (Incl)
Theorem 44 (Soundness: WRITE?).
[[E — — Anonptr(E")]] [E] :== E' [[E — E']]
Proof.
[[E < — A nonptr(E")]]
[E < — A nonptr(E")] (Incl)
[E — — Asafe(E’)]
[E] :=F'
[E — E| (Write)
[[E] (Incl)
5.5.9 ALLOC
Theorem 45 (Soundness: ALLOC).
n>0
[[F =2n+1]] x:=ALLOC(E) [[x —, 0,..., 0]]

59

Proof. Assume: n > 0.
[[E =2n+1]]
[[E =2n+ 1A nonptr(E)]]
x:= F;
[x =2n+1]] (ASSIGN’)
alloc x

[[x =, 0,...,0]] (Alloc)

60

	Language
	Storage Model
	Syntax
	Operational Semantics
	Garbage Collector Specification

	Program Specifications
	Logical Storage Model
	Syntax
	Semantics

	Program Logic
	Inner-level rules
	Outer-level rules
	Assertion entailments
	Derived rules
	Problematic rules

	Examples
	Array Assignment
	Word Swap
	Linking of Assignment and Swap
	Simple Addition
	Integer Arithmetic
	List Reversal
	Array Copy

	Soundness of Program Logic
	Basic Lemmas
	Soundness of Inner-level Rules
	Skip
	Assign
	Read
	Write
	Seq
	Frame
	Conseq
	Ex
	Gen
	Total
	If
	While

	Soundness of Outer-level Rules
	Alloc
	Incl
	Seq
	Frame
	Conseq
	Ex
	Gen
	Total
	If
	While

	Soundness of Assertion Entailments
	NPtrSafe
	BoolWord
	PointstoNZero
	ExpSafe
	HeapSafe
	ExpHeapSafe
	SafeEq

	Soundness of Derived Rules
	Ex'
	Disj
	Inst
	Assign'
	Read' and Read''
	ASSIGN and ASSIGN'
	READ and READ'
	WRITE and WRITE'
	ALLOC

