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1 Language
1.1 Storage Model

ProgVars < {z,y,...}

Words & {welZ}

Ptrs def {p € Words | p > 0 A p is a multiple of 4 }
NonPtrs < {a € Words \ Ptrs }

Stores {'s € ProgVars — Words }

Heaps def {h € Ptrs =g, Words }

1.2 Syntax

Expressions

where x € ProgVars, w € Words and x € {+, —, x, =+, <,=,and }

E, or Ey f ot (not £ and not E5)
B # By % not (B = B»)

By < B, ¥ (B = Ey) or (By < Ey)
ENC(E) % 2x B +1

Commands

C . :=x=F
x = [E]
[E] .=F

|

|

| skip
| if E then C else C fi

| while E do C od

| C;C

| allocx

where x € ProgVars and ¢ € N

x := ALLOC(E) Ly = E; alloc x



Free variables

FPV(E) 2f the set of program variables appearing in the expression F
FPV(C) 2 the set of program variables appearing in the command C

{x} ifC=x:=FE)vC=(x:=[E])VvC=allocx
Mod(C) det ) Mod(C") %f C= Yvhile E do C’ od _

Mod(C")UMod(C”) if C =if E then C’ else C" fiv C = C";C”

0 otherwise

1.3 Operational Semantics

‘ [E] € Stores — Words‘

. o= s(x)
[[wﬂs

HEl *Eg]]s L=

undef otherwise
where x € {+, —, x,+,<,=,and },w + 0 = undef,

w
{ Wy * Wo if [Er]s = w1 A [E2]s = w2

def o . .
wy < wg = 1if wy < wg; 0 otherwise,

def . . .
w; = wy = 1 if w; = wsy; 0 otherwise,

w1 and wy defq if wy # 0 Aws # 0; 0 otherwise
oL, = { PR 1L

undef otherwise
where not w % 1 if w = 0; 0 otherwise

C,s,h~C' s N

[E]s # undef
x:= E,s,h~ skip, (s | x — [E]s), h
[E]s = p € dom(h)
x:=[E], s,h ~ skip, (s | x — h(p)),h
[E]s = p € dom(h) [E']s # undef
[E] := FE’,s,h ~ skip, s, (h | p— [E']s)
[E]s € Words\{0}
if £ then C else Cs fi,s,h ~ C1,s,h

HEHS =0
if £ then C; else Cs fi,s,h ~ Cy,s,h

while E do C od, s, h ~> skip, s, h
[E]s € Words\{0}
while E do C od, s, h ~» (C;while E do C od), s, h
Cy,8,h~ Cl, s, 1
(skip; C),s,h ~ C, s, h (C1;Cs),8,h ~ (C1;Cq), s, W




Notation
C,s,h~ — iff AC’, s\ W.C,s,h~C", s I
C, s, h diverges iff 3{ Cj, s, hi tien. (Co, 50, ho) = (C,s,h) AVi. Cy, 84, hi ~» Ciy1, 8it1, higa

1.4 Garbage Collector Specification

Shapes := {0 € Ptrs =4, Nt }
dom(o) = Wocdom{P+4%x0,....p+4(c(p) - 1)}
roots(s) Lef {p€Ptrs|Ix. p=s(x) }
reachg(R, h, o) L
reach,+1(R, h,0) ef reach, (R, h,o) U
{p € Ptrs | I’ € reach, (R, h,0). Fi < o(p'). p=hp +4i)}
reach(R, h, o) Lot Unen reach, (R, h, o)

(s,h,0) 2 (s',h,0’) = Ir € Bij(reach(roots(s), h, o), reach(roots(s’), k', o’)).
Vx. (s(x),s'(x)) €7 ) A
V(p,p') €r. In.o(p) =o' (p)) =nAVi.0<i<n = (h(p+4i), 1 (p/ +4i)) €7)
where 7 & U {(a,a) | a € NonPtrs }

[p’_’nwOw"?wn—l] = (@|p+4><0r—>wo||p+4(n*1)r—>wn_1) GI_Iea})s’
(@] prn) if n>0Ap € Ptrs
[p — n] & 0 ifn=0Ap=0 € Shapes

undef otherwise

Note that if n =0 and [p +— n] is defined, then p = 0.

I, € Pgy(Ptrs) x Heaps — Shapes satisfying
(GCAxiom,)
VR, h,0 = Iy(R, h).
dom(c) C dom(h) A reach(R, h,o) C dom(o)
(GCAxiomsy)
VR, h,0 = I4(R, h).
VR, 1. dom(c) C dom(h') Areach(R', k', o) C dom(c) A (Vp ¢ dom(a). k' (p) = h(p)) =
Jo’' Co. o' = L (R, 1)

Vs, h,o,x,n. 0= Iz (roots(s),h) As(x) =2n+1An>0 =
(alloc x,8,h ~» —) A
(VC', s’ 1. alloc x,8,h ~~ C', ', )/ =
dp,h’,0". C" = skip A o” W [p — n] = Iyc(roots(s'), M) Ns'(x) =p AR =h"W[pr—y 0,...,00 A
(s,h,0) 2 ((|x—2n+1),h", d"))



2 Program Specifications

2.1 Logical Storage Model

def {£ € {locy,locy, ... } }

LogPtrs e {£Fi|LecLocsnicZ}
LogVals e {v € LogPtrs ¥ Words }
LStores

&f {'s € ProgVars — LogVals }
Span(h) def {(#,i) € Locs x N |i € dom(h(£))} for h € Locs — (N —g, LogVals)
def

= {h € Locs — N —g, LogVals | Span(h) is finite }

Table def {T € Locs —gy, Ptrs x Nt }

{w if v.=w € Words

Locs

LHeaps

def

phyvp(v) € { p+i  if v=LFiATE) = (p,n)

undef otherwise
phybe () < W, ) ey [P0 Phyva(h(£)(0)), .. phyve(B(€)(n — 1))
shape(T) = L*J(p,n):T(e) [p—n]
Safe(L) def {£30|£ € L}UNonPtrs  for L C Locs
S~ 8 iff Vx. s(x) = phyvy(s(x))
s~rps iff s~r sAVz. s(x)e€ Safe(dom(T))
h:T iff V€. V(p,n) =T(£). dom(h(€)) ={0,...,n—1}
h~ph iff h:TAphyhp(h) Ch
h:T iff Ve. V(p,n) =T(£). Vi < n. h(£)(i) € Safe(dom(T))
h~th iff h~g hAh: T Ashape(T) C Iy (dom(shape(T)), h)
hi #hy % Span(hy) N Span(hy) = 6

M. h; (f) W hso (Z) if hy # hy

def
hywhy = { undef otherwise



2.2 Syntax

Logical Expressions ‘

LogVars Lef {u,v,...}
E € LExps = v

| x

| v

| ExE

| not E

where v € LogVars, x € ProgVars, v € LogVals and x € {+, —, X, =, <,=,and }

Note that Exps C LExps.

Assertions

P € Asserts := E
| E-E | PxP | P—=xP
| P=P | P\P | PVP
| Vo.P | Jv.P

Assertions with safety

P € AssertsL := safe(E)

| E

| E-E | PxP | PP
| P=P | PAP | PVP
|

Yo.P | Ju.P

false %' 0; true def 1, -P LIp s false
defined (E) Y E=E
word(E) “E-0VE
logptr(E) def defined(E) A =(word(E))
nonptr(E) Y E=—0VvIE=2x0v+1
offsafe(E) Lof word(E) Vv Ji. safe(E + )

def
p{E1,...,E,}) = p(E)A ... Ap(E,)

for p = safe, logptr, word, defined, nonptr, offsafe

E— — ECE S o R

def

E—,Ey....,.E, 1 = E4+4x0>Ej*x...«xE+4(n—-1)—E,_;
Note that Asserts C AssertsL.



Free variables

0 =0 M3 T

Program Specifications ‘

{P}C{Q}
[P C Q]
{ry ¢ {Q}
[P]] ¢ [[Q]]

PV(E) 2 the set of program variables appearing in the logical expression E
LV(E) L the set of free logical variables appearing in the assertion E
PV(P) 2f the set of program variables appearing in the assertion P

LV(P) L the set of free logical variables appearing in the assertion P

Inner-level partial correctness
Inner-level total correctness
Outer-level partial correctness

Outer-level total correctness

2.3 Semantics

‘ [[E] € LStores — LogVals‘

[v]ls ::= undef

M=1s = s(x)

Mvis n=v
Wy * Way if [E1]]s = w1 € Words A [[Eq]]s = we € Words
L¥(i+w)  ifk=+A[Erls = £Ti A [Ez_g]]ls = w for k= 1,2
L5 —w)  ifk=—A[[E]ls = £Fi A [Eo]ls = w
i—j if = — A[[Ei]ls = £5i A [Ealls = £F]

[E1 *Eols o= { i<j if = < A [[Ei]ls = £Fi A [Eo]]ls = €5
i=j if x ==A[[Ei]]ls = £Fi A [Eo]]s = £+5
=12 if x==A[Ei]ls = £50 A [Eq]Js = £ 50
0 if x==A[E]ls = LF4iNi > 0N [Es—_x]ls € NonPtrs for k= 1,2
undef otherwise

where x € { +, —, X, +,<,=,and },w + 0 = undef,
w1 < Wy d:efl if wy < wy; 0 otherwise,
w1 = Wy defq it wy = wa; 0 otherwise,
w1 and wy def it wy # 0 Aws # 0; 0 otherwise

1 if [EJs=0
[[not EfJs LV if [[Els € NonPtrs\{0}
undef otherwise



s, h |=1, safe(E)  iff [[E[]s € Safe(L)

s,hi=L E iff [[E]ls € Words\{0}

s,h =L By — Ey iff 3,4 [Eq]ls = £+4i A [Ez]ls = h(£) (i) # undef
sshi=p P+Q  iff Shy,ho. h=h; WhyAs,hy . P As hy =1, Q
sshEL P+ Q iff V. W #hAsh L P = s,hwh' £ Q
shELP=Q iff VW Dh s,h' L P — s, = Q
s,hELPAQ ifft s,hi=L PAs,hLQ

s,hiEL PvQ iff s,hiELPVvshlrQ

s,h =1, Yu. P iff Vv € LogVals. s, h =y, P[v/v]

s,h =L Jv. P iff 3v € LogVals. s, h =1, P[v/v]

Note that
s,h Er logptr(E) <= [E[s € LogPtrs

s,h =L word(E) < [[E]ls € Words

s,shEP iff sshigg P

Notation
P[p] Lef Plp(v1)/v1]...[p(vn)/vn] where dom(p) = {vy,...,v, } for p € LogVars —g, LogVals
Env(V) & {p € LogVars —g, LogVals | dom(p) DV} for V Cg, LogVars

, p(x) if x € dom(p)
plV (%) = 0 elseifx eV
undef otherwise

P L Q iff Vpe Env(FIV(P,Q)),s,h, he, T, s, h.
s~t s ANhWhyp ~1t hAs h Fqomr) Plp] = s,h Faom(r) Qlp)

{P} C{Q}

{P} C {Q} iff Vp € Env(FLV(P,Q)),s,h,hr, T,s,h,C" s K.
s,h Egom(r) Plp]As~r s \Nhwhp ~p hAC,s,h ~* C' 8", =
(C', 8" b ~ =)V
(3s',h’. C" = skip A8’ h' Egom(T) Qlp] A
(Vx ¢ Mod(C). s'(x) =s(x)) As' ~r s Ah' Whyp =1 h')
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[P C Q]

[P} C[Q] iff {P}C{Q}A
Vp € Env(FLV(P,Q)),s,h,hg, T, s, h.
s,h Egom(r) PlpJ]As~r s \Nhwhp ~p h = —(C, s, h diverges)

{rj ¢ {{Qy

{P} C {QY iff Vpe Env(FLV(P,Q)),s,h,hg, T,s,h,C' s K.
s,hE PlplAsx~t s ANhWhp ~r hAC,s,h ~*C' s h =
(C',s' b~ =)V
(3,0, T. C' =skipAs',h' = Qlp] A
(Vx ¢ Mod(C). §'(x) = s(x)) As’ ~p s’ ANh' Whg a1/ h')

([P]] € [IQl

([Pl C Q] iff {PY C {Q} A
Vp € Env(FLV(P,Q)),s,h,hp, T, s, h.
s,h = Plp|As~r s ANhWhp =7t h = —(C, s, h diverges)

11



3 Program Logic

3.1 Inner-level rules

[true] skip [true] (Skip)

[x = v A defined(E)] x := E [x = E[v/x]] (Assign)
[x=uAE — ] x:=[E] [x=vA E[u/x] — 0] (Read)
[E — — Asafe(E')] [E] .= E' [E — E] (Write)

(PAEYC,L{Q} {PAnotE}C,{Q} [PAE|Ci[Q [P AnotE]C, Q]

{P Aword(E)} if E then C else Cs fi {Q} [P Aword(E)] if E then C; else Cs fi [Q] (1)
{PAE} C {P Aword(E)} (While)
{P Aword(E)} while E do C' od {P Anot E}
[PAEANO<E =0 C [PAword(E) A0 < E' <] v ¢ FLV(P,E) (WhileT)
[P A word(E) A0 < E’] while E do C od [P A not E]
PIC Q) (QGER [PGQ QMR Sea)
{P} C1;C2 {R} [P] C1;C2 [R]
{P} C {Q} FPV(R)NMod(C)=0 [P] C [Q] FPV(R) N Mod(C) =0 (Frame)
{P+R} C {Q«+R} [P xR] C [Qx*R]
PEP (P}C{Q) QEQ PEP [PIC] QEQ o0
{P} C{Q} Pl C Q]
P} C (@) PlC[Q -
{Fv.P} C {Fv.Q} [Fv.P] C [Fv. Q]
Vv € LogVals. {P[v/v]} C {Q[v/v]} Vv € LogVals. [P[v/v]] C [Q[v/v]] (Gen)
{P} C{Q} [P} C Q]
_PIeiQl (Total)
{P} C{Q}

12



3.2 Outer-level rules
n>0

[x=2n + 1]] alloc x [[x < 0,...,0]] (Alloc)
V Cgn ProgVars {P Nsafe(V)} C {Q A safe(Mod(C))}
{pPi ¢ {Q} (In)
V Ctin ProgVars [P A safe(V)] C [Q A safe(Mod(C))]
[P]) ¢ [[Q]]

{rPrEy G {@R}  {PAnot B} G {QF  [[PAE]C Q] [[PAnot E]] Cs [[Q]]

{P Aword(E)}} if E then Cy else Cs fi {Q}} [P Aword(E)]] if E then C; else Cs fi [[Q]]
(If)
{PAE}Y C {P Aword(E)}} (While)

{P A word(E)}} while E do C od {{P A not E}}
[PAEAO<E =] C[[PAword(E)AO<E <v]] v¢FLV(P,E) (WhileT)
[P Aword(E) A0 < E']] while E do C od [[P A not E]]

ey a i@y ey G {ry  [PIG Q] [Q] C: [[R]] (Seq)

{P}} C1;: Gy {RY} ([P]] C1; C2 [[R]

{ryc{fely  FPV(R)NMod(C) =0 [[PIC[[Q]]  FPV(R) N Mod(C) =0

{{(P R} C{(Q+RY (PrRTCTe A
PEP {PROUQY  QEQ PEP [PICIQN  @EQ oo
Py C {Q) P) O @]
{PY C feh 1P} € [[@) (Ex)
3P} C {30-Q)  [Bv- Pl C [Be. <]
Vv € LogVals. {{P[v/v]}} C {Q[v/v]}} Vv € LogVals. [[P[v/v]]] C [[Q[v/v]]] (Gen)
Py C {Qn Pl C (1@l
1P} C [[@) Total
Py C {Q

13



3.3 Assertion entailments

nonptr(E) = safe(E) (NPtrSafe)
E = word(E) (BoolWord)
E—-E EE#0 (PointstoNZero)
defined(E) = offsafe(E) (ExpSafe)
E — E’ A offsafe(E) |= safe(E’) (HeapSafe)
E — E' |= safe(E') (ExpHeapSafe)
safe(E,E') = defined(E = E') (SafeEq)
3.4 Derived rules
PyC{Q}  v¢FIVQ [PIC[Q  vgFLV(Q) -
{3v.P} C {Q} [Bv. Pl C[Q]
(PHC Q) veFV@Q  (PICQI  véFV(Q -
{3v. P} C {Q} [Bo. P] C [[Q]]
PJC{Q  (P)C{Q) [PICIQ] [P C[Q Di)
{P1VPs} C{Q} [P1 VP C[Q]
{ag ey {rpofen [(Alcll [l C ] (Disj)
{Pv R} C (e [PV Pl C[[Q]]
{P)C{Q) FPV(E)NMod(C)=0 [PIC[Q) FPV(E)NMod(C)=0
{P[E/v] A defined(E)} C {Q[E/v]} [P[E/v] A defined(E)] C [Q[E/v]]
{PY C {QF} FPV(E)NMod(C)=0 [[P]]C[Q]] FPV(E)NMod(C)=0 (Inst)
{P[E/v] A defined(E)}} C {Q[E/v]}} ([P[E/v] A defined(E)]] C [[Q[E/v]]]
[P[E/x] A defined(E)] x := E [P] (Assign’)
x ¢ FPV(E) UFPV(E) (Read)
[FE—E|x:=[F] x=EANE — E]
x ¢ FPV(E') UFPV(E") (Read”)

x=E AE—E'] x:=|E| [x=E'AE[E /x] — E]

14



[Ply/x]]] x:=y [[P]

[P[E/x] A nonptr(E)]] x := E [[P]
x ¢ FPV(E) UFPV(E/)
[FE—E] x:=[F] [[x=E AE — E

x ¢ FPV(E') UFPV(E")
[x=E ANE—E"] x:=E] [x=E" A E[E /x] — E"]]

([E— —]] [E] :=x [[E — ]|

[[E — — Anonptr(E")]] [E] := E' [[E — E']]

n>0
[[F =2n+1]] x:=ALLOC(E) [[x —, 0,..., 0]]

3.5 Problematic rules
{P}C{Qi} {P}C{Q} [PIC[Qi] [P]C[Qg]
{P} C {Q:1 N Q2} [P] C Q1 AN Q2]

{Ph ety {rPR @)t [(PIC@]] [[P]C Q]
{Ph} € {@ A Qa1 [P]] C [[Q1 A Q2]
{P} ¢ {Q} [Pl C Q]
{Vv.P} C {Vv.Q} Vo.P] C [Vu. Q]

{rh ¢ {Qy ([P ¢ @l
{ve. P}y C {{vo.Q}}  [[Vu. P]] C [[v0.Q]]

Counter example. According to the semantics of {—} — {—}, the following hold:

{x=0Ay—= 0} x:=x{x=0}
{x=0Ay <= 0} x:=x {logptr(z)}

However, the following conjunction does NOT hold:

{x=0Ay =0} x:=x {x=0Alogptr(z)}

15
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4 Examples

4.1 Array Assignment

{y+8—=-}

{y+8 — — Asafe(y)} (Incl)
yi=y+38;

{y & — Asafe(y — 8)} (Assign’)
{y — — Asafe(y — 8,0)}

[yl = 0;

{y — 0 Asafe(y — 8)} (Write)
yi=y =8

{y +8 — 0 Asafe(y)} (Assign’)
{y+8—=0} (Incl)

4.2 Word Swap

{x =2 u,v}}

t := ALLOC(ENC(0))

{x =2 u,vxt —q -} (ALLOC)
{{x 2 u,0)

t = [x];

{x —2u,v At =u}} (READ)
r:=[x+4];

{x—2u,vAt=uAr=vuv}} (READ)
[x] := 13

{x—or,vAt=uAr=0}} (WRITE)
[x+4] == t;

{x—or,tAt=uAr=0}} (WRITE)
{x =2 v,u}}

16



4.3 Linking of Assignment and Swap
From Sections [£.1] and [£.2] we have the following results.
Assign de yi=y+8 [y]:=0; yi=y—8
Swap < £ .=1; alloc t; ti=[x); ri=[x+4]; [x] =1 x+4] =t
H{y +8— —J} Assign {{y +8 — 0}}
{x —2 u,v}} Swap {{x —2 v,u}}
From these, we can reason about the linked program as follows.

{y+8— —}} Assign {{y+8 — 0}} FPV(x <3 u,v) N Mod(Assign) = ()

F
{x =2 u,v*y+8— —}} Assign {{x =3 u,v*xy+8— 0}} (Frame)
{x —2 u,v}} Swap {{x —2 v,u}} FPV(y + 8 — 0) N Mod(Swap) = 0
(Frame)
{x =2 u,v *y+8 — 0}} Swap {{x —3 v,u*xy+ 8 0}
{x —2u,v*y+8— —}} Assign {{x —2 u,v xy+8 — 0}}
{x =2 u,v *y+ 8 — 0}} Swap {{x —2v,u*xy+8— 0} Seq)
eq

{x —2 u,v *y+8 — —}} Assign; Swap {{x —sv,u*xy+8— 0} (

4.4 Simple Addition

{x=2xn+1Ay=2xm+1}
{x=2xn+1Ay=2xm+1} (Incl)
{x+y=2xn+m)+2Ax=2xn+1Ay=2xm+1}

z:=x+Y;

{z=2xn+m)+2Ax=2xn+1Ay=2xm+1} (Assign’)
{z—1=2x(n+m)+1Ax=2xn+1Ay=2xm+1}

z:=z—1;

{z=2x(n4+m)+1Ax=2xn+1Ay=2xm+1} (Assign’)
{z=2xn+m)+1Ax=2xn+1Ay=2xm+1Asafe(z)}
H{z=2x(n+m)+1Ax=2xn+1Ay=2xm+1}} (Incl)

4.5 Integer Arithmetic

Simple version

{x=2xn+1Ay=2xm+1}

17



L2x((x+24+y+2)x (xZ+24+y+2) X (x+24+y+2)x (x+2+y+2))+1=

2x (m+n)x (m+n)x (m+n)x (m+n)+1}

x=2X ((x+24y+2)x(x+2+y+2)x(x+2+y+2)x(x+2+y+2))+1
{zx=2x(m+n)x(m+n)x(m+n)x(m+n)+1}} (ASSIGN)

‘ Optimized version ‘

{x=2xn+1Ay=2xm+1}
{x=2xn+1Ay=2xm+1} (Incl)
{x+y=2x(n+m)+2}

X:=xX+Yy;

{x=2x(n+m)+2} (Assign’)
{x+2-1=n+mAword(n,m)}

x:=x+2-1;

{x =n+m Aword(n,m)} (Assign’)

{xxx=(n+m)x(n+m)}

X =X X X;

{x=(Mm+m)x (n+m)} (Assign’)
{xxzx=(n+m)x(n+m)x (n+m)x(n+m)}

{x=Mm+m)x (n+m)x (n+m)x (n+m)} (Assign’)
{2xx+1=2x(n+m)x(n+m)x(n+m)xn+m)+1}

x:=2xx+1

{x=2x(n+m)Xx(n+m) X (n+m)x(n+m)+1} (Assign’)
{x=2x(m+n)x (m+n)x (m+n)x (m+n)+1Asafe(x)}
{zx=2xm+n)x(m+n)x(m+n)x (m+n)+1} (Incl)

4.6 List Reversal

def
€T = €

(va)t ¥ afw
listeE < E=0
list (v-a) E L 3, (E =9 v,2) xlistaz

{{list oo x}}

18



{(listag x * 0 = 0) A defined(0)}}

y =0

{(listagx xy=0)}}
{(listap x * listey)}}
{30, B. (listax * list By) A af) = af-3 A word(x # 0)}}

while x # 0 do
{30, B. (listax * list By) A afy = af-BAx # 0}

{30, o, B. (list (v-a) x * list By) A af = (v-a)t-81}
{30, , B, 2. (x =9 v,z % lista z * list By) A of) = (v-0)T-5}}

{30, 0, . (x =9 v,z x lista z * list By) A of) = (v-0)T-B}}
= [x+4];
{30, 0,8.2=2A (x =g v,z % listaz * list 3y) A of) = (v-a)T-B)}
{Fv,a, 8. (x =2 v,z * listaz * list S y) /\oz0 = (v-a)t-B}}
x+4]:=y;
{3, 0, 8. (x =2 v,y * listaz  list By) A afy = (v-a)T-5Y}
{30, o, B. (listaz * list (v-8) x) A o = afv-8)}
{30, 8. (listaz * list Bx) A o)) = af-3 A defined () }}
Y =X
{30, 8. (listaz « list By) A ) = at-B A defined(z) }}
{30, B. (listax * list By) A o)) = af-3 A word(x # 0)}}
od;
{30, B. (listax * list By) A afy = al-BAx =0}}
{{listaf v}

4.7 Array Copy

{{X —n U1y... ,Un}}
y := ALLOC(ENC(n));

HEx—=np v, ., *y =, 0,...,0)}}

19

(ASSIGN')

(While)

(Ex’)

(READ)

(WRITE)

(ASSIGN)

(ASSIGN)

(While)

(ALLOC)



{(x—=nv1,...,00 7y —, 0,...,0) Asafe(x,y,t)}
{(x—=nv1,...,0p %y =, 0,...,0) Ax+4n = x + 4n Asafe(x, y, t) A defined(x + 4n)}

z =X+ 4n;

{x—=pv1,...,0nxy—,0,...,0) Az =x+4n Asafe(x,y,t)}

{Fk.(x—4k >, v1,...,0p xy— 4k S vy, ., 0 %Y —pn_k 0,...,0) A
0<k<nAz=x+4(n—k)Asafe(x —4k,y —4k,t) Aword(x # z)}

while x # z do
{Fk.(x =4k >, v1,...,op xy — 4k Spv1,.., 0 %y —p_ 0,...,0) A
0<k<nAz=x+4(n—k)ANsafe(x —4k,y —4k,t) Ax # z}
{Fk. (x =4k —pv1,...,vn ¥y —4dk —p v, xy = 0%y +4 =, _441)0,...,0) A
0<k<nAz=x+4(n—k)Asafe(x —4k,y —4k)}

t = [x];
{Fk. (x =4k —pv1,.. ;v xy —4dk =g v, vk y = 0%y +4 =, _41)0,...,0) A
0<k<nAz=x+4(n—k)ANsafe(x —4k,y —4k) ANt = vp41}

{Fk. (x =4k —pv1,...,vp 5y =4k —pvr,.., kY = 0%y +4 =, _41)0,...,0) A
0<k<nAz=x+4(n—k)Asafe(x —4k,y — 4k, t) ANt = vp41}

[y] :=t;
{3k (x =4k —pv1,...,vn ¥y =4k =g v, xy = try+4 =, 1) 0,...,0) A
0<k<nAz=x+4(n—k)ANsafe(x —4k,y —4k) ANt = v41}

{3k (x =4k —pv1, v ¥y — 4k =g V1, Uk Vg1 Y 4 = or1) 0,...,0) A
0<k<nAz=x+4(n—k)Asafe(x —4k,y — 4k, t) A defined(x + 4)}

X :=x+4;

{Fk. (x—4(k+1) =pv1,..., 0 ¥y —4k —pp1 V1, Vg1 ¥ Y +4 —p_41) 0,...,0) A
0<k<nAz=x+4(n—(k+1)) Asafe(x —4(k+ 1),y — 4k, t) Adefined(y +4)}

yi=y
{3]€(X—4(/€+1) —n ’l)1,...,’l)n*y—4(k+].) k41 Vs Ukl ¥ Y i (k+1) 0,...70)/\
0<k<nAz=x+4(n—(k+1))Asafe(x —4(k+1),y—4(k+1),t)}

{Fk. (x—4k —pv1,...,0p xy— 4k =g v, .0 x Y —p_k 0,...,0) A
0<k<nAz=x+4(n—k)ANsafe(x —4k,y —4k,t) Aword(x # z)}

od;

{Fk.(x—4dk =, v1,...,0p %y —4dk Sp vy, .., 0 %Y —pn_k 0,...,0) A
0<k<nAz=x+4(n—k)Asafe(x —4k,y —4k,t) Ax =z}

{x—4n—pv1,...,0p %y —4n —, v1,...,0,) Asafe(x —4dn,y —4n, t)}
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x:=x—4n;

{(x —=p V1,0, 0 %y —4n =, v1,...,0,) Asafe(x,y —4n,t)} (Assign’)
yi=y—dn;

{(x =p V1, .y Up ¥ Y <y V1,...,0,) Asafe(x, y,t,0)} (Assign’)
z =

{(x —p V1, Up ¥ Y 5 V1, .., 0,) Asafe(x,y,t,2)} (Assign’)
{x —=n V1, 0 %y Sp U1, U0 ) (Incl)
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5 Soundness of Program Logic

5.1 Basic Lemmas

Lemma 1.

[defined(E)[Js € Words\{0} iff [[E[ls # undef

Proof. By a case analysis on [[E]]s: when [[E]]s € LogVals, we have [[E = E]]s = 1 € Words\{0};
when [[EJ}s = undef, we have [[E = E]Js = undef ¢ Words\{0}. O

Lemma 2.
s ~1 s A [[E]ls # undef = [E]s = phyvp([E]s) # undef

Proof. Tt can be shown by induction over F.

e When F = x:
From s ~ s, we have phyvp(s(x)) = s(x) # undef.

e When F = w:
phyvyp([w]s) = phyve(w) = w = [w]s # undef.

e When FE = (E; x Es):
From [[E]Js # undef, we have the following cases:

— When [[E;]]s = w1 € Words A [[E2]ls = wa € Words A [[E]|s = w1 * wa # undef:

By induction hypothesis, we have [E]s = phyvp(wy) = wy for & =1,2.

Thus, we have phyv ([E]ls) = phyvp(wi x wa) = wy x wy = [E]s # undef.
— When % = + A [Ex]ls = £+i A [Es_]ls = w A [E]ls = £+(i + w):

By induction hypothesis, we have [E]s = phyvy(€+i) = p+ i for (p,n) = T(£); and

[E3-&]s = phyvyp(w) = w. R

So we have phyvy ([E]ls) = phyvp(£+(i+w)) = p+(i+w) = (p+i)+w = [E]s # undef.
— When « = — A [[E1]ls = €5 A [[Ex]ls = w A [[E]ls = €+ (i — w):

By induction hypothesis, we have [E;], = phyvp(€+i) = p + i for (p,n) = T(£); and

[E2]s = phyvep(w) = w. R

So we have phyvy ([E]ls) = phyvp(£+(i—w)) = p+(i—w) = (p+i) —w = [E]s # undef.
— When % = — A [Ei]ls = £4i A [Ex]ls = €+ A [Ells = i — j: ~

By induction hypothesis, we have [E;]s = phyvyp(€+i) = p+i and [Ez2]s = phyvp(€+)) =

p+ j for (p,n) = T(€).

So we have phyvr([E]ls) = phyvp(i —j) =i —j=(p+1i) — (p+Jj) = [E]s # undef.
*When*:</\|]IE1]]]S:K—/F’L/\I]IEQ]]]S:Z—/F]/\IHEH]/S\:’L<] N

By induction hypothesis, we have [E1] s = phyvyp(€+i) = p+i and [Ez2]s = phyvp(€+)) =

p+j for (p,n) = T(L).

So we have phyvp([E]ls) = phyvp(i < j)=i<j=(p+1i) < (p+j) = [E]s # undef.
— When » = = A [[E1]Js = €54 A [E2]ls = €55 A [E]s = (i = j):

By induction hypothesis, we have [E]; = phyvp(£+i) = p+i and [E»]s = phyvp(€+7) =

p+ j for (p,n) = T(€).

So we have phyv([[E]s) = phyvr(i = j) = (i = j) = ((p+i) = (p+J)) = [E]s # undef.
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— When « = =A[[E1]ls = £¥0A [[Ex]]ls = £ FONA[[E]ls = (£ = £):
By induction hypothesis, we have [E;]s = phyvp(£+0) = p and [E»]s = phyv (€ F0) =
p' for (p,n) = T(£) and (p',n') = T(£).
So we have phyv([[E]ls) = phyvp(£ =€) = (£ =€) = (p = p') = [E]s # undef.

— When x = = A [[Ex]ls = £74i Ai > 0 A [[Ez_i]ls € NonPtrs A [[EJs = 0
By induction hypothesis, we have [Ej]s = phyvp(€+4i) = p + 4i € Ptrs for (p,n) =
T(£), and [E5_1]s = phyve([[Ex]ls) = [Ex]ls € NonPtrs.
So we have phyvp([[E]ls) = phyvyp(0) = 0 = ([Ex]s = [Fs—k]s) = [F]s # undef.

e When E = not E':
From [[E]s # undef, we have [[E']]s = w € Words A [[E]]s = not w.
By induction hypothesis, we have [E’']; = phyvy(w) = w.
Thus, we have phyvy([[E]ls) = phyvrp(not w) = not w = [E]s # undef.

Corollary 3.
s ~r s A [[E]ls = £+i = £ € dom(T)

Proof. By Lemma we have phyv.p(£34) # undef, from which it follows that £ € dom(T). O
Lemma 4. When [[E']Js # undef,

(1) [EE/x]s = [ED )« o110

(2) s,hEL PE /x] if (s|x— [[E]s),h=LP

Proof. (1) can be shown by an induction on E. When E = y: if y = x, then both LHS and RHS
are equal to [[E'Js; otherwise, both are equal to s(y). The other cases are straightforward.
(2) follows from (1) by a simple induction on P. O

Lemma 5.

(1) (vx € FPV(E). s(x) = §'(x)) = [Els = [Elly

(2) (Vx e FPV(P). s(x) =5'(x)) = (s,hFLP <= s hLP)
Proof.

(1) : By a simple induction on E.

(2) : By a simple induction on P using (1).

Lemma 6. s,h=, P <= shEP
Proof. By a simple induction on P. O

Lemma 7.
s,h =L (Fuv.P)[p] <= 3FveLogVals.s,h =L Pl(p|v— V)

Proof. Choose a fresh v ¢ dom(p). Then the goal follows from
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o (3v.P)lp] =a (Fu. Plu/v])[p] = Fu. Plu/v][p],
e s,h =r Fu.Plu/v][p] <= 3Iv € LogVals. s,h =1, Plu/v][p][v/u],

o Plu/v][pllv/u] = Plu/v][v/ullp] = Plv/v][p] = Pl(p | v v)].

Lemma 8.
RCR ARCH Ao Co' = reach(R,h,o) C reach(R',h/,0")

Proof. One can easily show that reach, (R, h,o) C reach, (R, h’,¢’) by induction on n. O
Lemma 9. When dom(c) C dom(h) and o C o,

reach(dom(c), h,0’) C dom(c) <= Vp € dom(o). h(p) € dom(c) UNonPtrs
Proof.

e — part:
Let p € dom(o). As dom(c) C dom(h), we have h(p) € Words.
If h(p) € NonPtrs, then trivially h(p) € dom(o) U NonPtrs.
If h(p) € Ptrs, then h(p) € reach;(dom(c), h,o’) C dom(o) C dom(o) U NonPtrs.

e < part:
We prove reach, (dom(c), h,o’) C dom(c) by induction on n.
Base case: reachg(dom(o), h,o’) = dom(o) C dom(o).
Inductive step: reach,11(dom(c),h,c’) C dom(o) directly follows from
(1) the induction hypothesis: reach,,(dom(o),h,o’) C dom(o); and
(2) the fact that Vp € dom(o). h(p) € Ptrs = h(p) € dom(o).

Lemma 10.
h~phAh:TAo Dshape(T) =  reach(dom(shape(T)),h,o) C dom(shape(T))
Proof.
e Assume: h ~r h and let o O shape(T).

As phyhr(h) C h, we have dom(shape(T)) = dom(phyhr(h)) C dom(h).

e To show: reach(dom(shape(T)), h,o) C dom(shape(T)).

By Lemma@, it suffices to show that Vp € dom(shape(T)). h(p) € dom(shape(T)) UNonPtrs.

Let p € dom(shape(T)).
Since phyh(h) C h, there exists £, p/,n’,i such that (p/,n') = T@)Ai<n' Ap=p +4iA
h(p) = phyvy(h(€)(7)).

From h :: T, it follows that h(£')(i) € Safe(dom(T)). Thus, we have two cases.
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— When h(€')(i) € NonPtrs:

h(p) = phyvy(h(€)(i)) = h(€')(i) € NonPtrs C dom(shape(T)) U NonPtrs.
— When h(£)(i) = €30 for £’ € dom(T):

h(p) = phyv(€'+0) = p” for (p”,n") = T(£").

Thus, h(p) € dom(shape(T)) C dom(shape(T)) U NonPtrs.

5.2 Soundness of Inner-level Rules
Definition 1 (Generalized triple).
{P} C{Q}: k iff Vj<k.Vpe€Env(FLV(P,Q)),s,h,hp,T,s,h,C' s K.
Svh ':dom(T) P[p] NS~ S/\hH'JhF ~T h/\C;Sah ~ed 0/75/7}1’/ =
(C' 8 b~ =)V
(3',h’. C" = skip As’, h' Fqom(T) Qlp] A
(Vx ¢ Mod(C). s'(x) =s(x)) As’ ~r s’ A\h' Whp ~1 1)

5.2.1 Skip

Theorem 1 (Soundness: Skip).

[true] skip [true]
Proof.

e Assume: s,h,hp,T,s, h,C’, s’ h' such that
v 8, h Fqom(T) true As ~p s ANhWhyp = h Askip,s,h ~* C', s’

skip, s, h does not diverge as it takes no step.

To show:
(%) C", ' b/ ~ —; or
(x#) 3s',h’. C" = skip A s’ h' [=qom(T) true A
(Vy ¢ Mod(C). s'(y) =s(y)) As’ ~r s’ ANh' Whg ~p I/

e From skip, s, h ~* C',s', ', we have C' = skip, s’ = s and h’ = h.

(*%) holds by letting s’ =s and h’ = h.

5.2.2 Assign

Theorem 2 (Soundness: Assign).

[x = v Adefined(E)] x := E [x = E[v/x]]
Proof.

e Substitute the logical variables v with an arbitrary logical words v.
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e Assume: s,h, hy,T,s, h,C’,s’, i such that
v 8, h Fdom(T) (x = v Adefined(E)) As ~p s ANhwhp mp hAx = E,5,h ~* C', s 1/

e x:= F s h does not diverge as it takes at most one step.

e To show:
(%) C", ' b/ ~> —; or
(xx) 3s',h’. C" = skip A8’ h' Fqom(T) (X = E[v/x]) A
(Vy ¢ Mod(C). s'(y) =s(y)) As’ ~r s’ A\h' Whg ~1 I/

e As s, h Fgom(T) (x = v Adefined(E)) and s ~t s, by Lemmas (1| and [2| we have
vV s(x)=v
v [E]s = phyvp([E]ls) # undef

e From x := E,s,h ~* C',s', h’, we have the following two cases:

e When ¢ = (x:=E)As' =sAh =k
As [E]s # undef, it follows that x := E, s, h ~> skip, (s | x — [E]s), h. Thus, (*) holds.

e When ¢’ =skipAs' = (s|x— [E]s) AR = h:
(#) holds by letting s’ = (s | x — [[E]]s) and h’ = h because

— s, b’ Fqom(T) (x = E[v/x]) follows from
s'(x) = [Ells = [E](s |x—v) = [E[v/x][s # undef,

which holds by Lemmas [5| and |4] as s(x) = v; and
— s’ ~p ¢ holds since s ~t s and [E]s = phyvp([E]s)-

5.2.3 Read
Theorem 3 (Soundness: Read).

x=uAFE —v]x:=[E] [x=vA Eu/x] — ]
Proof.

e Substitute the logical variables u, v with two arbitrary logical words vy, vs.

e Assume: s,h . hy,T,s,h,C’,s’, i such that
vV s, h Fgom(r) (x=ViAE — vVvo)As~p sANhWhp ~p hAx:=[E],s,h ~*C' s}

e x:=[E], s, h does not diverge as it takes at most one step.
e To show:
(x) C',s',h ~» —; or
(xx) Is',h’. C" = skip A8’ h' Fgom(T) (x = Vo A E[vi/x] — va) A
(Vy ¢ Mod(C). s'(y) =s(y)) As' ~1r s Ah" Whp =1 I/
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e From s, h Fqom(T) (x = vi A E <= v3), by Corollary [3| we have
v s(x) =vi A [[E]ls = £¥4i Ah(£)(i) = vo A £ € dom(T).

e Ass ~p s and [[E]s = £34i, by Lemmawe have
v [E]s = phyvp(£+4i) = p+ 4i for (p,n) = T(£).
e From hwhyp : T A (p,n) = T(£) Ah(£)(i) # undef, we have
vii<n.
e From phyhp(hwWhg) ChA (p,n) = T(£) Ai < n, we have
v h(p+ 4i) = phyvyp(h(€)(i)) # undef.
e From x := [E],s,h ~* C',s', i/, we have the following two cases:
o When C' = (x:=[E])As'=sAKN =h:

As [E]s = p+ 4i A h(p + 44) # undef, we have x := [E], s, h ~ skip, (s | x — h(p + 47)), h.
Thus, (*) holds.

e When ¢" =skipAs' = (s|x— h(p+4i)) AW =h
(*+) holds by letting s’ = (s | x — h(£)(7)) and h’ = h because
— 8’ ~1 ¢ holds since s ~r s and h(p + 47) = phyvp(h(£)(%));
— 8',h’ Fqom(T) X = V2 holds since s'(x) = h(£)(i) = v2; and

— 8, b’ Fqom(T) E[v1/%] — V2 follows from

(1) [Evi/x]ls = [Els |x—vy) (by Lemmalfd)
= [Elsixmvy (as(s'|x—vi)=(s]|x— V1))
= [[[Ems (by Lemmal [5] as s(x) = vq)
— 0344,

(2) W/(£)(i) = h(€)(i) = vo # undef.

5.2.4 Write
Theorem 4 (Soundness: Write).

[E — — Nsafe(E')] [E] := F' [E — E']
Proof.

e Assume: s,h,hp,T,s, h,C’, s’ h' such that
v 8, h Fgom(r) (B — — Asafe(E')) As ~p s Nhwhp =p h A [E] == E',s,h ~* C', s I/

e [E]:=E', s, h does not diverge as it takes at most one step.
e To show:
(x) C", ' b/ ~ —; or
(%x) 3s',h’. C" = skip A8’ h' Fqom(T) B — E' A
(Vy ¢ Mod(C). s'(y) =s(y)) As' ~r s Ah' Why =1 I/
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From s, h Fgom(T) (E — — Asafe(E’)), by Corollary [3| we have
v [[E]ls = £¥4i A h(£)(i) # undef A £ € dom(T) A [[E']ls € Safe(dom(T)).

As s ~p s and [[E]ls = £34i, by Lemma we have
v [E]s = phyvp(£+4i) = p+ 4i for (p,n) = T(£).

As s ~r s and A [[E']ls # undef, by Lemma we have
v [E']s = phyvy([E]ls) # undef.

From hwhyp : T A (p,n) = T(£) A h(£)() # undef, we have
vii<n.

From phyhp(hwhgp) ChA (p,n) = T(£) Ai < nAh(€)(i) # undef, we have
v phyvp(h(€) (7)) = h(p + 41) # undef.

From [E] := E',s,h ~* C’,s', 1/, we have the following two cases:

When C' = ([E]:=E')As'=sAh =h:
As [E]s = p+4i A h(p + 44) # undef A [E']s # undef, we have

[E] := E',s,h ~ skip, s, (h | p+ 4i— [E']s).
Thus, (*) holds.

When C" =skipAs'=sAhW = (h|p+4i— [E']s):
Let s’ =sand h' = (h | (£,7) — [E']s)-

To prove (*x), it suffices to show that

(1) s, h’' Fqom(T) £ — E'; and

(2) b’ Why ~r 1.

s', b’ Egom(T) £ — E’ follows from

— [E]ls = [E]ls = £+43;

— [[E'Ts = [[E']ls = 1’ (£) () # undef.
We show h/ & hyp =~ A’ as follows.

From hwhy : T A Span(h’) = Span(h), we have
vV hwhyp:T.

From phyhp(hwhg) C h A [E']s = phyve([[E']ls), we have
¢ phyhp(h' & hg) C B,

From hwhy :: T A [[E]ls € Safe(dom(T)), we have
vV hWwhgp:: T.

Now it suffices to show shape(T) C I.(dom(shape(T)),h’).

From h W hg ~1 h, we have o such that
v 0 = Iy.(dom(shape(T)), h) A shape(T) C o.
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e By GCAxiom; for o = I,.(dom(shape(T)), k), we have ¢’ such that
v 0’ = Iy.(dom(shape(T)),h') Ao’ C o
because
— dom(o) C dom(h) = dom(h’) holds by GCAxiomy;

— reach(dom(shape(T)), ', o) C dom(shape(T)) C dom(o) follows, by Lemma from
h' Whp ~r A/ Ah' Whp :: T and shape(T) C o3

— Vp' ¢ dom(c). B/ (p") = h(p') holds since p + 4i € dom(shape(T)) C dom(o).

e Now it suffices to show that shape(T) C ¢’, which follows from

(1) shape(T) Co Ao’ Co; and
(2) dom(shape(T)) C reach(dom(shape(T)), k', o) C dom(c’) by GCAxiomy.

5.2.5 Seq
Lemma 11 (Soundness: Generalized Seq).

{P} C1 {Q}: k {Q} C2 {R} 1 k

Proof.
e Assume: {P} C1 {Q} : k
o Assume: {Q} C2 {R} : k

e Assume: p € Env(FLV(P,R)), j,s,h, hg, T, s, h,C’,s', b’ such that
Jj <kAshEqmer) PlplAs~r s AN hwhp =7 h A (Cy;Ca,8,h ~I C' 8 h)

e To show:
(x) (C',8,h ~ =)V
(xx) (3s', . C'" = skip As’,h’ Fqom(T) Rlp] A
(Vy ¢ Mod(C4; Cs). s'(y) =s(y)) As' ~p ¢ Ah' Whp =1 1)

Let p/ := p[FV(Q),

Then, as P[p] = P[p'], we have
v S, h ':dom(T) P[p/]

From C;;Ca,s,h ~J C’,s' h', we have two cases.

When Cy,s,h ~7 C},s',h' NC" = C4; Co:

— By assumption we have two cases.
— When C1,s', b/ ~ —:
(*) holds because (Cf1;Cs), s, h/ ~» —.
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— When C] = skip A (s',h' Fgom(r) Q[p']) A (Vy ¢ Mod(Ch). s'(y) = s(y)) As' ~1 ' A
h' W hp ~1 h' for some s’, h’:
(*) holds because (skip; Ca),s’,h’ ~» Co, 8", h'.

e When Cy, s, h ~71 skip, s7, h) A Co, sy, hy ~32 C' s W Nj=j1+ 2+ 1:

— As j1 <k ACy,s,h~J1 by assumption, we have s/, h] such that
v st Edomr) QY] A (Vy ¢ Mod(Ch). s1(y) = s(y)) Ast ~r s1 Ahy Bhp ~r Ay

— As jo <k ACy, 84, b} ~32 C' s’ W', by assumption we have two cases.

— When C’, s, b/ ~» —:
(*) holds.

— When C" = skip As’,h' Egomer) Rlp'] A (Vy ¢ Mod(Cy). s'(y) = si(y)) As' ~1s' A
h'whp ~1 h/:
(+%) holds because
(1) ', 1’ Egom(T) R[p] holds since R[p'] = R][p];
(2) (Vy ¢ Mod(C1;Cs). s'(y) = s(y)) follows from (Vy ¢ Mod(Cs). s'(y) = si(y)) and

(Vy ¢ Mod(C4). s} (y) = s(y)) since Mod(Cy; C3) = Mod(C1) U Mod(Cy).

Theorem 5 (Soundness: Seq (partial)).

{P} C1 {Q} {Q} G2 {R}
{P} C1;C2 {R}

Proof. Tt holds by Lemma [T1] O

Theorem 6 (Soundness: Seq (total)).

Pl C1 Q] [Q] C2 [R]
[P] C1;Cs [R]

Proof.
e Assume [P] C; [Q].
e Assume [Q] C3 [R].
e By Theorem [5 we have {P} C1;C> {R}.

e Assume: p € Env(FLV(P,R)),s, h, hg, T, s, h such that
S»h ':dom(T) P[P] NS~ sA hw hF ~T h.

e Now we show —(C1; Ca, s, h diverges) by contradiction.

e Assume { D;, s;, h; }ien such that
v (Do, s0,ho) = (C1;Ca,8,h) AVi. Di, siyhi ~ Diy1, 841, hit1-

o Let p/ := p|FV(Q),
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e Then, as P[p] = P[p'], we have s,h |=gom(T) P[p'].

e By [P] Cy [Q], we have =(C1, s, h diverges).

e Thus, we have some k such that Dy, = (skip; Cy) and C4, s, h ~* skip, sy, hg.
e As Dy = (skip; C2), we have Dyy1 = Cs, Sp11 = Sk, and hgy1 = hyg.

e By [P] C1 [Q], we have s, hy such that
V' 8k, i Fdom(r) Q'] A (Vy ¢ Mod(Ch). si(y) = s(y)) A sk ~1 sk Ahy & hp =7 hy.

e By [Q] C [R], we have =(Cy, s, hy, diverges).

e Thus we have =(Dg41, Sk+1, hi+1 diverges), which is a contradiction.

5.2.6 Frame

Theorem 7 (Soundness: Frame).

(PYC{Q} FPV(R)NMod(C)=0 P]C[Q] FPV(R)NMod(C) =0
{P+R} C {Q=*R} [P xR] C [Q*R]

Proof.
e Assume: FPV(R) N Mod(C) =0

e Assume: Vp € Env(FLV(P,Q)),s,h,hy, T, s,h,C’, s I/
s,h Fgom(m) Plp]As~r s Nhwhp ~p hAC,s,h ~*C', 8" b =
((C", ' W~ =) Vv
(3',h’. C" = skip A8’ h' Fqom(T) Qlp] A
(Vy ¢ Mod(C). s'(y) = s(y)) As’ ~1 s’ AW Whp ~1 1))
[# A-(C,s,h diverges) #]

e Assume: p € Env(FLV(P,Q,R)),s,h,hr, T, s, h,C’, s’ A’ such that
s,h ':dom(T) (P[p] * R[p]) As~psANhWhp~p hAC, s, h~*C' s N

e To show:
[# —(C, s, h diverges); and #]
(x) (C',¢',h ~ =)V
(+4) (35, 0. C" = skip A 8", B [ gomer) (Ql6] * Rlp]) A
(Vy ¢ Mod(C). s'(y) =s(y)) As’ ~1 s Ah' Whp =1 1)

e From s, h Fqom(T) (P[p] * R[p]), we have h; and hy such that
v h=h; Why,

v Svhl ):dom(T) P[p]7
v Sah2 ‘:dom(T) R[p]

o [# —(C, s, h diverges) holds by assumption since hwhr = hyW(hawhyp)As, hy Fgomer) Plp] #]

e Also by assumption we have two cases since h W hp = h; W (hy & hg) As,hy Fgom(T) Plp]-
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e When ¢/, s', b/ ~ —:
(*) holds.

e When C' = skip A (s',h' Fgomm) Q[p]) A (Vy ¢ Mod(C). s'(y) = s(y)) As" ~p s A
h/ ¥ hy Why ~1 h' for some s’, h’:
() is shown as follows.

e To show (xx), it suffices to show that s’, h’ Why Fqom(T) Qlp] * Rlp].
e We split the heap h’ ¥ hy into h’ and hs.

e As s, h' Egom(r) Qlp] holds, we need to show s’,hy Egomer) R[p], which follows from
(s, h2 Fdom(r) Rlp]) A (Vy ¢ Mod(C). 8'(y) = s(y)) AFPV(R) N Mod(C) = 0 by Lemmalj]

O

5.2.7 Conseq

Theorem 8 (Soundness: Conseq).

PP {P}C{Q} QFQ PP [PlCQ] QFQ
{P} C{Q} [P} C Q]

Proof.
e Assume: P EP and Q' = Q.

e Assume: Vp € Env(FLV(P’,Q’)),s,h,hg, T,s,h,C" ' /.
s,h Egom(m) P'[p] As ~r s ANhwhp ~p hAC,s5,h ~* C', 8", ) =
((C', ' W~ =) Vv
(3',h’. C" = skip A s’ h' Eqom(T) Q'lp] A
(Vy ¢ Mod(C). s'(y) = s(y)) As’ ~1 s AW Whp ~1 1))
[# A-(C,s,h diverges) #]

e Assume: p € Env(FLV(P,Q)),s,h, hg, T,s,h, C’, s, b’ such that
s,h Fgom(r) PlpJAs~r s Nhwhp ~p h AC,s,h ~* C' s W

e To show:
[# —(C, s, h diverges); and #]
(x) (C',8' W ~ =)V
(xx) (3s',h". C'" = skip As’,h’ Fqom(T) Qlp] A
(Vy ¢ Mod(C). s'(y) =s(y)) As’ ~1 s Ah' Whp ~ 1)

o Let p/ = p|FLV(PI’Q/).

e From P =P’ and s ~r s ANhWhp ~1 h As, h Fqom(T) P[0'] (as Plp'] = Pp]), we have
v S, h ':dom(T) P/[p/}

o [# —(C, s, h diverges) holds by assumption. #]

e Also by assumption we have two cases.
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e When ¢/, s', b/ ~ —:
(*) holds.

e When €’ = skip A (s",h" Fqom(r)y Q'[p]) A (Vy ¢ Mod(C). s'(y) = s(y)) As’ ~1 " A
h' W hy ~1 h' for some s’, h’:
(+*) holds because s’,h’ |=qom(T) Q[p] follows from Q' = Q and s’ ~p s’ Ah' W hp ~¢ h' A
§' 0 Egomr) Q1] (a5 QU] = Qlp)).

O

5.2.8 Ex

Theorem 9 (Soundness: Ex).

{P} C{Q} Pl C[Q]
{Fv. P} C {Fv.Q} [Fv.P] C [Fv.Q]

Proof.

e Assume: Vp € Env(FLV(P,Q)),s,h,hg, T,s,h,C" s’ 1.
s,h ':dom(T) Plp)As~t sANhWhp =p hAC, s, h ~* c' s h =
((C', 8, ~ =)V
(3',h’. C" = skip A8’ h' Egom(T) Qlp] A
(Vy & Mod(C). §'(y) =s(y)) As' ~r s AW Whp ~1 }))
[# A-(C,s,h diverges) #|

e Assume: p € Env(FLV(Fv. P, 3. Q)),s,h,hy, T,s,h,C’,s', ' such that
(s,h ):dom(T) (Fo. P)[p]) As~tsANhWhp =~ hAC, s, h~*C' s I

e To show:
[# —(C, s, h diverges); and #]
(x) (C',8,h ~ =)V
(xx) (3s',h'. C" = skip As', b’ Eqom(T) (Fv. Q)[p] A
(Vy ¢ Mod(C). s'(y) =s(y)) As' ~t s Ah' Whp =1 h')

From s, h Fqom(T) (Fv. P)[p], by Lemma m we have
v' 8, h Fdom(T) Pl(p | v +— v)] for some v € LogVals.

Let o/ :==(p| v V).

[# —(C, s, h diverges) holds by assumption. #]

Also by assumption we have two cases.

When C’, s’ h/ ~ —:

(*) holds.

e When C’ = skip A (s, b’ Egqomer) Q[P']) A (Vy ¢ Mod(C). s'(y) = s(y)) As’ ~1 s A
h' W hp ~1 I’ for some s’,h’:

(+*) holds because ', h’ |=qom(T) (Fv. Q)[p] follows from s, h’ =4omeT) Q[p'] by Lemma

O
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5.2.9 Gen
Theorem 10 (Soundness: Gen).

Vv € LogVals. {P[v/v]} C {Q[v/v]} Vv € LogVals. [P[v/v]] C [Q[v/v]]
{P} C{Q} [Pl C Q]
Proof. The goal directly follows by definition because P[p] = P[p(v)/v][p] and Q[p] = Q[p(v)/v][p]
for any p € Env(FLV(P,Q)). O

5.2.10 Total
Theorem 11 (Soundness: Total).

[Pl C Q]
{P} C{Q}
Proof. It holds vacuously by definition. O
5.2.11 If
Theorem 12 (Soundness: If).
{PAE} C {Q} {P Anot E} Cy {Q} [PAE]C Q) [P Anot E] Cs [Q]
{P Aword(E)} if E then C; else C5 fi {Q} [P Aword(E)] if E then Cy else Cs fi [Q]

Proof.

e Assume: Vp € Env(FLV(P,Q)),s,h,hg, T,s,h,C’" s’ 1.
(S,h }Zdom(T) P[p] /\E) As~psAhWhp~p hACL,s,h~*C' s NN —
((C', 8, ~ =)V
(3s',h’. C" = skip A8’ h' =gom(T) Qlp] A
(Vy & Mod(C1). s'(y) =s(y)) As' ~1 s’ AW Why =7 )
[# A —(Ch,s,h diverges) #]
(P

e Assume: Vp € Env(FLV(P,Q)),s,h,hg, T, s,h,C’, s’ 1.
(s,h Edom(r) Plp) Anot E) As ~p s ANhwWhyp ~p h A Ca,s,h ~* C', 8",/ =
((C', 8, ~ =)V
(3',h’. C" = skip A8’ h' Eqom(T) Qlp] A
(Vy & Mod(Cy). s'(y) =s(y)) As' ~1 s’ AW Whg =1 1))
[# A—(Chq,s,h diverges) #]

e Assume: p € Env(FLV(P,Q)),s,h,hp, T, s, h,C’,s', b’ such that
(s,h FEdom(T) Plp]Aword(E)) As ~1 sAhWhy ~1 hAif E then C else Cy fi, s, h ~* C’, 5", 1/

e To show:
[# —(if E then C; else Cs fi, s, h diverges); and #]
(x) (C',s',h ~ =)V
(xx) (3s',h'. C" = skip As’,h’ =gom(T) Qlp] A
(Vy ¢ Mod(Cy,C3). s'(y) =s(y)) As’ ~1 s AW Whg =~ /)
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From s, h =qom (1) word(E), we have
v [[E]ls € Words.

By Lemma 2] we have
v [E]s = phyvp([ETs) = [E]s-

Thus, we have two cases.

When [[E]s € Words\{0}:
— [# Since we have if E then C; else C; fi,s,h ~» C1,s,h and s,h Fgom(T) P[p] A E, by
assumption we have =(C4, s, h diverges) and thus —(C, s, h diverges) holds. #|
— From if E then Cj else Cs fi,s, h ~* C',s’, h’ we have two cases.

— When C" = if E then C; else Cy fiANs’ =sA K =h:
(*) holds as we have if E then C else Cs fi, s, h ~> C1, s, h.

— When Cq,s,h ~*C',s' I:
(¥) or (x*) holds by assumption since we have s, h Fqom(T) Plo] A E.
e When [[E]ls = 0:
— [# Since we have if E then C; else C5 fi,s,h ~» C2,s,h and s, h =gom(T) P[p] A not £,
by assumption we have =(Cs, s, h diverges) and thus —(C, s, h diverges) holds. #]
— From if E then Cj else Cs fi, s, h ~* C’,s’, h’ we have two cases.

— When C’' = if E then C else Cy fiAs' =sAK = h:
(%) holds as we have if E then C; else C5 fi, s, h ~~ Ca, s, h.

— When Cs, s, h ~* C', s, /s
() or (x*) holds by assumption since we have s, h =qom(T) P[p] A not E.

5.2.12 While
Theorem 13 (Soundness: While).

{PAE} C {P Aword(E)}
{P Aword(E)} while E do C od {P A not E}

Proof.
e Assume: {P A E} C {P Aword(E)}
e To show: Vk. {P Aword(E)} while E do C od {P Anot E} : k
e We prove the goal by induction on k.
e (Base case) when k =0,

— Assume: p € Env(FLV(P)),s,h, hg, T,s,h,C’, s, b’ such that
(s, h Edom(t) P[] Aword(E))As ~r sAhwhp ~1 hAwhile E do C od,s,h ~* C', s/ .
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— It suffices to show
(*) Cl,sl,h/ ~—.
— From s, h |=gom(T) word(E), we have
v [[E]s € Words.
— By Lemma [2| we have
v [E]s = phyve([ETs) = [E]s-
— (%) holds because C’" = while E do C od A s’ = s A K =h and [E]s # undef.

o (Inductive step) when k > 0AYj < k. {P Aword(E)} while E do C od {P Anot E} : j,

— Assume: p € Env(FLV(P)),s,h,hg, T,s,h,C’,s', b’ such that
(s, h Edom(t) P[p]Aword(E))As ~r sAhwhp ~1 hAwhile E do C od,s,h ~* C', s/, .
— To show:
(%) (C',s',h ~ =)V
(#x) (3s',h'. C" = skip A (s, h' Fqom(T) P[p] A not E) A
(Vy ¢ Mod(C). s'(y) =s(y)) As’ ~r s Ah/ Whg ~p 1)
— From s, h |Fqom(T) Word(E), we have
v [[E]s € Words.
— By Lemma [2| we have
v [E]s = phyvp([E]ls) = [ETs-
Thus we have two cases.
When [E]s = [[E])s = O:
& We have while E do C od, s, h ~~ skip, s, h.
o Thus we have skip, s, h ~*~1 C’ s, b/, from which it follows that
vV ' =skipAs' =sAK =h.
o Thus (+*) holds because we have s, h [=qom(T) not E from [[not EfJs = 1.
— When [E]; = [[E]]s € Words\{0}:
¢ We have while £ do C od, s,h ~ (C;while E do C od), s, h, from which we have
v (C;while E do C od),s,h ~*=1C" s K.
o From {PAE} C {PAword(E)} and {PAword(E)} while E do C od {PAnot E} : k—1,

by Lemma [TI] we have
v {PAE} C;while Edo Cod{PAnotE}:k—1.

o Thus (%) V (**) holds since we have s,h Fgom(r) E from [E]ls € Words\{0}.

Theorem 14 (Soundness: WhileT).

[PAEANO<E =v] C[PAword(E) A0 < E <] v ¢ FLV(P,E')
[P Aword(E) A0 < E’] while E do C od [P A not E]

Proof.

o Assume: [PAEAO<E =0] C [PAword(E) A0 < E' <v] and v ¢ FLV(P,E’).
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e By Theorems [8] [0} [[1] and [13] we have

[PAEAO<E =v] C[PAword(E) A0 < E' <] (Fx)

X

[Fv.PAEAO<E =v] C [Fv.P Aword(E) A0 < E' < 9]
(Conseq)
[PAO<E AE|C[PAO<E Aword(E)]

(PAO<E AE}C {PAO<E Aword(E)}
{PAO0<E Aword(E)} while E do C od {P A0 < E Anot E}

{P Aword(E) A0 < E'} while E do C od {P Anot E}

(Total)

(While)
(Conseq)

e Assume: p € Env(FLV(P,E')),s,h, hr, T, s, h such that
(s,h Edom(T) Plp] Aword(E) A0 < E'[p]) As ~r s ANhwhp =1 h.

e Now we show —(while E do C od, s, h diverges) by contradiction.

e Assume: { D, s;, h; }ien such that
v (Do, S0, ho) = (while FE do C od, s, h) AYi. Dy, s, hi ~~ Diy1,8i41, hi+1.

e We show the following, which is a contradiction because ng > n1 > ny ... > 0 is not possible.

e By induction on i, we find { k;, n;,s;, h; hien (with n; € Words) such that
v Dy, = while E do C od;
v (Si, h; ):dom(T) P[p] A WOFd(E) A0 < E/[,D} = nl) N8; ~1 Sk, N h; ¥ hy ~p hki;
v ifi>0then 0 <n; <n;_1.

(Base Case)

e From (s,h Fgom(T) 0 < E'[p]), we have
v TE'[p]]ls € Words.

e Let kg =0, s0 =s, hg = h and ny = [[E'[p]]ls, € Words.

e Then by assumption we have
v Dy, = while E do C od,
v (S()7 hg ':dom(T) P[p} A WOFd(E) N0 < E/[p] = no) NSg ~T Sk N hy W hp ~1 hko-

(Inductive step)

e Assume:
v Dy, = while E¥ do C od,
v (Si7 h; ):dom(T) P[p] N WOFd(E) ANO < E/[,D} = nl) As; ~r Sk, ANy Whe ~p hy,.

o As (Dy,, Sk, , hi,) diverges, we have
v [E]s,, € Words\{0},
v (Dki+173ki+17 hki+1) = (C’;while E do C 0d73ki7hki)~

e From s;, h; Fgom(T) word(E), we have
v [E]ls;, € Words.

e By Lemma we have [E]]s, = phyvp([E]ls,) = [£]s,, € Words\{0}, and thus we have
v Sivhi ):dom(T) E.
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e By[PAEANO<E =] C [P Aword(E) A0 < E' < v], we have
v (C, Sk41, i, 41 diverges).

e Thus, we have some j such that
V' Dy, 4j+1 = (skip; while E do C' od),
VO Skt P11~ SKip, Sk 41, Pk 41
e Then, by  PAEAO<E =] C [P Aword(E) A0 < E < wv], we have s;;1, h;;1 such that
V' (si+1, i1 Fdom(r) Plp] Aword(E) A0 < E'[p] <ni) Asit1 ~r Skitj41 Ahipr Whe & Ay g
e Also we have
V' (D j+2, Skitj+2, I 1j42) = (while E do C od, s, 141, g 4j+1)-
e From s;11,hi11 Faomer) 0 < E'[p] < n;, we have
v [E'[p]ls,.. € Words A0 < [E'[p]]ls,., < -
o Let ki1 =k;i+j+2and njy1 = mE/[p]]]]Si+1'

e Then, we have
v Dy,,, = while E do C od,
v (Si+1,hi+1 |:dom(T) P[p}/\word(E)/\O < E/[p] = ni+1)/\si+1 ~T Sk Ah;1Why =1 hy
vV i< N1 < Ny

i1
O

5.3 Soundness of Outer-level Rules
Definition 2 (Generalized triple).

{P} C {Q} : k iff Vj <k.VpeEnv(FLV(P,Q)),s,h,hp, T,s,h,C' s h.
s,hiE Plp)As~t sAhWhp ~p hAC, s,h ~73 O 8", =
(C', 8" b~ =)V
(3,0, T'. C' =skipAs’,h' = Qlp] A
(Vx ¢ Mod(C). s'(x) =s(x)) As' = 8 ANh' Why ~1/ h)

5.3.1 Alloc
Theorem 15 (Soundness: Alloc).

m >0
[[x =2m + 1]] alloc x [[x <, 0, ...,0]]

Proof.

e Assume: m,s,h, hy,T,s,h,C’, s’ k' such that
vm>0AsshiEx=2m+1As~r sANhWhp ~1 hAalloc x,s,h ~*C', s b

e alloc x, s, h does not diverge as it takes at most one step.

e To show:
(%) C", ' b/ ~ —; or
(xx) 38", W/, T". C' =skipAs’,h Ex—,, 0,...,0A
(Vy ¢ Mod(C). s'(y) =s(y)) As’ =p s AW Whg ~p/ A
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From s,h = x =2m+ 1, we have
v s(x)=2m+1.

From s(x) =2m+ 1 A's = s, we have
v os(x) =2m+ 1.

From h W hg ~1 h, we have oy such that
v 0o = Iz.(dom(shape(T)), h) A shape(T) C op.

From s ~1 s, we have
v roots(s) C dom(shape(T)) C reach(dom(shape(T)), h, 0g).

Thus, by GCAxiomg, we have o, such that
v 0, = Iz (roots(s), h) A ajy C oy.

By GCAxiom;, we have
reach(roots(s), h, () C dom(cy).

By Lemmas [§] and [10] we have
v reach(roots(s), h, o)) C reach(dom(shape(T)), h,0¢) C dom(shape(T))

By the specification of garbage collector, from alloc x, s, h ~* C’, s’, ' we have the following
two cases.

When C" =allocxAs’'=sAh =h:

(*) holds by the specification of garbage collector.
When C’ = skip A

v o1 W [p1 = m] = Ig.(roots(s’), h') A

v 8/(}() =p1 A

v h/:hlﬂﬂ[pl —m O,...,O]/\

vV (s, h,o) 2 (8" | x—2m+1),hy,01)

for some p1, h1,07:

() is shown as follows.

Let s1 =(s' | x—2m+1).
From (s, h,0{,) = (s1, h1,01), we have r such that

v r € Bij(reach(roots(s), h, o{,), reach(roots(s1 ), h1, 01))

v vy (s(y),si(y)) €7
v Y(p,p') €r.In. of(p) = o1(p") = n AVi <n. (h(p+4i),h(p' +47)) €T

where 7 & U {(a,a) | a € NonPtrs }.

We define T; as follows:

df [ (p,n) T =(p\n) A p)ET
v ) = undef otherwise
T, is well-defined because r is bijective.
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e By definition, we have
v dom(shape(T;)) C reach(roots(s1), hi,01).

e v shape(T;) C oy is shown as follows.

— To have shape(T;) # undef, we need to show that p # p’ for any (p,n) = T1(£) and
(p',n') = T1(£) with £ # £'.
By definition of Ty, we have p”, p”’ such that
V(") =TE) A", p) €rA@" ) =TE) NP p)eEr
From shape(T) # undef A £ # £, we have
\/ p// #p///'
Since r is bijective, we conclude p # p’ from (p”,p) € r A (p",p') € r ANp" #£ p"”.

— Now it remains to show o1(p) = n for any p, n such that
v shape(T1)(p) = n.
By definition of shape(T;) and T;, we have £,p’ such that
v (p'in) =TE AP p) T
We thus have the equality

oip) = op(p') (by (¢',p) €7)
= oo(p) (by of, C o9 Ap' € reach(roots(s), h, o) C dom(ay))
= shape(T)(p) (by shape(T) C o9 A p’ € dom(shape(T)))

e v s~m, s1 is shown as follows.

— s1(x) = phyvy, (s(x)) As(x) € Safe(dom(T1)) holds since s(x) = s1(x) = 2m + 1.
— Now we need to show that s1(y) = phyvy, (s(y)) As(y) € Safe(dom(Ty)) for any y # x.
— From s &~ s, we have s(y) € Safe(dom(T)) and thus have the following two cases.
— When s(y) = a € NonPtrs:

We have s(y) = a from s ~ s.

Thus we have s1(y) = a from (s(y), s1(y)) € T.

Thus we have s1(y) = a = phyvy, (s(y)) As(y) = a € Safe(dom(T1)).
— When s(y) = £30 for £ € dom(T):

We have s(y) = p for (p,n) = T(£) from s ~t s.

Thus we have s1(y) = p’ for p’ with (p,p’) € r from (s(y), s1(y)) € .

Thus we have T4 (£) = (p', n).

Thus we have s1(y) = p’ = phyvy, (s(y)) As(y) = £+0 € Safe(dom(T1)).

o From hwhyp : T AVL € dom(Ty). m2(T1(€)) = m2(T(£)), we have
vV hihg: T;.

e vV hwhg :: Ty Aphyhy (hwhy) C Ay is shown as follows.
— Since shape(T;) C o7 and dom(oy W [p; — m]) # undef by GCAxiom;, we have
v dom(shape(T;)) # undef.
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— Thus it suffices to show that for any £, (p,n) = T1(€) and ¢ < n, the following holds:
(hw hp)(£)(i) € Safe(dom(T1)) A hi(p + 4i) = phyvy, (hwhy)(£)(i)) # undef
— By definition of T; we have p’ such that
v (p',n) =T(£) and (p',p) € r.
— From o, C o9 A p' € reach(roots(s), h, o() C dom(c()) A shape(T) C og, we have
v 00(p') = 00(p’) = shape(T)(p') = n.
— From (p/,p) € r Ao((p') =n Ai<n, we have
v (h(p +41),hi(p+47)) €T.
— (hwhg)(£)(i) € Safe(dom(T)) follows from h W hg :: T, and thus we have two cases.
— When (hWhyp)(£)(i) = a € NonPtrs:
v (hwhyp)(£)(i) = a € Safe(dom(Ty)).
From h W hp ~1 h, we have
v h(p' +4i) = phyvp((hwWhp)(€)(i)) = a.
From (h(p' +41),h1(p + 47)) € 7, we have
v hi(p+4i) = a = phyvy ((h& hg)(£)(i)) # undef
— When (h hg)(£)(i) = €30 for £ € dom(T):
From h @ hg ~1 h, we have
v h(p' + 4i) = phyvp((hwhg)(£) (i) = p” for (p”,n') = T(£).
From (h(p' +41),h1(p + 47)) € 7, we have
v hi(p+4i) =p" for (p",p") er.
Since T1(€') = (p'',n’), we have
v (hwhp)(£)(i) € Safe(dom(T))
v hi(p+4i) =p" = phyvy (hwhp)(£)(i)) # undef.

e Now we do case analysis on m and show ().

e When m = 0:

— We have
\/plz()/\h/:hl.

— Let
v s'=(s|x—0),
v h'=h,
v TV =T;.

— s, h' Ex<,,0,...,0 follows from (x < €) = true.

— s’ ~p s’ follows from
(1) s =T, s1; and
(2) §'(x) =p1 =0=phyvy (s'(x)) As'(x) = 0 € Safe(dom(T")).

— To show h' W hp ~¢/ &/, it suffices to show shape(T’) C I .(dom(shape(T’)), ') since
we already have hw hp : Ty Ah W hp :: Ty A phyhp (hwhg) C hy.

By GCAxioms, from o1 = I (roots(s’), h') and dom(shape(T’)) = dom(shape(T;)) C
reach(roots(sy), h1,01) = reach(roots(s’), ', o1), we have o3 such that
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v 09 = Iy.(dom(shape(T”)),h') Aoa C 0;.

Now it suffices to show shape(T') C o3, which follows from

(1) shape(T’) = shape(T1) C 01 Aoz C o1; and

(2) dom(shape(T')) C reach(dom(shape(T’)),h’, 02) C dom(os) by GCAxiom;.

e When m > 0:

— Choose a fresh £; such that £; ¢ dom(T;) A dom((hwhg)(£;)) = 0.
— Let
vV s'=(s]|x— £,40),
v h=hw[t—,0,...,0],
v T = T1 (] [Zl = (pl,m)]
— s, W Ex<,,0,...,0 follows from s'(x) = £,+0 and [€; >, 0,...,0] C h'.
— s’ =1/ s follows from
(1) s~1, s1 ATy CT’; and
(2) §'(x) = p1 = phyvp (s'(x)) As'(x) = £, 70 € Safe(dom(T")).
— h/ Wwhg =1 A holds because
(1) W Why : T/ follows from hw hy : T; Adom((h' Whr)(£;)) ={0,...,m—1}
(2) h'Whyg :: T follows from hwhg :: T1AV: < m. (h'Whg)(£;)(i) = 0 € Safe(dom(T’));
(3) phyhp/(h' W hg) C A/ follows from phyh[elH(phm)]([El —m 0,...,0]) = [p1 —m
0,...,0] and phyhp (hwhg) C h;; and
(4) shape(T’) C Iyc(dom(shape(T’)), h’) is shown as follows.
Since dom(shape(T;)) C reach(roots(sy1),h1,01) C reach(roots(s’),h', o1 W [p1 +— m])
holds by Lemma[§] and since p; € roots(s’) holds, we have
v dom(shape(T')) = (dom(shape(T1)) U {p1}) C reach(roots(s’), k', o1 W [p1 +— m]).

Thus from o1 W [p1 — m] = Ig.(roots(s’), h'), by GCAxiomy we have o such that
v 09 = Izc(dom(shape(T')), h') Aoy C o1 & [p1 — m].

Now it suffices to show shape(T') C o9, which follows from

(1) shape(T’) C 01 W [p1 — m] by shape(T;) C o1;

(2) o2 C o1 W[p1 — m]; and

(3) dom(shape(T')) C reach(dom(shape(T’)), h',02) C dom(os) by GCAxiom;.

5.3.2 Incl

Theorem 16 (Soundness: Incl).

V Csn ProgVars {P Asafe(V)} C {Q A safe(Mod(C))}
{rh ¢ {@Q}

V' Ctin ProgVars [P Asafe(V)] C [Q A safe(Mod(C))]
[(P]] € [IQ]
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Proof.
e Assume: Vp € Env(FLV(P,Q)),s,h,hr, T, s,h,C’ s 1.
s,h FEgom(r) (Pp] Asafe(V)) As ~p s ANhwhp ~p hAC,s,h~*C", s 0 =
((C', ' W~ =) Vv
(3',h’. C" = skip A s’ h' Fqom(T) (Q[p] A safe(Mod(C))) A
(Vy ¢ Mod(C). s'(y) = s(y)) As’ ~1 s’ AW Whp ~1 1))
[# A-(C,s,h diverges) #]
e Assume: p € Env(FLV(P,Q)),s,h,hg, T,s,h,C’, s’ b’ such that
v s,hE PplAs~rsAhWhp mp hAC,s,h~*C' s b

e To show:
[# —(C, s, h diverges); and #]
(x) C',s',h ~ —; or
(xx) 3/, h', T". C" = skip As’,h' = Q[p] A
(Vy ¢ Mod(C). s'(y) =s(y)) As’ =1 s AW/ Why =~/ K/
e From s, h = P[p] and s ~r s, by Lemma [6] we have
v s,h ):dom(T) P[p] A safe(V).

o [# —(C, s, h diverges) by assumption #]
e Also by assumption we have two cases.

e When C’, 5" h/ ~ —:
(*) holds.

e When C" = skipAs’, h' Fgom(T) (Q[p] Asafe(Mod(C))) A (Vy ¢ Mod(C). s'(y) = s(y)) As’ ~t
s’ N\h Whg ~1 h' for some s’,h':
(%) is shown as follows.

e To show (xx), it suffices to show that s’,h' = Q[p] A s’ ~T &'.

e s',h' = Q[p] follows from s’, h’ =4om(T) Q[p] by Lemmas @

e s” =~ s’ holds as follows.

— when x € Mod(C):
phyvr(s'(x)) = §'(x) follows from s’ ~p s,
s'(x) € Safe(dom(T)) follows from s, h’ =gom(T) safe(Mod(C)).
— when x ¢ Mod(C):
phyvr(s'(x)) = phyvp(s(x)) = s(x) = s'(x) follows from s ~t s and s(x) = §'(x).
s'(x) = s(x) € Safe(dom(T)) follows from s ~ s.
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5.3.3 Seq

Lemma 12 (Soundness: Generalized Seq).

{rPh CL QB k  {QP C {{RY Kk
{P}} C1;C {R}} K

Proof.
e Assume: {{P}} C1 {Q}}: &k

e Assume: {{Q}} C: {R}}: k

e Assume: p € Env(FLV(P, R)),j,s,h,hy, T, s, h,C’,s', b/ such that
ji<kAs/h ':P[p]/\S%T sANhWhp ~p h/\(C’l;Cg,s,hwj C/,Sl,h/)

e To show:
(x) (C',¢',h ~ =)V
() (3¢, h’ T'. C' =skipAs’,h' = R[p] A
(Vy ¢ MOd(Cl, CQ) ( ) ( )) As' ~p s’ Nh W hp = h/)
o Let p/ := p|FV(Q),

e Then, as P[p] = P[p’], we have
)

e From Cy;Cy,s,h ~7 C',s' ', we have two cases.
e When Cy,s,h ~7 C},s',h/ NC" = C}; Cy:

— By assumption we have two cases.

— When C1, s, b ~ —:
(%) holds because (C7;Ca), s, h/ ~» —.

— When C] = skip A (s,h' E Q[p]) A (Vy ¢ Mod(Cy). s'(y) = s(y)) As' = s A
h' ¥ hy ~1 b’ for some s’, h’:
(%) holds because (skip; C2),s’,h' ~> Ca, 8", h'.

e When Cy, s, h ~J1 skip, s}, by A Co, sy, by ~92 C' ' )b/ Nj = j1 + jo + 1:

— As j1 <k ACy,s,h~Jt skip, si, b, by assumption we have s}, h, T} such that
¢ S0 F QUY'| \ (vy ¢ Mod(Ca). si(y) = s(y)) A8} ~zy 4 A B 6 he ~ay .

— As jo <k ACy, s, b} ~72 C' s’ I, by assumption we have two cases.

— When C’, s, b/ ~ —:
(*) holds.

— When C’ = skipAs’, h' = R[p/|A(Vy ¢ Mod(Cs). s'(y) = si(y))As’ =1 s'Ah/ Why =1/ h':
(*%) holds because
(1) ¢',h’ = R|p] holds since R[p'] = R|p];

(2) (Vy ¢ Mod(C’l,Cg) "(y) = s(y)) follows from (Vy ¢ Mod(Cs). s'(y) = s{(y)) and
(Vy ¢ Mod(C1). s (y) = s(y)) since Mod(Cy;Cy) = Mod(Ch) UMod(Cy).
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Theorem 17 (Soundness: Seq (partial)).

{ry ¢ {@)  Hep & {R)
{P}} C1;: Gy {RY}

Proof. Tt holds by Lemma

Theorem 18 (Soundness: Seq (total)).

[P C Q) [QN] Co [[R]
[[P]] C1;Co [[R]]

Proof.
e Assume [[P]] C; [[Q]]-
e Assume [[Q]] Cy [[R]].
« By Theorem [T, we have (P} Cv; Cs {(R}}

e Assume: p € Env(FLV(P, R)),s, h,hp, T, s, h such that
s,h = Plp| As ~t s N\hWhp ~t h.

e Now we show —(C4; Co, s, h diverges) by contradiction.

e Assume { D;, $;, h; }ien such that
\/ (Do, S0, ho) = (Cl, CQ, S, h) A Vl Di, Si, hl ~ Di+1, 51'+1, hi+1.

o Let o/ i pFIV(@.

e Then, as P[p] = P[p’], we have s, h = P[p'].

e By [[P]] C: [[Q]], we have =(C1, s, h diverges).

e Thus, we have some k such that Dy, = (skip; Cy) and C4, s, h ~* skip, s, hg.
e As Dy = (skip; C2), we have Dyy1 = Cs, Sp+1 = Sk, and hgy1 = hy.

e By [[P]] C1 [[Q]], we have s’,h’, T such that
v s, E QYA (Vy ¢ Mod(Ch). s'(y) =s(y)) As’ mpr s Ah/ Whp =1/ hy.

e By [[Q]] C2 [[R]], we have —(Cq, si, hy, diverges).

e Thus we have =(Dg1, Sg+1, hip+1 diverges), which is a contradiction.
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5.3.4 Frame

Theorem 19 (Soundness: Frame).

{ryc ey FPV(R)NMod(C) =0 [P C QN FPV(R) N Mod(C) =0

{P =R} C {{Q* R} [P+ R]] C[[Q * R]

Proof.

Assume: FPV(R) N Mod(C) =

Assume: Vp € Env(FLV(P,Q)),s,h,hg, T,s,h,C", s’ 1.
s,hE Plp|Asx~t s NhWhp =t hAC,s,h ~*C' s W =
((C', s, ~ =)V
(3s',h', T'. C' =skip As’,h' = Qlp] A
(Vy ¢ Mod(C). s'(y) = s(y)) As’ =1 s’ Ah' Why ~p 1))
[# A-(C,s,h diverges) #]

Assume: p € Env(FLV(P,Q, R)),s,h,hg, T s, h,C’, s’ h’ such that
s.h = (Plp] * Rp)) As ~r s AhWhy ~op h A C, s, h ~s* C', s,

To show:
[# —(C, s, h diverges); and #|
(x) (C',8,h ~ =)V
(xx) (3s’, 0/, T'. C" =skipAs’,h' = (Qp] * R[p]) A
(Vy ¢ Mod(C). s'(y) = s(y)) As’ ~p s AW Whg ~p/ B)

From s, h = (P[p] * R[p]), we have h; and hy such that
v h=h, Wh,
v S,hl ): P[p]a
v s,hy = R[p].

[# —(C, s, h diverges) holds by assumption since hwWhyp = hy W (hy Whyp) As,hy = Plp] #]
Also by assumption we have two cases since hw hp = h; & (he Why) As,hy = P[p)].

When C', 8" h/ ~ —:
(*) holds.

When C” = skipA(s’,h' E Q[p])A(Vy ¢ Mod(C). s'(y) = s(y))As’ =g s’ Ah' Why W hy =1/ '
for some s’, h’:
(*x) is shown as follows.

To show (%), it suffices to show that s’,h’ Whs = Q[p] * R|p].
We split the heap h’ W hy into h’ and hs.

As §',h' = Q[p] holds, we need to show s’,hy = R[p], which follows from (s,hy = R[p]) A
(Vy ¢ Mod(C). s'(y) = s(y)) AFPV(R) N Mod( ) = 0 by Lemma [j]

O
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5.3.5 Conseq

Theorem 20 (Soundness: Conseq).

PEP  {PRCHR) QEQ PEP  [PIClQ] QFEQ
{rh C {Q} [Pl ¢ [[Q]]

Proof.

Assume: P | P and Q' = Q.

Assume: Vp € Env(FLV(P',Q")),s,h,hg, T, s, h,C", s’ 1.
s,shi=EPplAsmr sAhWhp ~0 hAC,s,h ~*C', ',k —
((C', ¢, ~ =)V
(3,0, T'. C' =skipAs’,h' = Q'[p] A
(Vy ¢ Mod(C). s'(y) =s(y)) As’ =1 s’ Ah' Why ~p 1))
[# A-(C,s,h diverges) #]

Assume: p € Env(FLV(P,Q)),s,h,hg, T,s,h,C’, ', ' such that
S,h |: P[p] NS~ S/\hL—ﬂhF T h/\C,S,hM—)* C/,S/7h/

To show:
[# —(C, s, h diverges); and #]
(x) (C',8,h ~ =)V
(xx) (3s’, 0/, T'. C" =skipAs',h' E Qlp] A
(Vy ¢ Mod(C). s'(y) = s(y)) As’ mp s AW Whg ~p/ B)
Let p/ d:efp‘FLv(P’,Q’)_

From P = P’ and s =t s A\ hWhyp =t h As,h |E P[p] (as P[p'] = P[p]), we have

v s,h = P'[p'].

[# —(C, s, h diverges) holds by assumption. #]

Also by assumption we have two cases.

When C’, s’ b/ ~ —:

(*) holds.

When C" = skip A (s, W/'Q'[p]) A (Vy & Mod(C). s'(y) =s(y)) As’ =1 s’ Ah' Whyp ~1 A’ for

some s’, h':
(%) holds because s’,h' = Q[p] follows from @ | @ and s’ ~p s’ A h'Whp ~1 A A
s".h' = Q'[p] (as Q[p'] = Qlp]).--

O

5.3.6 Ex

Theorem 21 (Soundness: Ex).

{ry ¢ {@h [P ¢ 9l
{3v. P} C {3v.Q} [Bv. P] C [[Bv. Q]

47



Proof.

Assume: Vp € Env(FLV(P,Q)),s,h,hp, T,s,h,C', s, I'.
s,hE PlplAs~t s ANhWhp =~ hAC,s,h ~*C',s',h =
((C', 8, ~ =)V
(3,0, T". C' =skip As’,h' = Q[p] A
(Vy §é MOd(C) Sl(y) = S(y)) As ~1 s ANh' Whp ~1/ h/))
[# A-(C,s,h diverges) #]

Assume: p € Env(FLV(Jv. P,3v.Q)),s,h,hg, T,s,h, C’, s, h' such that
(s,h = (Fv.P)[p)) As~r sANhWhp =p hAC,s,h~*C" s I
To show:
[# —(C, s, h diverges); and #]
(x) (C',8,h ~ =)V
(xx) (3s', W/, TV. C" =skip As’, I/ = (Fv.Q)[p] A
(Vy ¢ Mod(C). s'(y) =s(y)) As’ mp s AW Whg ~p/ B)
From s, h |= (3v. P)[p], by Lemma [7] we have
v s,h = P[(p | v+ v)] for some v € LogVals.

Let p' :i=(p|vr— V).
[# —(C, s, h diverges) holds by assumption. #]
Also by assumption we have two cases.

When C’, s’ b/ ~ —:
(*) holds.

When " = skip A (', b’ = Q[¢']) A (Vy ¢ Mod(C). 8'(y) = s(y)) As' ~ s' A’ Whp ~pe B

for some s’, h’:

(#x) holds because s, h’ |= (Jv. Q)[p] follows from s’,h’ = Q[p'] by Lemma [7]

5.3.7 Gen
Theorem 22 (Soundness: Gen).

Vv € LogVals. {{P[v/v]}} C {Q[v/v]} Vv € LogVals. [[P[v/v]]] C [[Q[v/v]]
[

{ry ¢ {@h ([Pl ¢ (@]

Proof. The goal directly follows by definition because P[p] = Plp(v)/v][p] and Q[p] = Q[p(v)/v][p]
for any p € Env(FLV(P,Q)).

5.3.8 Total

Theorem 23 (Soundness: Total).

_Pyefel
{ry c {en

Proof. Tt holds vacuously by definition.
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5.3.9 If
Theorem 24 (Soundness: If).

{rprEl} G @) {{PAnot EY Oy {Q}} ([P AENCQ [P Anot EJ] Cy [[Q]]
{P Aword(E)}} if E then C; else Cs fi {Q}} [[P Aword(E)]] if E then Cy else Cy fi [[Q]]
Proof.

e Assume: Vp € Env(FLV(P,Q)),s,h,hg, T,s,h,C" s’ 1.
(s,hEPlp)ANE)As~r s NhWhp ~t hACy,s,h ~* C' s, h —
((C', s, b~ =)V

(3s',h', T". C' =skip As’,h' = Qp] A
(Vy ¢ Mod(C4). s'(y) =s(y)) AS = s’ Ah' Whyp =1/ 1))
[# A —(Ch,s,h diverges) #]

e Assume: Vp € Env(FLV(P,Q)),s,h,hg, T,s,h,C" s’ 1.
(s,h =Plp]Anot E)As~t s NhWhp ~p hACs,s,h ~*C" ¢,h =
((C', s, ~ =)V
(38,0, T'. C' =skipAs’,h' E Qlp] A
(Vy ¢ Mod(Cy). s'(y) =s(y)) As' = s Ah' Whyp ~q/ 1))
[# A~—(Ca,s,h diverges) #]

e Assume: p € Env(FLV(P,Q)),s,h,hg, T,s,h, C’, s, b’ such that

(s,h = Plp] Aword(E)) As mr s NhWhy =1 h Aif E then C; else Cs fi,s,h ~* C' s’ 1/
e To show:

[# —(if E then Cy else Cs fi, s, h diverges); and #]

(x) (C',8',h ~ =)V

(xx) (3s', W/, TV. C" =skip As’, 1’ = Qo] A

(Vy ¢ Mod(Cy,Cs). s'(y) =s(y)) As' mp 8 Ah' Why =1/ 1)

e From s, h = word(E), we have

v [[E]ls € Words.

e By Lemma 2] we have
v [E]s = phyvr([E]s) = [E]s-
e Thus, we have two cases.
e When [[E]ls € Words\{0}:
— [# Since we have if E then C else Cs fi,s,h ~» Cy,s,h and s, h = P[p] A E, by assump-
tion we have —(C1, s, h diverges) and thus —(C, s, h diverges) holds. #]

— From if E then C; else Cs fi, s, h ~* C’,s’, h’ we have two cases.

— When C’' = if E then Cy else Cy fiAs' =sAK = h:
(%) holds as we have if E then C; else Cs fi, s, h ~~ Cy, s, h.

— When C1y,s,h ~* C', s b/
(%) or () holds by assumption since we have s,h = P[p] A E.
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e When [[E]ls = 0:
— [# Since we have if E then C} else Cs fi,s,h ~> Ca,s,h and s, h | P[p] A not E, by as-
sumption we have —(Cy, s, h diverges) and thus —(C, s, h diverges) holds. #]
— From if E then C else Cs fi, s, h ~* C’ s’ h' we have two cases.

— When C' =if £ then C else Cy fins’ =sAh = h:
(*) holds as we have if E then C else Cs fi, s, h ~ Ca, s, h.

— When Cs,s,h ~*C',s' I:
(%) or () holds by assumption since we have s,h |= P[p] A not E.

5.3.10 Wahile
Theorem 25 (Soundness: While).

{PAE} C {P Aword(E)}}
{P A word(E)}} while E do C od {{P Anot E}}

Proof.
o Assume: {{PAE} C {P Aword(E)}}
e To show: Vk. {{P A word(E)}} while E do C od {P Anot E}} : k
e We prove the goal by induction on k.
o (Base case) when k =0,
— Assume: p € Env(FLV(P)),s,h,hg, T,s,h,C’,s', b’ such that
(s,h = Plp] Aword(E)) A's =t s ANhwhgp a1 h Awhile E do C od, s, h ~F C’ s’ h'.

— It suffices to show

(x) C' s, h ~ —.
— From s, h = word(E), we have

v [[E]ls € Words.
— By Lemma [2| we have

v [E]s = phyve([E]s) = [Es-
— (*) holds because C' = while E do C' od A s’ = s AR = h and [E]s # undef.

e (Inductive step) when k > 0 AVj < k. {{P Aword(E)}} while E do C od {{P Anot E}} : j,

— Assume: p € Env(FLV(P)),s,h,hg, T,s,h,C’, s’ b’ such that

(s,h = Plp] Aword(E)) A's =t s ANhwhgp ~p h Awhile E do C od, s, h ~F C’ s’ h'.
— To show:

() (C',8" h/~ =)V

(xx) (3s’, 0/, T. C" =skip A (s, h' = P[p] A not E) A

(Vy ¢ Mod(C). s'(y) =s(y)) As’' 1 s’ A" &hy ~q 1)
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From s, h = word(E), we have
v [[E]ls € Words.
— By Lemma [2| we have
v [E]s = phyve([E]s) = [E]s-
— Thus we have two cases.
When [E]s = [[E])s = 0:
© We have while E do C' od, s, h ~~ skip, s, h.
o Thus we have skip, s, h ~*~1 C’, s, b/, from which it follows that
vV ' =skipAs' =sAK =h.
¢ Thus (*x) holds because we have s, h |= not E from [[not E]s = 1.
— When [E]; = [[E]]s € Words\{0}:
o We have while E do C od, s, h ~ (C;while E do C od), s, h, from which we have
v (C;while E do C od),s,h ~*=1C" s K.
o From {{PAE}} C {{PAword(E)}} and {{ PAword(E)}} while E do C od {{ PAnot E}} :

k — 1, by Lemma [I2] we have
v {{P A E}} C;while Edo Cod {{PAnot E}} : k—1.

o Thus (*) V (x+) holds since we have s,h = E from [[E]}s € Words\{0}.

Theorem 26 (Soundness: WhileT).

[PANEANO<E =0]] C[[PAword(E) A0 < E <] v ¢ FLV(P,E')
[P Aword(E) A0 < E'l] while E do C od [[P A not E]

Proof.
e Assume: [[PAEANO<E =v]] C [[PAword(E) A0 < E' <v]] and v ¢ FLV(P,E’).

e By Theorems and [25] we have
[PAEAO<E =0]] C[[PAword(E)A0 < E <]

[Bv.PANEAO<E =v]] C[[Fv.P Aword(E) A0 < E < v]] (}éx) ]
[PAO<E AE] C[[PAO0<E Aword(E)]] (Total)( onseq)

{PANO<E ANE}} C {PAO0<E Aword(E)}}
{P N0 < E Aword(E)}} while E do C od {{P A0 < E'Anot E}}
{P Aword(E) A0 < E'}} while E do C od {{P Anot E}}

(While)
(Conseq)

e Assume: p € Env(FLV(P,E’)),s, h, hg, T, s, h such that
(s,h = P[p] Aword(E) A0 < E'[p]) As 1t s \hWhp ~T h.

e Now we show —(while E do C od, s, h diverges) by contradiction.

e Assume: { D;, s;, h; }ien such that
v (Do, S0, ho) = (while E doC Od, S, h) A VYi. D,‘, Si, hl ~ Di+1, Si+1, hi+1.
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e We show the following, which is a contradiction because ng > n; > ns ... > 0 is not possible.
e By induction on i, we find { k;,n;,s;, h;, T; }ien (with n; € Words) such that
v Dy, = while I do C od;
v (si,h; E Plp] Aword(E) A0 < E'[p] = n;) As; =, s, ANh; Why ~r, hy,;
v ifi>0then 0 <n; <n;_1.
(Base Case)

e From (s,h = 0 < E’[p]), we have
v [E[pllls € Words.

o Let kg =0,80 =s, hg =h, Top =T and ng = [[E'[p]]]s, € Words.

e Then by assumption we have
v’ Dy, = while E do C od,
v (S()7 hg ': P[p] A\ WOI’d(E) N0 < E/[p] = no) N 8o Ry Sko N\ hy W hg T, hko-

(Inductive step)

o Assume:
v' Dy, = while ¥ do C od,
v (siyhy | Plp] Aword(E) A0 < E'[p] = ny) As; =1, sk, A h; Whyp ~r, hy,.

e As (Dy,, Sk, , hi,) diverges, we have
v [E]s,, € Words\{0},
v (Dk,;-i-l, Ski+1, hkq-,-i-l) = (C’;while EdoC Od, 3k,~7hki)~

e From s;,h; | word(E), we have
v [E]ls, € Words.

e By Lemma we have [[E]ls, = phyvy, ([E])s,) = [Els,, € Words\{0}, and thus we have
v S;, h,’ ): k.

e By [PANEANO<E =v]] C[[PAword(E) A0 < E' < v]], we have
v =(C, Sk, 41, hi;+1 diverges).

e Thus, we have some j such that
V' Dy, 441 = (skip; while E do C od),
V' C, Skyg1s Mgy 11 ~7 SKIp, Sk, 4j 415 Py 41
e Then, by [PAEAO<E =9]] C [[PAword(E) A0 < E' < v]], we have s;41, hj11, Tiq1
such that
v (sit1,hiv1 B Plp] Aword(E) A0 < E'[p] <ni) Asit1 21y, Skitj+1 A Whe 21, By

e Also we have
V' (D42, Ski+j+2, e, +j42) = (while E do C' od, sk, 141, e, 4j+1)-

e From s;;1,h; 1 0 < E'[p] < n;, we have
v [E[p]ls,.. € Words A0 < [E'[p]]ls,., < -

o Let ki—i—l = ki +] + 2 and Ni+1 = MEI[P]]]]S,:+1-
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e Then, we have
V' Dg,,, = while E do C od,

v (Si-‘rla hi-‘rl ': P[p] /\WOI’d(E) N0 < E/[p} = ni+1) ASit1 ATip1 Skiqa /\hi+1 Whp AT hki+17
vV < Nip1 < Ny
O
5.4 Soundness of Assertion Entailments
5.4.1 NPtrSafe
Theorem 27 (NPtrSafe).
nonptr(E) = safe(E)

Proof. Tt holds vacuously by definition. O

5.4.2 BoolWord

Theorem 28 (BoolWord).
E = word(E)

Proof.

e For any p € Env(FLV(E,E’)),s,h, hg, T, s, h such that s ~r s A\hWhp ~1 h, we need to
show that s,h Fgom(T) E[p] = s,h Fgom(T) word(E[p]).

e From s, h =1 E[p], we have [E[p|]ls € Words\{0} C Words.
e Thus s, h |=4om(T) Word(E[p]) holds.

5.4.3 PointstoNZero

Theorem 29 (PointstoNZero).
E—EEE#£0

Proof.

e For any p € Env(FLV(E,E’)),s,h, hp, T, s, h such that s ~7 s AhWhp ~1 h, we need to
show that s, h ':dom(T) E[p] - E/[p] = s,h ':dom(T) WOI’d(E[p} = 0)

From s,h =1 E[p] — E[p], we have [E[p]s = £+4i and [[E'[p]]ls = h(£)(i) for some
£ € dom(T) and ¢ € Z.

As h(£)(i) # undef, from hwhp : T we have 0 < i < n for (p,n) = T(£).
Thus [[E[p] # 0]]s = [[not (€347 = 0)[]s =1 as i > 0.

Thus S, h }:dom(T) E[p} 7é 0 holds.
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5.4.4 ExpSafe

Theorem 30 (ExpSafe).
defined(FE) = offsafe(E)

Proof.

e For any s,h,hp, T, s, h such that s ~p s A h W hp =~ h, we need to show that s,h [Fqom(T)
defined(£) = s,h Fgom(T) offsafe(F).

e From s, h Fqom (1) defined(E), we have two cases.

e When [[E]ls = w € Words:
By definition s, h [Fqom () offsafe(E) holds.

e When [[E])s = £+i for some £ € Locs and i € Z:
By Corollary (3} we have £ € dom(T) and thus s, h |=qom () offsafe(E) holds.

5.4.5 HeapSafe

Theorem 31 (HeapSafe).
E — E’ A offsafe(E) |= safe(E’)

Proof.

e For any p € Env(FLV(E,E’)),s,h,hp, T, s, h such that s ~r s AhWhp ~1 h, we need to
show that s,h Fgom(T) E — E' Aoffsafe(E) = s, h [Fqom () safe(E'[p]).

e From s, h Fqom(T) E < E' A offsafe(E), we have [E[p][ls = £+4i and [E'[p][ls = h(€)(i) for
some £ € dom(T) and i € Z.

e As h(£)(i) # undef, from hw hp : T we have 0 < i < n for (p,n) = T(€).
e From hwhy :: T, we have [JE'[p][]s = h(£)(¢) € Safe(dom(T)).
e Thus s, h [Fqom(T) safe(E'[p]) holds.

O
5.4.6 ExpHeapSafe
Corollary 13 (ExpHeapSafe).
E — E' |= safe(E)
Proof. Tt follows as a corollary from (ExpSafe) and (HeapSafe). O
5.4.7 SafeEq
Theorem 32 (SafeEq).
safe(E,E’) |= defined(E = E')
Proof. Tt is obvious by definition. O
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5.5 Soundness of Derived Rules
5.5.1 Ex’
Theorem 33 (Soundness: Ex’).

For ((,),P,Q) € {({,},P,Q), ([, P,Q),({{, }, ~, Q). ([l.], Q) },
(PYC(Q)  v¢FLV(Q)

(Fv.P) C (Q)
Proof.
(Fv.P) C (Fv. Q) v ¢ FLV(Q) (Conseq)
(Fv.P) C (Q) !
5.5.2 Disj

Theorem 34 (Soundness: Disj).
For (<7 >v73157)2’ Q) € { ({7 }a Py, Py, Q)v ([’]a Py, Py, Q)v ({{’ }}a Py, Py, Q)a (H?Ha Py, Py, Q) }7

(P1) C(Q)  (Pa2) C(Q)
(P1VP2) C(Q)

Proof. Choose a fresh variable u such that u ¢ FLV(Py, Pa, Q).

(P1) C(Q)  (Py) C(Q)
Vv € LogVals. (v=1AP1)V(Vv=2APy)) C(Q)
(u=1AP)V (w=2Py)) C (Q)
(Fu.(u=1AP)V(u=2APy)) C(Q)
(P1VP2) C(Q)

(Gen)

(Ex’)
(Conseq)

5.5.3 Inst

Lemma 14.

For ((,),P,Q) e {({.},P,Q),([],P,Q),{{, }}, P, Q). ([} H PQ)},

(P) C (Q) FPV(E) N Mod(C) v ¢ FLV(E)
(P[E/v] A defined(E)) C [E/v])

(Q
Proof. Assume: (P) C (Q) AFPV(E)NMod(C) =0 Av ¢ FLV(E).

(P[E/v] A defined(E))

(Fv. P[E/v] * v = E)

(P[E/v] ¥ v=E) (Ex’)
(
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Q

x v = E)
[E/v] xv =
[E/v])

C©©

Theorem 35 (Soundness: Inst
For ((,),7,Q) € {({},P,Q), ([, P, Q). ({{; }, ~, Q). ([l.], ~, Q) },
(P) C (Q) FPV(E) N Mod(C) =0
(P[E/v] A defined(E)) C (Q[E/v])

)-
B

Proof. Choose a fresh variable u such that u ¢ FLV(P, Q,E, v).

(P) C(Q)
(Plu/v] A defined(u)) C (Qu/v])
(Plu/v]) C (Qlu/v])
u] A defined(E)) C (Qlu/v][E/ul) Eg:lij)
v] A defined(E)) C (Q[E/v])

(Lemma

(Conseq)

(Plu/v][E
(

/
PIE/

5.5.4 Assign’

Theorem 36 (Soundness: Assign’).

[P[E/x] A defined(E)] x := E [P]
Proof. Choose a fresh variable v such that v ¢ FLV(P).

(P[E/x] A defined(E))
(Jv. P[E/x] A defined(E) A x = v)
(P[E/x] A defined(E) A x = v) (Ex)

(P[E[v/x]/x] * (defined(E) A x = v))

x:=F

(PlE [ / [/%] % (x = Elv/x])) (Assign)
(PAx= Ev/x])

(P)
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5.5.5 Read’ and Read”
Theorem 37 (Soundness: Read”).

x ¢ FPV(E') UFPV(E")
x=FE AE—E’ x:=E| |x= E' A E[E /x] — B

Proof. Assume: x ¢ FPV(E’) UFPV(E").
Choose fresh variables u, v such that u,v ¢ FLV(E'|E") A u # v.

x=uAE —v x:=[E] [x=vAE[u/x] — v (Read)

[x=E AE — E” A defined(E') A defined(E”)] x = [E] [x = B A E[E'/x] — E”|
x=EANE —E’|x:=E| [x=E'AE[E/x] — E’]

(Inst)
(Conseq)

Theorem 38 (Soundness: Read’).

x ¢ FPV(E) UFPV(E/)
[E—E|x=|E|[x=FE ANE — E|

Proof. Assume: x ¢ FPV(E) UFPV(E').
Choose a fresh name v such that v ¢ FLV(E').

(Read”)
x=vAE—>E]x:=[E]|[x=E ANE < E] Fx')
Gvx=uvAE—E|x:=[E x=E ANE — E| (CX
[E—FE]x=E [x=EANE — E (Conseq)
5.5.6 ASSIGN and ASSIGN’
Theorem 39 (Soundness: ASSIGN).
([Ply/x]]] x =y [[P]]
Proof.
[[Ply/=]]]
[P[y/x] A safe(y)] (Incl)
[P[y/x] A safe(y) A defined(y)]
x:=y
[P A safe(x)] (Assign’)
[[P]] (Incl)
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Theorem 40 (Soundness: ASSIGN’).

[[P[E/x] A nonptr(E)]] x .= E [[P]]

Proof.

[P[E/x] A nonptr(E)]]

[P[E/x] A nonptr(E)]

P[E/x] A nonptr(E) A defined(E)]
x:=F

[P A nonptr(x)]
[P A safe(x)]
[[P]]

5.5.7 READ and READ’
Theorem 41 (Soundness: READ).

x ¢ FPV(E) UFPV(E/)

[E—E] x:=[FE] [[x=E ANE — E

Proof. Asuume: x ¢ FPV(E) UFPV(E’).

B —E]
[

Theorem 42 (Soundness: READ’).
x ¢ FPV(E') UFPV(E")

[x=E AE— E"] x:=E] [x=E" A E[E /x] — E"]]

Proof. Asuume: x ¢ FPV(E') UFPV(E").
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[x =E" A E[E'/x] — E" x safe(E")]
[x =E" A E[E'/x] — E" A safe(x)]

(Read”)

[x =E"'"AE[E/x] — E"]] (Incl)
5.5.8 WRITE and WRITE’
Theorem 43 (Soundness: WRITE).
([E— -] [E] :=x [[E — ]|
Proof.
([ — -]
[E — — A safe(x)] (Incl)
[E] :=x
[E — x] (Write)
[E %] (Incl)
Theorem 44 (Soundness: WRITE?).
[[E — — Anonptr(E")]] [E] :== E' [[E — E']]
Proof.
[[E < — A nonptr(E")]]
[E < — A nonptr(E")] (Incl)
[E — — Asafe(E’)]
[E] :=F'
[E — E| (Write)
[[ E] (Incl)
5.5.9 ALLOC
Theorem 45 (Soundness: ALLOC).
n>0
[[F =2n+1]] x:=ALLOC(E) [[x —, 0,..., 0]]
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Proof. Assume: n > 0.
[[E =2n+1]]
[[E =2n+ 1A nonptr(E)]]
x:= F;
[x =2n+1]] (ASSIGN’)
alloc x

[[x =, 0,...,0]] (Alloc)
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