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Incorrectness Logic (IL) has recently been advanced as a logical theory for compositionally proving the presence
of bugs—dual to Hoare Logic, which is used to compositionally prove their absence. Though IL was motivated

in large part by the aim of providing a logical foundation for bug-catching program analyses, it has remained

an open question: is IL useful only retrospectively (to explain existing analyses), or can it actually be useful in

developing new analyses which can catch real bugs in big programs?

In this work, we develop Pulse-X, a new, automatic program analysis for catching memory errors, based

on ISL, a recent synthesis of IL and separation logic. Using Pulse-X, we have found 15 new real bugs in

OpenSSL, which we have reported to OpenSSL maintainers and have since been fixed. In order not to be

overwhelmed with potential but false error reports, we develop a compositional bug-reporting criterion based

on a distinction between latent and manifest errors, which references the under-approximate ISL abstractions

computed by Pulse-X, and we investigate the fix rate resulting from application of this criterion. Finally, to

probe the potential practicality of our bug-finding method, we conduct a comparison to Infer, a widely used

analyzer which has proven useful in industrial engineering practice.
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1 INTRODUCTION
Incorrectness Logic (IL) [O’Hearn 2019] has recently been advanced as a logical foundation for

compositionally proving the presence of bugs. In this paper, we show that this foundation is not

merely of theoretical interest, but moreover has the potential to be practically useful as a basis for

developing new static analyses. Building on prior work on biabduction and Incorrectness Separation

Logic (ISL, [Raad et al. 2020]), we define a new compositional bug-catching analyser, Pulse-X, which
we have applied to find real bugs in big programs (notably, 15 new and confirmed bugs in OpenSSL).
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Before we present Pulse-X in more detail, however, let us first review the key characteristics of IL

that make it such a promising foundation for bug-catching.

Compositionality. A compositional analysis is one in which each part of the program is analysed

locally—i.e., independently of the global program context in which it is used. The analysis result

of a composite program is then computed directly from the analysis results of its constituent

parts [Calcagno et al. 2011]. In recent CACM articles, industrial developers of static analyses at

Facebook [Distefano et al. 2019] and Google [Sadowski et al. 2018] described several concrete

advantages of compositional static analyses in practical deployments, the overarching one being

that compositionality enables analyses to be usefully integrated into code review. According to the

Facebook article, industrial codebases evolve at such a high velocity that, for a bug-finding analysis

to be deployable as part of a code review process, it must execute in minutes and not hours; thus,

any analysis that requires traversal of an entire large program would likely be too slow. By contrast,

since compositional analyses work locally on code snippets rather than whole programs, they can

be run quickly (in minutes) on diffs (snippets of code that change as part of a pull request). This
agility makes it possible for compositional analyses to be run automatically as part of continuous

integration (CI) systems and provide timely information to developers performing code review.

IL shows promise as a foundation for compositional static analyses in large part because, like

Hoare Logic, it too is compositional: it enables one to prove compositional specifications of a

procedure’s behavior given only conditional information about the context in which that procedure

is called. But this is only half of the equation: the other half is under-approximate reasoning.

Under-approximation. One of the most successful compositional static analyses is the Infer
tool [Facebook 2021], in deployment at Facebook, Amazon, Microsoft, and other companies. Infer’s
use of biabduction provides a powerful technique for inferring compositional specifications for

memory-manipulating procedures [Calcagno et al. 2011]. However, Infer was based on classic

separation logic (SL) [O’Hearn et al. 2001], a logic of over-approximation—meaning that SL specifi-

cations prove the absence of bugs. As O’Hearn [2019] notes, this has led to a fundamental mismatch

between the logical foundation of Infer and its practical deployment: Infer infers specifications that
establish the absence of bugs, yet it is used as a bug-catcher (to report the presence of bugs). To

bridge this gap and decide when to report bugs, Infer employs heuristics to determine when its

failure to prove the absence of bugs gives sufficient cause to merit a bug report. These heuristics

have been refined over time based on empirical evaluation of developer feedback on the bug reports

produced by the tool, but they lack a clear formal foundation for why or whether they work.

In contrast to Hoare/separation logic, IL is under-approximate—meaning that its specifications

establish the presence of bugs (under conditions about the environment). In particular, ISL triples,

which have the form [presumption] 𝑓 [𝜖 : result], are interpreted as the dual of Hoare triples: they

assert that any final state satisfying the result condition result is reachable (with exit condition

𝜖) by executing 𝑓 starting in some initial state satisfying presumption. Here, 𝜖 can be either ok
(indicating normal termination) or er (indicating erroneous termination). In the latter case, we refer

to the triple as an error spec because it establishes that 𝑓 has a provably erroneous execution.

Thus, the very natural high-level idea underlying our analyser Pulse-X is to start from Infer but
swap out its separation logic foundation with one based on Incorrectness Separation Logic (ISL,

[Raad et al. 2020])—that is, to marry the effective biabductive inference algorithm of Infer together
with the under-approximate foundation of ISL, seeing as the latter makes for a much better fit with

the goal of bug-catching.

The Problem of Compositional Bug Reporting. A key problem remains, however, namely:

when should Pulse-X report bugs? Pulse-X will generate a variety of ISL error specs for any given
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procedure (under er), some of which may correspond to real bugs, but many of which will not

because they only correspond to real bugs under some conditions about the calling context.
A common example would be a function such as deref(x) { *x = 10; } which simply

dereferences its argument: if it is passed a null pointer, it will crash. Correspondingly, one of the ISL

triples that Pulse-Xwould infer for deref(x) is the error spec [x = NULL] deref(x) [er : x = NULL].
In most situations, however, we would want to consider deref harmless—and not report any bug

for deref per se—since the function may simply have an implicit precondition that it is always

called with a non-null argument. Of course, if deref were actually called with null, we would then

want to report a bug. Without knowing the calling contexts of such a function, though, how can

we say that our error spec for deref is “real” or not? Should it be reported as a bug?

Latent vs. Manifest Errors. To address the bug-reporting problem, our key idea is to distinguish

between two types of bug reports (ISL error triples): manifest bugs and latent bugs. Manifest bugs

are context-independent: their presence does not depend on any particular preconditions which

may or may not hold in the calling context of the procedure being analysed. We show how to check

these context-independence conditions algorithmically as part of our analysis. If a bug does not

satisfy these conditions, we refer to it as latent.

Given the classification into manifest vs. latent bugs, Pulse-X’s general policy is to only report

bugs to developers if they are manifest (but see exceptions below). To be clear, this does not mean

that latent bug specs are useless—far from it: a latent bug spec for 𝑓 may be used compositionally to

compute manifest bug specs for code that calls 𝑓 . For example, for the function deref(x)mentioned

earlier, Pulse-X would compute an error spec whose presumption is that x is NULL; however, this
error spec is not context-independent, and thus it would be classified as a latent bug. If, however,

another function foo were to (without context-dependent conditions of its own) call deref with
argument NULL, we would then report a manifest bug for foo.
To formalise the claim that manifest bugs are indeed context-independent, we establish that

Pulse-X satisfies a True Positives Property:1

If a procedure f within a complete program has a manifest error, then either f is dead code

(not reachable from main()) or there exists a concrete trace from main() to the error.

This provides a very strong justification for reporting an error to a programmer, even when the

global program context is not known.

Memory Leaks. The existing ISL theory [Raad et al. 2020] does not support memory leaks and

thus cannot identify leaky programs as erroneous. As memory leaks constitute an important class

of bugs (and can lead to program crashes due to out-of-memory errors), we extend the ISL theory

to account for memory leaks. Accordingly, we extend Pulse-X to generate erroneous specifications

for leaky programs. Interestingly, however, memory leaks constitute an exception to our general

bug-reporting criterion: for memory leaks we report both latent and manifest bugs. This is because

as we discuss in §2.3, if a function contains a memory leak, very rarely would this be the fault of a

caller. Specifically, in the case of latent memory leaks (where the leak arises only when the calling

context satisfies certain conditions), even though a caller may happen to avoid leaky paths, the leak

is a bug just the same. Moreover, leaks can be difficult to observe (especially for an end user), but

easy to fix. As such, we opt to report both latent and manifest memory leaks in Pulse-X. For similar

reasons, we also report latent null-pointer-dereference errors occuring in the main() function.

1Standard Caveat. Our soundness theorem says that, under assumptions encapsulated in a formal model, the computed

abstractions are under-approximate with no false positives. However, in a real implementation there can still be false

positives, in cases that lie outside the theoretical model assumptions. We did encounter false positives in practice, all due to

outside-the-theory issues with unknown code, but this was the minority of findings (see §4.2 and §5).
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Evaluation. To validate the effectiveness of Pulse-X, in §5 we present an experimental evaluation,

showing that our rigorous bug-reporting criterion is competitive with the heuristic approach of

Infer. We ran both Infer and Pulse-X on OpenSSL versions from 2015 and 2021. We chose OpenSSL

as Infer had previously reported several bugs on OpenSSL in 2015 (fixed by OpenSSL developers),

and thus it was natural to consider how Pulse-X would fare. We observed that Pulse-X has a higher

fix rate (fixed bugs/total bugs found) than Infer on 2015 OpenSSL. Pulse-X also found 15 new

bugs in present-day OpenSSL, which have since been confirmed and fixed. We also compared

the performance of Pulse-X against that of Infer on a number of large programs; our comparison

suggests that although Pulse-X is currently an academic tool not deployed in an industrial CI

system, its performance characteristics are close enough to Infer to suggest that it could indeed be

deployed in such systems in the future.

While we concentrate on fixed and new bugs in OpenSSL in this paper, a slightly relaxed version

of our manifest criterion (see §3.3) has been incorporated into a sibling program analyzer (Pulse)

being developed at Meta, where it led to a large enough reduction in false positives to allow null

pointer checks to be turned on in production and applied to codebases with millions of lines of

code. This has resulted in tens of new bugs being found and fixed during code review, with fix rate

over 80%.

Contributions. Our technical contributions are as follows. (1) We have formulated the notion of

latent vs. manifest errors to improve bug reporting and minimise noise (§3). (2) We have extended

the ISL theory to detect memory leaks (§3). (3) We have developed an analysis tool, Pulse-X,
underpinned by our extended ISL theory, which Pulse-X uses our notions of manifest errors for

improved bug reporting (§4). (4) We show how to check manifest error conditions algorithmically

in Pulse-X (§3). (5) We have evaluated Pulse-X on 2.8 millions of lines of code from 10 big programs,

found 15 new true bugs in OpenSSL, and demonstrated that Pulse-X’s accuracy and performance are

competitive with those of the state-of-the-art Infer tool, indicating its suitability for CI deployment

(§5). The evaluation of Pulse-X is provided as a companion artifact [Le et al. 2022].

Outline. The remainder of this article is organised as follows. In §2 we present an overview of

our analysis and several representative bugs found by Pulse-X. In §3 we discuss the formal model

underpinning Pulse-X. In §4 we present the Pulse-X analysis algorithm. In §5 we evaluate the

performance of Pulse-X in terms of its scalability, bug report accuracy, and number of bugs found.

We discuss related work in §6 and conclude in §7.

2 PULSE-X OVERVIEW AND REPRESENTATIVE BUG EXAMPLES
Rather than start with theory, we begin with bugs, three of them drawn from running Pulse-X on

OpenSSL. The first two are real bugs illustrating different challenges for compositional analysis

and reporting, while the third is a false positive which is excluded by our reporting criterion. To

prepare the reader for the upcoming technical development, we make several remarks along the

way regarding the Pulse-X theory and tool architecture.

2.1 Bug 1: A Null Dereference Bug
Listing 1 shows a null-pointer-dereference (denial-of-service) vulnerability we discovered in

OpenSSL’s ssl_excert_prepend function. The line startingwith + denotes our proposed patch. The
code begins by calling app_malloc, which in turn calls CRYPTO_malloc in its body. CRYPTO_mallocis
a malloc wrapper, a wrapper for a C-standard malloc, used throughout OpenSSL instead of a stan-

dard malloc. The returned pointer is set to 0 on line 4. Pulse-X found that the malloc wrapper

could return NULL and thus a null-pointer-dereference may occur on line 4. We reported this bug

with our proposed patch to OpenSSL.
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This bug may seem straightforward, and one might wonder whether a simplistic intra-procedural

analysis could find it. The problem is that the analysis must understand that app_malloc is a

1 int ssl_excert_prepend(SSL_EXCERT **pexc) {
2 SSL_EXCERT *exc= app_malloc(sizeof(*exc),

"prepend cert");
3 + if (exc == NULL) { return 0; }
4 memset(exc, 0, sizeof(*exc));
5 ...
6 }

Listing 1. A null pointer dereference error in OpenSSL.

malloc wrapper which can return NULL. Note
that it is not scalable to ask the human (de-

veloper) to specify what the null-returning

malloc wrappers are, as there might be many

malloc wrappers in a given codebase, and

new ones may be added with new pull re-

quests.
2
A further interesting wrinkle is that

not all malloc wrappers are the same: some

wrappers never return NULL, and thus report-
ing bugs in these cases would lead to false

positives, a point that was brought home to

us vividly in an interaction with an OpenSSL maintainer which we now recall.

Our analysis finds this bug by computing a procedure summary for app_malloc()which includes
the two under-approximate ISL triples below:

[emp ∧ true] app_malloc(sz, what) [ok : ret ↦→nil ∧ true]
[emp ∧ true] app_malloc(sz, what) [ok : ∃𝑋 .ret↦→𝑋 ∗ 𝑋 ↦→− ∧ true]

Using the first specification for app_malloc(sz, what) on line 2, when calling memset (on line 5)

the analyser uses a built-in summary for memset which includes the following error specification:

[𝑎 ↦→nil ∧ true] memset(a,b,c) [er : 𝑎 ↦→nil ∧ true]
Putting the two together, we obtain the following error specification for the entire procedure:

[emp ∧ true] ssl_excert_prepend(pexc) [er : emp ∧ true]
As we discuss in §3, this specification indicates that an error can happen under very general

circumstances, no matter how ssl_excert_prepend() is called. This kind of general specification

of a bug is what we call a manifest error, and we report such manifest errors to developers even

when we do not have the calling context or an enveloping program containing a main() function.

When we first reported this bug to OpenSSL, an OpenSSL maintainer replied that it was a

false positive as app_malloc aborts when the result is NULL. However, after inspecting the gen-

erated error trace of the bug shown in Listing 2, we were led to a definition of app_malloc in

test/testutil/apps_mem.c which didn’t call abort on NULL. 3

1 apps/lib/s_cb.c:959: error: Nullptr Dereference
2

3 apps/lib/s_cb.c:957:23: in call to `app_malloc`
4 955. static int ssl_excert_prepend(SSL_EXCERT **pexc) {
5 956. SSL_EXCERT *exc = app_malloc(sizeof(*exc), "prepend cert");
6

7 test/testutil/apps_mem.c:16:16: in call to `CRYPTO_malloc` (modelled)
8 14. void *app_malloc(size_t sz, const char *what) {
9 15. void *vp = OPENSSL_malloc(sz);

Listing 2. Part of error trace of the bug in Listing 1. OPENSSL_malloc is a macro around CRYPTO_malloc.

2
Note that, rather than having Pulse-X analyse the implementation of CRYPTO_malloc, we simply informed Pulse-X
(using a flag) that CRYPTO_malloc behaves like standard malloc—the reason being that CRYPTO_malloc calls malloc in an

obfuscated way via a global function pointer set at runtime. However, assuming that primitive spec for CRYPTO_malloc,
Pulse-X automatically discovered procedure summaries for app_malloc and all the other mallocwrappers used by OpenSSL.
3
The full trace is available in the supplementary material [Le et al. 2022].
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It turns out that anotherwrapperwith the same name app_malloc, located in file apps/lib/apps.c,
does abort in the case of NULL result and was the one the maintainer had in mind, but it was not the

version called in Listing 1, leading to this bug. Equipped with this extra information, the maintainer

acknowledged our bug report as genuine. However, they proposed an alternative fix instead of

ours.

In a separate pull request (https://github.com/openssl/openssl/pull/15836) the developer changed

1 void *app_malloc(size_t sz, const char *what){
2 void *vp;
3 if (!TEST_ptr(vp = OPENSSL_malloc(sz)))
4 abort();
5 return vp;
6 }

Listing 3. Null-avoiding malloc() wrapper.

thewrapper in test/testutil/apps_mem.c
to also call abort on NULL (see List-

ing 3). After applying the developer’s

preferred fix, Pulse-X gets rid of the

path where OPENSSL_malloc returns

NULL inside app_malloc(), and so in

ssl_excert_prepend() too, since abort
is modelled as a function that exits the

program, Pulse-X no longer reports an

error in ssl_excert_prepend().
This story highlights the value of inter-procedural reasoning in explaining and fixing bugs that

might deceptively seem simple.

2.2 Bug 2: A Memory Leak
One particularly interesting bug involved the s_server application, which implements a generic

SSL/TLS server listening for connections on a given port using SSL/TLS. Pulse-X discovered a

memory leak in the www_body function (Listing 4). Once allocated, the SSL socket ssl_bio is pushed
to the end of the linked list io (line 6); all sockets and buffers in io are freed before returning.

Pulse-X found that the memory allocated at line 4 would be leaked if io was itself NULL as in that

case BIO_push would silently do nothing. When we submitted the patch (adding the line starting

with + in Listing 4), an OpenSSL maintainer warned us that our fix might cause a double-free error

and suggested assigning ssl_bio to NULL after the push instead. However, running Pulse-X on the

patch proposed by the maintainer revealed that the leak still existed under the same condition:

whenever the push failed. Furthermore, our proposed fix does not in fact cause a double-free error

because the BIO library uses a reference count mechanism to prevent such an error. After reporting

this new observation to the maintainer, they agreed with our proposed fix.

1 static int www_body(int s, int stype,
int prot, unsigned char *context){

2 ...
3 io = BIO_new(BIO_f_buffer());
4 ssl_bio = BIO_new(BIO_f_ssl());
5 ...
6 BIO_push(io, ssl_bio);
7 ...
8 BIO_free_all(io);
9 + BIO_free(ssl_bio);
10 return ret;
11 }

Listing 4. OpenSSL memory leak in www_body.

This bug was a challenging one to find. The

www_body function contains 426 lines of fairly com-

plex code: the list io is manipulated by a chain

of function calls and multiple loops. In contrast

to over-approximate techniques (such as that of

Infer’s analysis), which cannot reason precisely

about the presence of bugs for looping programs,

Pulse-X performs under-approximation and can

reason precisely about the bugs within a bounded

number of program paths (loop unfoldings). This

example also illustrates a challenge in software

testing. While a developer may write tests to try

to make sure this function works correctly, it

is perhaps not immediate that a test would ex-

ercise the condition that triggers the failure of
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BIO_push(io, ssl_bio). As a direct consequence, this bug was nearly three years old (it also

affects the stable release OpenSSL-1.1.1).

2.3 Latent and Manifest Bugs
A function has a latent error if it contains a bug that occurs only when its inputs satisfy certain

conditions, i.e., the bug does not occur in all calling contexts. Otherwise the bug is manifest.

1 long file_ctrl(BIO *b, int cmd, long
num, void *ptr){

2 long ret = 1;
3 FILE *fp = (FILE *)b->ptr;
4 ...
5 }

Listing 5. Latent in crypto/bio/bss_file.c.

The potential null dereference in file_ctrl
(Listing 5) is an example of bug classified as la-

tent in OpenSSL-1.0.1h. It has not been fixed in the

current OpenSSL-3.0.0 (commit 147ed5f).

Our analysis found a null-pointer-dereference

error on line 3, but did not report it to the user. This

bug occurs only when the input b is NULL. Pulse-X
would report this bug at a call site where pointer

b is NULL. Indeed, this issue seems not to be a real

bug and has not been fixed; the code of function

file_ctrl is the same in the current revision of OpenSSL.

As this example illustrates, it seems undesirable to report latent null-pointer-dereferences (NPEs)

to a programmer. Often, there are implicit assumptions on whether a pointer is allocated, which are

not checked locally, and such assumptions can be inferred and pushed back to callers. Interestingly,

however, the case of leaks is different. If a function contains a local memory leak, very rarely would

this be the fault of a caller. A caller might happen to avoid a path with a leak, but the leak is a bug

just the same. Furthermore, leaks can be difficult to observe (especially for an end user), but easy

to fix. For these reasons, we have adopted a strategy of reporting latent leaks, but not NPEs. Our

experience with this strategy has been good: OpenSSL developers reacted positively to latent leak

reports, and legacy latent leaks had often been fixed: from our OpenSSL-1.0.1h experiments, there

were 50% (7 out of 14) of latent leaks reported by Pulse-X that were fixed later.

In more detail, our strategy is to report:

• all manifest null-pointer-dereferences (like the one in §2.1), no matter where in the program;

• all memory leaks (like the one in §2.2), no matter where in the program; and

• all null-pointer-dereferences found in main().

As we demonstrate in more detail in §5, our experimental evidence validates this strategy: on

OpenSSL-1.0.1h, Pulse-X found 306 issues in all (latent and manifest); it reported 26 of the 306

issues (those satisfying one of the properties above); 19 of the 26 have been subsequently fixed

with 3 not fixed and the remaining ones unknown (the procedures were removed totally). On direct

inspection, we found that a high number of the remaining (latent) issues had not been fixed, and

there was no reason to fix them (a human might reasonably label them false positives, had they

been reported).

3 THE PULSE-X FORMAL MODEL
We present our ISL formulae, their semantics in a concrete state model, and the semantics of

under-approximate triples. We give a formal definition of manifest bugs in terms of the assertions

and triples, and establish a true positives result which underpins our bug reporting in Pulse-X. The
result is a property of the triples and assertions themselves, and is independent of the way that the

triples are computed. The next section describes an analysis algorithm for obtaining such triples.

The Pulse-X State Model. As shown in Fig. 1, we model a Pulse-X world as a pair (𝜂, 𝜎), compris-

ing an environment 𝜂 and a state 𝜎 . Intuitively, the environment tracks the values associated with
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Pulse-X Assertions
𝜅 ::= emp | 𝑥 ↦→𝑋 | 𝑋 ↦→𝑉 | 𝑋 ̸↦→ | 𝜅 ∗ 𝜅 spatial

𝜋 ::= true | 𝐵 | 𝜋 ∧ 𝜋 | 𝜋 ∨ 𝜋 | ¬𝜋 pure

Δ ::= 𝜅 ∧ 𝜋 quantifier-free

𝑝, 𝑞, 𝑟 ::= Δ | ∃𝑋 . Δ top-level

Pulse-XModel Domain
𝜂 ∈Env ≜ (Var ∪ LVar) → Val

𝜎 ∈State ≜ Loc ⇀fin Val with Loc ⊎ {nil} ⊆ Val
𝑠 ∈World ≜ Env × State

Pulse-X Assertion Semantics
(𝜂, 𝜎) |= emp iff dom (𝜎) =∅
(𝜂, 𝜎) |= 𝑥 ↦→𝑋 iff 𝜎={𝜂 (𝑥) ↦→ 𝜂 (𝑋 )}
(𝜂, 𝜎) |= 𝑋 ↦→𝑉 iff 𝜎={𝜂 (𝑋 ) ↦→ 𝜂 (𝑉 )}
(𝜂, 𝜎) |= 𝑋 ̸↦→ iff 𝜎={𝜂 (𝑋 ) ↦→ ⊥}
(𝜂, 𝜎) |= 𝜅1∗𝜅2 iff ∃𝜎1, 𝜎2 . 𝜎=𝜎1 ⊎ 𝜎2 ∧

(𝜂, 𝜎1) |= 𝜅1∧(𝜂, 𝜎2) |= 𝜅2
(𝜂, 𝜎) |= 𝜅 ∧ 𝜋 iff (𝜂, 𝜎) |= 𝜅 and 𝜂 |= 𝜋

(𝜂, 𝜎) |= ∃𝑋 .Δ iff ∃𝑣 . (𝜂 [𝑋 ↦→ 𝑣], 𝜎) |= Δ

Fig. 1. The Pulse-X model domain, assertions and their semantics.

program and logical variables, while the state models the stack and the heap. We assume two (count-

ably infinite) sets of program variables, Var, and logical variables, LVar, such that Var ∩ LVar = ∅, a
set of heap (memory) locations, Loc, and a set of values, Val, such that Loc⊎ {nil} ⊆ Val. We further

assume a standard interpreted language of (program) expressions, Exp, containing at least variables

and values, and a standard interpreted language for Boolean expressions, BExp.
We use 𝑥,𝑦, . . . as metavariables for program variables; 𝑋 , 𝑌, . . . for logical variables; 𝑣 for

values; 𝑒 for expressions; ret for a designated program variable recording the return value at

procedure exits; and
−→𝑥 for a tuple of variables. Lastly, we assume an expression interpretation function,

J.K : Exp → Env → Val, and a Boolean interpretation function, J.K : BExp → Env → Val, respectively
evaluating the values of expressions and Boolean expressions against a given environment.

The Pulse-X Assertions and Their Semantics. As shown in Fig. 1, Pulse-X assertions describe

sets of worlds, and their semantics is given by a satisfiability relation, |=. The Pulse-X assertions
(ranged over by 𝑝, 𝑞, 𝑟 ) are those of Calcagno et al. [2011], without inductive predicates and extended

with the invalidated assertion 𝑋 ̸↦→ of ISL.
4
Pure assertions constrain the underlying environment 𝜂;

their semantics is standard and omitted here. Analogously, spatial assertions constrain the shape of

the state 𝜎 . Specifically, emp describes worlds in which the state is empty; 𝑥 ↦→𝑋 describes worlds

in which the state comprises a single location denoted by (the interpretation of) 𝑥 containing the

value denoted by 𝑋 ; analogously for 𝑋 ↦→𝑉 . Similarly, 𝑋 ̸↦→ describes worlds in which the state

comprises a single invalidated location at 𝑋 (i.e., 𝑋 contains the designated value ⊥), and 𝜅1∗𝜅2
describes worlds in which the state can be split into two disjoint sub-states, one satisfying 𝜅1 and

the other 𝜅2. The semantics of the remaining assertions is standard.

Notation. We define L𝑝M ≜ {𝑠 | 𝑠 |= 𝑝} and write 𝑝 ⊢ 𝑞 def⇔ L𝑝M ⊆ L𝑞M. We write 𝑝 ≡ 𝑞 for

𝑝 ⊢ 𝑞 ∧ 𝑞 ⊢ 𝑝 and write sat (𝑝) when 𝑝 is satisfiable: sat (𝑝) def⇔L𝑝M≠∅. We write fv(𝑝) (resp. flv(𝑝))
for the set of free variables (resp. free logical variables) in 𝑝 . We use the standard substitution

notation and write 𝑝 [𝑣/𝑋 ] for the assertion obtained from 𝑝 by substituting 𝑣 for 𝑋 .

3.1 Pulse-X Programs and Summaries
We present the Pulse-X programming language in Fig. 2, which is similar to the intermediate

language of Infer [Calcagno et al. 2011]. A program P comprises a sequence of procedure (function)
declarations. A procedure declaration d is of the form f()=C, where C is a command describing

4
Inductive predicates were used by Calcagno et al. [2011] to establish over-approximate loop invariants, which we do not

need in an under-approximate analysis; see [O’Hearn 2019] for a discussion. However, using inductive predicates to leap

loops via backward variant rules in incorrectness logic [O’Hearn 2019] might be studied in separate work.
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PDef ∋ pdef ::= skip | error() | assume(𝜋) | 𝑥 := 𝑒 | 𝑥 := [𝑦] | [𝑥] :=𝑦 Predefined instructions

| 𝑥 := malloc() | free(𝑥) | return(𝑥)
Inst ∋ inst ::= pdef | f() Instructions

Comm ∋ C ::= inst | local𝑥 .C | C;C | C + C | C★
Commands

FDec ∋ d ::= f() = C Function declarations

Prog ∋ P ::= d, · · · , d Programs

Fig. 2. The Pulse-X programming language.

the function body. Commands include instructions (inst), local variable declaration (local𝑥 .C),
sequential composition (C;C), non-deterministic choice (C + C) and Kleene (non-deterministic)

iteration (C★
). An instruction is either a procedure call or a predefined instruction. The predefined

instructions include skip, assume statements, assignment (𝑥 := 𝑒), heap lookup (𝑥 := [𝑦]), heap
mutation ([𝑥] :=𝑦), memory allocation, memory disposal and return statements. Standard procedure

calls in C – where a call allocates formals, assigns actuals and deallocates formals on procedure

exit – can be encoded in terms of predefined instructions.

We use assume statements to encode if and while statements: if𝜋 thenC1 elseC2 is encoded as

(assume(𝜋);C1) + (assume(¬𝜋);C2); while(𝜋) doC is encoded as (assume(𝜋);C)★; assume(¬𝜋).
Similarly, we define assert(𝜋) ≜ (assume(¬𝜋); error()) + (assume(𝜋); skip).
Our approach to formalism here is minimalistic rather than maximalistic: its aim is to include

as little as possible in the language while still exposing key issues to explain/probe technically,

rather than including as much as possible so as to cover more of an implemented analyser. In

order to focus on the essential issues regarding the analysis algorithm and how it infers states, for

brevity we focus on parameterless procedures. It would be straightforward to follow the treatment

of parameters by Calcagno et al. [2011], and doing so would not provide any novel insights. We

also assume that procedures are non-recursive. In practice they can also be subject to bounded

unrolling, and that is what our implementation (implicitly) does.

Predefined Pulse-X Summaries as ISL Triples. As we describe in §4, the Pulse-X algorithm

uses the summaries (specifications) of predefined instructions to infer the specification of a given

piece of code. The summaries of predefined instructions are given in Fig. 3 as ISL triples, and

are adapted from those of Raad et al. [2020] with only minor changes to fit our formalism with

environment 𝜂. In particular, these specifications are modified with 𝑥 ↦→𝑋 to track the values 𝑋 of

program variables 𝑥 . For example, the spec for assignment statements 𝑥 := 𝑒 replaces variable 𝑥 by

the value 𝑋 and other variables 𝑦𝑖 by the values 𝑌𝑖 before actually applying the assignment.

Pulse-X Summaries as Valid ISL Triples. As discussed in §2, Pulse-X computes procedure

summaries as a set of valid ISL (under-approximate) triples of the form [𝑝] C [𝜖 :𝑞]. As described
in Raad et al. [2020], a triple [𝑝] C [𝜖 :𝑞] is valid, written |= [𝑝] C [𝜖 :𝑞], iff every state in 𝑞 is

reachable under the exit condition 𝜖 (which may be ok or er) by executing C on some state satisfying

𝑝 . Note that [𝑝] C [𝜖 : false] is vacuously valid as false denotes an empty set of states.

Definition 3.1 (ISL triples). An (under-approximate) ISL triple [𝑝] C [𝜖 :𝑞] is valid, written |= [𝑝]
C [𝜖 :𝑞], iff L𝑞M ⊆ JCK𝜖 (L𝑝M), where J.K𝜖 : Comm → P(World × World) denotes the command

semantics under 𝜖 , defined in the supplementary material [Le et al. 2022], as a state transition

system analogously to that in Raad et al. [2020].
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[
(∗𝑥𝑖 ∈pvars(𝜋 ) 𝑥𝑖 ↦→𝑋𝑖 ) ∧ 𝜋 [−→𝑋𝑖/−→𝑥𝑖 ]

]
assume(𝜋)

[
ok : (∗𝑥𝑖 ∈pvars(𝜋 ) 𝑥𝑖 ↦→𝑋𝑖 ) ∧ 𝜋 [−→𝑋𝑖/−→𝑥𝑖 ]

]
[
(∗𝑦𝑖 ∈pvars(𝑒 )\{𝑥 } 𝑦𝑖 ↦→𝑌𝑖 ∗ 𝑥 ↦→𝑋 )
∧ 𝑉 =𝑒 [−→𝑌𝑖 /−→𝑦𝑖 ] [𝑋/𝑥]

]
𝑥 := 𝑒

[
ok :

(∗𝑦𝑖 ∈pvars(𝑒 )\{𝑥 } 𝑦𝑖 ↦→𝑌𝑖 ∗ 𝑥 ↦→𝑉 )
∧ 𝑉 =𝑒 [−→𝑌𝑖 /−→𝑦𝑖 ] [𝑋/𝑥]

]
[𝑥 ↦→𝑋 ∗ 𝑋 ↦→𝑉 ∗ 𝑦 ↦→𝑌 ] [𝑥] :=𝑦 [ok : 𝑥 ↦→𝑋 ∗ 𝑋 ↦→𝑌 ∗ 𝑦 ↦→𝑌 ]
[𝑥 ↦→𝑋 ∗ 𝑦 ↦→𝑌 ∗ 𝑌 ↦→𝑉 ] 𝑥 := [𝑦] [ok : 𝑥 ↦→𝑉 ∗ 𝑦 ↦→𝑌 ∗ 𝑌 ↦→𝑉 ]

[emp] skip [ok : emp] [emp] error() [er : emp]

[𝑥 ↦→𝑋 ∗ 𝑋 ̸↦→] [𝑥] :=𝑦 [er : 𝑥 ↦→𝑋 ∗ 𝑋 ̸↦→] [𝑦 ↦→𝑌 ∗ 𝑌 ̸↦→] 𝑥 := [𝑦] [er : 𝑦 ↦→𝑌 ∗ 𝑌 ̸↦→]
[𝑥 ↦→𝑋 ∧ 𝑋 = nil] [𝑥] :=𝑦 [er : 𝑥 ↦→𝑋 ∧ 𝑋 = nil] [𝑦 ↦→𝑌 ∧ 𝑌 = nil] 𝑥 := [𝑦] [er : 𝑦 ↦→𝑌 ∧ 𝑌 = nil]

[𝑥 ↦→𝑋 ∗ 𝑋 ↦→𝑉 ] free(𝑥) [ok : 𝑥 ↦→𝑋 ∗ 𝑋 ̸↦→] [𝑥 ↦→𝑋 ] 𝑥 := malloc() [ok : ∃𝐿. 𝑥 ↦→𝐿 ∗ 𝐿 ↦→𝑉 ∧ true]
[𝑥 ↦→𝑋 ∗ 𝑋 ̸↦→] free(𝑥) [er : 𝑥 ↦→𝑋 ∗ 𝑋 ̸↦→] [𝑥 ↦→𝑋 ] 𝑥 := malloc() [ok : ∃𝐿. 𝑥 ↦→𝐿 ∧ 𝐿 = nil]

[𝑥 ↦→𝑋 ∧ 𝑋 = nil] free(𝑥) [er : 𝑥 ↦→𝑋 ∧ 𝑋 = nil] [𝑥 ↦→𝑋 ∗ ret ↦→𝑉 ] return(𝑥) [ok : 𝑥 ↦→𝑋 ∗ ret ↦→𝑋 ]

Fig. 3. Predefined Pulse-X summaries as ISL triples, where pvars(.) returns the program variables of an
expression or a statement; for brevity, we omit the pure assertion true and write 𝑝 in lieu of 𝑝 ∧ true.

3.2 Manifest Errors
Recall from §2 that to minimise noise when reporting bugs and eliminate false positives, we

introduce the notion of manifest errors. Intuitively, a manifest error denotes a valid summary [𝑝]
C [er : 𝑞] that (1) can be applied within any calling context (i.e., regardless of the state at the call
site); and (2) when applied, it always yields an erroneous execution terminating in a state satisfying

an extension of 𝑞. That is, executing C on any state 𝑠 terminates erroneously in some state 𝑠′ (i.e.,
(𝑠, 𝑠′) ∈ JCKer ) satisfying an extension of 𝑞 (𝑠′ ∈ L𝑞 ∗ trueM); i.e., the manifest error is reachable from

any input state. This is formulated in Def. 3.2 (without taking procedure parameters into account

for simplicity) and forms the semantic basis of our approach to compositional reporting.

Definition 3.2. A valid error triple |= [𝑝] C [er : 𝑞] denotes a manifest error iff:

∀𝑠 . ∃𝑠′ . (𝑠, 𝑠′) ∈ JCKer ∧ 𝑠′ ∈ L𝑞 ∗ trueM

Theorem 3.3 below establishes a sufficient logical condition for identifying manifest errors (see

the supplementary material [Le et al. 2022] for its full proof). It states that a valid summary [𝑝] C
[er : 𝑞] denotes a manifest error if for any context 𝑟 such that sat (𝑟 ) holds5, then (1) there exists 𝑓

such that 𝑝 ∗ 𝑓 ⊢ 𝑟 , i.e., the precondition 𝑝 can be extended with a frame 𝑓 to match the context 𝑟 ;

and (2) sat (𝑞 ∗ 𝑓 ) also holds: the postcondition 𝑞 can be analogously extended with frame 𝑓 . The

latter ensures that [𝑝] C [er : 𝑞] is not vacuously valid (𝑞 ⊬ false) as otherwise sat (𝑞 ∗ 𝑓 ) would
not hold.

Theorem 3.3. A valid error triple |= [𝑝] C [er : 𝑞] denotes a manifest error if:

∀𝑟 . sat (𝑟 ) ⇒ ∃𝑓 . 𝑝 ∗ 𝑓 ⊢ 𝑟 ∧ sat (𝑞 ∗ 𝑓 )

Finally, the following theorem follows from Def. 3.2 and states that an error specification of a

manifest bug in procedure f() of a complete program is either reachable from the (top) main()
procedure, or it is not reachable because f() is dead code. By a “complete program” we mean one

with main() in which there are no undefined, free function names.

5
Note that given any context state 𝑠 , there exists an assertion 𝑟 that 𝑠 satisfies, namely the formula 𝑝𝑠 that describes 𝑠 cell

by cell such that L𝑝𝑠M ≜ {𝑠 }.
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Theorem 3.4 (True Positives Property). If f()is a procedure in a complete program with a
manifest error, then either f()is dead code (not reachable from main) or JmainKer ≠ ∅.

Manifest Errors and Backwards Under-Approximate Triples. Def. 3.2 states that every
(and not just some) state in the precondition can reach a state in the postcondition. As such,

manifest errors curiously satisfy another interpretation of triples, namely that of backwards, under-
approximate triples denoted as {|𝑝 |} C {|𝜖 :𝑞 |}, stating that 𝑝 under-approximates the states reachable

from 𝑞 when executing C backwards (see [Möller et al. 2021, §5]). We formalise and prove this

relation to backwards, under-approximate triples in the supplementary material [Le et al. 2022]. A

related concept was studied by Ball et al. [2005] under the namemust
+
transitions, in the reachability

analysis of Asadi et al. [2021], and referred to as “total Hoare triples” by de Vries and Koutavas

[2011].

3.3 Algorithmically Identifying Manifest Errors
Note that directly checking the conditions in Theorem 3.3 is practically infeasible as it involves

finding a suitable frame 𝑓 for each arbitrary context 𝑟 , while also ensuring sat (𝑞 ∗ 𝑓 ). To remedy

this, we identify four conditions in Theorem 3.5 that are simpler to check, do not quantify over all

contexts, and if satisfied ensure that a given triple |= [𝑝] C [er : 𝑞] denotes a manifest error. We

proceed with an intuitive description of these four conditions.

First, to ensure that the triple can be applied in any context, we stipulate that the precondition

impose no spatial or pure constraints on the underlying state. That is, we require (1) 𝑝 ≡ emp∧ true.
This way, for any given context 𝑟 we have 𝑝 ∗ 𝑟 ≡ 𝑟 (and thus 𝑝 ∗ 𝑟 ⊢ 𝑟 ), yielding the frame 𝑟 .

Next, to ensure that sat (𝑞∗𝑟 ) holds for an arbitrary 𝑟 , we require that (2) sat (𝑞) hold, as otherwise
𝑞 ∗ 𝑟 would be rendered unsatisfiable. Note that condition (2) is not sufficient to ensure sat (𝑞 ∗ 𝑟 )
holds for an arbitrary 𝑟 . To see this, consider f() and g() below and their valid error summaries:

6

f() ≜ 𝑧 := malloc();
if (𝑧 =𝑥) then error()

𝑆1: |= [𝑥 ↦→𝑋 ∗ 𝑧 ↦→𝑍 ] f() [er : 𝑥 ↦→𝑋 ∗ 𝑧 ↦→𝑋 ∗ 𝑋 ↦→𝑉 ]
𝑆2: |= [𝑥 ↦→𝑋 ∗ 𝑧 ↦→𝑍 ] f() [er : ∃𝑌 . 𝑥 ↦→𝑋 ∗ 𝑧 ↦→𝑌 ∗ 𝑌 ↦→𝑉 ∧ 𝑌=𝑋 ]

g() ≜ if (𝑥 = 7) then error()

𝑆3: |= [𝑥 ↦→𝑋 ] g() [er : 𝑥 ↦→𝑋 ∧ 𝑋=7]

All summaries are valid and can be derived using the ISL proof system [Raad et al. 2020]. Specifically,

ISL also includes the following axiom, allowing the allocation to pick a specific location, namely 𝑋 :

[𝑧 ↦→𝑍 ] 𝑧 := malloc() [ok : 𝑧 ↦→𝑋 ∗ 𝑋 ↦→𝑉 ] (Malloc-ISL)

This summary is a combination of the predefined summary of malloc() in Fig. 3 and the under-

approximate consequence rule, Cons, in ISL (where the direction of entailments in its premise are

reversed [Raad et al. 2020]) to strengthen the post. As such, 𝑆1 can be derived using the ISL rule

for malloc() above, while 𝑆2 can be derived using the predefined summary of malloc() in Fig. 3,

followed by an application of Cons (as ∃𝑌 . 𝑥 ↦→𝑋 ∗𝑧 ↦→𝑌 ∗𝑌 ↦→𝑉 ∧𝑌=𝑋 ⊢ ∃𝑌 . 𝑥 ↦→𝑋 ∗𝑧 ↦→𝑌 ∗𝑌 ↦→𝑉 ).

Similarly, 𝑆3 can be derived using the encoding of if and the summaries of assume(.) and error().
Let 𝑞1, 𝑞2 and 𝑞3 respectively denote the postconditions of 𝑆1, 𝑆2 and 𝑆3. As mentioned above, in

the case of 𝑆1, malloc() allocates a specific location, namely that denoted by 𝑋 , rendering 𝑞1 ∗ 𝑟
unsatisfiable for an arbitrary 𝑟 : e.g., if 𝑟 ≜ 𝑋 ↦→𝑉 , then 𝑞1 ∗ 𝑟 ≡ false. In other words, for an error to

be manifest, it must not require that malloc() allocate a specific location, i.e., the postcondition

6
These functions have non-empty preconditions in their summaries because they manipulate global variables, so technically

speaking they are already in violation of condition (1) of Theorem 3.3. However, this is only because, for simplicity, we

have ignored global variables and function parameters in our formal presentation. The actual manifest criterion used by

Pulse-X implements a less restrictive version of condition (1) which allows the precondition to merely assert that globals

and function parameters exist so long as it does not constrain their contents.
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may not constrain the locations allocated by malloc(). Intuitively, 𝑆1 does not denote a manifest

error as the specified error only occurs when malloc() allocates a specific location 𝑋 (i.e., the

location denoted by 𝑋 is not allocated on the heap beforehand), and thus this error does not arise

in contexts in which 𝑋 is already allocated. To remedy this, when the summary postcondition is

given by ∃−→𝑋𝑞 . 𝜅𝑞 ∧ 𝜋𝑞 , we require that the heap locations in 𝜅𝑞 (i.e., the logical variables on the

left-hand side of ↦→ and ̸↦→ assertions in 𝜅𝑞) be existentially quantified and thus not be the same as

heap locations in the context. To this end, we define an auxiliary function, locs(.), that computes

the heap locations in a given spatial assertion 𝜅𝑞 ; we then require that (3) locs(𝜅𝑞) ⊆
−→
𝑋𝑞 . Indeed,

as we demonstrated above in Fig. 3, in Pulse-X we do not include the original ISL summary for

malloc() in Malloc-ISL; instead we make a minor alteration by existentially quantifying the

location allocated, thus ensuring that this condition holds for all summaries computed by Pulse-X.
Note that conditions (1–3) are still not sufficient to ensure sat (𝑞 ∗ 𝑟 ) as the pure assertions in

the postcondition may impede the satisfiability of 𝑞 ∗ 𝑟 . Specifically, in the case of 𝑆2, although the

location allocated via malloc() is existentially quantified as 𝑌 in 𝑞2, the pure part of 𝑞2 requires

𝑌=𝑋 , once again constraining the location allocated via malloc(), rendering 𝑞2 ∗ 𝑟 unsatisfiable
when 𝑟 ≜ 𝑋 ↦→𝑉 . Note that 𝑞2 ≡ 𝑞1 and thus the error specified by 𝑆2 is likewise not manifest. In

the case of 𝑆3, the postcondition 𝑞3 constrains the value of 𝑥 (tied to logical variable 𝑋 ) by requiring

𝑋=7, rendering 𝑞3 ∗ 𝑟 unsatisfiable when e.g., 𝑟 ≜ 𝑋=2. Intuitively, the error identified by 𝑆3 does

not denote a manifest error as it only arises in contexts in which 𝑋=7. To rule out summaries such

as 𝑆2 and 𝑆3 as manifest errors, when the summary postcondition is given by 𝑞 ≜ ∃−→𝑋𝑞 . 𝜅𝑞 ∧ 𝜋𝑞 and

flv(𝑞) = −→
𝑌 , we lastly require that the pure assertion 𝜋𝑞 be satisfiable for any choice of allocated

locations (ruling out summaries such as 𝑆2) and any choice of free logical variables (ruling out

summaries such as 𝑆3). Put formally, we require that (4) sat (𝜋𝑞 [−→𝑣 /
−→
𝑌 ∪ locs(𝜅𝑞)]) hold for all

−→𝑣 .
Note that neither 𝑆2 nor 𝑆3 satisfies condition 4: in the case of 𝑆2, sat (𝑌=𝑋 [𝑣1/𝑋, 𝑣2/𝑌 ]) does not
hold when 𝑣1≠𝑣2; in the case of 𝑆3, sat (𝑋=7[𝑣/𝑋 ]) does not holds when 𝑣≠7.

We formalise the four conditions described above in Theorem 3.5, proving that they are sufficient

for identifying manifest errors. The full proof of this theorem is given in the supplementary material.

Theorem 3.5 (Manifest errors). An error triple |= [𝑝] C [er : 𝑞] with 𝑞 ≜ ∃−→𝑋𝑞 . 𝜅𝑞 ∧ 𝜋𝑞 denotes
a manifest error if:
(1) 𝑝 ≡ emp ∧ true;
(2) sat (𝑞) holds;
(3) locs(𝜅𝑞) ⊆

−→
𝑋𝑞 , where locs(.) is as defined below; and

(4) for all −→𝑣 , sat (𝜋𝑞 [−→𝑣 /
−→
𝑌 ∪ locs(𝜅𝑞)]) holds, where

−→
𝑌 = flv(𝑞).

locs(emp)≜ ∅ locs(𝑥 ↦→𝑋 )≜ {𝑥} locs(𝑋 ↦→𝑉 )=locs(𝑋 ̸↦→)≜ {𝑋 } locs(𝜅1∗𝜅2)≜ locs(𝜅1)∪locs(𝜅2)
Conditions (1) and (3) can be checked in polynomial time, and the complexity of checking conditions

(2) and (4) in our assertion language corresponds to the one of the satisfiability problem of equality

logic, which is NP-complete. Nevertheless, checking these conditions is efficient in practice.

Relaxing the Manifest Condition. Although our notion of manifest errors above allows us to

identify a large number of bugs in existing code (see §5), we have found that a weakening of the

criterion can be useful to identify certain kinds of bugs. To see this, consider h() below:

h() ≜ free(𝑥);
[𝑥] := 2

𝑆4: |= [𝑥 ↦→𝑋 ∗ 𝑋 ̸↦→] h() [er : 𝑥 ↦→𝑋 ∗ 𝑋 ̸↦→]
𝑆5: |= [𝑥 ↦→𝑋 ∗ 𝑋 ↦→𝑉 ] h() [er : 𝑥 ↦→𝑋 ∗ 𝑋 ̸↦→]

Note that neither 𝑆4 nor 𝑆5 meet the conditions in Theorem 3.5: their preconditions require non-

emp heap resources, namely 𝑋 ̸↦→ and 𝑋 ↦→𝑉 , respectively. In particular, the error in 𝑆4 only arises
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Extended Pulse-XModel Domain
𝜂 ∈Env ≜ (Var → Val) ∪ (LVar → Val ∪ P(Val))
𝜎 ∈State ≜ (Loc ⇀fin Val) ∪ ({a} → P(Val)) where a ∈ Loc

Extended Pulse-X Assertions
𝜅 ::= · · · | a↦→A
𝜋 ::= · · · | leaks(S, 𝐿)

Extended Pulse-X Assertion Semantics
(𝜂, 𝜎) |= a↦→A iff 𝜎 = {a ↦→ 𝜂 (A)}
(𝜂, 𝜎) |= leaks(S, 𝐿) iff 𝜂 (𝐿) ∉ reach(𝜂 (S), 𝜎)
where reach(𝑆, 𝜎) ≜ ⋃

𝑖∈N+
𝑆𝑖 𝑆𝑛 ≜

{
𝑙 ∈ Loc ∃𝑘 ∈ 𝑆𝑛−1 . 𝜎 (𝑘) = 𝑙

}
𝑆0 ≜ 𝑆

[
a↦→A ∗ 𝑥 ↦→𝑋

]
𝑥 := malloc()

[
ok : ∃𝐿. a↦→A ⊎ {𝐿} ∗ 𝑥 ↦→𝐿

][
a↦→A ∗ 𝑥 ↦→𝑋 ∗ 𝑋 ↦→𝑉

]
free(𝑥)

[
ok : a↦→A \ {𝑋 } ∗ 𝑥 ↦→𝑋 ∗ 𝑋 ̸↦→

]
Fig. 4. Updated ISL model and assertions for memory leak detection (above), whereA, S denote meta-variables
for sets of logical variables and the extensions from Fig. 1 are highlighted; updated predefined summaries for
memory leak detection (below), where the extensions from Fig. 3 are highlighted.

when 𝑥 is deallocated (𝑋 ̸↦→) and thus could easily constitute a false positive when 𝑥 is allocated.

By contrast, the error in 𝑆5 always arises, provided that [𝑥] := 2 is reached and executed, i.e., the

execution is not terminated earlier due to a previous error at free(𝑥) as captured by 𝑆4. This is

because executing [𝑥] := 2 after it has been deallocated (by free(𝑥)) always results in an error, and

the error in 𝑆5 is non-manifest only because (due to the short-circuiting semantics of ISL) [𝑥] := 2

may not be executed. We thus argue that errors such as 𝑆5 are of interest to programmers.

To this end, we introduce a relaxed notion of manifest errors, whereby we allow non-emp heaps

in the precondition. Specifically, as shown in Def. 3.6, we relax the first condition in Theorem 3.5

to allow for positive heaps, i.e., those without deallocated (negative) heap cells. Intuitively, this

is because the non-emp heap resources in the precondition are only needed to execute earlier

instructions normally (under ok) without encountering an error, and as shown by the predefined

ISL summaries in Fig. 3, negative heap cells are only required for erroneous executions (under er).

Definition 3.6 (Relaxed-manifest errors). A triple |= [𝑝]C [er :𝑞] denotes a relaxed-manifest error if:
(1) 𝑝 ≡ 𝜅 ∧ true for some 𝜅 such that nlocs(𝜅) = ∅, where nlocs(.) is defined below; and

(2) conditions 2-4 in Theorem 3.5 hold.

nlocs(emp)=nlocs(𝑥 ↦→𝑋 )=nlocs(𝑋 ↦→𝑉 )≜ ∅ nlocs(𝑋 ̸↦→)≜ {𝑋 } nlocs(𝜅1 ∗ 𝜅2)≜nlocs(𝜅1) ∪ nlocs(𝜅2)

Observe that 𝑆5 is a relaxed-manifest error but not a manifest one, while 𝑆4 is neither. In our

experiments (§5), the relaxed condition allowed Pulse-X to find additional bugs in OpenSSL without

introducing false positives. Note that Def. 3.6 describes sufficient syntactic conditions for relaxed-
manifest errors (as with Theorem 3.5), rather than prescribing a semantic definition (analogous

to Def. 3.2). This is because such syntactic conditions are easier to check algorithmically and are

what we use in Pulse-X. Nevertheless, it is straightforward to formulate a semantic definition for

relaxed-manifest errors.

3.4 Extending ISL to Support Memory Leaks
We next describe how we extend the ISL theory in Raad et al. [2020] to support memory leak

detection. To this end, we assume a designated location, a ∈ Loc, that tracks all memory locations

allocated thus far, as shown in Fig. 4. That is, we define states as State ≜ (Loc ⇀
fin
Val) ∪ ({a} →

P(Val)). Analogously, we extend the assertion language with the a↦→A and leaks(S, 𝐿), where we
use A and S as meta-variables for sets of logical variables. Specifically, the a ↦→A denotes that the

set of locations allocated thus far (at a) is given by A. We describe leaks(S, 𝐿) shortly below.
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Accordingly, we adapt the predefined summaries for memory allocation and disposal to track

allocated locations, as shown at the bottom of Fig. 4. Specifically, the erroneous specifications (under

er) for malloc() and free(.) remain unchanged (as in Fig. 3), while their normal specifications

(under ok) are adapted as shown in Fig. 4 to additionally account for the set of allocated locations.

Detecting Memory Leaks. The leaks(S, 𝐿) assertion states that the location denoted by 𝐿 is

leaked in that it is not reachable from the starting points given by S. Intuitively, as we demonstrate

shortly, we check for memory leaks at the end of each procedure call; as such, the starting points

correspond to the global program variables, denoted by G. That is, a procedure leaks a location 𝐿 if 𝐿

has been allocated (i.e., is tracked under a) and is not reachable from G (i.e., leaks(G, 𝐿) holds). We

then define the noLeaks assertion, denoting that no allocated location is being leaked, as follows:

noLeaks
def⇔ ∃A. a↦→A ∧

∧
𝐿∈A

¬leaks(G, 𝐿)

To detect memory leaks, we insert assert(noLeaks) at the end of each procedure.
7
As such, if

procedure f() leaks a location, this assertion fails, leading Pulse-X to report a memory leak for f().

4 THE PULSE-X ANALYSIS ALGORITHM
Our Pulse-X program analysis finds a collection of ISL triples for a given procedure in a program,

forming its summary. These summaries are then used to report errors, and to obtain (inductively)

summaries for other procedures. We describe our Pulse-X analysis algorithm in terms of a proof

search algorithm in ISL. We present it as a variation on predicate transformer semantics, one

that generates pre-assertions (presumptions) on the way to producing a post-assertion (result).

Following our presentation of the Pulse-X algorithm, we then describe our actual implementation

of Pulse-X, how it differs from the idealised algorithm, and sources of false positives which arise

from going outside the presumptions of the soundness theorem.

4.1 The Pulse-X Analysis Algorithm as Proof Search in ISL
Specification Tables. Our proof search algorithm carries around a specification table, 𝑇 , that

associates each instruction (i.e., a predefined instruction or a procedure call) inst with a set of ISL

specifications. At the beginning of the algorithm, the specification table is only populated with the

summaries of predefined instructions, and is extended incrementally with the procedure summaries

along the way. As such, for each predefined instruction inst, the 𝑇 (inst) is as given in Fig. 3; and

for each function call f(), the 𝑇 (f()) is of the form [𝑝1] f() [𝜖1 :𝑞1], · · · , [𝑝𝑛] f() [𝜖𝑛 :𝑞𝑛].
At the core of Pulse-X is the evaluation function Eval(𝑝,C,𝑇 ). Given a presumption 𝑝 and a

specification table 𝑇 , the Eval(𝑝,C,𝑇 ) computes a set of tuples of the form (𝜖,𝑚, 𝑞), such that:

If we extend 𝑝 with the ‘missing’ resource𝑚, then 𝜖 :𝑞 is a valid result of executing C on 𝑝 ∗𝑚.

This intuition is captured in the theorem below, where we write 𝑇 |= [𝑝 ∗𝑚] C [𝜖 : 𝑞] to denote

that if the triples in𝑇 are valid ISL triples (see Def. 3.1), then the triple [𝑝 ∗𝑚] 𝑐 [𝜖 : 𝑞] is also valid.
We formalise the notion of Eval(𝑝,C,𝑇 ) shortly below.

Theorem 4.1 (Under-approximation Soundness). For all 𝑝,C,𝑇 , 𝜖,𝑚, 𝑞:

(𝜖,𝑚, 𝑞) ∈ Eval(𝑝,C,𝑇 ) implies 𝑇 |= [𝑝 ∗𝑚] C [𝜖 : 𝑞]

7
Note that assert(noLeaks) does not fit the official syntax of the encoding of assert statements from earlier, because

noLeaks is not a pure (heap independent) boolean. Instead of extending the syntax of booleans we can more simply regard

assert(noLeaks) as a special command apart from the given instructions. Its semantics is that its ok relation sends a state

to the same state if there are no leaks, and its er relation sends a state to the same state if there are leaks.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 81. Publication date: April 2022.



Finding Real Bugs in Big Programs with Incorrectness Logic 81:15

Eval(𝑝, skip,𝑇 ) ≜ {(ok, emp, 𝑝)}

Eval(𝑝, local x .C,𝑇 ) ≜
{
(𝜖, ∃𝑌 .𝑚, ∃𝑌 .𝑞′) (𝜖,𝑚, 𝑞) ∈ Eval(𝑦 ↦→𝑌 ∗ 𝑝 ∧ 𝑌=nil,C[𝑦/𝑥],𝑇 )

and 𝑞′ = prune(𝑦,𝑌, 𝑞)

}
where 𝑦,𝑌 fresh in 𝑝 and 𝑦 fresh in C

Eval(𝑝,C1;C2,𝑇 ) ≜
{
(𝜖,𝑚1 ∗𝑚2, 𝑞) (ok,𝑚1, 𝑞1) ∈ Eval(𝑝,C1,𝑇 ) ∧ (𝜖,𝑚2, 𝑞) ∈ Eval(𝑞1,C2,𝑇 )

}
∪
{
(er,𝑚1, 𝑞1) (er,𝑚1, 𝑞1) ∈ Eval(𝑝,C1,𝑇 )

}
Eval(𝑝,C1 + C2,𝑇 ) ≜ Eval(𝑝,C1,𝑇 ) ∪ Eval(𝑝,C2,𝑇 )

Eval(𝑝,C★,𝑇 ) ≜ Eval(𝑝,Cunrollings,𝑇 ) where C𝑖+1 ≜ (skip + (C;C𝑖 ))

Eval(𝑝, inst,𝑇 ) ≜
{
(𝜖,𝑚,𝑏 ∗ 𝑓 ) [𝑎] inst [𝜖 :𝑏] ∈ 𝑇 ∧ (𝑚, 𝑓 ) ∈ BiabDiscover(𝑝, 𝑎)

}
Eval(𝑝, assert(noLeaks),𝑇 ) ≜ {(ok, emp, 𝑝) | 𝑝 |= noLeaks} ∪ {(er, emp, 𝑝) | 𝑝 ̸ |= noLeaks}

Fig. 5. The Eval function for pre/post discovery.

The Eval Function. We define the Eval function using the inductive rules shown in Fig. 5. These

rules are designed in such a way that they maintain the result in Theorem 4.1, thereby ensuring

the soundness of the Pulse-X analysis by construction. Note that these rules are an adaptation

of ISL proof rules, oriented to a forwards-running symbolic execution. The Eval definition in the

case of sequential composition (C1;C2) incorporates many of the key properties of the analysis.

Specifically, we first execute the first command C1 and generate its missing resource𝑚1. In the

case where executing C1 results in an error, the execution is halted (short-circuit semantics) and

𝑚1 is returned as the missing resource. Otherwise, we continue with executing C2 and generate

its missing resource𝑚2, which is then combined with the missing resource of C1 and returned as

𝑚1 ∗𝑚2. To execute a path symbolically we use the sequential composition rule repeatedly, until

the execution terminates normally, or we encounter an error (short-circuiting).

Note that the Eval definition of procedure calls (the inst case at the bottom of Fig. 5) uses the

BiabDiscover(𝑝, 𝑞) function. This function is the biabduction notion from Calcagno et al. [2011].

BiabDiscover(𝑝, 𝑞) returns a set of pairs of the form (𝑚, 𝑓 ) such that 𝑝 ∗𝑚 |=𝑞 ∗ 𝑓 . That is,

it abduces a frame 𝑓 and anti-abduces a missing resource𝑚. In the Eval rule for procedure calls
at the bottom of Fig. 5, after abducing the frame 𝑓 and anti-abducing the missing resource𝑚 via

BiabDiscover(𝑝, 𝑞), the𝑚 is fed back as the missing resource (to be added to the presumption),

while 𝑓 is carried forward. The soundness of the procedure call rule follows from the frame and

consequence proof rules of ISL. Note that our treatment of procedure calls is as in Calcagno et al.

[2011], except that (1) we anti-abduce𝑚 while they abduce𝑚; and (2) we abduce 𝑓 while they

anti-abduce 𝑓 . This difference is due to the different direction of entailments in the premise of the

rule of consequence in under-approximate reasoning of incorrectness logic (IL) and ISL, compared

to the over-approximate reasoning of Hoare logic and separation logic (SL).

The rule for local variables utilizes a function prune(𝑦,𝑌, 𝑞) which takes program and logical

variables and a symbolic heap as arguments, and returns a symbolic heap. Intuitively, it deallocates

a cell denoted by 𝑦 from 𝑞. The correctness property for prune is that for some 𝑌 ′
, the entailment

𝑦 ↦→𝑌 ′∗prune(𝑦,𝑌, 𝑞)∧𝑌=nil |= 𝑞 holds. prune can be implemented by simply stripping𝑦 ↦→− facts

from a symbolic heap, and performing additional equivalence-preserving boolean simplifications if

desired. The direction of the entailment in the correctness condition is a result of the reversed rule

of consequence in IL, where shrinking the post is a sound operation.
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As mentioned earlier, assert(noLeaks) is treated as a special instruction. It can be implemented

by checking whether all locations in the symbolic heap are reachable from globals, where symbolic

reachability takes pure facts into account. This has been a standard operation on symbolic heaps

in SL program analyses [Distefano et al. 2006]. To be sound for bug catching, this calculation

should be sound for concluding that there are leaks (𝑝 ̸ |= noLeaks) – if the prover thinks there’s an

unreachable element in a symbolic heap, then there is in at least one concrete heap that satisfies it –

while the prover can be complete but unsound for concluding that there are no leaks (𝑝 |= noLeaks).
Lastly, the Eval rule for loops assumes a parameter, unrollings, for bounded loop unrolling, leading

to a form of bounded model checking.

In order to convert the rules in Fig. 5 to ones that also bound paths as well as loop depths, we

assume we are given another parameter, width, and accordingly adapt Eval so that it computes a

sequence of tuples (𝜖,𝑚, 𝑞) rather than a set. We then interpret the set comprehension and ∪ in the

case of sequential composition so that the final sequence follows a “lexicographic” order of first

selecting disjuncts resulting from 𝐶1 in order, and for each of them collecting those resulting from

𝐶2 second. Similarly, we interpret ∪ in the cases of non-deterministic choice so that it selects first

from the disjuncts resulting from𝐶1 (thus favouring lower iteration counts when evaluating loops),

then those from 𝐶2, capping the length of the resulting sequence at a maximum of width.
Analogously, we interpret the set comprehension in the case of instructions (inst) to truncate after

width, and assume the specification table and BiabDiscover(𝑝, 𝑞) give back sequences instead

of sets. For brevity, we omit a more formal definition of width bounding and of the ordering

implemented in the tool. Note that the order described briefly in the previous paragraph is the one

implemented in Pulse-X and is but one of several possible; a more comprehensive exploration of

the benefits of various orderings is left to future work.

Remark 1. Our analysis algorithm is strikingly simple compared to the original biabductive

analysis from Calcagno et al. [2011]. In particular, a key source of simplification relates to the

handling of loops: to over-approximate loops, the original biabductive analysis had to seek fixed-

points (i.e., to guess loop invariants). To describe loop invariants for linked structures, inductive

definitions of predicates in one form or another are generally needed, and the treatment of inductive

predicates is a challenging issue in over-approximate analysis for both (abductive) theorem proving

and abstract semantics of instructions. In contrast, for our under-approximate analysis, we can

avoid the issue entirely: our abstract domain does not include inductive predicates (apart from

a special one for checking leaks), and we need not seek loop invariants because we are merely

seeking to prove the existence of (finite) buggy executions. Instead, we use a simple fragment of the

symbolic heaps used in separation logic analyzers which includes ↦→ and ̸↦→ assertions and pure

boolean conditions, but not e.g., predicates to describe unbounded lists or trees. There are potential

advantages to including inductive definitions to describe (backwards) loop variants, and that is a

direction for research in the future, but we can use the simple method of loop unrolling and get

useful results without needing to invent sophisticated abstract domains. So, an under-approximate

biabductive analysis has a lower technical startup cost than an over-approximate one, and yet we

will see in the next section that this low-startup-cost analysis nonetheless delivers comparable and

often better practical results than analyses with higher startup costs.

A second source of simplification is the description of the analysis via the Eval function. The idea
that hypotheses discovered during execution are sent back to the precondition is crystallized in

the sequencing rule, which is nothing but a derived inference rule. So soundness of the analysis is

obvious: the analysis is simply doing proof search using straightforwardly derivable inference rules.

In contrast, the original biabductive analysis was presented in two forms – a denotational style from

Calcagno et al. [2009] and a worklist presentation from Calcagno et al. [2011] – neither of which
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had as simple a presentation or as direct a connection to proof theory. Our approach using Eval
is related to the analysis description in Raad et al. [2020], but makes one further simplification in

avoiding having a presumption/result pair describing the computation “up to now” as a parameter,

letting the sequencing rule do the whole job.

These comparisons to the original carry over as well to other biabductive analyses that have

appeared in the intervening years, including Le et al. [2014] and Fragoso Santos et al. [2020].

Remark 2. Our approach of using width and unrollings parameters for under-approximate bound-

ing may be regarded as simple-minded in the extreme: we simply cut after a certain number of loop

iterations or paths are explored. This under-approximation is sound in Incorrectness Logic, but

different choices could be made too. For instance, dynamic testing tools, especially fuzzers, often

employ more sophisticated exploration strategies, based on the observation that testing is a search

problem [Harman et al. 2015]. Such strategies can also be used in under-approximate static tools

such as Pulse-X. However, simple-minded can be very useful (especially in the early studies for an

approach), as it provides baselines for future work to build upon, as well as a better understanding

of the potential benefits a new approach has that are not due to more sophisticated strategies. Our

goal therefore is to keep our approach simple in design and implementation, and to resist the urge

to bring in more sophisticated search strategies, in order to gain insights and understanding. We

were pleasantly surprised, in fact, that this simple bounding furnished as good experimental results

as it did – see §5 – and expect that there is potential for going quite a bit further.

Generating Procedure Summaries. As mentioned above, our analysis algorithm begins with a

specification table 𝑇 that is initially only populated with the predefined summaries in Fig. 3, and

extends 𝑇 along the way with procedure summaries. To do this, given a procedure f() = C, we
extend 𝑇 by assigning the specifications in Eval(emp,C,𝑇 ) to 𝑇 (f()). That is, we start with the

empty state emp, thus assuming nothing about the initial state. Although our formalism focuses on

parameterless procedures, it is straightforward to adapt it to account for parameters: rather than

emp, we would then begin with

−−−−→
𝑦 ↦→𝑌 , where −→𝑦 denote the procedure parameters and

−→
𝑌 denote the

logical variables recording their initial values. We illustrate the analysis via the following example.

Example 4.2. We show how Pulse-X infers foo() summary in Fig. 6 and finds a null-pointer error

(NPE). Specifically, set(y,v) dereferences the heap cell whose address is the content of the pointer

y and updates its content to v. The NPE arises as follows: (1) on line 3, malloc() is called and 𝑥 is

assigned to an allocated heap cell; (2) 𝑥 is dereferenced on line 4, assigning nil to its content; and

(3) set(𝑥,1) is called; as the content of 𝑥 is NULL, this leads to a NPE.

Pulse-X algorithm infers summaries for set(𝑦,𝑣) and then foo(). Procedure set(𝑦,𝑣) uses

two parameters, which are excluded from our formalism, but will help illustrate the workings of

the algorithm. As discussed above, we simply record the initial value of 𝑦 and 𝑣 via 𝑦 ↦→𝑌 and 𝑣 ↦→𝑉 ,

respectively. Initially, the Pulse-X algorithm starts with the pre-state 𝑦 ↦→𝑌 ∗ 𝑣 ↦→𝑉 . As 𝑧 is a local

variable, it applies the local inference rule via Eval (Fig. 5) to obtain 𝜎0. Note: (1) for now, ignore the
highlighted assertions in 𝜎0: they represent the anti-abduced assertion𝑚, which will be computed

by subsequent analysis steps; (2) to simplify the presentation, and as 𝑧 and 𝑍 are distinct from other

variables, we reused 𝑧 and 𝑍 and did not replace 𝑧 with a fresh variable.

On encountering the memory read on line 8, Pulse-X uses its predefined summary in Fig. 3

via Eval (Fig. 5). This in turn calls the biabductive procedure, BiabDiscover, to infer the frame 𝑓

and the missing resource𝑚. More concretely, Pulse-X uses the following ok summary of memory

lookup (repeated from Fig. 3):

[𝑧 ↦→𝑍 ∗ 𝑦 ↦→𝑌 ∗ 𝑌 ↦→𝑊 ] 𝑧 := [𝑦] [ok : 𝑧 ↦→𝑊 ∗ 𝑦 ↦→𝑌 ∗ 𝑌 ↦→𝑊 ]
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1: void foo(){
[emp ∧ true]
2: local𝑥 ;
[𝑥 ↦→𝑋 ∧ 𝑋=nil]
3: 𝑥 := malloc(); assume(𝑥 != NULL);
𝜎3 ≡ [ok: ∃𝐿. 𝑥 ↦→𝐿∗𝐿 ↦→𝑉 ∧ 𝑋=nil∧𝐿≠nil]
4: [𝑥] := NULL;
𝜎4 ≡ [ok: ∃𝐿. 𝑥 ↦→𝐿∗𝐿 ↦→nil ∧ 𝑋=nil∧𝐿≠nil]
5: set(𝑥, 1);
𝜎5 ≡ [er : ∃𝐿. 𝑥 ↦→𝐿∗𝐿 ↦→nil ∧ 𝑋=nil∧𝐿≠nil]}

6: void set(𝑦,𝑣){

[𝑦 ↦→𝑌∗𝑣 ↦→𝑉 ∗ 𝑌 ↦→𝑊 ∧ 𝑊 =nil ]
7: local 𝑧;

𝜎0 ≡ [𝑦 ↦→𝑌∗𝑣 ↦→𝑉 ∗𝑧 ↦→𝑍∗ 𝑌 ↦→𝑊 ∧ 𝑍=nil ∧ 𝑊 =nil ]
8: 𝑧 := [𝑦];
𝜎1 ≡ [ok: 𝑦 ↦→𝑌∗𝑣 ↦→𝑉 ∗𝑧 ↦→𝑊 ∗𝑌 ↦→𝑊∧𝑍=nil∧𝑊 =nil ]
9: [𝑧] := 𝑣 ;
𝜎2 ≡ [er : 𝑦 ↦→𝑌∗𝑣 ↦→𝑉 ∗𝑧 ↦→𝑊 ∗𝑌 ↦→𝑊∧𝑍=nil∧𝑊 =nil]
10: }

Fig. 6. An example illustrating how Pulse-X generates procedure summaries.

and poses the biabductive query BiabDiscover(𝑦 ↦→𝑌 ∗𝑣 ↦→𝑉 ∗𝑧 ↦→𝑍∧𝑍 = nil, 𝑧 ↦→𝑍 ∗𝑦 ↦→𝑌 ∗𝑌 ↦→𝑊 ),
which yields {(𝑚, 𝑓 )} with𝑚 ≡ 𝑌 ↦→𝑊 and 𝑓 ≡ 𝑣 ↦→𝑉 ∧ 𝑍 = nil.𝑚 is used to compute the pre-

assertion and it is sent back to the beginning of the procedure, as denoted by the highlighted

assertion 𝑌 ↦→𝑊 , while 𝑓 is combined with the post-condition of 𝑧 := [𝑦] to obtain 𝜎1 (in Fig. 6). The
other er specifications for 𝑧 := [𝑦] are applied similarly and result in two additional (er) disjuncts
being analysed.

Similarly, for [𝑧] := 𝑣 on line 9, Pulse-X uses the following er summary of memory store in Fig. 3:

[𝑧 ↦→𝑊 ∧𝑊 = nil] [𝑧] := 𝑣 [er : 𝑧 ↦→𝑊 ∧𝑊 = nil] (1a)

poses the query BiabDiscover(𝑦 ↦→𝑌 ∗ 𝑣 ↦→𝑉 ∗𝑧 ↦→𝑊 ∗𝑌 ↦→𝑊 ∧𝑍 = nil, 𝑧 ↦→𝑊 ∧𝑊 = nil), yielding
{(𝑚, 𝑓 )} with𝑚 ≡ emp ∧𝑊 = nil and 𝑓 ≡ 𝑦 ↦→𝑌 ∗ 𝑣 ↦→𝑉 ∗𝑌 ↦→𝑊 ∧𝑍 = nil.𝑚 is for computing the

pre-condition, and 𝑓 is combined with the post-condition of [𝑧] := 𝑣 to obtain 𝜎2 (shown in Fig. 6).

The other specifications for [𝑧] := 𝑣 are applied similarly and result in two additional disjuncts

being analysed.

Finally, Pulse-X infers the following summary based on the precondition and 𝜎2.

[𝑦 ↦→𝑌 ∗ 𝑣 ↦→𝑉 ∗ 𝑌 ↦→𝑊 ∧𝑊 = nil] set(𝑦,𝑣) [er : 𝑦 ↦→𝑌 ∗ 𝑣 ↦→𝑉 ∗ 𝑌 ↦→𝑊 ∧𝑊 = nil] (1)

Similarly, it generates four other summaries for set(y,v) as follows.

[𝑦 ↦→𝑌 ∗ 𝑣 ↦→𝑉 ∧ 𝑌 = nil] set(𝑦,𝑣) [er : 𝑦 ↦→𝑌 ∗ 𝑣 ↦→𝑉 ∧ 𝑌 = nil] (2)

[𝑦 ↦→𝑌 ∗ 𝑣 ↦→𝑉 ∗ 𝑌 ̸↦→] set(𝑦,𝑣) [er : 𝑦 ↦→𝑌 ∗ 𝑣 ↦→𝑉 ∗ 𝑌 ̸↦→] (3)

[𝑦 ↦→𝑌 ∗ 𝑣 ↦→𝑉 ∗ 𝑌 ↦→𝑊 ∗𝑊 ↦→𝑊 ′] set(𝑦,𝑣) [ok : 𝑦 ↦→𝑌 ∗ 𝑣 ↦→𝑉 ∗ 𝑌 ↦→𝑊 ∗𝑊 ↦→𝑉 ] (4)

[𝑦 ↦→𝑌 ∗ 𝑣 ↦→𝑉 ∗ 𝑌 ↦→𝑊 ∗𝑊 ̸↦→] set(𝑦,𝑣) [er : 𝑦 ↦→𝑌 ∗ 𝑣 ↦→𝑉 ∗ 𝑌 ↦→𝑊 ∗𝑊 ̸↦→] (5)

(2) and (3) (resp. (4) and (5)) correspond to the two disjuncts generated after line 8 (resp. line 9).

Pulse-X processes the statements of foo() similarly, where it uses the following summary of

x := malloc() in Fig. 6: [𝑥 ↦→𝑋 ] 𝑥 := malloc() [ok : ∃𝐿. 𝑥 ↦→𝐿 ∗ 𝐿 ↦→𝑉 ∧ 𝐿 ≠ nil].
Note that, upon calling set(x,1) on line 5 from state 𝜎4, of the above five summaries, only (1) is

applicable, for which the biabductive procedure returns the output 𝜎5, as shown in Fig. 6. As such,

𝜎5 is returned as the error post-condition, in accordance with the post-state of (1). In particular,

Pulse-X infers the following er specification: [emp] foo() [er : ∃𝐿. 𝐿 ↦→nil ∧ 𝐿 ≠ nil].
Note that the above triple denotes amanifest error as it satisfies the four conditions of Theorem 3.5:

(1) its precondition is emp ∧ true; (2) its postcondition is satisfiable i.e., sat (∃𝐿. 𝐿 ↦→nil ∧ 𝐿 ≠ nil)
holds; (3) locs(𝐿 ↦→nil) = {L} and 𝐿 is existentially quantified; and (4) sat (𝐿 ≠ nil) holds. In the

implementation, Pulse-X also generates an error trace that is based on the chain of function calls
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(e.g., foo();set(x,1)) and their corresponding triples. If the trace, like the one in this example,

includes a null-dereference er triple e.g., (1a), the error is an NPE.

In the cases of (2), (3), (4) and (5), the biabductive procedure returns an empty set, as their

preconditions are not compatible with 𝜎4. For instance, the biabductive query generated from the

precondition of (2) (after renaming variables) and 𝜎4 is as follows:

BiabDiscover(∃𝐿. 𝑥 ↦→𝐿 ∗ 𝑧 ↦→𝑍 ∗ 𝐿 ↦→nil ∗ 𝑋 ̸↦→ ∧ 𝐿 ≠ nil, 𝑥 ↦→𝑋 ∗ 𝑣 ↦→1 ∗ 𝑧 ↦→𝑍 ∧ 𝑋 = nil)

As the underlined sections show that the 𝑥 ↦→𝑋 ∧𝑋 = nil in the precondition of (2) is incompatible

with 𝑥 ↦→𝐿 ∗ 𝐿 ↦→nil ∧ 𝐿 ≠ nil in 𝜎2 (they cannot be reconciled), this query returns the empty set.

4.2 Implementation Notes
Our implementation of Eval does not use proof search per se. Rather, it uses a worklist algorithm
which maintains a set of (𝜖,𝑚, 𝑞) triples at each program point [Jhala and Majumdar 2009]. In-

tuitively,𝑚 denotes the ‘missing’ resource that is to be sent back to the start of the procedure,

and 𝑞 denotes states that can be reached from the combination of𝑚 and the assumed function

precondition. The relationship between the predicate-transformer presentations (e.g., Eval in Fig. 5)

and the worklist descriptions is the same as in standard forwards program analysis, except for the

presence of the additional component𝑚.

Given an implementation of Eval, we take several further steps to obtain Pulse-X:

• We check the validity of predicate noLeaks at the end of each procedure, to detect memory

leaks (see §3). This gives the effect of inserting assert(noLeaks) at the end.8
• We apply Eval to all procedures in a codebase, such that Eval is applied to callees before their
callers. For brevity, we do not formalise this ordering as it is standard; however, we note that

the analysis of callees before callers can be done lazily (“on-demand”) as follows. When the

summary for a callee procedure f() is needed for the analysis of the current procedure g(),
if the summary of f() is already available in the specification table 𝑇 , (i.e., f() has already
been analysed) then we simply fetch it; otherwise, we pause the analysis of g(), generate the
summary of f() and store it in 𝑇 , and subsequently resume the analysis of g().

• Once all procedure summaries have been generated and stored in the specification table, we

examine the error specifications to determine which errors to report. This is a two-stage

process. In the first stage, we filter out those null-pointer errors (NPEs) that are not manifest

or not associated with main(), as well as those errors that have already been reported (our

summaries are associated with metadata indicating their “reported” status). In the second

stage, we report the remaining errors and update their metadata to indicate that they have

been reported, so as to report errors as soon as we have ascertained they are manifest and to

avoid reporting them again at procedure call sites.

• All this work is done at the level of an intermediate language with a front-end that maps C/C++

to the intermediate language. This front-end is provided independently by Infer-the-platform.

Finally, we note that our Pulse-X implementation departs in several ways from its formalism and

from C/C++ semantics. In particular, our implementation handles calls to unknown procedures

(e.g., library functions for which the code is not available, or calls to unresolved function pointers)

by treating them as if they had no effect on the state (i.e., as skip), except that the return value and

pointer arguments are assigned arbitrary values. This is not accounted for in our formalism. We also

interpret arithmetic formulae using a theorem prover for rationals, rather than the fixed-precision

8
We distinguish between a version of assert( ) known internally to the analysis and that of C. Programmers sometimes use

assert( ) or abort() to indicate when they do not want to be warned, and we treat abort this way for OpenSSL, as in §2.1.
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integers (and floats) of the machine. Both of these departures open up the possibility of real-world

false positives, an issue we revisit in the next section.

5 EVALUATION
The goal of our experiments is to investigate the practical applicability of our approach, which has

two primary subgoals: 1) to show that our bug reporting criterion is effective at identifying some

interesting bugs without drowning that signal in many false alarms, and 2) to demonstrate that our

approach scales to large codebases. For the first experiment, we ran Pulse-X on OpenSSL, a widely

used implementation of the SSL/TLS protocols as well as a general-purpose cryptography library,

and compared the accuracy of bugs found to that of Infer. Infer had previously reported bugs on

OpenSSL-1.0.1h back in 2015 [O’Hearn 2015], so this provided an additional point of comparison,

making OpenSSL a natural choice for this part. For the second experiment, we ran Infer and Pulse-X
on a variety of publicly-available open-source C and C++ projects, and compared their runtimes.

We conducted all our experiments on a Linux machine with 24 cores.

To study accuracy we follow Distefano et al. [2019] in looking at fix rate – the proportion of

reports that have been fixed – in our evaluation. The fix rate concept is often used to judge the

effectiveness of a deployment of an analysis in CI but, while Pulse-X is not deployed in this way,

we can use the fix rate concept by looking at a legacy rather than new version of a codebase.

In particular, our evaluation is testing the following hypotheses.

• Hypothesis H1. On OpenSSL-1.0.1h Pulse-X has a superior fix rate to the present-day Infer.
• Hypothesis H2. Pulse-X finds new bugs worth fixing in current OpenSSL.

• Hypothesis H3. Pulse-X is broadly comparable with Infer in terms of performance, while

reporting a comparable number of bugs.

Old Bugs. We consider OpenSSL-1.0.1h, the legacy version of OpenSSL from 2015. This project

has 2.83 millions of bytes of IR code (MBoC) with 8,658 procedures and it took Pulse-X 4 minutes

(CPU running time) to analyse. The results of these experiments are as follows:

• Pulse-X found 26 bugs, 19 of which had been fixed, including 9 manifest NPEs, 3 relaxed-

manifest NPEs and 7 memory leaks, fix rate is 73%(= 19/26). Moreover, the unfixed issues

involve either calls to unknown functions for which the code is unavailable or buggy proce-

dures that no longer exist in OpenSSL-3.0.0-147ed5f (commit 147ed5f).

• The present-day Infer discovered 39 fixed bugs and 41 unfixed issues, for a fix rate of 49%(=

39/80). 8 of the 39 fixed bugs overlap with those found by Pulse-X. The other 41 issues flagged
by Infer were classified as latent errors by Pulse-X and so were not reported by Pulse-X.

These results confirm hypothesis H1.
FromH1we cannot conclude that Pulse-X is “better” than Infer. As is often the case [Pendergrass

et al. 2013], the two analysis tools find different bugs: there are true (fixed) bugs found by each tool

that the other misses. Rather, H1 provides some evidence (scoped to OpenSSL) that Pulse-X’s fix
rate is not so bad as to rule out a CI deployment like Infer’s (H3 provides similar for performance).

Our reporting criterion filters the error specifications, reporting only some of them; we comment

on the effect of this filtering, in light of this experiment. As we saw in §2.3, reporting all error
specifications as alarms is obviously a bad idea. It would make Pulse-X report any time an address

that was not allocated locally is accessed for the first time, due to the error specifications for load

and store instructions that have invalidated assertions in their preconditions. To avoid obvious false

positives, one might then think of reporting alarms whenever 1) there is no invalidated assertion in

the precondition, and 2) if the error is due to a null pointer X, then X=0 is not part of the precondition
either. The latter is to say: we have not assumed a pointer was null, only to then complain about it
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being null. This is a subset of the total number of error specifications, but still much greater than

the manifest specifications. Pulse-X found 280 of these latent issues, more than 23 times the number

of manifest issues reported. Upon inspection, most of these seem to be false positives: They are

true specifications but might be considered as issues that are unlikely to be triggered in a global

program. Indeed a high number of the 280 have not been fixed (like the one shown in §2.3).

So, the reporting criterion suppresses reports of issues which have not been fixed, and this is a

positive indication. But, the manifest criterion is purposely extremely conservative, reporting NPEs

only when they can occur in all contexts. It might be that some of the suppressed latent issues can be

worth fixing, and we don’t claim our criterion to be the ultimate one (perhaps there is no ultimate).

1 int chopup_args(ARGS *arg, char *buf,
int *argc, char **argv[]) {

2 int num,i;
3 ...
4 if (arg->count == 0) {
5 arg->count=20;
6 arg->data=(char**)OPENSSL_malloc(

sizeof(char *)*arg->count);
7 }
8 for (i=0; i<arg->count; i++)
9 arg->data[i]=NULL;
10 ...}

Listing 6. Latent error in chopup_args.

Indeed, Listing 6 shows a bug in function

chopup_args that had been fixed by OpenSSL de-

velopers and is classified as latent by Pulse-X. On
line 6, the function allocates new memory (by call-

ing OPENSSL_malloc) and assigns the resulting

address to arg->data. As the allocation might fail,

arg->data could point to NULL. Subsequently, the
dereference on line 9 might cause an NPE. Pulse-
X classified this issue as latent because this error

occurs only when the condition on line 4 holds.

Interestingly, that is the case in a call site to this

function in main, as shown in Listing 7, which may

be why, when Infer reported this bug to the devel-

oper in 2015, it consequently got fixed. In theory,

Pulse-X could report this bug at the call site of

chopup_args in main as a manifest issue. However, this call is only reachable after 20 conditional

statements and 2 loops, and thus the disjunct limit was hit before that bug could be found.

1 int main(int Argc, char *ARGV[]) {
2 ...
3 arg.count=0;
4 ...
5 if (!chopup_args(&arg,buf,&argc,&

argv)) break;
6 ...
7 }

Listing 7. Manifest error in main of openssl.c.

Comparing with the 15 bugs found by Infer and
fixed in 2015, Pulse-X reported 4 overlapping fixed

bugs, and present Infer discovered 4. Of the 11 fixed

bugs not reported by Pulse-X, 5 were null derefer-

ences found by Pulse-X but that were classified as

latent. We are unsure why the remaining fixed leaks

were not discovered, but it might have to do with the

order of paths being processed. We are also unsure

why the present-day Infer does not report 11 of the
fixed bugs. The main lesson we can take from these

numbers is that there might be room to loosen our re-

porting criterion, though this would have to be done

in a way that avoids introducing bugs deemed not-worth-fixing.

New Bugs. Given the positive results for Pulse-X on legacy OpenSSL, we decided to run it on

the current beta OpenSSL-3.0.0-147ed5f, in case it found new bugs that would be worth fixing.

OpenSSL-3.0.0-147ed5f contains 8.55MBoCwith 22,979 procedures and it took Pulse-X 16minutes

(CPU running time) to analyse. Often, when judging the accuracy of an analysis, researchers use

the concepts of true and false positive rates. While meaningful in theory, judging whether a bug is

a true or false positive can be error-prone and time-intensive. Below we speak of “thought-true”

and “thought-false” bugs, to emphasize the (fallible) human judgement involved.
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Pulse-X discovered 30 issues on 3.0.0. Manual inspection by us revealed what we thought were 15

real bugs (7 manifest NPEs, 1 relaxed-manifest NPE, and 7 memory leaks), as well as 5 maybe and

10 likely false positives. We then submitted the 15 thought-true bugs to the OpenSSL maintainers in

two pull requests (https://github.com/openssl/openssl/pull/15834 and https://github.com/openssl/

openssl/pull/15910). The maintainers agreed that all 15 bugs were legitimate, and our patches are

now in the OpenSSL codebase (see the non-anonymous supplementary materials). We take the

information that the OpenSSL maintainers judged these issues worth fixing as confirmation of

hypothesis H2.
We discuss one false positive reported by Pulse-X in ossl_do_ex_data_init (Listing 8). This

function assigns the pointer address of a field of ctx to variable global via the function call

1 int ossl_do_ex_data_init(OSSL_LIB_CTX *ctx){
2 OSSL_EX_DATA_GLOBAL *global =

ossl_lib_ctx_get_ex_data_global(ctx);
3 if (global == NULL) return 0;
4 global->ex_data_lock =

CRYPTO_THREAD_lock_new();
5 return global->ex_data_lock != NULL;
6 }

Listing 8. Pulse-X false positive.

on line 2. The call on line 2 invokes three

other functions, pthread_getspecific,
pthread_once, and pthread_rwlock_init
whose code is unavailable, and so are un-

known to Pulse-X. Our analysis replaces
the result of an unknown function by

a fresh logical variable, and as a conse-

quence the analysis assumes that global
points to a local heap cell instead of a

global pointer. This leads Pulse-X to re-

port a memory leak as a consequence of

the allocation on line 4.

If we were to model pthread_getspecific, pthread_once, and pthread_rwlock_init then

we could avoid this specific issue. But there are very many libraries, some not yet created, which

would have to be modelled. Another way to address this issue would be to suppress any report that

involves unknown code.
9
This would stamp out all the false positives observed with OpenSSL, and

we could trumpet that we had obtained no false positives on OpenSSL, but it would also remove true

positives: 5 of the 15 true bugs fixed in 3.0.0 involved unknown functions. Rather than artificially

move to a position where we can blow that trumpet, we prefer to present the realistic situation

(which arises from examples going beyond assumptions of theory) and not make a value judgement

on whether it would be better to stamp out these false positives at the expense of false negatives;

this is, in the end, an engineering rather than a scientific judgement, and we would prefer to be

able to provide this data to engineers to help inform their judgement.

A run of Infer found 116 issues on 3.0.0, 7 of which overlap with those fixed bugs found by

Pulse-X. We do not know exactly how many more of the Infer issues would be considered worth

fixing by OpenSSL maintainers, but we noticed over 40 likely false positives and did not pursue the

matter further. We emphasize that we are not making any comparative claim w.r.t. Infer here—our
hypothesis H2 only mentions Pulse-X—and these numbers are given just for information.

We also remark that Coverity scan, scan.coverity.com, runs regularly on OpenSSL and does result

in bug fixes
10
; as Coverity is proprietary, we do not know whether it finds the issues that Pulse-X

does, but the 15 reported Pulse-X-issues had not been previously fixed at the time of our tool run.

Scale. To test H3, we studied the scalability of Pulse-X and Infer on 10 large programs—including

OpenSSL-1.0.1h, OpenSSL-3.0.0-147ed5f, wdt, bistro, SQuangLe, RocksDB, FbThrift, OpenR, Tread-

mill, and Watchman—measuring CPU running time and counting the number of issues reported

9
Interesting subtler approaches to unknown code have been investigated, a good example being [Das et al. 2015]; but, to

our knowledge, no definitive solution has emerged and further research is warranted.

10
https://scan.coverity.com/projects/tpm2-openssl
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by Infer and Pulse-X. The sizes of these projects range from 2.83 to 407 millions of bytes of IR

code. Note that we used proprietary build targets for C++ projects. In the following, we give a brief

summary. The experiments show that the running time is from 4 to 900 minutes and the number of

bugs found is from 0 to 136 bugs. We also find that Pulse-X and Infer’s performance are comparable,

as are the number of issues both tools report. These results confirm hypothesis H3.

Threats to validity. Threats to validity correspond to the generalizability of our findings. Our

study evaluates C/C++ projects over various kinds of applications and two kinds of bugs: NPEs and

memory leaks. Still, this may not represent all kinds of projects and bugs and thus may affect our

study’s generalizability. Hence, the experimental evidence in this section should be interpreted

in the appropriately cautious way: we do not claim that these results will carry over to arbitrary

other codebases (as would be impossible to conclude from any finite experiments).

6 RELATEDWORK
Our work builds directly on the biabductive compositional analysis of Infer [Calcagno et al. 2011], on
Incorrectness Logic [O’Hearn 2019], and on Incorrectness Separation Logic (ISL) [Raad et al. 2020].

In their work introducing ISL, Raad et al. also presented an intra-procedural analysis. Our work goes

beyond that of Raad et al. [2020] in four main ways. First, we formulate an inter-procedural analysis,

using Eval (our predicate transformer-style semantics of Pulse-X) for summary inference, with an

implemented inter-procedural analysis algorithm. Second, we provide an account of memory leaks.

Third, we provide an experimental evaluation which is unusual and novel in style (based on fix rate

instead of guessed false positives). Lastly, and most significantly, we propose a formally rigorous

approach to the problem of compositional bug reporting via latent versus manifest errors.

More recently, Raad et al. [2022] introduce Concurrent Incorrectness Separation Logic (CISL) as

an under-approximate analogue of Concurrent Separation Logic [OHearn 2007]. CISL is a general

theoretical foundation for detecting concurrency bugs such as data races and deadlocks. As of

yet, CISL is a theoretical work and the authors have left the development of bug detection tools

underpinned by CISL to future work.

Dillig et al. [2012] develop a semi-automatic approach for whole-program bug reporting. Given a

latent error, their approach infers constraints that capture the information their analysis is missing.

These constraints are then presented to the user who can either discharge the error (false positive) or

validate it (true positive). In contrast, our focus is on the development of an automatically checkable

bug reporting criterion, which we believe is essential for scalability and practical deployment.

Long before the work on IL began, summary-based under-approximate analysis was studied

in the context of symbolic execution by Godefroid and others [Godefroid 2007; Godefroid et al.

2010]. Godefroid et al. [2010] use an analogue of the under-approximate triple referred to as a

must
−
transition [Ball et al. 2005]. Summaries were used in these works in an effort to speed

up a global program analysis, and ultimately one falls back on dynamic analysis for soundness.

These works present experimental results for device drivers up to just over 30k LOC, with running

times in the hundreds of minutes, whereas we tackle programs in the hundreds of thousands

of LOC. Summary-based analyses were subsequently implemented in the SAGE and PEX tools

used in production at Microsoft, but are not used by default widely in their deployments, because

other techniques were found which were better for fighting path explosion (Godefroid, personal

communication). Note that we do not use summaries principally for efficiency (though they help),

but rather as part of a begin-anywhere analysis which can be applied to partial programs (and thus

fits well with a CI deployment for analysing pull requests). Although we believe the authors of

these works could have, technically, run the symbolic part of their analysis on partial programs,
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they did not develop an approach for compositional reporting as we do, and this would have been

essential for automated deployment without the human intervention to filter reports.

Another direction in symbolic execution is “under-constrained” analysis, which uses symbolic

execution to analyse individual functions without going back to main(). Representative tools are
JPF [Khurshid et al. 2003], UC-KLEE [Ramos and Engler 2015], Sys [Brown et al. 2020], and JPF-Star

[Pham et al. 2019]. Instead of abduction, these works use lazy initialisation [Khurshid et al. 2003]

to infer procedure preconditions and use the preconditions for test case generation. These works

are not summary-based, but do have the characteristic of Infer where execution can start from

anywhere in a program.

The authors of UC-KLEE emphasise that the ability to run on individual procedures, without

the complete program, opens up new possibilities for applying symbolic execution to real code,

since execution on a global program might not reach many of the functions. When run on an

OpenSSL target [Ramos and Engler 2015], UC-KLEE found five true memory leak bugs with 267

false positives (excluding 269 false positives in ASN.1 sub-library). When run on OpenSSL-1.0.1h,

Pulse-X found seven leak bugs which were fixed (so we consider them true positives) with seven

false positives. This is a rough comparison as the two tools were not run on exactly the same

OpenSSL version. UC-KLEE uses a number of heuristics to rein in false positives, and there appears

to be some similarity with the concept of manifest; e.g., the must-fail heuristic “identifies errors

that must occur for all input values”; in contrast, manifest errors may occur for all input values.

The heuristics are not defined precisely by Ramos and Engler [2015], making a precise comparison

difficult, and numbers are given for heuristics other than must-fail but not must-fail itself. Their

best-performing heuristic, belief-fail, led to a claimed true-positive ratio of 20%, considerably lower

than what we have observed in our experiments (which is 73% for Pulse-X).
Sys [Brown et al. 2020] is a successor of UC-KLEE. Sys combines static analysis with under-

constrained symbolic execution: it utilises static checkers to quickly uncover potential error sites

and then runs under-constrained symbolic engines on these hot spots. Like Pulse-X, Sys finds real
bugs in big (browser) code. In contrast, however, Sys does not describe a reporting criterion; rather,

it uses what the Sys authors call “ad hoc, checkers-specific tricks” to rein in false positives.

Gillian [Fragoso Santos et al. 2020] is a separation logic reasoning platform that combines

technologies for symbolic execution-based testing, verification, and biabductive compositional

analysis. The compositional testing phase of Gillian currently works by using over-approximate

rather than under-approximate summaries, but we expect it could be altered to follow our under-

approximate approach. If so, given that Gillian is multi-language and parametric on the memory

model of the target language, an expressive under-approximate reasoning platform might be

obtained for C, JavaScript, and many other languages.

A distantly related line of work is harness generation for fuzzers (e.g., the work of Ispoglou

et al. [2020]). When starting from main(), many parts of the code can be difficult to reach for a

fuzzer. Harnesses are “fake main programs” which set up the environment and then call a collection

of functions repeatedly. Automatic harness generation is similar in spirit to the precondition

generation of Infer or UC-KLEE, but the harnesses (so far) can be more complex than preconditions.

Harness generation can also suffer from generating spurious or infeasible fake main programs,

which could uncover “bugs” that programmers regard as false positives. We are unsure whether

harness generation and symbolic execution or compositional static analysis can affect one another

by direct transfer of already-existing ideas; however, given their somewhat similar motivations, we

expect some convergence in the future.
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7 CONCLUSION
This paper has made steps towards realising the promise of Incorrectness Logic for defining new
automated bug catching techniques, going beyond its ability to describe existing approaches. Our

focus has been in a specific direction, compositionality, where program logics such as Hoare Logic

and Separation Logic have had the most influence for correctness reasoning. This is not the only

possible direction. New under-approximate abstractions and methods for synthesising (backwards)

loop variants might also be approached, but those would be topics for other papers.

We defined a new compositional, under-approximate analysis, by merging ideas from composi-

tional analysis based on Separation Logic [Calcagno et al. 2011] and Incorrectness SL [Raad et al.

2020]. This merging gives us sufficient information in the abstract semantics to reason soundly

about the presence of bugs, and one of our main contributions is a rigorous reporting criterion which

accesses this information, leading to a “true positives property” of compositional bug reporting on

potentially incomplete program fragments. Analysis of incomplete program fragments (without

a global program context) is relevant to the diff-time analysis reporting recently emphasised by

Google and Facebook, but rests on theoretical definitions rather than heuristics alone.

A second main contribution is an experimental evaluation of the effectiveness of our method

based on an implementation in a tool, Pulse-X. We compared to Infer, a state-of-the-art industrial

program analysis. We found that Pulse-X is competitive on performance and, zooming in on

OpenSSL, superior on accuracy (true/false bugs). We remark that Pulse-X is a scientific prototype

that does not have the demonstrated industrial impact of Infer. Furthermore, there is no guarantee

that our results on accuracy will carry over to arbitrary other codebases.
11
But, with these caveats,

our results do provide some corroborative evidence of potential effectiveness.

The general point we wish to make is the positive potential of using sound under-approximate

abstractions when reasoning compositionally. Beyond computing the abstractions, in this paper

we used them to design bug reporting criteria. The criteria were validated theoretically as well as

experimentally, using the concept of fix rate as a proxy for whether developers would consider

the reports as true bugs. We certainly do not claim to have discovered the ultimate compositional

reporting criteria in this paper but rather provided example criteria with associated experimental

backing, criteria which we hope others will be motivated to improve, extend, or even replace.
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