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1 Calculus

We consider the simply typed λ-calculus:

Types φ ::= b | φ1 → φ2

Terms M ::= x | λx.M1 | M1 M2

Elim. Context E ::= • | EM

Reduction
λx.M ↪→ λx.M ′

M ↪→M ′
M1M2 ↪→M ′

1M2

M1 ↪→M ′
1

M1M2 ↪→M1M
′
2

M2 ↪→M ′
2

(λx.M) N ↪→ M [N/x]

2 Strong Normalization

We now wish to prove that every well-typed term is strongly normalizing, i.e., it
cannot reduce indefinitely. We show below a sequence a proof attempts, starting
from the most obvious one. The last of these attempts succeeds. The proof given
here is not complete; in particular, it contains three unproved lemmas (called
Lemmas 1, 2 and 3) here. However, all these Lemmas hold.

Definition 1. A value is a term that cannot be reduced, i.e., it does not contain
any β-redex.

Definition 2. A term M is said to be strong normalizing if there are no infinite
reduction from it. Put another way, every reduction must end in a value.

Definition 3. SN is the set of strongly normalizing terms.

We are going to first try to prove that every well-typed term is strongly
normalizing by trying induction on the term. We will encounter a problem with
this naive proof, which will force us to re-state the theorem.
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Theorem 1. Γ `M : ϕ =⇒ M ∈ SN

By induction on M

• Case M = x. A variable cannot be reduced, therefore it is in SN .

• Case M = λx.N : By hypothesis, we know that

Γ, x : ϕ1 ` N : ϕ2

Γ ` λx.N : ϕ1 → ϕ2

Applying IH, on N , N ∈ SN , therefore M ∈ SN .

• Case M = M1 M2:

Γ `M1 : ϕ1 → ϕ2 Γ `M2 : ϕ1

Γ `M1 M2 : ϕ2

Problem! We can apply the IH and conclude that M1 and M2 are in
SN , but of course this nothing says about what happen to M1 M2 since
it may contain a new β-redex. For instance, M1 may reduce to λx.N1.

The idea to fix the proof is to construct for each ϕ a set L[ϕ] included in
SN , and state the theorem as

Theorem 2. Γ `M : ϕ =⇒ M ∈ L[ϕ]

We construct L for each type in such a way that it will help us solve easily
the application case of the proof:

L[b] = SN
L[ϕ1 → ϕ2] = {M | ∀N ∈ L[ϕ1],M N ∈ L[ϕ2]}

Before proving the theorem, we need to show that really this definition works
for our purpose, that is,

Lemma 1. L[ϕ] ⊆ SN

(Proof: Omitted)

As for Theorem 1, we try to prove Theorem 2 by induction on M . We show
first the application case to see that we really have it solved:

• Case M = M1 M2:

Γ `M1 : ϕ1 → ϕ2 Γ `M2 : ϕ1

Γ `M1 M2 : ϕ2

By IH, M1 ∈ L[ϕ1 → ϕ2] and M2 ∈ L[ϕ1]. By definition of L[ϕ1 → ϕ2],
then

M1 M2 ∈ L[ϕ2]

and this is precisely what we need to show.
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• Case M = λx.N : to show

λx.N ∈ L[ϕ1 → ϕ2] = {M |∀N ′ ∈ L[ϕ1],M N ′ ∈ L[ϕ2]}

Suppose N ′ ∈ L[ϕ1], then we have to show

(λx.N) N ′ ∈ L[ϕ2]

By IH we know N ∈ L[ϕ2]. But from this we cannot conclude what we
need. Again, we have to generalize the theorem to make this case go
through.

Definition 4. We say γ is a substitution if it is a map from variables to terms.

Definition 5. We extend the definition of logical relation to contexts:

L[Γ] = {γ | dom Γ = dom γ ∧ ∀x : ϕ ∈ Γ, γ x ∈ L[ϕ]}

We extend the theorem to consider a substitution γ.

Theorem 3 (Fundamental Theoren of Logical Relations).

Γ `M : ϕ ∧ γ ∈ L[Γ] =⇒ γM ∈ L[ϕ]

By induction on M .

• Case M = M1 M2:

Γ `M1 : ϕ1 → ϕ2 Γ `M2 : ϕ1

Γ `M1 M2 : ϕ2

By IH, γM1 ∈ L[ϕ1 → ϕ2] and γM2 ∈ L[ϕ1]. By definition of L[ϕ1 → ϕ2],
then

γM1 γM2 ∈ L[ϕ2]

By an easy lemma not shown here, (γM1) (γM2) = γ(M1 M2) therefore

γ(M1 M2) ∈ L[ϕ2]

and this is precisely what we need to show.

• Case M = λx.N : to show

γ(λx.N) ∈ L[ϕ1 → ϕ2]

Again, it is easy to show that γ(λx.N) = λx.γN (under α-conversion to
avoid name clashes).

Suppose N ′ ∈ L[ϕ1], then t.s.

(λx.γN) N ′ ∈ L[ϕ2]

Let γ′ = γ, x 7→ N ′. It is easy to see that γ′ ∈ L[Γ, x : ϕ1].

By IH γ′N ∈ L[ϕ2]. By definition of substitution and γ′,

γ′N = (γN)[N ′/x] ∈ L[ϕ2]

We conclude by stating and applying a new lemma:
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Lemma 2. [L[ϕ] is closed under β-expansion] If M [N/x] ∈ L[ϕ], then
(λx.M) N ∈ L[ϕ]

The actual lemma is slightly different, but it will not be proved here.

• Case M = x. To show γx ∈ L[ϕ]. This follows immediately by definition
of L[γ].

Our original goal was to prove that

Theorem 4. Γ `M : ϕ =⇒ M ∈ SN

but in our theorem we have to find a substitution γ in L[Γ]. We instantiate
the theorem with γ = id, i.e., the identity substitution. But in order to do
that we need to prove that the identity substitution is in L[Γ]. We do that as a
corollary of the following lemma:

Lemma 3. x ∈ L[ϕ]

As before, the actual lemma is slightly different, but it is not going to be
shown here.
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