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1 Calculus

We consider the simply typed A-calculus:
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2 Strong Normalization

We now wish to prove that every well-typed term is strongly normalizing, i.e., it
cannot reduce indefinitely. We show below a sequence a proof attempts, starting
from the most obvious one. The last of these attempts succeeds. The proof given
here is not complete; in particular, it contains three unproved lemmas (called
Lemmas 1, 2 and 3) here. However, all these Lemmas hold.

Definition 1. A value is a term that cannot be reduced, i.e., it does not contain
any B-redex.

Definition 2. A term M is said to be strong normalizing if there are no infinite
reduction from it. Put another way, every reduction must end in a value.

Definition 3. SN is the set of strongly normalizing terms.

We are going to first try to prove that every well-typed term is strongly
normalizing by trying induction on the term. We will encounter a problem with
this naive proof, which will force us to re-state the theorem.



Theorem 1. - M : 9o = M € SN
By induction on M
e Case M = x. A variable cannot be reduced, therefore it is in SN.
e Case M = Az.N: By hypothesis, we know that
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Applying IH, on N, N € SN/, therefore M € SN.

e Case M = M; Ms:
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Problem! We can apply the IH and conclude that M; and M, are in
SN, but of course this nothing says about what happen to M; Ms since
it may contain a new [-redex. For instance, M; may reduce to Az.N.

The idea to fix the proof is to construct for each ¢ a set L[y] included in
SN, and state the theorem as

Theorem 2. ' M : ¢ = M € L[y]

We construct L for each type in such a way that it will help us solve easily
the application case of the proof:

L =8N
L[(p1 — (,02] = {M | VN € L[(pl],M N € L[(pg}}

Before proving the theorem, we need to show that really this definition works
for our purpose, that is,

Lemma 1. L[¢] C SN

(Proof: Omitted)

As for Theorem 1, we try to prove Theorem 2 by induction on M. We show
first the application case to see that we really have it solved:

e Case M = M,y Ms:
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By IH, M; € L[¢p1 — ¢2] and My € Lp;]. By definition of L{p; — @3],
then
M1 MQ S L[(PQ]

and this is precisely what we need to show.



e Case M = Ax.N: to show
Ax.N € L{p1 — pa] = {M|VN' € Lip1], M N’ € L|p2]}
Suppose N’ € L[p;], then we have to show
(A\z.N) N’ € L[yps]

By IH we know N € L[ps]. But from this we cannot conclude what we
need. Again, we have to generalize the theorem to make this case go
through.

Definition 4. We say v is a substitution if it is a map from variables to terms.
Definition 5. We extend the definition of logical relation to contexts:
LT ={y|dom T =dom yAVz:p €T,y z € Ly}

We extend the theorem to consider a substitution ~.

Theorem 3 (Fundamental Theoren of Logical Relations).
I'FM:pAye Ll = ~vM € Liy]

By induction on M.

e Case M = M; Ms:
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By IH, vM; € Lip1 — 2] and yMs € L[p1]. By definition of L{p; — ],
then

YMy yM; € L[]
By an easy lemma not shown here, (yM;) (yMs) = v(M; Ms) therefore
V(M Ms) € Lips]
and this is precisely what we need to show.
e Case M = Az.N: to show
Y(Az.N) € Llpr = o]

Again, it is easy to show that y(Az.N) = Az.yN (under a-conversion to
avoid name clashes).

Suppose N’ € L[p1], then t.s.
(\zAN) N € Lips]

Let v/ = v,z — N'. Tt is easy to see that v/ € L[,z : ¢1].
By IH v'N € L[ys]. By definition of substitution and +/,

7'N = (yN)[N'/x] € Lips]

We conclude by stating and applying a new lemma:



Lemma 2. [L[y] is closed under 3-expansion] If M[N/x] € Llp], then
(Az.M) N € L[p]

The actual lemma is slightly different, but it will not be proved here.

e Case M = z. To show ya € L[p]. This follows immediately by definition
of L[v].

O
Our original goal was to prove that
Theorem 4. T - M :p = M € SN

but in our theorem we have to find a substitution ~ in L[T']. We instantiate
the theorem with v = id, i.e., the identity substitution. But in order to do
that we need to prove that the identity substitution is in L[I']. We do that as a
corollary of the following lemma:

Lemma 3. z € L{y]

As before, the actual lemma is slightly different, but it is not going to be
shown here.



