Strong Normalization for Simply Typed Lambda Calculus

Beta Ziliani
(Based on lectures by Derek Dreyer)

July 9, 2012

1 Calculus

We consider the simply typed λ-calculus:

| Types | ϕ | $::=$ | $b \mid \phi_{1} \rightarrow \phi_{2}$ |
| :--- | ---: | :--- | :--- | :--- |
| Terms | $M \quad::=$ | $x\left\|\lambda x . M_{1}\right\| M_{1} M_{2}$ | |
| Elim. Context $\mathcal{E}:$ | $:=$ | $\bullet \mid \mathcal{E} M$ | |
| | | $\frac{\lambda x . M \hookrightarrow \lambda x . M^{\prime}}{M \hookrightarrow M^{\prime}}$ | $\frac{M_{1} M_{2} \hookrightarrow M_{1}^{\prime} M_{2}}{M_{1} \hookrightarrow M_{1}^{\prime}}$ |
| Reduction | | $\frac{M_{1} M_{2} \hookrightarrow M_{1} M_{2}^{\prime}}{M_{2} \hookrightarrow M_{2}^{\prime}}$ | $(\lambda x . M) N \hookrightarrow M[N / x]$ |

2 Strong Normalization

We now wish to prove that every well-typed term is strongly normalizing, i.e., it cannot reduce indefinitely. We show below a sequence a proof attempts, starting from the most obvious one. The last of these attempts succeeds. The proof given here is not complete; in particular, it contains three unproved lemmas (called Lemmas 1, 2 and 3) here. However, all these Lemmas hold.

Definition 1. A value is a term that cannot be reduced, i.e., it does not contain any β-redex.

Definition 2. A term M is said to be strong normalizing if there are no infinite reduction from it. Put another way, every reduction must end in a value.

Definition 3. $\mathcal{S N}$ is the set of strongly normalizing terms.
We are going to first try to prove that every well-typed term is strongly normalizing by trying induction on the term. We will encounter a problem with this naive proof, which will force us to re-state the theorem.

Theorem 1. $\Gamma \vdash M: \varphi \Longrightarrow M \in \mathcal{S N}$
By induction on M

- Case $M=x$. A variable cannot be reduced, therefore it is in $\mathcal{S N}$.
- Case $M=\lambda x . N$: By hypothesis, we know that

$$
\frac{\Gamma, x: \varphi_{1} \vdash N: \varphi_{2}}{\Gamma \vdash \lambda x . N: \varphi_{1} \rightarrow \varphi_{2}}
$$

Applying IH , on $N, N \in \mathcal{S N}$, therefore $M \in \mathcal{S N}$.

- Case $M=M_{1} M_{2}$:

$$
\frac{\Gamma \vdash M_{1}: \varphi_{1} \rightarrow \varphi_{2} \quad \Gamma \vdash M_{2}: \varphi_{1}}{\Gamma \vdash M_{1} M_{2}: \varphi_{2}}
$$

Problem! We can apply the IH and conclude that M_{1} and M_{2} are in $\mathcal{S N}$, but of course this nothing says about what happen to $M_{1} M_{2}$ since it may contain a new β-redex. For instance, M_{1} may reduce to $\lambda x . N_{1}$.

The idea to fix the proof is to construct for each φ a set $L[\varphi]$ included in $\mathcal{S N}$, and state the theorem as

Theorem 2. $\Gamma \vdash M: \varphi \Longrightarrow M \in L[\varphi]$
We construct L for each type in such a way that it will help us solve easily the application case of the proof:

$$
\begin{aligned}
L[b] & =\mathcal{S N} \\
L\left[\varphi_{1} \rightarrow \varphi_{2}\right] & =\left\{M \mid \forall N \in L\left[\varphi_{1}\right], M N \in L\left[\varphi_{2}\right]\right\}
\end{aligned}
$$

Before proving the theorem, we need to show that really this definition works for our purpose, that is,

Lemma 1. $L[\varphi] \subseteq \mathcal{S N}$
(Proof: Omitted)
As for Theorem 1, we try to prove Theorem 2 by induction on M. We show first the application case to see that we really have it solved:

- Case $M=M_{1} M_{2}$:

$$
\frac{\Gamma \vdash M_{1}: \varphi_{1} \rightarrow \varphi_{2} \quad \Gamma \vdash M_{2}: \varphi_{1}}{\Gamma \vdash M_{1} M_{2}: \varphi_{2}}
$$

By IH, $M_{1} \in L\left[\varphi_{1} \rightarrow \varphi_{2}\right]$ and $M_{2} \in L\left[\varphi_{1}\right]$. By definition of $L\left[\varphi_{1} \rightarrow \varphi_{2}\right]$, then

$$
M_{1} M_{2} \in L\left[\varphi_{2}\right]
$$

and this is precisely what we need to show.

- Case $M=\lambda x$. N : to show

$$
\lambda x . N \in L\left[\varphi_{1} \rightarrow \varphi_{2}\right]=\left\{M \mid \forall N^{\prime} \in L\left[\varphi_{1}\right], M \quad N^{\prime} \in L\left[\varphi_{2}\right]\right\}
$$

Suppose $N^{\prime} \in L\left[\varphi_{1}\right]$, then we have to show

$$
(\lambda x . N) N^{\prime} \in L\left[\varphi_{2}\right]
$$

By IH we know $N \in L\left[\varphi_{2}\right]$. But from this we cannot conclude what we need. Again, we have to generalize the theorem to make this case go through.
Definition 4. We say γ is a substitution if it is a map from variables to terms.
Definition 5. We extend the definition of logical relation to contexts:

$$
L[\Gamma]=\{\gamma \mid \operatorname{dom} \Gamma=\operatorname{dom} \gamma \wedge \forall x: \varphi \in \Gamma, \gamma x \in L[\varphi]\}
$$

We extend the theorem to consider a substitution γ.
Theorem 3 (Fundamental Theoren of Logical Relations).

$$
\Gamma \vdash M: \varphi \wedge \gamma \in L[\Gamma] \Longrightarrow \gamma M \in L[\varphi]
$$

By induction on M.

- Case $M=M_{1} M_{2}$:

$$
\frac{\Gamma \vdash M_{1}: \varphi_{1} \rightarrow \varphi_{2} \quad \Gamma \vdash M_{2}: \varphi_{1}}{\Gamma \vdash M_{1} M_{2}: \varphi_{2}}
$$

By IH, $\gamma M_{1} \in L\left[\varphi_{1} \rightarrow \varphi_{2}\right]$ and $\gamma M_{2} \in L\left[\varphi_{1}\right]$. By definition of $L\left[\varphi_{1} \rightarrow \varphi_{2}\right]$, then

$$
\gamma M_{1} \gamma M_{2} \in L\left[\varphi_{2}\right]
$$

By an easy lemma not shown here, $\left(\gamma M_{1}\right)\left(\gamma M_{2}\right)=\gamma\left(M_{1} M_{2}\right)$ therefore

$$
\gamma\left(M_{1} M_{2}\right) \in L\left[\varphi_{2}\right]
$$

and this is precisely what we need to show.

- Case $M=\lambda x$. N : to show

$$
\gamma(\lambda x . N) \in L\left[\varphi_{1} \rightarrow \varphi_{2}\right]
$$

Again, it is easy to show that $\gamma(\lambda x . N)=\lambda x \cdot \gamma N$ (under α-conversion to avoid name clashes).
Suppose $N^{\prime} \in L\left[\varphi_{1}\right]$, then t.s.

$$
(\lambda x . \gamma N) N^{\prime} \in L\left[\varphi_{2}\right]
$$

Let $\gamma^{\prime}=\gamma, x \mapsto N^{\prime}$. It is easy to see that $\gamma^{\prime} \in L\left[\Gamma, x: \varphi_{1}\right]$.
By IH $\gamma^{\prime} N \in L\left[\varphi_{2}\right]$. By definition of substitution and γ^{\prime},

$$
\gamma^{\prime} N=(\gamma N)\left[N^{\prime} / x\right] \in L\left[\varphi_{2}\right]
$$

We conclude by stating and applying a new lemma:

Lemma 2. $[L[\varphi]$ is closed under β-expansion] If $M[N / x] \in L[\varphi]$, then $(\lambda x . M) N \in L[\varphi]$

The actual lemma is slightly different, but it will not be proved here.

- Case $M=x$. To show $\gamma x \in L[\varphi]$. This follows immediately by definition of $L[\gamma]$.

Our original goal was to prove that
Theorem 4. $\Gamma \vdash M: \varphi \Longrightarrow M \in \mathcal{S N}$
but in our theorem we have to find a substitution γ in $L[\Gamma]$. We instantiate the theorem with $\gamma=$ id, i.e., the identity substitution. But in order to do that we need to prove that the identity substitution is in $L[\Gamma]$. We do that as a corollary of the following lemma:

Lemma 3. $x \in L[\varphi]$
As before, the actual lemma is slightly different, but it is not going to be shown here.

