
25

A Type Discipline for Authorization Policies

CÉDRIC FOURNET and ANDREW D. GORDON

Microsoft Research

and

SERGIO MAFFEIS

Imperial College London

Distributed systems and applications are often expected to enforce high-level authorization policies.
To this end, the code for these systems relies on lower-level security mechanisms such as digital
signatures, local ACLs, and encrypted communications. In principle, authorization specifications
can be separated from code and carefully audited. Logic programs in particular can express policies
in a simple, abstract manner.

We consider the problem of checking whether a distributed implementation based on commu-
nication channels and cryptography complies with a logical authorization policy. We formalize
authorization policies and their connection to code by embedding logical predicates and claims
within a process calculus. We formulate policy compliance operationally by composing a process
model of the distributed system with an arbitrary opponent process. Moreover, we propose a de-
pendent type system for verifying policy compliance of implementation code. Using Datalog as an
authorization logic, we show how to type several examples using policies and present a general
schema for compiling policies.

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and
Theory; D.3.3 [Programming Languages]: Language Constructs and Features; F.3.1 [Logics
and Meanings of Programs]: Specifying and Verifying and Reasoning about Programs; F.3.2
[Logics and Meanings of Programs]: Semantics of Programming Languages; F.3.3 [Logics and
Meanings of Programs]: Studies of Program Constructs; K.6.5 [Management of Computer and
Information Systems]: Security and Protection

General Terms: Languages, Security, Theory, Verification

Additional Key Words and Phrases: Authorization, type systems, process calculus, spi calculus

ACM Reference Format:
Fournet, C., Gordon, A. D., and Maffeis, S. 2007. A type discipline for authorization policies. ACM
Trans. Program. Lang. Syst. 29, 5, Article 25 (August 2007), 37 pages. DOI = 10.1145/1275497.
1275500 http://doi.acm.org/10.1145/1275497.1275500

Authors’ addresses: C. Fournet, A. D. Gordon (contact author), Microsoft Research, 7 JJ Thomson
Avenue, Cambridge CB3 0FB, UK; email: adg@microsoft.com; S. Maffeis, Department of Comput-
ing, Imperial College, 180 Queen’s Gate, London SW7 2AZ, UK.
Permission to make digital or hard copies part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 0164-0925/2007/08-ART25 $5.00 DOI 10.1145/1275497.1275500 http://doi.acm.org/
10.1145/1275497.1275500

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 25, Publication date: August 2007.

Article 25 / 2 • C. Fournet et al.

1. TYPING IMPLEMENTATIONS OF AUTHORIZATION POLICIES

1.1 Background

Given a request to access a sensitive resource in a computer system, an au-
thorization policy determines whether the request is allowed. Conditions in
authorization policies typically involve the actions (e.g., writing a file), objects
(the file being accessed, its directory), and subjects (the requester, the owner
of the file). A system complies with the policy if these conditions hold when-
ever the action is performed. Authorization and access control issues can be
complex, even at an abstract level. Some policies address security concerns for
multiple actors and may involve numerous concepts such as roles, groups, par-
tial trust, and controlled delegation. Their study has a long history [Lampson
1971; Samarati and de Capitani di Vimercati 2001].

Often, authorization policies are expressed precisely only in code, intermin-
gled with other functions and with low-level enforcement mechanisms such
as cryptography or system calls. The result can be hard to analyze and audit.
Hence, a reasonable guiding principle is to express authorization policies in
a high-level language, separate from imperative code and independent of
particular enforcement mechanisms. Specifically, logic programming seems
well suited for expressing policies precisely and concisely: Each authorization
request is formulated as a logical request against a database of facts and
rules. Often, the policy itself carefully controls changes to the database. In
particular, variants of Datalog have been usefully applied to design trust
management systems (e.g., PolicyMaker [Blaze et al. 1996], SD3 [Jim 2001],
Binder [DeTreville 2002]), to express complex policies (e.g., Cassandra [Becker
and Sewell 2004]), and to study authorization languages (e.g., SDSI/SPKI
[Abadi 1998; Li and Mitchell 2003], XrML [Content-Guard 2002]).

1.2 Our Approach

Given a target authorization policy, we consider the problem of verifying
whether a particular system correctly implements the policy. In a distributed
setting, this refinement typically involves security protocols and cryptography.
For instance, when receiving a request, one may first verify an identity certifi-
cate, then authenticate the message, and finally consider the privileges associ-
ated with the sender.

Since the whole system can be seen as a complex cryptographic protocol, we
adopt two ideas from work on specifying security protocols:

—First, annotations on the code of a system mark security-related events such
as access rights being granted and checked. In previous work, the relation be-
tween imperative code and declarative policies is usually informal: Theoreti-
cal studies rarely connect an authorization logic to an operational semantics.
Our work makes the connection explicit; we aim to show that every successful
access control decision made by code actually conforms to the authorization
policy.

—Second, we adapt the standard “network is the opponent” threat model, a
conservative model first formalized by Dolev and Yao [1983]. Hence, we aim

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 25, Publication date: August 2007.

A Type Discipline for Authorization Policies • Article 25 / 3

to show that active attacks on the underlying cryptographic protocols cannot
bypass our authorization policy; in particular, we want to prove the absence
of the man-in-the-middle or impersonation attacks that often afflict crypto-
graphic protocols.

Our formal development is within a typed version of the spi calculus [Abadi
and Gordon 1999], a pi calculus with abstract cryptographic operations. We
use inert processes (called statements and expectations) as code annotations to
state the global authorization policy, as well as to mark both successful autho-
rization checks and the preconditions for access to sensitive resources.

—A statement records an arbitrary logical clause. For example, a statement

employee(alice)

records that Alice belongs to the group of employees. Such an annotation
would follow code checking for Alice in a suitable database, for example. A
statement of a logical clause

canRead(X,handbook) :– employee(X)

records that any employee can read a particular file handbook. Such a state-
ment might be a top-level annotation on the whole system, stating a global
policy.

—An expectation is a falsifiable claim that a particular fact or clause is logically
entailed by the set of active statements. For example, the expectation

expect canRead(alice,handbook)

records that canRead(alice,handbook) should be entailed in the current con-
text. Such an annotation would precede the code providing Alice access to
the sensitive resource handbook, for example. This expectation is justified if
the two previous statements are active. On the other hand, if those are the
only active statements, the expectation

expect canRead(bob,handbook)

is unjustified. The presence of this expectation at runtime may reveal a coding
error that allows Bob access to handbook without a preceding check for Bob
in the employee database.

Our methodology is to insert statements after code performing dynamic
checks, and to insert expectations before code accessing sensitive resources,
so that access control errors result in unjustified expectations. The role of our
type system is to check statically that in all executions, all expectations are
justified by previously executed statements.

Statements and expectations generalize the begin- and end-events of a pre-
vious embedding [Gordon and Jeffrey 2003b] of the correspondences of Woo and
Lam [1993] in a process calculus. Correspondences are a common basis for spec-
ifying correctness of authentication protocols. (Authentication should not be
confused with authorization, although the former is often a prerequisite for the
latter; authorization answers questions such as “is this request allowed?” while
authentication answers subsidiary questions such as “who sent this request?”)

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 25, Publication date: August 2007.

Article 25 / 4 • C. Fournet et al.

In contrast to several previous works, we use the authorization language
as a statically enforced specification, instead of a language for programming
dynamic authorization decisions. The two approaches are complementary, and
indeed may be combined. The static approach is less flexible in terms of policies,
as we need to anticipate usage of the facts and rules involved at runtime. In
contrast, a logic-based implementation may dynamically accept (authenticated)
facts and rules, so long as they lead to a successful policy evaluation. The static
approach is more flexible in terms of implementations, as we can assemble
imperative and cryptographic mechanisms (e.g., communications to collect re-
mote certificates), irrespective of the logic-based evaluation strategy suggested
by the policy. Hence, the static approach may be more efficient and pragmati-
cally simpler to adapt to existing systems. Nonexecutable policies may also be
simpler to write and to maintain, as they can safely ignore functional issues.

1.3 Summary of Contributions

To our knowledge, our work is the first to relate authorization logics to their
cryptographic implementation in a process calculus.

—We show how to embed a range of authorization logics within a pi calculus.
(We use Datalog as a simple, concrete example of an authorization logic.)

—We develop a new type system that checks conformance to a logic policy
by keeping track of logical facts and rules in the typing environment, and
using logical deduction to type authorization expectations. Our main result,
Theorem 3, states that all expectations activated in a well-typed program
follow from the enclosing policy.

—As a sample application, we present two distributed implementations of a
simple Datalog policy for conference management that features rules for
filing reports and delegating reviews. One implementation requests each del-
egation to be registered online, whereas the other enables offline, signature-
based delegation, and checks the whole delegation chain later when a report
is filed.

—As another application, we present a generic implementation of Datalog via
a translation into the pi calculus. The translated processes are well typed in
our system. They can serve as a default centralized implementation for any
part of a policy.

We built a typechecker and a symbolic interpreter for our language, and used
them to validate these applications. Our initial experience confirms the utility
of such tools for writing code that composes several protocols, even if its overall
size remains modest so far (a few hundred lines).

1.4 Related Work

There is a substantial literature on type systems for checking security proper-
ties. To the best of our knowledge, the earliest work on types for access control is
by Jones and Liskov [1978]. They propose extending strongly typed languages
with constraint expressions to specify an upper bound on legal access to objects

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 25, Publication date: August 2007.

A Type Discipline for Authorization Policies • Article 25 / 5

of a given type. If well typed, a program never tries to access an object whose
type does not have the correct access permission.

In the context of process calculi, there are, for example, type systems to check
various information flow [Abadi 1999; Gordon and Jeffrey 2005; Pottier 2002]
and authenticity [Duggan 2002; Gordon and Jeffrey 2003a] properties in the
pi calculus and spi calculus, access control properties of mobile code in the
boxed ambient calculus [Bugliesi et al. 2004a], and discretionary access control
[Bugliesi et al. 2004b], as well as role-based access control [Braghin et al. 2004]
in the pi calculus.

Various experimental systems, such as JIF [Myers and Liskov 2000] and
KLAIM [De Nicola et al. 2000] for example, include types for access control.
Still, there appears to be no prior work on typing implementations of a general
authorization logic.

In the context of strand spaces and nonce-based protocols, Guttman et al.
[2004] annotate send actions in a protocol with trust logic formulas which must
hold when a message is sent, and receive actions with formulas which can be
assumed to hold when a message is received. Their approach also relies on log-
ically defined correspondence properties, but assumes the dynamic invocation
of an external authorization engine, thereby cleanly removing dependency on
a particular authorization policy when reasoning about protocols. A more tech-
nical difference between our approaches is that we attach static authorization
effects to any operation (e.g., input, decryption, matching), rather than just to
message inputs.

ProVerif [Blanchet 2002] checks correspondence assertions in the applied
pi calculus by reduction to a logic programming problem. ProVerif can check
complex disjunctive correspondences, but has not been applied to check general
clausally defined authorization policies.

Guelev et al. [2004] also adopt a conference program committee as a running
example, in the context of model checking the consequences of access control
policies.

1.5 Contents

The article is organized as follows. Section 2 reviews Datalog, illustrates its
usage to express authorization policies, and states a general definition of au-
thorization logics. Section 3 defines a spi calculus with embedded authorization
assertions. Section 4 presents our type system and states our main safety re-
sults. Section 5 develops well-typed distributed implementations for our sample
delegation policy. Section 6 describes our pi calculus implementation of Datalog
and states its correctness and completeness. Section 7 concludes and sketches
future work.

Appendixes contain the proofs of the theorems stated in the body of the work.
Appendix A contains the proofs for Datalog, and a generic substitutivity prop-
erty of authorization logics useful for our main results. Appendix B contains the
proofs of our robust safety result for the spi calculus. Appendix C contains the
formal definition of syntactic sugar and the proofs for the encoding of Datalog
in spi.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 25, Publication date: August 2007.

Article 25 / 6 • C. Fournet et al.

Some details of proofs omitted from this article plus the full listing of the
example in Section 5 appear in a technical report [Fournet et al. 2005a]. A pre-
liminary, abridged version of this work appears as a conference paper [Fournet
et al. 2005b].

2. A SIMPLE LOGIC FOR AUTHORIZATION

We briefly present a syntax and semantics for Datalog, and discuss its use
in formulating authorization policies (for a comprehensive survey of Datalog,
see Ceri et al. [1989]). The results in subsequent sections are independent of
many of the details of Datalog; we formulate a notion of authorization logic to
capture the properties on which we rely.

2.1 Syntax of Datalog

A Datalog program consists of facts which are statements about the universe
of discourse, and clauses which are rules that can be used to infer facts. In the
following, we interpret Datalog programs as authorization policies.

SYNTAX FOR DATALOG

X , Y , Z logic variable
u ::= term

X logic variable
M spi calculus message (see Section 3)

L ::= literal
p(u1, . . . , un) predicate p holds for terms u1, . . . , un

C ::= Horn clause
L :− L1, . . . , Ln clause, with n ≥ 0 and fv (L) ⊆ ⋃

i fv (Li)
S ::= Datalog program (or policy)

{C1, . . . , Cn} set of clauses

Convention: a clause L :− with an empty body (a fact) is denoted simply by L.
We let F range over facts.

Terms range over logic variables X, Y, Z and messages M ; these messages are
treated as Datalog atoms, but they have some structure in our spi calculus,
defined in Section 3.

A clause L :− L1, . . . , Ln has a head L and a body L1, . . . , Ln; it is intuitively
read as the universal closure of the propositional formula L1 ∧ . . .∧ Ln → L. In
a clause, logic variables occurring in the body bind those occurring in the head.
A phrase of syntax is ground if it has no free variables. We require that each
clause be ground. A fact F is a clause with an empty body.

We use the following notations: For any phrase ϕ, we let fn(ϕ) and fv (ϕ) collect
free spi calculus names and free variables, respectively. We write ϕ̃ for the tuple
ϕ1, . . . , ϕt , for some t ≥ 0. We write {u/X } for the capture-avoiding substitution
of term u for variable X , and write {̃u/X̃ } instead of {u1/X 1} . . . {un/X n}. We
let σ range over these substitutions. Similarly, we write {M/x} for the capture-
avoiding substitution of message M for name x. We use postfix notations for
applying substitutions.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 25, Publication date: August 2007.

A Type Discipline for Authorization Policies • Article 25 / 7

2.2 Semantics of Datalog

We describe standard semantics for deriving facts and clauses from a Datalog
program.

Facts can be derived using the rule presented next:

LOGICAL INFERENCE OF FACTS: S |= F

(Infer Fact)
L :− L1, . . . , Ln ∈ S S |= Liσ ∀i ∈ 1..n

S |= Lσ
for n ≥ 0

More generally, a clause C is entailed by a program S, written S |= C, when
we have {F | S′ ∪ {C} |= F } ⊆ {F | S′ ∪ S |= F } for all programs S′. Simi-
larly, C is uniformly contained in S when the aforementioned inclusion holds
for all programs S′ containing only facts. Entailment is a contextual property
for programs: If S |= C and S ⊆ S′, then S′ |= C. We rely on this property
when we reason about partial programs. In Datalog, entailment and uniform
containment coincide, hence entailment is decidable [Sagiv 1987] and can be
checked operationally using the chase technique.

THEOREM 1 ([SAGIV 1987]). For all C and sets of clauses S, items (1) and (2)
are equivalent:

(1) For all sets of facts S′, {F | S′ ∪ {C} |= F } ⊆ {F | S′ ∪ S |= F }; and
(2) S∪{L1σ, . . . , Lnσ } |= Lσ , where C= L :− L1, . . . , Ln and σ ={̃x/X̃ } is an injec-

tive substitution such that {̃x} ∩ (fn(S) ∪ fn(C)) = ∅ and X̃ = fv (L1, . . . , Ln).

In light of the previous theorem, we generalize inference to clauses, as
follows.

LOGICAL INFERENCE FOR CLAUSES (ENTAILMENT): S |= C

(Infer Clause)
S ∪ {L1σ, . . . , Lnσ } |= Lσ σ maps fv (L1, . . . , Ln) to fresh, distinct atoms

S |= L :− L1, . . . , Ln

We rely on the following monotonicity and substitutivity properties of Data-
log inference when developing our type system.

PROPOSITION 1. If S |= C, then S ∪ {C′} |= C.

PROPOSITION 2. If S |= C and σ sends names to messages, then Sσ |= Cσ .

2.3 Some Predicates for Authorization

Our main example application is a simplified conference management system
in charge of assigning papers to referees and collecting their reports. For sim-
plicity, we focus on the fragment of the policy that controls the right to file
a paper report in the system, from the conference manager’s viewpoint. This
right, represented by the predicate Report(U,ID,R), is parameterized by the
principal who files the report, a paper identifier, and the report content. It

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 25, Publication date: August 2007.

Article 25 / 8 • C. Fournet et al.

means that principal U can submit report R on paper ID. For instance, the
fact Report(alice,42,report42) authorizes a particular report to be filed. Ideally,
such facts should be deducible from the policy, rather than added to the policy
one-at-a-time. To this end, we introduce a few other predicates.

Some predicates represent the content of some extensional database of explic-
itly given facts. In our example, for instance, PCMember(U) means that princi-
pal U is a member of the program committee for the conference; Referee(U,ID)
means that principal U has been asked to review ID; and Opinion(U,ID,R)
means that principal U has written report R on paper ID. Other predicates are
intensional; they represent views computed from this authorization database.
For instance, one may decide to specify Report(U,ID,R) using two clauses

Report(U,ID,R):– Referee(U,ID),Opinion(U,ID,R) (clause A)
Report(U,ID,R):– PCMember(U),Opinion(U,ID,R) (clause B)

These clauses state that U can report R on ID if she has this opinion and, more-
over, either U has been assigned this paper (clause A), or U is in the program
committee (clause B), thereby enabling PC members to file reports on any
paper even if it has not been assigned to them. Variants of this policy are easily
expressible; for instance, we may instead state that PC members can file only
subsequent reports, not initial ones, by using a recursive variant of clause B.

Report(U,ID,R):– PCMember(U),Opinion(U,ID,R),Report(V,ID,S)

Continuing with our example, we extend the policy to enable any designated
referees to delegate their task to a subreferee. To this end, we add an ex-
tensional predicate Delegate(U,V,ID), meaning that principal U intends to
delegate paper ID to principal V, and we add a clause to derive new facts
Referee(V,ID) accordingly.

Referee(V,ID):– Referee(U,ID),Delegate(U,V,ID) (clause C)

Conversely, the policy {A,B,C} does not enable a PC member to delegate a
paper unless the paper has been assigned to her.

As can be seen from these clauses, our logical formalization adopts the sub-
jective viewpoint of the conference system, which implicitly owns all predi-
cates used to control reports. In contrast, more sophisticated authorization
languages [Abadi et al. 1993] associate facts with the principals that “say”
them. Even if Opinion(U,−) and Delegate(U, . . .) are implicitly owned by U, these
predicates represent the fact that the conference system believes these facts,
rather than U’s intents. Also, the distinction between intensional and exten-
sional predicates is useful to interpret policies, but not essential. As we illus-
trate in Section 5, this distinction in the specification does not prescribe any
implementation strategy.

2.4 A General Notion of Authorization Logic

Although Datalog suffices as an authorization logic for the examples and appli-
cations developed in this article, its syntax and semantics are largely irrelevant
to our technical developments. More abstractly, our main results hold for any
logic that meets the following requirements.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 25, Publication date: August 2007.

A Type Discipline for Authorization Policies • Article 25 / 9

AUTHORIZATION LOGIC: (�, fn, |=)

An authorization logic (�, fn, |=) is a set of clauses C ∈ � closed by substitutions σ of
messages for names, with finite sets of free names fn(C) such that Cσ = C if dom(σ) ∩
fn(C) = ∅ and fn(Cσ) ⊆ (fn(C) \ dom(σ)) ∪ fn(σ); and with an entailment relation S |= C,
between sets of clauses S ⊆ � and clauses C, C′ ∈ �, such that (Mon) S |= C ⇒ S∪{C′} |=
C and (Subst) S |= C ⇒ Sσ |= Cσ .

By Propositions 1 and 2, Datalog is an authorization logic.

3. A SPI CALCULUS WITH AUTHORIZATION ASSERTIONS

The spi calculus [Abadi and Gordon 1999] extends the pi calculus with abstract
cryptographic operations in the style of Dolev and Yao [1983]. Names repre-
sent both cryptographic keys and communication channels. The version of spi
given here has a small but expressive range of primitives: encryption and de-
cryption using shared keys, input and output on shared channel names, and
operations on pairs. We conjecture that our results, including our type system,
would smoothly extend to deal with more complex features such as asymmetric
cryptography and communications, and with a richer set of data types.

The main new features of our calculus are authorization assertions repre-
sented by inert processes called statements and expectations. These processes
generalize the begin- and end-assertions in previous embeddings of correspon-
dences in process calculi [Gordon and Jeffrey 2003b]. Similarly, statements and
expectations track security properties, but (in contrast to assertions in typical
programming languages) do not in themselves affect the behavior of processes.

A statement is simply a clause C (either a fact or a rule). For example, the
following process is a composition of clause A of Section 2.3 with two facts.

A | Referee(alice,42) | Opinion(alice,42,report42) (process P)

An expectation expect C represents the confidence on the part of the program-
mer that the rule or fact C can be inferred from clauses in parallel. Expec-
tations typically record authorization conditions. For example, the following
process represents the (justified) expectation that a certain fact follows from
the clauses of P.

P | expect Report(alice,42,report42) (process Q)

Expectations most usefully concern messages instantiated at runtime. In the
following, the content x of the report is received from the channel c:

P | out c (report42,ok) | in c(x,y); expect Report(alice,42,x) (process R)

In this parallel composition, the second subprocess outputs a message whose
payload is a pair that contains the report plus the distinguished token ok (an
annotation to help typing, with no effect at runtime). The third subprocess
inputs a message, binds its content to x and y, and expects x to be the report.

All the statements arising in our case studies fall into two distinct classes.
One consists of unguarded, top-level statements of authorization rules, such as
those in the previous section, that define the global authorization policy. The
other class consists of input-guarded statements, triggered at runtime, that

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 25, Publication date: August 2007.

Article 25 / 10 • C. Fournet et al.

declare facts—not rules—about data arising at runtime, such as the identities
of particular reviewers or the contents of reports. Moreover, we have not found
a use for expectations of proper rules; all the expectations in our case studies
are simply of facts.

The syntax and informal semantics of our full calculus is as follows. Binding
occurrences of names have type annotations, ranged over by T or U ; the syntax
of our system of dependent types is in Section 4.
SYNTAX FOR MESSAGES AND PROCESSES

a, b, c, k, x, y , z name
M , N ::= message

x name: a key or a channel
{M }N authenticated encryption of M with key N
(M , N) message pair
ok distinguished message

P, Q , R ::= process
out M (N) asynchronous output of N to channel M
in M (x:T); P input of x from channel M (x has scope P)
new x:T ; P fresh generation of name x (x has scope P)
P | Q parallel composition of P and Q
!P unbounded parallel composition of replicas of P
0 inactivity
decrypt M as { y :T }N ;P bind y to decryption of M with key N (y has scope P)
split M as (x:T, y :U); P solve (x, y) = M (x has scope U and P ; y has scope P)
match M as (N , y :U); P solve (N , y) = M (y has scope P)
C statement of clause C
expect C expectation that clause C is derivable

Notations: (̃x:T̃) = (x1:T1, . . . , xn:Tn) and new x̃:T̃ ; P = new x1:T1; . . . new xn:Tn; P
Let S = {C1, . . . , Cn}. We write S | P for C1 | . . . | Cn | P .

The split and match processes for destructing pairs are worth compar-
ing. A split binds names to the two parts of a pair, while a match is effec-
tively a split followed by a conditional; think of match M as (N , y); P as
split M as (x, y); if x = N then P . Taking match as primitive is a device to
avoid using unification in a dependent type system [Gordon and Jeffrey 2003a].

Next, we present the operational semantics of our calculus via standard
structural equivalence (P ≡ Q) and reduction (P → Q) relations. The following
rules are standard. Statements and expectations are inert processes; they do not
have particular rules for reduction or equivalence (although they are affected
by other rules). The conditional operations decrypt, split, and match simply
get stuck if decryption or matching fails; we could allow alternative branches
for error handling, but they are not needed for the examples in the article.
RULES FOR STRUCTURAL EQUIVALENCE: P ≡ Q

P ≡ P (Struct Refl)
Q ≡ P ⇒ P ≡ Q (Struct Symm)
P ≡ Q , Q ≡ R ⇒ P ≡ R (Struct Trans)

P ≡ P ′ ⇒ new x:T ; P ≡ new x:T ; P ′ (Struct Res)
P ≡ P ′ ⇒ P | R ≡ P ′ | R (Struct Par)
P ≡ P ′ ⇒ !P ≡ !P ′ (Struct Repl)

P | 0 ≡ P (Struct Par Zero)

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 25, Publication date: August 2007.

A Type Discipline for Authorization Policies • Article 25 / 11

P | Q ≡ Q | P (Struct Par Comm)
(P | Q) | R ≡ P | (Q | R) (Struct Par Assoc)

!P ≡ P | !P (Struct Repl Unfold)
!!P ≡ !P (Struct Repl Repl)
!(P | Q) ≡ !P | !Q (Struct Repl Par)
!0 ≡ 0 (Struct Repl Zero)

new x:T ; (P | Q) ≡ P | new x:T ; Q (Struct Res Par) (for x /∈ fn(P))
new x1:T1; new x2:T2; P ≡ (Struct Res Res)

new x2:T2; new x1:T1; P (for x1 �= x2, x1 /∈ fn(T2), x2 /∈ fn(T1))

RULES FOR REDUCTION: P → P ′

P → P ′ ⇒ P | Q → P ′ | Q (Red Par)
P → P ′ ⇒ new x:T ; P → new x:T ; P ′ (Red Res)
P ≡ Q , Q → Q ′, Q ′ ≡ P ′ ⇒ P → P ′ (Red Struct)

out a(M) | in a(x:T); P → P{M/x} (Red Comm)
decrypt {M }k as { y :T }k;P → P{M/ y} (Red Decrypt)
split (M , N) as (x:T, y :U); P → P{M/x}{N/ y} (Red Split)
match (M , N) as (M , y :U); P → P{N/ y} (Red Match)

Notation: P →∗
≡ P ′ is P ≡ P ′ or P →∗ P ′.

In the examples, we rely on derived notations for n-ary tuples and
pattern matching via sequences of match and split operations. For n> 2,
(M1, M2, . . . , Mn) abbreviates (M1, (M2, . . . , Mn)). For pattern matching, we
write tuple M as (N 1, . . . , Nn); P , where n > 0, M is a message (expected to
be a tuple), and each Ni is an atomic pattern. Let an atomic pattern be either a
variable pattern x, or a constant pattern, written =M , where M is a message
to be matched. Each variable pattern translates to a split, and each constant
pattern to a match. For example, tuple (a, b, c) as (x, =b, y); P translates to
the process split (a, (b, c)) as (x, z); match z as (b, z); split (z, z) as (y , z); P ,
where z is fresh. The translation introduces a fresh temporary name z not oc-
curring free in P , and at the last step it duplicates z in order to allow a match
or split operation. When using the tuple notation, we omit the types from vari-
able patterns because they can be inferred during typechecking. Appendix C
includes the formal definition of this tuple notation.

We enrich the syntax of inputs and decryption with the tuple notation
as follows, where in both translations the name y is chosen to not occur in
N 1, . . . , Nn, P .

in M (N 1, . . . , N n); P = in M (y); tuple y as (N 1, . . . , N n); P
decrypt M as {N 1, . . . , N n}N ;P = decrypt M as { y}N ; tuple y as (N 1, . . . , N n); P

The notation does not translate to an atomic primitive; hence, in the case of
input, a message may be received, then silently discarded because it does not
match the pattern. This does not matter in our case because we are mostly
interested in safety properties.

The presence of statements and expectations in a process induces the fol-
lowing safety properties. Intuitively, an expectation expect C is justified when
there are sufficient active statements to derive C. (A statement is active when it

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 25, Publication date: August 2007.

Article 25 / 12 • C. Fournet et al.

appears in the context, in parallel composition with expect C.) Then a process
is safe if every expectation in every reachable process is justified.

SAFETY

A process P is safe if and only if whenever

P →∗
≡ new x̃:T̃ ; (expect C | P ′)

we have P ′ ≡ new ỹ :Ũ ; (C1 | . . . | Cn | P ′′) and {C1, . . . , Cn} |= C with { ỹ} ∩ fn(C) = ∅.

The definition mentions x̃ to allow fresh names in C, while mentioning ỹ
to ensure that the clauses C, C1, . . . , Cn all use the same names; the scopes of
these names are otherwise irrelevant in the logic. Were the definition to omit
the outer restricted names x̃, the process

new x; expect Foo(x)

would be judged safe (because this process does not match the pattern for P
in the definition). Conversely, were the definition to omit the intermediate re-
stricted names ỹ , the process

expect Bar() | Bar():— Foo(X) | new y; Foo(y)

would be judged unsafe (because this process matches the pattern for P in
the definition, whereas its subprocess Bar():— Foo(X) | new y; Foo(y) does not
match the pattern for P ′).

Given a process P representing the legitimate participants making up a
system, we want to show that no opponent process O can induce P into an
unsafe state where some expectation is unjustified. An opponent is any process
within our spi calculus, except that it is not allowed to include any expectations
itself. (The opponent goal is to confuse the legitimate participants about who is
doing what.) As a technical convenience, we require every type annotation in an
opponent to be a certain type Un; type annotations do not affect the operational
semantics, so the use of Un does not limit opponent behavior.

OPPONENTS AND ROBUST SAFETY

A process O is an opponent if and only if it contains no expectations, and every type
annotation is Un.
A process P is robustly safe if and only if P | O is safe for all opponents O.

As a consequence of this definition, in every run of a robustly safe process P
in parallel with some opponent, every expectation can be justified by statements
activated in P .

For example, the process Q given earlier is robustly safe because the state-
ments in P suffice to infer Report(alice,42,report42), and persist in any inter-
action with an opponent. On the other hand, the process R is safe on its own,
but not robustly safe. Consider the opponent out c (bogus,ok). We have

R | out c (bogus,ok)→ P | out c (report42,ok) | expect Report(alice,42,bogus).

This is unsafe because Report(alice,42,bogus) is not derivable from the state-
ments in process P. We can secure the channel c by using the new operator to

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 25, Publication date: August 2007.

A Type Discipline for Authorization Policies • Article 25 / 13

make it private. The process new c; R is robustly safe; no opponent can inject
a message on c.

4. A TYPE SYSTEM FOR VERIFYING AUTHORIZATION ASSERTIONS

We present a dependent type system for statically checking implementations of
authorization policies. Although we develop a type system, other styles of static
analysis are likely applicable to the problem of proving robust safety. Moreover,
instead of or in combination with a static analysis, an implementation may
record the statements issued by a running program within some distributed
database so as to check expectations dynamically; our implementation of Data-
log in Section 6 is a step in this direction.

Our starting point is a type-and-effect system [Gordon and Jeffrey 2002b]
for verifying one-to-many correspondences, which itself builds on prior work on
types for channel-based communication in the pi calculus [Milner 1999; Pierce
and Sangiorgi 1996] and types for cryptographic primitives in the spi calcu-
lus [Abadi 1999]. Apart from the new support for logical assertions, the current
system features two improvements. First, a new rule for parallel composition
allows us to typecheck a safe process such as L | expect L; the analogous par-
allel composition cannot be typed in the original system. Second, effects are
merged into typing environments, leading to a much cleaner presentation and
to the elimination of typing rules for effect subsumption.

4.1 Syntax of Types and Environments

We begin by defining the syntax and informal semantics of message types.

SYNTAX FOR TYPES

T, U ::= type
Un public data
Ch(T) channel for messages of type T
Key(T) secret key for plaintexts of type T
(x:T, U) dependent pair (scope of x is U)
Ok(S) ok to assume the clauses S

T is generative (may be freshly created) if and only if T is Un, Ch(U), or Key(U).
Notation: (x1:T1, . . . , xn:Tn, Tn+1) = (x1:T1, . . . , (xn:Tn, Tn+1))

A message of type Un is public data that may flow to or from the opponent;
for example, all ciphertexts are of type Un. A message of type Ch(T) is a name
used as a secure channel for messages of type T . Similarly, a message of type
Key(T) is a name used as a secret key for encrypting and decrypting plaintexts
of type T . A message of the dependent type (x:T, U) is a pair (M , N), where
M is of type T and N of type U {M/x}. The type (x:T, U) is a generalization of
an ordinary product type (such dependent types are standard in intuitionistic
type theory [Martin-Löf 1984], where they are known as �-types). Finally, the
token ok is the unique message of type Ok(S), proving that S may currently
be inferred.

For example, the type Ch((x:Un, Ok(Report(alice,42, x)))) can be assigned
to c in process R, stating that c is a channel for communicating pairs (M , ok),

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 25, Publication date: August 2007.

Article 25 / 14 • C. Fournet et al.

where M : Un and ok : Ok(Report(alice,42,M)). This example illustrates a
common idiom in which the final component of a communicated tuple is an ok
that conveys facts about the previous components. In this idiom, the tuple takes
the form (M1, . . . , (Mn, ok) . . .) and has the type (x1:T1, . . . , (xn:Tn, Ok(S)) . . .).
The names x1, . . . , xn can occur free in the clauses S, so that the ok has type
Ok(S{M1/x1} . . . {Mn/xn}), and hence conveys the facts S{M1/x1} . . . {Mn/xn}
which may refer to the components M1, . . . , Mn.

The generative types Un, Ch(U), and Key(U) are the types of freshly gen-
erated names. A restriction new x:T ; P generates the name x and is only well
typed if the type T is generative.

Next, we define typing environments, that is, lists of name bindings and
clauses, plus some auxiliary functions. The function dom(−) sends an envi-
ronment to the set of names to which it assigns a type. The function env(−)
sends a process to an environment that collects its top-level statements, with
suitable name bindings for any top-level restrictions. The function clauses(−)
sends an environment to the program consisting of all the clauses listed in the
environment plus the clauses in top-level Ok(−) types.

SYNTAX FOR ENVIRONMENTS, AND FUNCTIONS: dom(E), env(P), clauses(E)

E ::= environment
∅ empty
E, x:T x has type T
E, C C is a valid clause

Notation: E(x) = T if E = E ′, x:T, E ′′

E is generative if and only if E = x1:T1, . . . , xn:Tn and each Ti is generative.

dom(E, C) = dom(E) dom(E, x:T) = dom(E) ∪ {x} dom(∅) = ∅

env(P | Q)̃x, ỹ = env(P)̃x , env(Q) ỹ (where {̃x, ỹ} ∩ fn(P | Q) = ∅)
env(new x:T ; P)x, x̃ = x:T, env(P)̃x (where {̃x} ∩ fn(P) = ∅)
env(!P)̃x = env(P)̃x env(C)∅ = C env(P)∅ = ∅ otherwise
Convention: env(P) = env(P)̃x for some distinct x̃ such that env(P)̃x is defined.

clauses(E, C) = clauses(E) ∪ {C} clauses(E, x:Ok(S)) = clauses(E) ∪ S
clauses(E, x:T) = clauses(E) if T �= Ok(S) clauses(∅) = ∅

4.2 Judgments and Typing Rules

Our system consists of three judgments, defined by the following tables.
The judgment E � � means that the environment E is well formed.

RULES FOR ENVIRONMENTS: E � �
(Env ∅)

∅ � �

(Env x)
E � � fn(T) ⊆ dom(E) x /∈ dom(E)

E, x:T � �

(Env C)
E � � fn(C) ⊆ dom(E)

E, C � �

The rules (Env ∅), (Env x), and (Env C) ensure that each name occurring in
a type or clause in an environment is itself assigned a type by the environment,
and that each name is assigned a type at most once.

The judgment E � M : T means that in environment E, the message M has
type T .

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 25, Publication date: August 2007.

A Type Discipline for Authorization Policies • Article 25 / 15

RULES FOR MESSAGES: E � M : T

(Msg x)
E � � x ∈ dom(E)

E � x : E(x)

(Msg Encrypt)
E � M : T E � N : Key(T)

E � {M }N : Un

(Msg Encrypt Un)
E � M : Un E � N : Un

E � {M }N : Un

(Msg Pair)
E � M : T E � N : U {M/x}

E � (M , N) : (x:T, U)

(Msg Pair Un)
E � M : Un E � N : Un

E � (M , N) : Un

(Msg Ok)
E � � fn(S) ⊆ dom(E) clauses(E) |= C ∀C ∈ S

E � ok : Ok(S)

(Msg Ok Un)
E � �

E � ok : Un

The rule (Msg x) assigns to a name the type given to it by the environment.
The rule (Msg Encrypt) assigns a ciphertext the type Un, provided that the
encryption key has a type Key(T) and the plaintext has type T . The rule (Msg
Pair) assigns a pair (M , N) the type (x:T, U), provided that M has type T and
N has the type U {M/x} dependent on M . The rule (Msg Ok) populates an
Ok(S) type only if we can infer each clause in the Datalog program S from the
clauses in the environment E. For example, using clause A of Section 2.3, if

E = alice:Un, 42:Un, report42:Un,
A, Referee(alice,42), Opinion(alice,42,report42)

then E � ok : Ok(Report(alice,42,report42)).
As in previous systems [Gordon and Jeffrey 2002b; 2003a], we need the rules

(Msg Encrypt Un), (Msg Pair Un), and (Msg Ok Un) to assign Un to arbitrary
messages known to the opponent.

The judgment E � P means that in environment E, the process P is well
typed.

RULES FOR PROCESSES: E � P

(Proc Nil)
E � �
E � 0

(Proc Rep)
E � P

E � !P

(Proc Res)
E, x:T � P T generative

E � new x:T ; P

(Proc Par)
E, env(Q) � P E, env(P) � Q fn(P | Q) ⊆ dom(E)

E � P | Q

(Proc Expect)
E, C � � clauses(E) |= C

E � expect C

(Proc Fact)
E, C � �
E � C

(Proc Decrypt)
E � M : Un E � N : Key(T) E, y :T � P

E � decrypt M as { y :T }N ;P

(Proc Input)
E � M : Ch(T) E, x:T � P

E � in M (x:T); P

(Proc Decrypt Un)
E � M : Un E � N : Un E, y :Un � P

E � decrypt M as { y :Un}N ;P

(Proc Input Un)
E � M : Un E, x:Un � P

E � in M (x:Un); P

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 25, Publication date: August 2007.

Article 25 / 16 • C. Fournet et al.

(Proc Match)
E � M : (x:T, U) E � N : T E, y :U {N/x} � P

E � match M as (N , y :U {N/x}); P

(Proc Output)
E � M : Ch(T) E � N : T

E � out M (N)

(Proc Match Un)
E � M : Un E � N : Un E, y :Un � P

E � match M as (N , y :Un); P

(Proc Output Un)
E � M : Un E � N : Un

E � out M (N)

(Proc Split)
E � M : (x:T, U) E, x:T, y :U � P

E � split M as (x:T, y :U); P

(Proc Split Un)
E � M : Un E, x:Un, y :Un � P

E � split M as (x:Un, y :Un); P

There are three rules of particular interest. (Proc Expect) allows expect C,
provided that C is entailed in the current environment. (Proc Fact) allows any
statement, provided its names are in scope. (Proc Par) is the rule for parallel
composition; it allows P |Q , provided that P and Q are well typed, given the
top-level statements of Q and P , respectively. For example, by (Proc Par), ∅ �
Foo() | expect Foo() follows from ∅ � Foo() and Foo() � expect Foo(), the two
of which follow directly by (Proc Fact) and (Proc Expect).

The rules (Proc Nil), (Proc Rep), (Proc Res), (Proc Output), and (Proc Input)
type the core processes of the pi calculus, other than composition. These rules
are much as in early systems for the pi calculus [Pierce and Sangiorgi 1996]. The
rule (Proc Input) relies on the invariant that any message sent on a channel
of type Ch(T) has type T , ensured by the rule (Proc Output). Similarly, the
rule (Proc Decrypt) for decryption relies on the invariant that any plaintext
encrypted with a key of type Key(T) has type T , ensured by the rule (Msg
Encrypt). The rules (Proc Split) and (Proc Match) are for destructing pairs.

The rules (Proc Output Un), (Proc Input Un), (Proc Decrypt Un), (Proc Match
Un), and (Proc Split Un) allow arbitrary opponent processes to be typed, assum-
ing that all messages occurring in such processes can be assigned the Un type;
these rules are needed to establish Lemma 2, to follow.

We have implemented a typechecker for this type system, with Datalog as
its authorization logic. It consists of procedures to check the judgments E � P
and E � M : T , given their parameters as input. To apply the rules (Msg Ok)
and (Proc Expect) we invoke a decision procedure for Datalog entailment. For
some rules, typechecking depends on a procedure that, given an environment
E and a message M , infers a type T such that E � M : T . With a more verbose
syntax in which each ok term is annotated with the S from its type Ok(S), the
set of all types assignable to a term would be computable. Indeed, the three
judgments of the type system would be decidable, although the time complex-
ity would be exponential due to the presence of two alternative typing rules
for many message and process constructs. Instead, our typechecker follows the
syntax of the article without annotations on ok terms, and our type inference
procedure is incomplete, as it does not apply (Msg Ok) so as to avoid guessing
the set S. Still, this incompleteness seldom arises; the type of an ok term is
usually determined by context, as in the common case where the ok occurs
as the component of a tuple whose type is determined by an encryption key
or communication channel. Hence, although our typechecker is incomplete, it

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 25, Publication date: August 2007.

A Type Discipline for Authorization Policies • Article 25 / 17

can check a wide range of programs, including all the examples in this arti-
cle. Like other typecheckers for the spi calculus such as Cryptyc [Gordon and
Jeffrey 2002a], our implementation allows type annotations to be omitted from
inputs or decryptions, as they can be inferred from context, but requires type
annotations on the names bound by restrictions. We do not consider the gen-
eral problem of inferring type annotations for all bound names, although this
is likely a prerequisite for the practical application of our system.

To the best of our knowledge, the type inference problem for systems of depen-
dent types for the spi calculus has not been addressed in the literature. Maffei
[2006] develops type systems for authentication properties in a spi calculus,
using certain tags instead of dependent types, and proposes a type-and-tag-
inference algorithm. Maffei’s is the closest work to the type inference problem
for our system, but does not consider dependent types, nor indeed authorization
properties.

We have not considered implementing other authorization logics than Data-
log. Decidability of logical entailment is not essential, of course; typecheckers for
undecidable or potentially intractable type systems are widely used in practice.

4.3 Main Results

Our first theorem is that well-typed processes are safe; to prove it, we rely on
a lemma that both structural congruence and reduction preserve the process
typing judgment.

LEMMA 1. If E � P and either P ≡ P ′ or P → P ′, then E � P ′.

THEOREM 2. If E � P and E is generative, then P is safe.

Our second theorem is that well-typed processes whose free names are public,
that is, of type Un, are robustly safe. It follows from the first via an auxiliary
lemma that any opponent process can be typed by assuming its free names are
of type Un.

LEMMA 2. If fn(O) ⊆ {̃x} for opponent O, then x̃:Ũn � O.

THEOREM 3. If x̃:Ũn � P, then P is robustly safe.

For generic reasons, the converse of this theorem is false, that is, the type
system is incomplete. For example, we cannot type a process that contains an
expectation of an unstated fact, even if the expectation is unreachable and the
process is in fact robustly safe.

We conclude this section by showing that our calculus can encode standard
one-to-many correspondence assertions. The idea of correspondences is that
processes are annotated with two kinds of labeled events: begin-events and end-
events. The intent is that in each run, for every end-event, there is a preceding
begin-event with the same label.

For example, consider the (trivial) authorization logic (�, fn, |=), where L ∈ �
are the labels used for the correspondence assertions, |= is defined as {L} |= L
for each L ∈ �, and fn is standard. In this setting, we can encode begin and

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 25, Publication date: August 2007.

Article 25 / 18 • C. Fournet et al.

end-events as follows.

begin L; P = L | P end L; P = expect L | P

Given this trivial authorization logic, our type system essentially degenerates
to previous systems for authentication properties. For example, given this en-
coding and a minor extension to the type system (i.e., tagged union types), we
can express and typecheck all of the authentication protocols from one previous
study [Gordon and Jeffrey 2002b], including WMF and BAN Kerberos.

The correspondences expressible by standard begin- and end-events are a
special case of the class of correspondences expressible in our calculus where
the predicates in expectations are extensional, that is, given explicitly by facts.
Hence, we refer to our generalized correspondence assertions based on inten-
sional predicates as intensional correspondences to differentiate them from
standard (extensional) correspondences.

Finally, neither our operational semantics nor our type system handles one-
to-one correspondences, where each begin-event corresponds to at most one
end-event.

5. APPLICATION: PROGRAM COMMITTEE ACCESS CONTROL

We provide two spi calculus implementations for the Datalog policy with del-
egation introduced in Section 2 (defining clauses A, B, and C). In both imple-
mentations, the server enables those three clauses as part of its policy, and also
maintains a local database of registered reviewers on a private channel pwdb.

A | B | C | new pwdb : Ch(u:Un, Key(v:Un,id:Un,Ok(Delegate(u,v,id))),
Key(id:Un,report:Un,Ok(Opinion(u,id,report))));

Hence, each message on pwdb codes an entry in the reviewer database, and
associates the name u of a reviewer with the two keys used to authenticate
her two potential actions: delegating a review, and filing a report. The usage of
these keys is detailed next.

Although we present our code in several fragments, these should be read as
parts of a single process whose typability and safety properties are summarized
at the end of the section. Hence, for instance, our policy and the local channel
pwdb are defined for all processes displayed in this section.

5.1 Online Delegation with Local State

Our first implementation assumes that the conference system is contacted
whenever a referee decides to delegate her task. Hence, the system keeps track
of expected reports using another local database, each record noting a fact of
the form Referee(U,ID). When a report is received, the authenticated sender
of the report is correlated with the principal that appears in the correspond-
ing record. When a delegation request is received, the corresponding record is
checked, then updated.

The following code defines the (abstract) behavior of reviewer v; it is trig-
gered whenever a message is sent on createReviewer; it has public channels
providing controlled access to all her privileged actions (essentially any action

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 25, Publication date: August 2007.

A Type Discipline for Authorization Policies • Article 25 / 19

authenticated with one of her two keys). For simplicity, we proceed without
checking the legitimacy of requests, and we assume that v is not a PC member,
as otherwise, we would implement a third action for filing PC member reports.

(!in createReviewer(v);
new kdv: Key(z:Un,id:Un,Ok(Delegate(v,z,id)));
new krv: Key(id:Un,report:Un,Ok(Opinion(v,id,report)));
((!out pwdb(v,kdv,krv))
| (!in sendreportonline(=v,id,report);

Opinion(v,id,report) | out filereport(v,{id,report,ok}krv))
| (!in delegateonline(=v,w,id);

Delegate(v,w,id) | out filedelegate(v,{w,id,ok}kdv)))) |
In the code triggered by createReviewer messages, we first generate two new
keys:kdv and krv. The replicated output on pwdb associates these keys with v.
The replicated input on sendreportonline guards a process that files v’s reports;
in this process, the authenticated encryption {id,report,ok}krv protects the
report and also carries a fact Opinion(v,id,report) stating its authenticity. The
replicated input on delegateonline similarly guards a process that files v’s
delegations.

Next, we give the corresponding code that receives these two kinds of re-
quests at the server (we omit the code that selects reviewers and sends mes-
sages on refereedb). In the code guarded by !in filereport(v,e), the decryption
“proves” Opinion(v,id,report), whereas the input on refereedb “proves” Ref-
eree(v,id): When both operations succeed, these combined facts and clause A
jointly guarantee that Report(v,id,report) is derivable. Conversely, our type sys-
tem would catch errors such as forgetting to correlate the paper or reviewer
name (e.g., writing =v,id instead of =v,=id in refereedb), leaking the decryption
key, or using the wrong key.

The process guarded by !in filedelegate(v,sigd) is similar, except that it uses
the fact Delegate(v,w,id) granted by decrypting under key kdv to transform
Referee(v,id) into Referee(w,id), which is expected for typing ok in the output
on refereedb.

new refereedb : Ch(u:Un,(id:Un,Ok(Referee(u,id)))); (!in
filereport(v,e);

in pwdb(=v,kdv,krv); decrypt e as {id,report, }krv;
in refereedb(=v,=id,); expect Report(v,id,report)) |

(!in filedelegate(v,sigd);
in pwdb(=v,kdv,krv); decrypt sigd as {w,id, }kdv;
in refereedb(=v,=id,); out refereedb(w,id,ok)) |

The code for processing PC member reports is similar, but simpler.

new kp:Key(u:Un,Ok(PCMember(u)));
(!in createPCMember(u,pc);PCMember(u) | out pc({(u,ok)}kp)) |
(!in filepcreport(v,e,pctoken);

in pwdb(=v,kdv,krv); decrypt e as {id,report, }krv;
decrypt pctoken as {=v, }kp; expect Report(v,id,report)) |

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 25, Publication date: August 2007.

Article 25 / 20 • C. Fournet et al.

Instead of maintaining a database of PC members, we (arbitrarily) use capabil-
ities consisting of the name of the PC member encrypted under a new private
key kp. The code implements two services as replicated inputs: to register a new
PC member, and to process a PC member report. The fact Opinion(v,id,report)
is obtained as before. Although the capability sent back on channel pc has type
Un, its successful decryption yields the fact PCMember(v) and thus enables
Report(v,id,report) by clause B.

5.2 Offline Delegation with Certificate Chains

Our second implementation relies instead on explicit chains of delegation cer-
tificates. It does not require that the conference system be contacted when
delegation occurs; on the other hand, the system may have to check a list
of certificates before accepting an incoming report. Moreover, we rely on self-
authenticated capabilities under key ka for representing initial refereeing re-
quests, rather than messages on the private database channel refereedb.

The idea is that when a referee v files a report for paper id, she also presents
a delegation chain showing she is authorized to file the report. In the imple-
mentation, we let a delegation chain proving Referee(v,id) be a message in one
of two forms:

—either an authenticated encryption {v,id,ok}ka, where ka is the key used by
the PC chair to appoint referees directly, implying Referee(v,id); or

—a tuple (t,{v,id,ok}kdt,ct), where t is a principal with delegation key kdt so
that {v,id,ok}kdt proves Delegate(t,v,id), and ct is a (shorter) delegation chain
proving the fact Referee(t,id).

Given clause C governing delegation, an easy bottom-up argument estab-
lishes that the existence of such a delegation chain does indeed prove Ref-
eree(v,id). The following code for accepting and checking a delegation chain
supports this inductive argument.

(Delegate(U,W,ID):–Delegate(U,V,ID),Delegate(V,W,ID)) |
(Delegate(U,U,ID):–Opinion(U,ID,R)) |
new ka:Key((u:Un,(id:Un,Ok(Referee(u,id)))));
(!in filedelegatereport(v,e,cv);

in pwdb(=v,kdv,krv); decrypt e as {id,report, }krv;
new link:Ch(u:Un,c:Un,Ok(Delegate(u,v,id))); out link(v,cv,ok) |
!in link(u,cu,);
(decrypt cu as {=u,=id, }ka; expect Report(v,id,report)) |
(tuple cu as (t,delegation,ct); in pwdb(=t,kdt,);

decrypt delegation as {=u,=id, }kdt; out link(t,ct,ok)) |
The two auxiliary clauses make Delegate reflexive and transitive; these clauses
give us more freedom, but do not affect the outcome of our policy, one can check
that these two clauses are redundant in any derivation of Report.

The process guarded by the replicated input on channel filedelegatereport
allocates a private channel link and uses that channel recursively to verify,
one certificate at-a-time, that the message cv filed with the report is indeed

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 25, Publication date: August 2007.

A Type Discipline for Authorization Policies • Article 25 / 21

a delegation chain proving Referee(v,id). The process guarded by link has two
cases: the base case (decrypt cu) verifies an initial refereeing request and
finally accepts the report as valid, whereas the recursive case (tuple cu) verifies
a delegation step and then continues on the rest of the chain (ct). The type
assigned to link precisely states our loop invariant: Delegate(u,v,id) proves that
there is a valid delegation chain from u (the current delegator) down to v (the
report writer) for paper id.

PROPOSITION 3. Let EUn assign type Un to createReviewer, createPCMember,
sendre portonline, delega te online, filereport, filedelegate, filepcreport, filedele-
gatereport, and any other name in its domain.

Let EP assign the types displayed previously to pwdb, refereedb, kp, and ka.
Let P be a process such that EUn, EP � P.
Let Q be the process comprising all process fragments in this section followed

by P.
We have EUn � Q, and hence Q is robustly safe.

This proposition is proved by typing Q , then applying Theorem 3. In its state-
ment, the process P has access to the private keys and channels collected in
EP ; this process accounts for any trusted parts of the server left undefined,
including, for instance, code that assigns papers to reviewers by issuing facts
on Referee and using them to populate refereedb and generate valid certifi-
cates under key ka. We may simply take P = 0, or let P introduce its own
policy extensions, so long as it complies with the typing environments EUn and
EP .

In addition, the context (implicitly) enclosing Q in our statement of robust
safety accounts for any untrusted part of the system, including the opponent,
but also additional code for the reviewers interacting with Q (and possibly P)
and using the names collected in EUn, particularly the free names of Q . Hence,
the context may impersonate referees, intercept messages on free channels, and
then send on channel filedelegatereport any term computed from intercepted
messages. The proposition confirms that minimal typing assumptions on P
suffice to guarantee the robust safety of Q .

6. APPLICATION: A DEFAULT IMPLEMENTATION FOR DATALOG

In this section, we describe a translation from Datalog programs to the spi cal-
culus. To each predicate p and arity n, we associate a fresh name pn with a
channel type Tp,n. Unless the predicate p occurs with different arities, we omit
indexes and write just p and Tp for pn and Tp,n. Relying on some preliminary re-
naming, we also reserve a set of names V for Datalog variables. The translation
is given next.

TRANSLATION FROM DATALOG TO THE SPI CALCULUS: [[S]]

Tp,n = Ch(x1:Un, . . . , xn:Un, Ok(p(x1, . . . , xn)))

[[S]] = ∏
C∈S[[C]] [[∅]] = 0

[[L :− L1, . . . , Lm]] = ![[L1, . . . , Lm]]∅[[[L]]+] for m ≥ 0
[[p(u1, . . . , un)]]+ = out pn(u1, . . . , un, ok)
[[L1, L2, . . . , Lm]]�[·] = [[L1]]�

[
[[L2, . . . , Lm]]�∪ f v(L1)[·]] [[ε]]�[·] = [·]

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 25, Publication date: August 2007.

Article 25 / 22 • C. Fournet et al.

[[p(u1, . . . , un)]]�[·] = in pn(u1, . . . , un, =ok); [·]
where ui is ui when ui �∈ (V \ (� ∪ fv (uj<i))) and ui is =ui otherwise.

P ⇓L when ∃P ′.P →∗
≡ P ′ | [[L]]+

The process [[S]] represents the whole program S. The process [[L :− L1,
. . . , Lm]] is a replicated process representing the clause L :− L1, . . . , Lm. The
process [[L]]+ is an output representing the conclusion L of a clause. The
context [[L1, L2, . . . , Lm]]�[·], where [·] is a hole to be filled with a process,
represents the body of a clause. Finally, the predicate P ⇓L holds if the process
P eventually produces an output representing the fact L.

For example, using the policy of Section 2, the translation of predicate
Report uses a channel Report of type TReport = Ch(U :Un, I D:Un, R:Un,
Ok(Report(U, ID, R))) and the translation of clause A yields the process

[[Report(U,ID,R):–Referee(U,ID),Opinion(U,ID,R)]] =
!in Referee(U,ID,=ok); in Opinion(=U,=ID,R,=ok); out Report(U,ID,R,ok).

The next lemma states that a Datalog program, considered as a policy, is well
typed when placed in parallel with its own translation.

LEMMA 3. Let S be a Datalog program using predicates p̃n and names ỹ
with fn(S) ⊆ { ỹ}. Let E = ỹ :Ũn, p̃n:T̃n, p. We have E � S | [[S]].

More precisely, the lemma also shows that our translation is compositional:
One can translate some part of a logical policy, develop some specific protocols
that comply with some other part of the policy, then put the two implementa-
tions in parallel and rely on messages on channels pn to safely exchange facts
concerning shared predicates.

Lemma 3 establishes that our translation is correct by typing. The following
theorem also states that the translation is complete: Any fact that logically
follows from the Datalog program can be observed in the pi calculus.

THEOREM 4. Let S be a Datalog program and F a fact. We have S |= F if
and only if [[S]] ⇓F .

To illustrate our translation, we sketch an alternative implementation of our
conference management server. Instead of coding the recursive processing of
messages sent by subreferees as in Section 5, we set up a replicated input for
each kind of certificate, with code to check the certificate and send a message on
a channel of the translation. Independently, when a fact is expected, we simply
read it on a channel of the translation. For instance, to process incoming reports,
we may use the code

!in trivial filereport(v,id,report);
in Report(=v,=id,=report,=ok); expect Report(v,id,report).

The translation of clause A sends a matching message on Report, provided
that the system sends matching messages on Opinion and Referee. This ap-
proach is correct and complete, but also nondeterministic and very inefficient.
As a refinement, since any (well-typed) program can access the channels of the

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 25, Publication date: August 2007.

A Type Discipline for Authorization Policies • Article 25 / 23

translation, one may use the translation as a default implementation for some
clauses and provide optimized code for others.

7. CONCLUSIONS AND FUTURE WORK

We presented a spi calculus with embedded authorization policies, a type system
that can statically check conformance to a policy (even in the presence of active
attackers), and a series of applications coded using a prototype implementation.

In itself, our type system does not “solve” authorization: The security of a
well-typed program still relies on a careful (manual) review of the policy, on the
discriminating statement of trusted facts (or even rules) in the program, and
on the presence of expectations marking sensitive actions. Indeed, in our set-
ting, every program is safe for a sufficiently permissive policy. Nonetheless, our
type system statically enforces a discipline prescribed by the policy across the
program, as it uses channels and cryptographic primitives to process messages
and can facilitate code reviews.

As it stands, our calculus and type system are simple and illustrative, but
have many limitations that may be investigated. For example, we do not con-
sider revocation or temporary activation of authorization statements. From a
logical viewpoint, many authorization languages include notions of locality and
partial trust, considering, for example, facts and clauses relative to each prin-
cipal [Abadi et al. 1993]. A first step will be to consider a combination of the
present system with ideas from a recent work [Gordon and Jeffrey 2005] on a
type system for checking secrecy in a pi calculus despite the compromise of some
principals. We are also exploring extensions of our type system to support, for
instance, some subtyping, public-key cryptographic primitives, and linearity
properties. More experimentally, we plan to extend our typechecker and sym-
bolic interpreter, and to study their integration with other proof techniques.

APPENDIXES

A. DATALOG PROOFS

This section develops proofs of Theorem 1 and Propositions 1 and 2.

LEMMA 4. If S |= F, then S ∪ {C} |= F.

PROOF. By induction on the depth of the derivation tree for S |= F .

LEMMA 5. If S |= F and S ∪ {F } |= F ′, then S |= F ′.

PROOF. By induction on the derivation of S ∪ {F } |= F ′.

LEMMA 6. If S |= F and σ replaces names with messages, then Sσ |= Fσ .

PROOF. By induction on the depth of the derivation tree for S |= F .

RESTATEMENT OF THEOREM 1. For all clauses C and sets of clauses S, items (1)
and (2) are equivalent:

(1) For all sets of facts S′, {F | S′ ∪ {C} |= F } ⊆ {F | S′ ∪ S |= F }.
ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 25, Publication date: August 2007.

Article 25 / 24 • C. Fournet et al.

(2) S ∪ {L1σ, . . . , Lnσ } |= Lσ , where C = L :− L1, . . . , Ln and σ = {̃x/X̃ }
is an injective substitution such that {̃x} ∩ (fn(S) ∪ fn(C)) = ∅ and X̃ =
fv (L1, . . . , Ln).

PROOF. That (2) implies (1) follows by induction on the structure of S′. The
inductive case uses a nested induction on the derivations of |=, and Lemmas 4,
5, and 6. That (1) implies (2) is by definition of (Infer Fact).

The next two lemmas prove monotonicity and closure under substitutions of
Datalog, which are the properties (Mon) and (Subst) needed to show that it is
an authorization logic.

RESTATEMENT OF PROPOSITION 1. If S |= C, then S ∪ {C′} |= C.

PROOF. By cases on the last rule used in the derivation of S |= C, using
Lemma 4.

RESTATEMENT OF PROPOSITION 2. If S |= C and σ sends names to messages,
Sσ |= Cσ .

PROOF. By cases on the last rule used in the derivation of S |= C, using
Lemma 6 and standard properties of substitutions.

The following is a strengthening property of authorization logics with respect
to sets of clauses equivalent up to fresh renamings. It will be used in the proofs
of Appendix B.2.

LEMMA 7. Let (�, fn, |=) be an authorization logic, and let C ∈ �, S, S′ ⊆ �.
If S ∪ S{ ỹ /̃x} ∪ S′ |= C, where { ỹ} ∩ fn(S ∪ S′ ∪ {C}) = ∅ and the ỹ are distinct,
then S ∪ S′ |= C.

PROOF. Follows from the property (Subst) of an authorization logic and from
standard properties of injective substitutions of fresh names.

B. SPI CALCULUS PROOFS

This section has three parts. Appendix B.1 contains the definition of an alter-
native, more explicit, type system for the spi calculus and the proof that it is
equivalent to the one given in the main body of the article. Appendix B.2 shows
the main properties of the type system—subject congruence and subject reduc-
tion, in particular. Appendix B.3 contains the proofs of opponent typability and
of the main results of the article concerning safety.

All the results in this section are independent of the choice of authorization
logics.

B.1 An Alternative Type System

We define a type system for the spi calculus that uses guarantees to represent
the top-level, active statements from processes while maintaining invariance
under renaming of bound names. It is informative to capture these guarantees
explicitly with typing rules, rather than implicitly via the separate function

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 25, Publication date: August 2007.

A Type Discipline for Authorization Policies • Article 25 / 25

env(P), as used in the system in the main body of the article. We show the
equivalence of the two type systems, and induce soundness of the main system
from proofs about the alternative system. Still, we expect that a direct proof
of soundness for the main system would proceed similarly to the proof for the
alternative system.

GUARANTEES

G, H ::= guarantee
0 no guarantee
G | H composition
new x:T ; G restriction
C clause C can be assumed

The function env(−) defined next, which, given a guarantee, extracts the
corresponding environment, is analogous to the one given in Section 4 for
processes.

FROM GUARANTEES TO ENVIRONMENTS: env(G)

env(0)∅ = ∅ env(C)∅ = C

env(G | H)̃x, ỹ = env(G)̃x , env(H) ỹ (where {̃x, ỹ} ∩ fn(G | H) = ∅)

env(new x:T ; G)x, x̃ = x:T, env(G)̃x (where {̃x} ∩ fn(G) = ∅)

Convention: env(G) = env(G)̃x for some distinct x̃ such that env(G)̃x is defined.

Guarantee subsumption is a binary relation on guarantees characterized by
the axioms (G Sub Idem) and (G Sub Order). If G � H, then intuitively G
contains fewer facts than H. Structural congruence for guarantees is defined
in terms of subsumption.

GUARANTEE SUBSUMPTION: G � H

G � G (G Sub Refl)
G � H, H � G ′ ⇒ G � G ′ (G Sub Trans)

G � H ⇒ new x:T ; G � new x:T ; H (G Sub Res)
G � G ′ ⇒ G | H � G ′ | H (G Sub Par)
G | 0 � G (G Sub Par Zero)
G | H � H | G (G Sub Par Comm)
(G | G ′) | H � G | (G ′ | H) (G Sub Par Assoc)

G | G � G (G Sub Idem)
G � G | H (G Sub Order)

new x:T ; (G | H) � G | new x:T ; H (G Sub Res ParL) (for x /∈ fn(G))
G | new x:T ; H � new x:T ; (G | H) (G Sub Res ParR) (for x /∈ fn(G))
new x1:T1; new x2:T2; G � (G Sub Res Res)

new x2:T2; new x1:T1; G (for x1 �= x2, x1 /∈ fn(T2), x2 /∈ fn(T1))

STRUCTURAL CONGRUENCE FOR GUARANTEES: G ≡ H

G ≡ H = G � H and H � G (G Struct)

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 25, Publication date: August 2007.

Article 25 / 26 • C. Fournet et al.

Next we give the rules defining the type system with guarantees. The rules
(ProcG Res), (ProcG Par), and (ProcG Fact) grow the guarantee of a process,
(ProcG Rep) leaves it invariant, and all the other rules set it to 0.

ADDITIONAL JUDGMENT

E � P : G good process P guaranteeing G

GOOD PROCESSES: E � P : G (IN ENVIRONMENT E, PROCESS P GRANTS G)

(ProcG Nil)
E � �

E � 0 : 0

(ProcG Rep)
E � P : G

E � !P : G

(ProcG Res)
E, x:T � P : G Tgenerative

E � new x:T ; P : new x:T ; G

(ProcG Par)
E, env(G2) � P : G1 E, env(G1) � Q : G2 fn(P | Q) ⊆ dom(E)

E � P | Q : G1 | G2

(ProcG Input)
E � M : Ch(T) E, x:T � P : G

E � in M (x:T); P : 0

(ProcG Input Un)
E � M : Un E, x:Un � P : G

E � in M (x:Un); P : 0

(ProcG Output)
E � M : Ch(T) E � N : T

E � out M (N) : 0

(ProcG Output Un)
E � M : Un E � N : Un

E � out M (N) : 0

(ProcG Decrypt)
E � M : Un E � N : Key(T) E, y :T � P : G

E � decrypt M as { y :T }N ;P : 0

(ProcG Decrypt Un)
E � M : Un E � N : Un E, y :Un � P : G

E � decrypt M as { y :Un}N ;P : 0

(ProcG Match)
E � M : (x:T, U) E � N : T E, y :U {N/x} � P : G

E � match M as (N , y :U {N/x}); P : 0

(ProcG Match Un)
E � M : Un E � N : Un E, y :Un � P : G

E � match M as (N , y :Un); P : 0

(ProcG Split)
E � M : (x:T, U) E, x:T, y :U � P : G

E � split M as (x:T, y :U); P : 0

(ProcG Split Un)
E � M : Un E, x:Un, y :Un � P : G

E � split M as (x:Un, y :Un); P : 0

(ProcG Query)
E, C � � clauses(E) |= C

E � expect C : 0

(ProcG Fact)
E, C � �
E � C : C

GENERIC JUDGMENT: J

J ::= � | M : T | P : G metasyntax for the generic judgment

fn(�) = ∅ fn(M : T) = fn(M) ∪ fn(T) fn(P : G) = fn(P) ∪ fn(G)

�σ = � (M : T)σ = Mσ : Tσ (P : G)σ = Pσ : Gσ

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 25, Publication date: August 2007.

A Type Discipline for Authorization Policies • Article 25 / 27

We can show now that the two type systems are equivalent.

LEMMA 8. E � P and env(P)̃x = E ′ if and only if E � P : G, for some G
such that E ′ = env(G)̃x.

PROOF. (⇒) By induction on the derivation of E � P and by definition of
env(G). (⇐) By induction on the derivation of E � P : G and by definition of
env(P).

B.2 Properties of the Type System

We proceed to show the main properties of the type system, particularly sub-
ject congruence and subject reduction, which together give type preservation
(Lemma 1).

Before proving subject congruence and subject reduction in detail, we state
without proof a series of fairly standard technical properties of the type system.
The companion technical report [Fournet et al. 2005a] describes the proofs of
all of these properties.

LEMMA 9. If E � x : T and E � x : U, then T = U.

LEMMA 10. If E � P : G and E ′ � P : G ′, then G = G ′.

LEMMA 11. Let J range over {�, M : T, P : G}: (i) If E, x:U, E ′ � J and U
is generative and x �∈ fn(J)∪ fn(E ′), then E, E ′ � J ; and (ii) if E, C, E ′ � �, then
E, E ′ � �.

LEMMA 12. If E1, E2, E3, E4 � J and dom(E2) ∩ fn(E3) = ∅ and fn(E2) ∩
dom(E3) = ∅, then E1, E2, E3, E4 � J .

LEMMA 13. (i) If G � G ′, then fn(G) ⊆ fn(G ′); and (ii) if G ≡ G ′, then
fn(G) = fn(G ′).

LEMMA 14. If E, env(G)̃x , E ′ � J and G � G ′, fn(G) = fn(G ′) and {̃x} ∩
(fn(E ′) ∪ fn(J)) = ∅, then E, env(G ′)̃z , E ′ � J and {̃z} ∩ (fn(E ′) ∪ fn(J)) = ∅.

LEMMA 15. If E, env(G)̃x , E ′ � P : G and {̃x} ∩ (fn(P) ∪ fn(E ′)) = ∅, and
then E, E ′ � P : G.

LEMMA 16. (i) If E, E ′ � J and fn(C) ⊆ dom(E),then E, C, E ′ � J ; and (ii)
if E, E ′ � J , fn(T) ⊆ dom(E) and x �∈ dom(E, E ′), then E, x:T, E ′ � J .

LEMMA 17. If E1, x:T, E2 � J and E1 � M : T, then E1, E2{M/x} �
J {M/x}.

LEMMA 18. If E � P : G and P ≡ P ′, then there exists a G ′ such that
E � P ′ : G ′ and G ≡ G ′.

PROOF. By induction on the derivation of P ≡ P ′ we show:

(1) If E � P : G, then E � P ′ : G ′; and
(2) if E � P ′ : G ′, then E � P : G.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 25, Publication date: August 2007.

Article 25 / 28 • C. Fournet et al.

We show only the more interesting cases.

(Struct Par). Suppose P | Q ≡ P ′ | Q .
By hypothesis, P ≡ P ′.
By hypothesis of (1), E � P | Q : G.
By (ProcG Par), E, env(G2) ỹ � P : G1 and E, env(G1)̃x � Q : G2 and
fn(P | Q) ⊆ dom(E), where G = G1 | G2.
By inductive hypothesis, E, env(G2) ỹ � P ′ : G ′

1 ≡ G1.
By Lemma 13, fn(G1) = fn(G ′

1).
By Lemma 14, E, env(G ′

1)̃x � Q : G2.
By (ProcG Par), E � P ′ | Q : G ′

1 | G2.
By definition of ≡ by (G Sub Par), G ≡ G ′

1 | G2.
The proof for (2) is symmetric.
(Struct Par Assoc). Suppose (P | Q) | R ≡ P | (Q | R).
By hypothesis of (1), E � (P | Q) | R : G.
By (ProcG Par), E, env(G2)̃z � P | Q : G1 and E, env(G1) � R : G2, fn((P |
Q) | R) ⊆ dom(E), and G = G1 | G2.
By (ProcG Par), E, env(G2)̃z , env(G4) ỹ � P : G3 and E, env(G2)̃z , env(G3)̃x �
Q : G4, fn(P | Q) ⊆ dom(E, env(G2)), and G1 = G3 | G4.
By Lemma 12, E, env(G4) ỹ , env(G2)̃z � P : G3 and E, env(G3)̃x , env(G2)̃z �
Q : G4.
By (ProcG Par), E, env(G3)̃x � Q | R : G4 | G2.
By (ProcG Par), E � P | (Q | R) : G3 | (G4 | G2).
By (G Sub Par Assoc), G = (G3 | G4) | G2 ≡ G3 | (G4 | G2).
The proof for (2) is similar.
(Struct Repl Unfold). Suppose !P ≡ P | !P .
By hypothesis of (1), E � !P : G.
By (ProcG Rep), E � P : G.
By Lemma 16, E, env(G) � !P : G and E, env(G) � P : G.
By (ProcG Par), E � P | !P : G | G.
By (G Sub Idem), G | G ≡ G.
By hypothesis of (2), E � P | !P : G.
By (ProcG Par), E, env(G2) � P : G1 and E, env(G1) � !P : G2, where
G = G1 | G2.
By (ProcG Rep), E, env(G1) � P : G2.
By Lemma 10, G1 = G2.
By Lemma 15, E � !P : G2.
By (G Sub Idem), G ≡ G2.
(Struct Res Par). Suppose new x:T ; (P | Q) ≡ P | new x:T ; Q .
By hypothesis, x /∈ fn(P).
By hypothesis of (1), E � new x:T ; (P | Q) : G.
By (ProcG Res), E, x:T � P | Q : G ′, where G = new x:T ; G ′.
By (ProcG Par), E, x:T, env(G2) ỹ � P : G1 and E, x:T, env(G1)̃x � Q : G2,
where G ′ = G1 | G2.
By (ProcG Res), E, env(G1)̃x � new x:T ; Q : G2.
Since x /∈ fn(P), by Lemma 11, E, env(G2) ỹ � P : G1.
By (ProcG Par), E � P | new x:T ; Q .

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 25, Publication date: August 2007.

A Type Discipline for Authorization Policies • Article 25 / 29

The proof for (2) is similar, using Lemma 16 instead of Lemma 11.
(Struct Res Res). Suppose new x1:T1; new x2:T2; P ≡ new x2:T2;
new x1:T1; P .
By hypothesis, x1 �= x2, x1 /∈ fn(T2), x2 /∈ fn(T1).
By (ProcG Res), E, x1:T1 � new x2:T2; P : G.
By (ProcG Res), E, x1:T1, x2:T2 � P : G.
Since x1 �= x2, x1 /∈ fn(T2), x2 /∈ fn(T1), by Lemma 12, E, x2:T2, x1:T1 � P : G.
By two applications of (ProcG Res), E � new x2:T2; , new x1:T1; P : G.
The proof for (2) is symmetric.

LEMMA 19. If E � P : G and P → P ′, then there exists a G ′ such that
E � P ′ : G ′ and G � G ′.

PROOF. The proof is by induction on the derivation of P → P ′.

(Red Comm). Suppose out a(M) | in a(x:T); P → P{M/x}.
By hypothesis of the lemma, E � out a(M) | in a(x:T); P : G.
By (ProcG Par), E � out a(M) : 0 and E � in a(x:T); P : 0, and G = 0 | 0
because the only rules applicable to the premises are (ProcG Output) or
(ProcG Output Un) for the first subterm, and (ProcG Input) or (ProcG Input
Un) for the second.
We distinguish two cases.

—If E � out a(M) : 0 is derived by (ProcG Output), then E � a : Ch(U)
and E � M : U , and by Lemma 9, E � in a(x:T); P : 0 is derived by
(ProcG Input), and T = U and E, x:U � P : G ′ for some G ′.
By Lemma 17, E � P{M/x} : G ′{M/x}.

—If E � out a(M) : 0 is derived by (ProcG Output Un), then E � a : Un
and E � M : Un, and by Lemma 9, E � in a(x:T); P : 0 is derived by
(ProcG Input Un), and T = Un and E, x:Un � P : G ′ for some G ′.
By Lemma 17, E, x:Un � P{M/x} : G ′{M/x}.

(Red Decrypt). Suppose decrypt {M }k as { y :T }k;P → P{M/ y}.
If E � decrypt {M }k as { y :T }k;P : G is derived by (ProcG Decrypt), then
G = 0, E � M : T , E � k : Key(T), and E, y :T � P : G ′.
By Lemma 17, E � P{M/ y} : G ′{M/ y}.
The case for rule (ProcG Decrypt Un) is similar.
(Red Split). Suppose split (M , N) as (x:T, y :U); P → P{M/x}{N/ y}.
If E � split (M , N) as (x:T, y :U); P : G is derived by (ProcG Split), then
G = 0, E � (M , N) : (x:T, U) and E, x:T, y :U � P : G ′.
By (Msg Pair), E � M : T and E � N : U {M/x}.
By Lemma 17, E, y :U {M/x} � P{M/x} : G ′{M/x}.
By Lemma 17, E � P{M/x}{N/ y} : G ′{M/x}{N/ y}.
The case for rule (ProcG Split Un) is similar.
(Red Match). Suppose match (M , N) as (M , y :U); P → P{N/ y}.
If E � match (M , N) as (M , y :U); P : G is derived by (ProcG Match), then
G = 0, E � (M , N) : (x:T, U), E � M : T and E, y :U {M/x} � P : G ′.
By (Msg Pair), E � N : U {M/x}.
By Lemma 17, E � P{N/ y} : G ′{N/ y}.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 25, Publication date: August 2007.

Article 25 / 30 • C. Fournet et al.

The case for rule (ProcG Match Un) is similar.
(Red Par). Suppose P | Q → P ′ | Q .
By hypothesis, P → P ′.
By hypothesis of the lemma, E � P | Q : G. By (ProcG Par), E, env(G2) �
P : G1, E, env(G1) � Q : G2, fn(P | Q) ⊆ dom(E), and G = G1 | G2.
By inductive hypothesis, E, env(G2) � P ′ : G ′, for some G ′ such that G1 �
G ′.
By Lemma 16, E, env(G ′) � Q : G2.
By (ProcG Par), E � P | Q : G ′ | G2.
By definition of (GSubPar), G1 | G2 � G ′ | G2.
(Red Res). Suppose new x:T ; P → new x:T ; P ′.
By hypothesis, P → P ′.
By hypothesis of the lemma, E � new x:T ; P : G.
By (ProcG Res), E, x:T � P : G ′ and G = new x:T ; G ′.
By inductive hypothesis, E, x:T � P ′ : G ′′ and G ′ � G ′′.
By (ProcG Res), E � new x:T ; P ′ : new x:T ; G ′′.
By (G Sub Res), (x:T)G ′ � (x:T)G ′′.
(Red Struct). Suppose P → P ′.
By hypothesis, P ≡ Q , Q → Q ′, Q ′ ≡ P ′.
By Lemma 18 on E � P : G, E � Q : G1, where G1 ≡ G.
By inductive hypothesis on E � Q : G1, E � Q ′ : G2 and G1 � G2.
By Lemma 18, E � P ′ : G3 ≡ G2.
By definition of ≡ and by (G Sub Trans), G � G3.

RESTATEMENT OF LEMMA 1. If E � P and either P ≡ P ′ or P → P ′, then
E � P ′.

PROOF. By definition of E � P and Lemmas 18 and 19.

B.3 Type Safety

We describe the proofs of opponent typability and of the main results of the
article concerning safety.

B.3.1 Properties of the Opponent. The following two lemmas are proved by
easy induction.

LEMMA 20. For any M, if fn(M) = {̃x}, then x̃:Un � M : Un.

LEMMA 21. For any opponent P, x̃:Ũn � P : G, where fn(P) ⊆ {̃x}.
RESTATEMENT OF LEMMA 2. For any opponent P, x̃:Ũn � P, where fn(P) ⊆ {̃x}.
PROOF. Follows directly from Lemmas 21 and 8.

B.3.2 Safety and Robust Safety.

LEMMA 22. If E � P : G and clauses(env(G)̃x) = {C1, . . . , Cn}, then there
exists a P ′ such that P ≡ new x̃:T̃ ; (C1 | . . . | Cn | P ′).

PROOF. By induction on the derivation of E � P : G.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 25, Publication date: August 2007.

A Type Discipline for Authorization Policies • Article 25 / 31

(ProcG Fact). Suppose E � C : C.
Process P = P ′ = C is in the required form.

(ProcG Res). Suppose E � new x:T ; P : new x:T ; G.
By hypothesis, E, x:T � P : G.
By inductive hypothesis, P ≡ new x̃:T̃ ; (C1 | . . . | Cn | P ′), where
clauses(env(G)̃x) = {C1, . . . , Cn}.
By (Struct Res), new x:T ; P ≡ new x:T, x̃:T̃ ; (C1 | . . . | Cn | P ′).
By definition, clauses(env(new x:T ; G)x, x̃) = {C1, . . . , Cn}.

(ProcG Rep). Suppose E � !P : G.
By hypothesis, E � P : G.
By inductive hypothesis, P ≡ new x̃:T̃ ; (C1 | . . . | Cn | P ′), where
clauses(env(G)̃x) = {C1, . . . , Cn}.
By (Struct Repl) and (Struct Res Par),
!P ≡ new x̃:T̃ ; (C1 | . . . | Cn | P ′) |!P ≡ new x̃:T̃ ; (C1 | . . . | Cn | (P ′ |!P)).

(ProcG Par). Suppose E � P | Q : G1 | G2.
By hypothesis, E, env(G2) � P : G1, E, env(G1) � Q : G2.
By inductive hypotheses, P ≡ new x̃:T̃ ; (C1 | . . . | Cn | P ′), where
clauses(env(G1)̃x) = {C1, . . . , Cn} and Q ≡ new ỹ :Ũ ; (C′

1 | . . . | C′
m | Q ′),

where
clauses(env(G2) ỹ) = {C′

1, . . . , C′
m}.

By α-conversion and commutativity,
P | Q ≡ new x̃:T̃ , ỹ :Ũ ; (C1 | . . . | Cn | C′

1 | . . . | C′
m | (P ′ | Q ′)).

By definition, clauses(env(G1 | G2)̃x, ỹ) = {C1, . . . , Cn, C′
1, . . . , C′

m}.
All the other cases are trivial, as G = 0, clauses(env(0)∅) = ∅, and P =

P ′.

RESTATEMENT OF THEOREM 2. If E � P and E is generative, then P is safe.

PROOF. We need to show that whenever P →∗
≡ new x̃:T̃ ; (expect C | P ′), we

can refactor P ′ so that P ′ ≡ new ỹ :Ũ ; (C1 | . . . | Cn | P ′′), and {C1, . . . , Cn} |= C,
with { ỹ} ∩ fn(C) = ∅.
By hypothesis, E � P .
By Lemmas 19 and 18, if P →∗

≡ new x̃:T̃ ; (expect C | P ′), then
E � new x̃:T̃ ; (expect C | P ′) : G, for some G.
This must follow from repeatedly applying (ProcG Res) from the premise that
E, x̃:T̃ � expect C | P ′ : G1, where G = new x̃:T̃ ; G1.
This must follow from (ProcG Par) and (ProcG Query), from the premises:
(i) E, x̃:T̃ , env(G1) ỹ � expect C : ∅; and
(ii) E, x̃:T̃ � P ′ : G1, where fn(expect C) = fn(C) ⊆ dom(E) and
clauses(E, x̃:T̃ , env(G1) ỹ) |= C, and { ỹ} ∩ fn(C) = ∅.
Assume without loss of generality that clauses(env(G1) ỹ) = {C1, . . . , Cn}.
By generativity of E and by definition, {C1, . . . , Cn} |= C.
By Lemma 22 on (ii), P ′ ≡ new ỹ :Ũ ; (C1 | . . . | Cn | P ′′).

RESTATEMENT OF THEOREM 3 If x̃:Ũn � P, then P is robustly safe.

PROOF. Consider an arbitrary opponent O, and let {̃z} = fn(O) ∪ {̃x}.
By hypothesis x̃:Ũn � P : G, for some G.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 25, Publication date: August 2007.

Article 25 / 32 • C. Fournet et al.

By Lemma 21, z̃:Ũn � O : G ′, for some G ′.
By Lemma 16, z̃:Ũn, env(G) � O : G ′ and z̃:Ũn, env(G ′) � P : G.
By (ProcG Par), z̃:Ũn � P | O : G | G ′.
By Theorem 2, P | O is safe.

C. ENCODINGS FOR PATTERNS AND DATALOG

In this section we introduce the formal definition of syntactic sugar. We show
that a derived typing rule is admissible. We then prove correctness and com-
pleteness of the implementation of Datalog. The results of this section assume
that we are using Datalog as the underlying authorization logic.

C.1 Syntactic Sugar

The syntactic sugar for input and decryption consists of a straightforward trans-
lation into the syntactic sugar for tuple matching. The definition of the latter
is given by induction on the length of tuple, by cases depending on whether the
first parameter is used for binding or for matching.

SYNTACTIC SUGAR: INPUT, DECRYPTION AND PATTERN-MATCHING

in M (M̃); P = in M (y :TyC(M)); tuple y as (M̃); P (S Input)
(where y �∈ fn(M̃) ∪ fn(P))

decrypt M as {Ñ }N ;P = decrypt M as { y :TyK (N)}N ;tuple y as (Ñ); P (S Decrypt)
(where y �∈ fn(M̃) ∪ fn(P))

tuple M as (z, M̃); P = split M as (z:TyL(M), y :TyR (M)); tuple y as (M̃); P (S Split)
(where y �∈ fn(M̃) ∪ fn(P) ∪ {z})
tuple M as (z); P = split (M , M) as (z:Ty(M), y :Ty(M)); P (S Split 0)
(where y �∈ fn(P) ∪ {z})
tuple M as (=N , Ñ); P = match M as (N , y :TyR (M)); tuple y as (Ñ); P (S Match)
(where y �∈ fn(M̃) ∪ fn(P))

tuple M as (=N); P = match (M , M) as (N , y :Ty(M)); P (S Match 0)
(where y �∈ fn(P))

When an environment E is fixed, the macro Ty[C/K /L/R](M) can be translated to T

if E � M : T ′ where T ′ is respectively T, Ch(T), Key(T), (x : T, U) or (x : U, T).

In the encoding of Datalog, each predicate of arity n corresponds to a channel
of arity n + 1 carrying a tuple of names of type Un, together with an ok token
guaranteeing that the predicate holds for all communication parameters. To
simplify the typing of the encoding, we derive a dedicated typing rule for this
very common case.

DERIVED TYPING RULE

(ProcG Input Der)
E � p : Tn, p E, ũ:Ũn, y : Ok(p(u1, . . . , un)) � P : G

E � in p(u1, . . . , un, =ok); P : 0

where ũ are the ui occurring as input patterns; y �∈ fn(P).

LEMMA 23. Rule (ProcG Input Der) is admissible.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 25, Publication date: August 2007.

A Type Discipline for Authorization Policies • Article 25 / 33

PROOF. We show that if E � p : Tn, p and E, ũ:Ũn, y : Ok(p(u1, . . . , un)) �
P : G, then E � in p(u1, . . . , un, =ok); P : 0.
By (S Input), in p(u1, . . . , un, =ok); P is translated as
in p(y :Ty(p)); tuple y as (u1, . . . , un, =ok); P .
By definition of encoding, Tn, p = Ch(u1:Un, . . . , un:Un, Ok(p(u1, . . . , un))).
We can conclude by (ProcG Input) if we can show that
E, y :(u1:Un, . . . , un:Un, Ok(p(u1, . . . , un))) � tuple y as (u1, . . . , un, =ok); P : 0.
We prove this by induction on the number of parameters left to parse i.

—(i = 0): We need to show that E, y :Ok(p(u1, . . . , un)) � tuple y as (=ok); P :
0.
By (S Match 0), tuple y as (=ok); P = match (y , y) as (ok, y : Ty(y)); P .
By hypothesis, E, ũ:Ũn, y : Ok(p(u1, . . . , un)) � P : G.
By (ProcG Match) and Lemma 16 we conclude.

—(i = j + 1): We need to show that E, y :(un−i+1:Un, . . . , un:Un,
Ok(p(u1, . . . , un))) � tuple y as (un−i+1, . . . , un, =ok); P : 0.
We split the proof in two cases, depending on un−i+1.
—(un−i+1 = un−i+1): By (S Split), tuple y as (un−i+1, . . . , un, =ok); P =

split y as (un−i+1:TyL(y), y :TyR(y)); tuple y as (un− j+1 . . . , un, =ok); P .
By definition, TyR(y) = (un− j+1:Un, . . . , un:Un, Ok(p(u1, . . . , un))) and
TyL(y) = Un.
By (ProcG Split) and by the inductive hypothesis, we conclude.

—(un−i+1 = =un−i+1): similar to the previous case, using (S Match) and
(ProcG Match) instead of (S Split) and (ProcG Split).

C.2 Correctness and Completeness

In this section we show that the encoding of Datalog is both correct and com-
plete. It is correct in the sense that if we can derive a fact F in the encoding of
a Datalog program S ([[S]] ⇓F), then the we can also derive it in the original
program (S |= F). It is complete in the sense that if we can derive a fact in
Datalog (S |= F), then we can also derive it in the encoding ([[S]] ⇓F).

PREDICATES OF A DATALOG PROGRAM: pred(S)

pred(∅) = ∅ pred({C} ∪ S) = pred(C) ∪ pred(S) pred(p(u1, . . . , un)) = {pn}
pred(L1, . . . , Ln) = ⋃

i∈1..n pred(Li) pred(L0 :− L̃) = pred(L0) ∪ pred(L̃)

Notation: L̃ = L1, . . . , Ln

EXTRACTING BINDINGS FROM LITERALS: env�(L1, . . . , Ln)

env�∪fv (Ln−1)(L1, . . . , Ln) = env�(L1, . . . , Ln−1), env�∪fv (Ln−1)(Ln)
env�(p(u1, . . . , un)) = env�(u1, . . . , un), y :Ok(p(u1, . . . , un)) (where y is fresh)
env�(u1, . . . , un) = env�(u1, . . . , un−1), env�∪fv (u1,...,un−1)(un)
env�(X) = X :Un if X �∈ � env�(X) = ε if X ∈ � env�(M) = ε

The next two lemmas show that any process obtained by encoding a Datalog
program, in parallel with the clauses of the program itself, is typable in an
environment formed according to the rules of the encoding.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 25, Publication date: August 2007.

Article 25 / 34 • C. Fournet et al.

LEMMA 24. Consider a clause C = L :− Lm, . . . , L1, and let p̃n = pred(C)
and fn(C) ⊆ { ỹ}. Let E = ỹ :Ũn, p̃n:T̃n, p. We have E, C � [[C]] : 0.

PROOF. Let �m = ∅ and �i = �i+1 ∪ fv (Li+1). By induction on the number
of literals i that remain to be considered, we show that

E, L :− Lm, . . . , L1, env�i+1 (Lm, . . . , Li+1) � [[Li, . . . , L1]]�i [[[L]]+] : 0.

—i = 0: E, C, env�1 (Lm, . . . , L1) � [[L]]+ : 0 easily follows from (ProcG Output)
and (Infer Fact).

—i = j + 1: We are to show that E, C, env�i+1 (Lm, . . . , Li+1) � [[Li, L j , . . . ,
L1]]�i [[[L]]+] : 0.
Suppose without loss of generality that Li = p(u1, . . . , uh).
By definition of encoding,
[[Li, L j , . . . , L1]]�i [[[L]]+] = in p(u1, . . . , uh, =ok); [[L j , . . . , L1]]�i∪fv (Li)[[[L]]+].
By definition of � j , � j = �i ∪ fv (Li).
By inductive hypothesis, E, C, env�i (Lm, . . . , Li) � [[L j , . . . , L1]]� j [[[L]]+] : 0.
By (ProcG Input Der),
E, C, env�i+1 (Lm, . . . , Li+1) � in p(u1, . . . , uh, =ok); [[L j , . . . , L1]]� j [[[L]]+] : 0.

By definition of encoding and by (ProcG Rep) we conclude.

RESTATEMENT OF LEMMA 3. Let S be a Datalog program using predicates p̃n

and names ỹ with fn(S) ⊆ { ỹ}. Let E = ỹ :Ũn, p̃n:T̃n, p. We have E � S | [[S]].

PROOF. By induction on the structure of S.

—(S = ∅): We conclude with ∅ � 0.
—(S = S′ ∪ {C}): By definition of encoding, we need to show that E � S′ | [[S′]] |

C | [[C]].
By inductive hypothesis and weakening, we have E, C � S′ | [[S′]].
By Lemma 24 and weakening, E, S′, C � [[C]] : 0.
By (ProcG Fact) and weakening, E, S′ � C : C.
By (ProcG Par), E, S′ � C | [[C]] : C.
By (ProcG Par) and weakening, we conclude.

LEMMA 25. Let L = p(u1, . . . , un) be a Datalog literal, let σ, ρ be substitutions
(with disjoint domains) of messages for Datalog variables, and let � be a set of
Datalog variables such that dom(σ) = �. Then, ([[L]]�[P])σ | [[Lσρ]]+ →n+1

Pσρ.

PROOF. By induction on the arity n of the predicate p and by definition of
syntactic sugar, following the structure of the proof of Lemma 23.

LEMMA 26. Let C = L0 :− L1, . . . , Ln be a Datalog clause, and let σ be a
substitution of messages for Datalog variables such that all the Liσ are ground
facts. There exists a process P such that [[C]] | [[L1σ]]+ | . . . | [[Lnσ]]+ →∗

≡ P |
([[L0]]+)σ .

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 25, Publication date: August 2007.

A Type Discipline for Authorization Policies • Article 25 / 35

PROOF. By definition of encoding,
[[C]] | [[L1σ]]+ | . . . | [[Lnσ]]+ ≡ [[C]] | [[L1, . . . , Ln]]∅[[[L0]]+] | [[L1σ]]+ | . . . |
[[Lnσ]]+. We show by induction on n that ([[L1, . . . , Ln]]�[[[L0]]+])σ | [[L1σρ]]+ |
. . . | [[Lnσρ]]+ →∗

≡ [[L0]]+σρ, where dom(σ) = �, which implies the thesis.

—(n = 0): By hypothesis, C is a ground fact.
By definition of encoding, ([[ε]]�[C])σ = ([[C]]+)σ and we conclude with ρ = ∅.

—(n = m + 1): Suppose without loss of generality that Lm+1 = p(u1, . . . , uh).
By definition of encoding, [[Lm+1, L1, . . . , Lm]]�[[[L0]]+] = Q , where
Q = in p(u1, . . . , uh, =ok); [[L1, . . . , Lm]]�∪fv (Lm+1)[[[L0]]+].
By Lemma 25, Qσ | [[L1σρ]]+ | . . . | [[Lmσρ]]+ | [[Lm+1σρ]]+ →h+1

([[L1, . . . , Lm]]�∪fv (Lm+1)[[[L0]]+])σρ | [[L1σρ]]+ | . . . | [[Lmσρ]]+,
where dom(ρ) = fv (Lm+1).
By inductive hypothesis,
([[L1, . . . , Lm]]�∪fv (Lm+1)[[[L0]]+])σρ | [[L1σρ]]+ | . . . | [[Lmσρ]]+ →∗

≡
[[L0]]+σρ.

The next lemma shows that an encoded program is not consumed by reduc-
tions.

LEMMA 27. If [[S]] →∗
≡ P, then there exists P ′ such that P ≡ [[S]] | P ′.

PROOF. By definition of encoding, structural congruence, and reduction.

Finally, we can show correctness and completeness for the encoding.
RESTATEMENT OF THEOREM 4. Let S be a Datalog program and F a fact. We

have S |= F if and only if [[S]] ⇓F .

PROOF.
(⇒) By induction on the depth of the derivation tree for S |= F . The base case is

by definition of encoding and by definition of ⇓. The inductive case follows
by Lemmas 27 and 26, and by definition of ⇓.

(⇐) By Lemma 3, there exists a generative environment E such that E � S |
[[S]].
By definition of ⇓, ∃P.[[S]] →∗

≡ P | [[F]]+.
By Lemma 1, E � S | P | [[F]]+. By reasoning on the typing rules, since
[[S]] contains no statements and the subterm [[F]]+ is well typed, it must
be the case that S |= F .

ACKNOWLEDGMENTS

Karthikeyan Bhargavan contributed to several discussions at the start of this
project, and commented on a draft of this article. Martı́n Abadi, Nick Benton,
and the anonymous conference reviewers made useful suggestions.

REFERENCES

ABADI, M. 1999. Secrecy by typing in security protocols. J. ACM 46, 5 (Sept.), 749–786.
ABADI, M. 1998. On SDSI’s linked local name spaces. J. Comput. Security 6, 1-2, 3–21.
ABADI, M. AND GORDON, A. D. 1999. A calculus for cryptographic protocols: The spi calculus. Inf.

Comput. 148, 1–70.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 25, Publication date: August 2007.

Article 25 / 36 • C. Fournet et al.

ABADI, M., BURROWS, M., LAMPSON, B., AND PLOTKIN, G. 1993. A calculus for access control in dis-
tributed systems. ACM Trans. Program. Lang. Syst. 15, 4, 706–734.

BECKER, M. Y. AND SEWELL, P. 2004. Cassandra: Flexible trust management, applied to elec-
tronic health records. In Proceedings of the 17th IEEE Computer Security Foundations Workshop
(CSFW). 139–154.

BLANCHET, B. 2002. From secrecy to authenticity in security protocols. In Proceedings of the 9th
International Static Analysis Symposium (SAS). Lecture Notes in Computer Science, vol. 2477.
Springer, 342–359.

BLAZE, M., FEIGENBAUM, J., AND LACY, J. 1996. Decentralized trust management. In Proceedings
of the IEEE 17th Symposium on Research in Security and Privacy. 164–173.

BRAGHIN, C., GORLA, D., AND SASSONE, V. 2004. A distributed calculus for role-based access con-
trol. In Proceedings of the 17th IEEE Computer Security Foundations Workshop (CSFW). 48–
60.

BUGLIESI, M., CASTAGNA, G., AND CRAFA, S. 2004a. Access control for mobile agents: The calculus
of boxed ambients. ACM Trans. Program. Lang. Syst. 26, 1 (Jan.), 57–124.

BUGLIESI, M., COLAZZO, D., AND CRAFA, S. 2004b. Type based discretionary access control. In Pro-
ceedings of the International Conference on Concurrency Theory (CONCUR). Lecture Notes in
Computer Science, vol. 3170. Springer, 225–239.

CERI, S., GOTTLOB, G., AND TANCA, L. 1989. What you always wanted to know about Datalog (and
never dared to ask). IEEE Trans. Knowl. Data Eng. 1, 1, 146–166.

CONTENTGUARD. 2002. XrML 2.0 technical overview. http://www.xrml.org/.
DE NICOLA, R., FERRARI, G., AND PUGLIESE, R. 2000. Programming access control: The KLAIM

experience. In Proceedings of the International Conference on Concurrency Theory (CONCUR).
Lecture Notes in Computer Science, vol. 1877. Springer, 48–65.

DETREVILLE, J. 2002. Binder, a logic-based security language. In Proceedings of the IEEE Com-
puter Society Symposium on Research in Security and Privacy. 105–113.

DOLEV, D. AND YAO, A. 1983. On the security of public key protocols. IEEE Trans. Inf. Theory IT-
29, 2, 198–208.

DUGGAN, D. 2002. Cryptographic types. In Proceedings of the 15th IEEE Computer Security Foun-
dations Workshop. IEEE Computer Society Press, 238–252.

FOURNET, C., GORDON, A. D., AND MAFFEIS, S. 2005a. A type discipline for authorization policies.
Tech. Rep. MSR–TR–2005–01, Microsoft Research.

FOURNET, C., GORDON, A. D., AND MAFFEIS, S. 2005b. A type discipline for authorization policies.
In Proceedings of the 14th European Symposium on Programming (ESOP). Lecture Notes in
Computer Science, vol. 3444. Springer, 141–156.

GORDON, A. D. AND JEFFREY, A. 2005. Secrecy despite compromise: Types, cryptography, and the
pi-calculus. In Proceedings of the International Conference on Concurrency Theory (CONCUR).
Lecture Notes in Computer Science, vol. 3653. Springer, 186–201.

GORDON, A. D. AND JEFFREY, A. 2003a. Authenticity by typing for security protocols. J. Comput.
Security 11, 4, 451–521.

GORDON, A. D. AND JEFFREY, A. 2003b. Typing correspondence assertions for communication pro-
tocols. Theor. Comput. Sci. 300, 379–409.

GORDON, A. D. AND JEFFREY, A. 2002a. Cryptyc: Cryptographic protocol type checker.
http://cryptyc.cs.depaul.edu/.

GORDON, A. D. AND JEFFREY, A. 2002b. Typing one-to-one and one-to-many correspondences in
security protocols. In Proceedings of the Conference on Software Security, Theories and Systems.
Lecture Notes in Computer Science, vol. 2609. Springer, 270–282.

GUELEV, D. P., RYAN, M. D., AND SCHOBBENS, P.-Y. 2004. Model-Checking access control policies.
In Proceedings of the 7th Information Security Conference (ISC). Lecture Notes in Computer
Science, vol. 3225. Springer.

GUTTMAN, J. D., THAYER, F. J., CARLSON, J. A., HERZOG, J. C., RAMSDELL, J. D., AND SNIFFEN, B. T.
2004. Trust management in strand spaces: A rely-guarantee method. In Proceedings of the
13th European Symposium on Programming (ESOP). Lecture Notes in Computer Science, vol.
2986. Springer, 340–354.

JIM, T. 2001. SD3: A trust management system with certified evaluation. In Proceedings of the
IEEE Computer Society Symposium on Research in Security and Privacy. 106–115.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 25, Publication date: August 2007.

A Type Discipline for Authorization Policies • Article 25 / 37

JONES, A. K. AND LISKOV, B. H. 1978. A language extension for expressing constraints on data
access. Commun. ACM 21, 5, 358–367.

LAMPSON, B. 1971. Protection. In Proceedings of the 5th Princeton Conference on Information
Sciences and Systems. 437–443. Reprinted in ACM Oper. Syst. Rev. 8, 1, 18–24, 1974.

LI, N. AND MITCHELL, J. C. 2003. Understanding SPKI/SDSI using first-order logic. In Proceedings
of the 16th IEEE Computer Security Foundation Workshop (CSFW). 89–103.

MAFFEI, M. 2006. Dynamic typing for security protocols. Ph.D. thesis, Università Ca’ Foscari
Venezia.

MARTIN-LÖF, P. 1984. Intuitionistic Type Theory. Bibliopolis.
MILNER, R. 1999. Communicating and Mobile Systems: the π -Calculus. Cambridge University

Press, New York.
MYERS, A. C. AND LISKOV, B. 2000. Protecting privacy using the decentralized label model. ACM

Trans. Softw. Eng. Methodol. 9, 4, 410–442.
PIERCE, B. AND SANGIORGI, D. 1996. Typing and subtyping for mobile processes. Math. Structures

Comput. Sci. 6, 5, 409–454.
POTTIER, F. 2002. A simple view of type-secure information flow in the π -calculus. In Proceedings

of the 15th IEEE Computer Security Foundations Workshop (CSFW). IEEE Computer Society
Press, 320–330.

SAGIV, Y. 1987. Optimizing Datalog programs. In Proceedings of the 6th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems. ACM Press, 349–362.

SAMARATI, P. AND DE CAPITANI DI VIMERCATI, S. 2001. Access control: Policies, models, and mech-
anisms. In IFIP WG 107 International School on Foundations of Security Analysis and Design
(FOSAD 2000). Lecture Notes in Computer Science, vol. 2171. Springer, 137–196.

WOO, T. AND LAM, S. 1993. A semantic model for authentication protocols. In Proceedings of the
IEEE Computer Society Symposium on Research in Security and Privacy. 178–194.

Received September 2005; accepted January 2007

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 25, Publication date: August 2007.

