
6 IEEE TRANSACTIONS ON SOFM'ARE ENGINEERING, VOL. 22, NO. 1, JANUARY 1996

Prudent Engineering Practice
for Cryptographic Protocols

Martin Abadi and Roger Needham

Abstract-We present principles for designing cryptographic protocols. The principles are neither necessary nor sufficient for
correctness. They are however helpful, in that adherence to them would have prevented a number of published errors.
Our principles are informal guidelines; they complement formal methods, but do not assume them. In order to demonstrate the
actual applicability of these guidelines, we discuss some instructive examples from the literature.

Index Terms-Cryptography, authentication, cryptographic protocols, authentication protocols, security.

+
1 INTRODUCTION

RYPTOGRAPHIC protocols, as used in distributed sys-
tems for authentication and related purposes, are

prone to design errors of every kind. Over time, various
formalisms have been proposed for investigating and ana-
lyzing protocols to see whether they contain blunders.
(Liebl's bibliography [13] includes references to protocols
and formalisms.) Although sometimes useful, these formal-
isms do not of themselves suggest design rules; they are not
directly beneficial in preventing trouble.

We present principles for the design of cryptographic
protocols. The principles are not necessary for correctness,
nor are they sufficient. They are, however, helpful, in that
adherence to them would have simplified protocols, and
prevented a number of published confusions and mistakes.

We arrived at our principles by noticing some common
features among protocols that are difficult to analyze. If
these features are avoided, it becomes less necessary to re-
sort to formal tools-and also easier to do so if there is good
reason to. The principles themselves are informal guide-
lines, and useful independently of any logic.

We illustrate the principles with examples. In order to
demonstrate the actual applicability of our guidelines, we
draw these examples from the literature. Some of the oddities
and errors that we analyze have been documented previ-
ously (in particular, in [4]). Other examples are new: protocols
by Denning and Sacco [6], Hickman (Netscape) [ll], [lo], Lu
and Sundareshan [14], Varadharajan, Allen, and Black 1311,
and Woo and Lam [34]. We believe they are all instructive.

Generally, we pick examples from the authentication lit-
erature, but the principles are applicable elsewhere, for ex-
ample to electronic-cash protocols (e.g., [17]). We focus on

* M . Abadi is with the Systems Research Center, Digital Equipment Corpo-
ration, 130 Lyfton Ave., Palo Alto, C A 94301.
E-mail: ma@pa.dec.com.

Pembroke Street, Cambridge CB2 3QG, UK.
E-mail: roger.needham@cl.cam.ac.uk.

0 R. Needham is with the University of Cambridge Computer Luboratoy,

Manuscript received November 1993; revised April 1995.
A preliminary version of this paper appeared in the Proceedings of the 1994
IEEE Computer Society Symposium on Research in Securiiy and Privacy.
For information on obtaining reprints of this article, please send e-mail to:
transactions@computer.org, and reference IEEECS Log Number S95062.

traditional cryptography, and on protocols of the sort com-
mody implemented with the DES [20] and the RSA [28]
algorithms. In particular, we do not consider the subtleties
of interactive schemes for signatures (e.g., [7]). Moreover,
we do not discuss the choice of cryptographic mechanisms
with adequate protection properties, the correct implemen-
tation of cryptographic primitives, or their appropriate use;
these subjects are discussed elsewhere (e.g., [32], 1191).

Throughout, we concentrate on the simple principles
with the largest potential applicability and payoff. Admit-
tedly, the literature is full of ingenious protocols and at-
tacks. We do not attempt to formulate the laws that underly
this ingenuity, and perhaps it is not necessary to do so. We
hope that our simple principles and examples will contrib-
ute to the engineering of robust cryptographic protocols.

2 BASICS

A protocol, for present purposes, is a set of rules or conven-
tions defining an exchange of messages between a set of
two or more partners. These partners are users, processes,
or machines, which we will generically refer to as princi-
pals. In the cryptographic protocols we consider here, the
whole or part of some or all of the messages is encrypted.
We interpret the term encryption fairly broadly, applying it
for example to signature operations. For present purposes,
encryption and decryption are defined as key-dependent
transformations of a message which may be inverted only
by using a definite key; the keys used for encryption and
decryption are the same or different, depending on the
cryptographic algorithm used.

We find two basic, overarching principles for the design
of secure cryptographic protocols. One principle is con-
cerned with the content of a message and the other with the
circumstances in which it will be acted upon:

1) Every message should say what it means-its inter-
pretation should depend only on its content.

2) The conditions for a message to be acted upon should
be clearly set out so that someone reviewing a design
may see whether they are acceptable or not.

0098-5589/96$05.00 01996 IEEE

mailto:ma@pa.dec.com
mailto:roger.needham@cl.cam.ac.uk
mailto:transactions@computer.org

ABADI AND NEEDHAM: PRUDENT ENGINEERING PRACTICE FOR CRYPTOGRAPHIC PROTOCOLS 7

Next we explain these principles. They leald to other, more
specific recommendations, which we discuss in the subse-
quent sections.

2.1 Explicit Communication

PRINCIPLE 1
In full, our first basic principle is:

Every message should say what it means: The inter-
pretation of the message should depend only on its
content. It should be possible to write down a straight-
forward English sentence describing ihe content-
though if there is a suitable formalism available, that is
good too.
For example, an authentication server S might send a

message whose meaning may be expressed thus: “After
receiving bit-pattern P, S sends to A a session key K in-
tended to be good for conversation with B.” All elements of
this meaning should be explicitly represented in the mes-
sage, so that a recipient can recover the meaning without
any context. In particular, if any of P, S, A, 13, or K are left to
be inferred from context, it may be possible for one message
to be used deceitfully in place of another.

This principle is not completely original. In 141, we rec-
ommend the use of a logical notation in generating and
describing protocols-essentially proposing a method to
follow the principle. Establishing the correspondence be-
tween the logical protocol and its concrete implementation
can be a simple matter of parsing, as for example in 1331.
Although a precise comparison of informal ideas is difficult,
we also find an affinity with Boyd and Mao’s proposal that
protocols should be robust in the sense that “authentication
of any message in the protocol depends only on informa-
tion contained in the message itself or already in the pos-
session of the recipient” [3]. An operational variant on this
theme appears in the work of Woo and Lam, who say that a
protocol is a full information protocol if ”its initiator and
responder always include in their outgoing encrypted mes-
sages all the information they have gathered” 1351.

2.2 Appropriate Action
For a message to be acted upon, it does not suffice that the
message be understood; a variety of other conditions have
to hold too. These conditions often consist of what may be
regarded informally as statements of trust, though this an-
thropomorphic notion should be used with care.

Statements of trust cannot be wrong though they may be
considered inappropriate. For example, if someone believes
that choosing session keys should be done by a suitably
trusted server rather than by one of the participants in a
session, then he will not wish to use a protocol such as the
Wide-mouthed-frog protocol [4].

PRINCIPLE 2

In general, we have:

The conditions for a message to be acted upon should
be clearly set out so that someone reviewing a design
may see whether they are acceptable or not.

2.3 Secrecy
The secrecy of certain pieces of information is essential to
the functioning of cryptographic protocols. Obviously, a
protocol should not publicize the cryptographic keys used
for communicating sensitive data. Further, it is important to
know how long a piece of information needs to remain se-
cret, and to protect it accordingly.

None of our principles makes these points explicitly.
Rather, all of our principles warn against mistakes that of-
ten imply the loss of secrecy, integrity, and authenticity.
Some of the examples clarify how the principles relate to
the need for secrecy.

There may be more to say about secrecy guidelines for
cryptographic protocols, but these are outside the scope of
the present paper.

2.4 Examples and Other Principles
Below we discuss many concrete examples where errors
would have been avoided by using our two basic princi-
ples. We also introduce other principles, some of them
corollaries of the basic ones. In particular, we recommend:

Be clear on how encryption is used, and on the
meaning of encryption.
Be clear on how the timeliness of messages is proved, and
on the meaning of temporal information in messages.

Hopefully, the two basic principles will encourage a certain
lucidity in the design of cryptographic protocols, and
thereby make it easier to follow the other principles.

3 NOTATION

We adopt notation common in the literature. That notation
is not quite uniform and, in the examples, we make com-
promises between uniformity of this paper and faithfulness
to the original notation.

In this paper, the symbols A and B often represent arbi-
trary principals, S represents a server, T a timestamp, N a
nonce (a quantity generated for the purpose of being re-
cent), K a key, and K’ its inverse. In symmetric cryptosys-
tems such as DES, K and K’ are always equal. For asym-
metric cryptosystems such as RSA, we assume for simplic-
ity that the inversion operation is an involution (so K-’-’
equals K); we tend to use K’ for the secret part and K for the
public part of a key pair (K, K’). We write (X}, to represent
X encrypted under K; anyone who knows {X), and the in-
verse of K can obtain X. If K is secret, we may refer to [XI,
as a signed message, and to the encryption operation as a
signature.

For example,

Message 4 B -+ A : {T, + l}
k b

describes the fourth message in a protocol; in this message,
B sends to A the timestamp T, incremented by 1, under the
key Kab. In this example, the subscript a in T, is a hint that A
first generated T,; the subscript ab in Kab is a hint that Kab is
intended for communication between A and B. Similarly,
we may write K,, for A’s public key.

a IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 1, JANUARY 1996

The typical notation ”Message 4 B -+ A : X“ needs to be
interpreted with some care. The messages constituting a
cryptographic protocol are not sent in a benign environ-
ment (in which they would frequently be unnecessary) but
in one with error, corruption, loss, and delay. Accordingly
we may read “Message 4 B -+ A : X” only as “the protocol
designer intended X to be originated by B as the fourth
message in the protocol, and for it to be received by A.”
There is nothing in the environment to guarantee that mes-
sages are made in numerical order by the principals indi-
cated, received in numerical order or at all by the principals
indicated, or received solely by the principals indicated. If
assurance is needed about any of these matters it must be
provided as part of the function of the protocol.

4 NAMING

The most immediate instance of Principle 1 prescribes being
explicit about the names of principals:

PRINCIPLE 3
If the identity of a principal is essential to the meaning
of a message, it is prudent to mention the principal’s
name explicitly in the message.

The names relevant for a message can sometimes be de-
duced from other data and from what encryption keys have
been applied. However, when this information cannot be
deduced, its omission is a blunder with serious consequences.

The principle is obvious and simple, yet it is commonly
ignored. We give several examples of fairly different natures.

EXAMPLE 3.1. In [6], Denning and Sacco propose a protocol
for key exchange based on an asymmetric cryptosystem.
In the first two messages of this protocol, A obtains cer-
tificates CA and CB that connect A and B with their pub-
lic keys K, and K,, respectively. The exact form of C A and
CB is not important for our purposes. The interesting
part of the protocol is Message 3. There, A sends to B a
key Kab for subsequent encrypted communication be-
tween A and B, with a timestamp T,. The protocol is:

Message 1 A + S: A,B
Message 2 S -+ A : CA, CB

This third message is encrypted for both secrecy and
authenticity. When A sends this message to B, it is impor-
tant that no other principal obtain K,, the use of Kb pro-
vides this guarantee. Furthermore, the intent is that,
when B receives the message, B should know that A sent
it (because of the signature with K;’). Finally, B should
know that the message was intended for B (because of
the use of K,).

Unfortunately nothing provides this final guarantee,
with dramatic consequences. Any principal B with which
A opens communication can pretend to a third party C
that it actually is A, for the duration of validity of the
timestamp. For simplicity, we omit the exchanges which
yield the public certificates C A , CB, and CC. When A

opens communication with B,

Message 3

B removes the outer encryption, re-encrypts with Kc,
sends:

and C will believe that the message is from A. In particu-
lar, C might send sensitive information under Kab, and B
may see it when perhaps only A should.

The intended meaning of Message 3 is roughly ”At time
Ta, A says that Ka, is a good key for communication be-
tween A and B.” Any adequate format for Message 3
should contain all of these elements expressly or by im-
plication. The obvious one is:

Message 3 A + B : CA, CB, {{A, B, Kub, Tu}Kil}
K b

although the name A might be deducible from Kil . It is
important that this format must not be used for anything

U

EXAMPLE 3.2. En [34], Woo and Lam present an authentica-
tion protocol based on symmetric-key cryptography.
When B wants to check that it is in A’s presence, it runs:

else; we return to this point in Section 7.

Message 1 A + €3: A
Message 2 B + A : N ,

Message 3 A + B : {N,}
Km

Message4 B

Message5 S + B : { N b }
K,

Here Nb is a nonce, S is a server, and Kos and K, are keys
that A and B share with S. Basically, A claims his identity
(Message 1); B provides a nonce challenge (Message 2); A
returns this challenge encrypted under K, (Message 3); B
passes this message on to S for verification, bound with
A’s name under Kbs (Message 4); S decrypts using A’s key
and re-encrypts under B’s (Message 5). If S replies
{NbJK,, then B should be convinced that A has re-
sponded to the challenge N,.
The protocol is flawed. The connection between the mes-
sages is not sufficient. In particular, nothing connects B’s
query to S with S’s reply. The protocol is therefore vul-
nerable to an attack, as follows. Suppose that B is willing
to talk to A and to C roughly at the same time; A may be
off-line. Then C can impersonate A:

Message 1 C + B : A
Message 1’ C + B.: C
Message 2 B + A : N ,

Message 2’ B + C : NL
Message 3 C + B : {N }

K,

Message 3’ C + B : {N } K,

ABADl AND NEEDHAM: PRUDENT ENGINEERING PRACTICE FOR CRYPTOGRAPHIC PROTOCOLS 9

Message 4

Message 4' B -+ S: (c, {Nb}K,},y,

Message 5 S + B : {Ni}
K ,

Message 5' S -+ B : {Nb}K,8
where Ni is the result of decrypting {Nb 1, using Kas. In
Messages 1 and l', C tells B that both A and C want to es-
tablish a connection. In Messages 2 and 2', B replies with
two challenges; C receives one normally, and captures the
other one, which was destined to A's address. In Mes-
sages 3 and 3', C replies to both challenges. On A's be-
half, it can send anything. On its own behalf, C responds
to the challenge intended for A. In Messages 4 and 4, B
consults S about the two responses. Messages 5 and 5'
are the replies from S. One of these replies matches
nothing, while the other one contains the challenge in-
tended for A. On the basis of these replies, then, B must
believe that A is present.

The existence of this attack demonstrates that the mes-
sages in the protocol are not sufficiently explicit about
the identity of the principals in question. (After we con-
tacted them, Woo and Lam came to the same conclusion
[35].) Reasoning as in Example 3.1, we may remove the
flaw, by changing the last message of the protocol to

Message 5 S -+ B : {A, Nb}l:b

A further change is discussed in Example 6.2. 0
EXAMPLE 3.3. A more dramatic example is provided by the

basic Internet protocol of Lu and Sundareshan [14]. This
protocol is rather complicated for a detailed description.
Its intent is to allow two principals A and B to obtain a
session key, with the mediation of loical servers and
gateways.

On the other hand, the fundamental flaw of the protocol
is rather simple. One immediately sees that neither A nor
B ever receives a message that contains the other's name.
Obviously, this opens the door for confusions between
different connections. It also allows some easy attacks to
defeat the protocol. After we contacted them, the authors
published a correction [15], where names appear in mes-

EXAMPLE 3.4. The SSL protocol [lo] from Netscape allows a
Web server and a client to exchange session keys. An
early version of the SSL protocol [ll] includes the follow-
ing messages:

sages explicitly. 0

Message 1 A -+ B :

Message 2 B -+ A : { N b }
Ka6

Message 3 A -+ B :

In the first message, the client A sends a isession key Kab to
the server B, under B's public key. Then B produces a

challenge Nb, which A signs and returns along with a
certificate CA. These three messages are the ones relevant
for client authentication; we omit other messages.

This version of the SSL protocol does not in fact provide
client authentication as was intended. We leave the con-
struction of an attack as an exercise for the reader. This
flaw can be repaired by making the third message more
explicit:

Message 3 A -+ B : (CA, {A, B, Kab, Nb} }
K,' Kab

The current version of the SSL protocol corrects this and
other flaws that we found. 0

5 ENCRYPTION

The next group of principles and examples concern encryp-
tion. They are generally related to Principle 1, since they
concern what encryption means and what it does not mean.

5.1 The Uses of Encryption
As the examples below illustrate, encryption is used for a
variety of purposes in the present context [21].

Encryption is sometimes used for the preservation of
confidentiality. In such cases it is assumed that only
intended recipients know the key needed to recover a
message. When a principal knows K' and sees {XIK, it
may deduce that X was intended for a principal who
knows K'; and it may even deduce that X was in-
tended for itself, given additional information.
Encryption is sometimes used to guarantee authentic-
ity. In such cases it is assumed that only the proper
sender knows the key used to encrypt a message. The
encryption clearly contributes to the overall meaning
of the message. The extreme situation is that where a
principal shows that a key is known by encrypting a
null message or a timestamp.
While encryption guarantees confidentiality and
authenticity, it also serves in binding together the
parts of a message: receiving { X , Y) , is not always the
same as receiving {XIK and {YJK When encryption is
used only to bind parts of a message, signature is suf-
ficient. The meaning attached to this binding is rather
protocol-dependent, and often subtle.
Finally, encryption can serve in producing random
numbers. There is a vast theory that explains the rela-
tion between one-way functions and random-number
generators. At the level of abstraction that we con-
sider, one typically assumes that random numbers are
available without examining how they are con-
structed (but see Example 7.1).

There is considerable confusion about the uses and
meanings of encryption. If the cryptography is asymmetric
it may be obvious what is intended; if the cryptography is
symmetric, it is generally not.

10 IEEETRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 1, JANUARY 1996

PRINCIPLE 4
Be clear about why encryption is being done. Encryp-
tion is not wholly cheap, and not asking precisely why
it is being done can lead to redundancy. Encryption is
not synonymous with security, and its improper use
can lead to errors.

EXAMPLE 4.1. The Kerberos protocol [18] is based on the
original Needham-Schroeder protocol [22], but makes
use of timestamps as nonces in order to remove flaws
demonstrated by Denning and Sacco [6] and in order to
reduce the total number of messages required. Like the
Needham-Schroeder protocol on which it is based, the
Kerberos protocol relies on symmetric-key cryptography.
A slightly simplified version of the protocol goes:
Message 1 A 4 S: A,B

Message 2 s + A : (q, L, K ~ ~ , B, {T~, L, K u b , A) }
'6s K m

Message3 A -+ B : {T,,L,K,,,A} , { A , T }
K6s K,

Message 4 B + A : {Tu + l}
Ka6

Here, T, and T, are timestamps, and L is a lifetime. Ini-
tially the server S shares the keys K,, and K, with the
principals A and B; after execution, A and B share K,,,
This protocol serves to illustrate different uses of encryp-
tion; we describe the protocol step by step:

Encryption is not essential for Message 1. Without en-
cryption, though, an attacker can flood S with re-
quests for keys, by falsifying instances of Message 1. It
is common for designers not to focus on this sort of
vulnerability

0 Message 2 requires encryption: KO, should remain
confidential, and S should sign the message as a proof
of authenticity

0 We may however question why double encryption is
used in Message 2. Most probably, this use of double
encryption is simply inherited from the Needham-
Schroeder protocol (see Example 9.1). As in the Need-
ham-Schroeder protocol, double encryption does not
add anything from the points of view of confidential-
ity or authenticity, and it is not entirely free of cost.
It does provide a guarantee: when B receives the first
part of Message 3, it knows that A must have ex-
tracted it from Message 2, and hence that A must have
looked at Message 2. (Heintze and Tygar [9] discuss a
similar use of encryption in a variant of the Otway-
Rees protocol [25].) This interpretation of encryption
is sound, but slightly unusual, and probably not what
the protocol designers had in mind.
The double encryption has been eliminated in recent
versions of Kerberos.

0 In the second part of Message 3, encryption is used
for an entirely different purpose: A encrypts T, with
Kab in order to prove knowledge of KO, near time T,.
In general, T, may be a few hours newer than Ts.
However, if T, is not much different from T,, the en-
cryption is redundant: the use of double encryption in

Message 2 gives adequate proof of knowledge of Kab.
In this case, the second part of Message 3 could be
omitted altogether, and B could use T, in Message 4.
The encryption in Message 4 serves an analogous

Examples 6.1 and 6.2, below, illustrate the interaction of
encryption and nonces. In short, encryption is often used
for binding when a nonce provides an association between
a message and an implicit name. Following Principle 3, we
make this missing name explicit. The use of both encryption
and nonces is then much simpler and economical.

5.2 Signing Encrypted Data
Signature is used, as the name suggests, to indicate which
principal last encrypted a message. It is frequently taken as
also guaranteeing that the signing principal knew the mes-
sage content. It is hard, but fortunately unnecessary to be
precise about what knowing is. An informal notion is suffi-
cient for stating the next principle:
PRINCIPLE 5

purpose. U

When a principal signs material that has already been
encrypted, it should not be inferred that the principal
knows the content of the message. On the other hand,
it is proper to infer that the principal that signs a mes-
sage and then encrypts it for privacy knows the con-
tent of the message.
Failure to follow this principle can lead to errors, as in

the next example.

EXAMPLE 5.1. The CCITT X.509 standard contains a set of
three protocols using between one and three messages
[5]. The protocols are intended for signed, secure com-
munication between two principals, assuming that each
knows the public key of the other.
The CCITT proposal has problems. We discuss one prob-
lem described in [4]; it appears already in the one-
message protocol:

Here, T, is a timestamp, N, is a nonce (not used), and X,
and Y, are user data. The X.509 protocol actually uses
hashing to reduce the amount of encryption. We do not
show this because it does not affect our argument about
X.509.
The protocol is intended to ensure the integrity of X, and
Y,, assuring the recipient of their origin, and to guarantee
the privacy of Y,. However, although Y, is transferred in
a signed message, there is no evidence to suggest that the
sender is actually aware of the data sent in the private
part of the message. This corresponds to a scenario where
some third party intercepts a message and removes the
existing signature while adding his own, blindly copying
the encrypted section within the signed message. This
problem can be avoided by several means, the simplest
of which is to sign the secret data before it is encrypted

A particular case of the principle concerns hash functions:
for privacy

ABADl AND NEEDHAM: PRUDENT ENGINEERING PRAC:TICE FOR CRYPTOGRAPHIC PROTOCOLS 11

EXAMPLE 5.2. It is common to use hash functions in order to
save on encryption with asymmetric-key systems (see for
example [27], [12]). In particular, A can send a signed,
confidential message to B as follows:

Message 1 A -+ B : { X } , , { H(X)},2

where H is a one-way hash function. When A sends this
message, only B discovers X, and B knovvs that A signed
the hash of X. For example, if X is a requlest for an opera-
tion, B may then infer that A support!; X. We should
think of one-way hashing as encryption, and then Prin-
ciple 5 applies. In this instance, it means that B cannot be
certain that A knew X. For example, if X is a secret such
as a password, B cannot be certain that A knew the se-

17
In general, we recommend careful examination of those

protocols that require a principal to sign material that is
both already encrypted and such that the principal cannot
decrypt it. On the other hand, signing before encrypting is
not a bill of health; see Example 3.1.

cret; A may have received H (X) from a friend.

6 TIMELINESS

An important part of the meaning of a message is made up
of temporal information. Further, one common precondi-
tion for acting upon a message is that there is reason to be-
lieve that the message is fresh, and hence not a replay of an
old one. This freshness has to be inferred from some com-
ponent of the message. Whatever this talisman, it should be
bound together with the rest of the message so that it can-
not be attached to a message being replayeld. It is important
to understand properly how the freshness component
works, and what is being assumed about it.

The next group of principles and examples concern time.
They all address what must be assumed about proofs of
timeliness, and what they actually prove.

6.1 Timestamps, Sequence Numbers, and Other

When guarding against replay of messages from an earlier
run of the same protocol it is common to use nonces as part
of a challenge-response exchange. A message is sent which
leads to a reply which could only have been produced in
knowledge of the first message. The objective is to guaran-
tee that the second message is made after the first was sent,
and sometimes to bind the two together. There is sometimes
confusion about nonce-are they guaranteed new, ran-
dom, unpredictable? Whence we propose:

PRINCIPLE 6

Nonces

Be clear what properties you are assumling about non-
ces. What may do for ensuring temporal succession
may not do for ensuring association-and perhaps as-
sociation is best established by other means.

EXAMPLE 6.1. In [25], Otway and Rees describe the follow-
ing protocol. It allows two parties A and B to establish a
shared key KO,, with the help of a server S with whom
they share keys K, and Kbs, respectively, using the nonces
M , N,, and N;

K,

, {Nb,M,A,B}
K, K ,

Message 1 A + B : M , A, B , {N,, M , A, B }

Message 2 B 4 S : M,A,B,{N, ,M,A, B }

Message 4 B + A : M,{N,, K }
ab Km

This is the first protocol analyzed in [4]. Perhaps because
of our relative inexperience, we were rather bold in the
idealization of this protocol-in assigning meanings to
these messages. As a consequence, we suggested in
passing that the encryption of N, in Message 2 is unnec-
essary. As Mao and Boyd have since explained in detail
[16], the encryption of N, and Nb is essential: Because N,
and Nb are bound with the names A and B by encryption
in Messages 1 and 2, they can serve as secure references
to A and B in Messages 3 and 4. Encryption is being used
not for secrecy, but for binding; nonces are exploited not
only as proofs of timeliness but also as substitutes for
names.

Much encryption can be avoided when names are in-
cluded in s’s reply:
Message 1 A -+ B : A, B , N ,
Message 2 B -+ S: A, B, N,, N ,

Message 3 s -+ B : {N,, A, B, Kab}K,r {Nb, A, B , K }
Message 4 B + A : {N,, A, B, K,b},,
The protocol is not only more efficient but also concep-

17
EXAMPLE 6.2. Example 3.2 describes a protocol due to Woo

and Lam. Looking back at the use of encryption in that
protocol, we notice that the purpose of encryption in
Message 4 is to bind two parts of a message. Looking
back at the use of nonces, we notice that N, provides only
a proof of freshness, but not an association to the name A
as was intended.

As we argue in Example 3.2, Message 5 should mention
the name A explicitly for the sake of security. With that
change, the binding of Message 4 becomes unnecessary.
Further, Nb needs to be viewed only as a proof of fresh-
ness. The protocol is now simply:

ab K ,

tually simpler after this modification.

Message 1 A -+ B : A
Message 2 B + A : N ,

Message 3 A -+ B : {N,}

Message 4 B + S : A, B, {N,} ,
K m

Message 5 S -+ B : {A, Nb}Kb9 17

It is not essential for nonces to be unpredictable. In fact,
the value of a counter makes a proper nonce. However,
predictable nonces should be used with caution:
PRINCIPLE 7

The use of a predictable quantity (such as the value of
a counter) can serve in guaranteeing newness, through
a challenge-response exchange. But if a predictable

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 1, JANUARY 1996

quantity is to be effective, it should be protected so
that an intruder cannot simulate a challenge and later
replay a response.

EXAMPLE 7.1. Protocols that rely on synchronized clocks
must be accompanied by protocols to access time servers.
These protocols cannot themselves rely on synchronized
clocks, but they can rely either on random nonces or on
predictable nonces.

Using random nonces, we may have:
Message 1 A + S: A,N,

Message 2 S + A: {Ts, N }
a K m

where T, is the current time and N, is a random nonce,
used as a challenge. After this exchange, A accepts T, as
the current time if the response arrived reasonably soon
after the challenge. Reiter exploits random nonces
roughly in this manner [26].

This protocol would not work if N, were predictable. An
attacker C could make A set its clock back: early on, C
makes a request for the current time using a future value
of the nonce, saves S‘s response, and then forwards the
response to A when A uses this value in a challenge.

When N, is predictable, it should be protected:

Message1 A + S : A,{N}
K,

Message 2 S -+ A:

The attack is no longer possible. Note that it is not impor-
tant for N, to remain secret (and after all we have as-
sumed it is predictable). The encryption in Message 1
serves to construct a quantity [N } that only A and S
can predict from a quantity that anyone can predict.

A similar exchange arises in the context of Kerberos. Neu-
man and Stubblebine suggest using Kerberos itself to ob-
tain the time from a time server [24]. The quantity used as
a nonce is roughly predictable: it is an incorrect timestamp;

U

Freshness can also be proved by the use of timestamps.
Timestamps are appealing because they seem easier to use
than random numbers. However, their use is not always
correct. There are a number of aspects of prudent practice in
the use of timestamps, and they are often misunderstood.
One use of timestamps is as a kind of nonce. In this case the
ultimate user of the timestamp, as part of a response, is the
same as the originator of the challenge of which the times-
tamp was part. This style of use does not depend on clock
synchronization at all, but does need care because the
timestamp may be to a large extent predictable. Another
style of use does depend on clock synchronization. The re-
cipient of a message looks at a timestamp in it, and accepts
the message only if the timestamp is within a reasonable
interval of the recipient’s local time. In this case we have:
PRINCIPLE 8

a K,

since it is encrypted, we expect no difficulties.

If timestamps are used as freshness guarantees by refer-
ence to absolute time, then the difference between local

clocks at various machines must be much less than the
allowable age of a message deemed to be valid. Fur-
thermore, the time maintenance mechanism everywhere
becomes part of the trusted computing base.

EXAMPM 8.1. Timestamps have received abundant attention
in the authentication literature. Gong, in particular, has
described problems arising from the use of incorrect
timestamps [8]. Therefore, we keep this example brief,
summarizing Gong’s example for the Kerberos system.

In Kerberos, as elsewhere, a principal with a slow clock is
exposed to aLl sorts of difficulties, since the principal may
mistake expired certificates for current ones. It is more in-
teresting that a fast clock can also be an opportunity for
attackers. If a principal A signs a request at time To using
a timestamp T, with To < T, an attacker C can replay this
request near time T. The effect of the request at time T
may benefit C, for example if C is using A’s workstation
at time T.
Bellovin and Merritt have discussed further problems in

U the use of timestamps in Kerberos [Z].

6.2 What Is Fresh: Use vs. Generation
Roughly, a bit-pattern is fresh if any message that contains
it must be recent. Clearly, it does not suffice that the bit-
pattern participate in one recent message, if it may also
participate in old ones. This observation is most important
for keys:

PRINCIPLE 9

A key may have been used recently, for example to en-
crypt a nonce, yet be quite old, and possibly compro-
mised. Recent use does not make the key look any bet-
ter than it would otherwise.

EXAMPLE 9.1. The Needham-Schroeder protocol and the
Kerberos protocol are similar in structure and in goal; the
Needham-Schroeder protocol reads:

Message 1 A -+ S : A, B, N,

Message 3 A + B : {Kab, A}
K b b

Message 4 B + A: {Nb}Kab

Message 5 A + B : { N b + l}
KOb

As in Kerberos, only A makes contact with S, who pro-
vides A with the session key, Kab, and a certificate en-
crypted with B’s key Kbs conveying the session key to B.
Then B decrypts this certificate and carries out a nonce
handshake with A to be assured that A is present currently,‘
since the certificate might have been a replay. As explained
in Section 7, Message 5 contains Nb + 1 rather than Nb in
order to distinguish this message from Message 4.
Messages 4 and 5 of the Needham-Schroeder protocol
were intended to convince B that A is present and active.
They do not (and in fact were not intended to) convince

ABADl AND NEEDHAM: PRUDENT ENGINEERING PRACTICE FOR CRYPTOGRAPHIC PROTOCOLS 13

B that Kab is fresh, and it was pointed out by Denning and
Sacco that compromise of a session key could allow an
intruder to deceive B [6]. Once the importance of fresh-
ness of Kab is recognized, a solution may be found by us-
ing timestamps, as suggested by Denning and Sacco. In
another solution, described in [23], B sends a nonce to S,
and then S includes it in its certificate. 0

EXAMPLE 9.2. In [31], Varadharajan, Allen, and Black present
several protocols for delegation in distributed systems.
We take as an example the one for delegation in a Kerbe-
ros environment [31, p. 2731. In this protocol, client B
shares the key Kbt with the authentication server; B has
generated a timestamp Tb and wants a key Kbs to com-
municate with another server S. The authentication
server gives Kbs and [Kbs)Kb, to S. Then S constructs
(T, + l)K,, and sends:

Message5 S + B: S,B,{T, + l}K,,{Kbs}K,

The authors reason:
Having obtained K,, B is able to verify using Tb that S
has replied to a fresh message, so that the session key
is indeed fresh.

However, B obtains no proof that Kbs is fresh. All that B
can deduce is that Kbs has been used recently-but it may

0 be an old, compromised key.

7 RECOGNIZING MESSAGES AND ENCODINGS

It seems important that principals recogni:ze messages for
what they are, and can associate them correctly with the
current step of whatever protocol they are executing. There
are two possible forms of confusion (which could happen
together): first, between the current message and a message
of similar purpose from a previous run of the protocol, and
second, between the current message andl a message be-
longing either elsewhere in the protocol, or to another pro-
tocol. Snekkenes [29] and Syverson [30] have constructed
examples of protocols where these confusions can arise.

We believe that these confusions are less important when
all our principles are correctly followed. If a message says
what it means then we have no reason to bel concerned with
its context. The message is meaningful (or meaningless) on
its own, whether we know that it belongs in a particular
protocol instance or not.

Still, mapping a message to the appropriate protocol in-
stance is convenient when it contributes to the compact
encoding of the message. For example, Message 1 of the
Wide-mouthed-frog protocol always means something of
the form: ”the signer (with key KJ says at time T, that Kab is
a good key to talk to B” (see Example 11.2) If the principal
who receives a message can be certain that it is Message 1
of this protocol, then the message can ble encoded com-
pactly: {Ta I B, K,, 1 ~ - a

We arrive at the following recommendation:

PRINCIPLE 10
If an encoding is used to present the meaning of a
message, then it should be possible to tell which en-
coding is being used. In the common case where the
encoding is protocol dependent, it should be possible
to deduce that the message belongs to this protocol,
and in fact to a particular run of the protocol, and to
know its number in the protocol.
Mapping a message to the appropriate protocol instance is

often trivial if the message obeys our other principles. If the
message contains sufficient timeliness guarantees and sufficient
names, then the current instance cannot be confused with an
old instance, or an instance for other principals. It could be con-
fused with a concurrent instance for the same principals.

Next we give an example where this principle is relevant,
but where other more important principles apply as well.

EXAMPLE 10.1. If signature or confidentiality are mediated
by symmetric-key encryption, then a particular form of
confusion is associated with the direction in which a
message is intended to pass.

In the Needham-Schroeder protocol, a participant sends
a challenge Nb and receives Nb +1 as a response (see Ex-
ample 9.1):

Message 4 B + A : {Nb}

Message 5 A -4 B : {N, + l}
Knb

The purpose of incrementing Nb is to distinguish the chal-
lenge from the response. Without this increment, an at-
tacker could sendaB’s message back to B, who could mis-
take it for A’s reply. The purpose of incrementing a nonce
has often been misunderstood. For example, a “+1” opera-
tion appears in Kerberos, where it is unnecessary.

The messages would be clearer if they were rewritten:

Message 4 B 4 A : {N - s Message 4: Nb}Kab

Message 5 A + B: {N - S Message 5: N,}
&b

though in fact any way of making the two messages dif-
ferent will do. (This is an instance of our suggestion to
Syverson mentioned in [30].)
Guided by the principle that messages should say what
they mean, however, we ought to rewrite the messages:

Message 4 B -+ A : {B says that K,, is a good key to talk

to A, sometime after receiving Kab}K, , , N,

Message 5 A -+ B : {A says that K,, is a good key to talk

to B, sometime after receiving N,}
&b

Of course, shorter encoding of these meanings can be con-
structed. Not only is there no risk of confusion between
these two messages, but also each of them is self-contained.
It is not important to know that they are part of a particular

0 instance of the Needham-Schroeder exchange.

14 IEEE TRAE \ISACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 1, JANUARY 1996

8 TRUST

The use of timestamps makes explicit for the first time a
question of trust. When can a principal A rely on another
principal B putting a correct timestamp in a message? The
answer usually given is that this is acceptable if A trusts B
in relation to timestamps.

The idea of trust is pervasive and a little elusive. A care-
ful classification of types of trust is given in [36] and is
taken further by Klein in her doctoral thesis. There are
questions both of practice and philosophy to do with trust
relations-for example whether they are transitive or not-
which it would not be appropriate to pursue here. We may
simply say that A trusts B in regard to some function if a
loss of security to A could follow from B not behaving in
the specified way; it is usually difficult or impossible for A
to verify B's good behavior.

There is some measure of trust involved whenever one
principal acts on the content of a message from another. It is
essential that this trust be properly understood.

PRINCIPLE 11
The protocol designer should know which trust rela-
tions his protocol depends on, and why the depend-
ence is necessary The reasons for particular trust rela-
tions being acceptable should be explicit though they
will be founded on judgment and policy rather than
on logic.

EXAMPLE 11.1. Complete loss of security could follow from a
Kerberos server issuing wrong timestamps. The server,
and its source of time, must be trusted by all concerned.
This, it may be pointed out, is a case in which clients can
to some extent monitor the good behavior of the trusted
server because the correct time is public and global. If a
client reads GPS time it will have reason for suspicion if
Kerberos' time varies from this time significantly 0

EXAMPLE 11.2. The Wide-mouthed-frog protocol uses sym-
metric-key cryptography and an authentication server. It
transfers a key from A to B via S in only two messages:

Message 1 A -+ S: A,{Tu,B,Kub}~u

Message 2 A + B : {q, A, K a b } ~ ,

First, A sends a session key K,, to S, including a times-
tamp T,. Then S checks T, and forwards the message to B,
together with its own timestamp T,. Finally, €3 checks Ts
and accepts the session key Kab for communication with
A. Thus, A is trusted to choose a session key. This kind of
trust is often thought unacceptable because of the quality
requirements placed on key generation such as secrecy
nonrepetition, unpredictability and doubtless more.

EXAMPLE 11.3. Principals associate public keys with other
principals by consulting public-key certificates. These cer-
tificates can be issued by certification authorities (CAS).
CAS are trusted to certify a key only after proper steps
have been taken to identify the principal that owns it.
Since there is no global source of authority, it is not surpris-
ing that this is an area where questions of transitivity of

U

trust come up. It may happen that the only way A can find
out Bs public key is by accepting a certificate from CA, for
C K s public key which is used to sign a certificate for
C ~ S public key . . . which is used to sign a certificate for
B's public key, for example. In this case A knows and trusts
CA, but has never heard of the other certification authori-

0

EXAMPLE 11.4. It is usually taken for granted that the two
principals in an authentication dialogue are honestly
working to the common end of establishing a secure com-
munication channel for subsequent use. This is not always
the case, as may be seen in communication between po-
tential enemies or between security forces and terrorists.
Possible sorts of bad behavior are disclosure of keys and
forgery of messages. Therefore, if this assumption is made

0

EXAMPLE 11.5. An access control list (ACL) is a statement of
trust [l]: if principal A appears on the ACL for an opera-
tion then A is trusted when it says that the operation
should be performed (that is, when it makes a request). It
can be a complex matter to determine whether the state-
ment of trust that the ACL represents is appropriate. Often,
the question of whether it is appropriate makes little sense,
particularly in the context of completely discretionary ac-
cess control policies. Nonetheless, understanding ACES

0

In practice, it is not very common for complicated infer-
ences about trust to be necessary With the exception of the
chains of trust of Example 11.3, which are likely to be sim-
pler in practice than they might be in theory, it is usually
not difficult to isolate the trust relations being relied on in a
particular circumstance. It is valuable to do so explicitly,
because this may lead to useful debate about the appropri-
ateness of these trust relations.

ties-and maybe even distrusts them.

in a particular case then it should be explicit.

and their consequences is essential to security.

9 CONCLUSION

We have found the principles and examples described in
this paper useful in our own work. Perhaps it is because of
this that they bear a certain subjective character. We do
however believe that they respond to an immediate general
need, in a discipline where some basic mistakes appear in
print several times.

Many of our suggestions can be embodied in develop-
ment methods and in formalisms. While these are helpful,
we tried to emphasize an informal understanding of some
issues essential for security We hope that our guidelines
will help improve the practice of designing cryptographic
protocols.

ACKNOWLEDGMENTS

We have benefited from discussions with Mike Burrows
and Butler Lampson. In particular, we discovered many of
the examples in this paper in collaboration with Mike Bur-
rows. Bob Morris pointed out the importance of clarifying
the meaning of the -+ notation, and Mark Lomas helped us

ABADI AND NEEDHAM: PRUDENT ENGINEERING PRACTICE FOR CRYPTOGRAPHIC PROTOCOLS 15

do it. Raphael Yahalom, Michael Reiter, and anonymous
referees all made useful comments on earlier versions of
this paper. The authors of the papers from which we drew
our examples have also been helpful. Finally, Cynthia Hib-
bard suggested improvements in the exposition.

REFERENCES
[l] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin, “A calculus

for access control in distributed systems,” ACM Trans. Progrum-
ming Languages and Systems, vol. 15, no. 4, lpp. 706-734, Sept.
1993.

[2] S.M. Bellovin and M. Merritt, ”Limitations of the Kerberos
authentication system,” Computer Comm. Review, vol. 20, no. 5,

C. Boyd and W. Mao, “On a limitation of BA:N logic,” Proc. Ad-
vances in Cyptology: Eurocypt ’93, pp. 240-247, Springer-Verlag,
1993.
M. Burrows, M. Abadi, and R.M. Needham, “A logic of authenti-
cation,” Proc. Royal Soc. London A, vol. 426, pp. 233-271, 1989. A
preliminary version appeared as Digital Equipment Corporation
Systems Research Center report no. 39, Feb. 1989.
CCITT. CCITT Blue Book, Recommendation X.509 and I S 0 9594-
8: The Directory-Authentication Framework. Geneva, Mar. 1988.
D.E. Denning and G.M. Sacco, “Timestamps in key distribution
protocols,” CACM, vol. 24, no. 8, pp. 533-536, .4ug. 1981.
U. Feige, A. Fiat, and A. Shamir, “Zero knowledge proofs of
identity,“ Proc. 19th Ann. ACM Symp. Theoy of Computing,

[8] L. Gong, “A security risk of depending on synchronized clocks,”
Operating Systems Review, vol. 26, no. 1, pp. 49-54, Jan. 1992.

[9] N. Heintze and J.D. Tygar, ”Timed models for protocol security,”
CMU Technical Report CMU-CS-92-100, Jan. 1992.

[lo] K.E.B. Hickman and T. Elgamal, “The SSL Protocol,” Internet Draft,
Netscape Communications Corp., version of June 1995. Currently
available from http:/ /home.netscape.com/newsref/std/SSL.html.

[ll] K.E.B. Hickman, ”The SSL protocol,” RFC, Netscape Communi-
cations Corp., version of Oct. 31,1994.

[12] B. Lampson, M. Abadi, M. Burrows, and E. Wobber,
“Authentication in distributed systems: Theory and practice,”
ACM Trans. Computer Systems, vol. 10, no. 4, pp. 265-310, Nov.
1992.

[13] A. Liebl. ”Authentication in distributed systems: A bibliography,”
Operating Systems Review, vol. 27, no. 4, pp. 31-41, Oct. 1993.

[14] W.P. Lu and M.K. Sundareshan, ”Secure communication in inter-
net environments: A hierarchical key management scheme for
end-to-end encryption,” IEEE Trans. Comm., vol. 37, no. 10,

[15] W.l? Lu and M.K. Sundareshan, ”Enhanced protocols for hierar-
chical encryption key management for secure communication in
internet environments,” IEEE Trans. Comm., voll. 40, no. 4, pp. 658-
660, Apr. 1992.

[16] W. Mao and C. Boyd, “Towards formal analysis of security proto-
cols,“ Proc. Computer Security Foundations Workshop Vll, pp. 147-
158,1993.

1171 G. Medvinsky and B.C. Neuman, ”NetCash A design for practi-
cal electronic currency on the internet,” Proc. 1993 ACM Con$
Computer and Comm. Security, pp. 102-106.

[U] S.P. Miller, B.C. Neuman, J.I. Schiller, and J.H. Saltzer, “Kerberos
authentication and authorization system,” Prclject Athena Technical
Plan, Section E.2.1, MIT, July 1987.

[19] J.H. Moore, ”Protocol failures in cryptosystems,,” Pmc. IEEE, vol. 76,
no. 5, pp. 594-4302, May 1988.

[20] National Bureau of Standards, “Data encryption standard,” FIPS
Pub. 46, Jan. 1977.

Systems, 2nd edition, S. Mullender, ed., pp. Z31-241. ACM Press,
1993.

[22] R.M. Needham and M.D. Schroeder, ”Using encryption for
authentication in large networks of computers,” CACM, vol. 21,
no. 12, pp. 993-999, Dec, 1978.

[23] R.M. Needham and M.D. Schroeder, ”Authentication revisited,”
Operating Systems Review, vol. 21, no. 1, p. 7, Jan. 1987.

pp. 119-132, Oct. 1990.
[3]

[4]

[5]

[6]

[7]

pp. 210-217,1987.

pp. 1,014-1,023, Oct. 1989.

[21] R.M. Needham, ”Cryptography and secure channels,” Distvibuted

[24] B.C. Neuman and S.G. Stubblebine, “A note on the use of
timestamps as nonces,” Operating Systems Review, vol. 27, no. 2,
pp. 10-14, Apr. 1993.

[25] D. Otway and 0. Rees, ”Efficient and timely mutual authentica-
tion,” Operating Systems Review, vol. 21, no. 1, pp. 8-10, Jan. 1987.

[26] M.K. Reiter, “A security architecture for fault-tolerant systems,”
PhD Thesis, Cornel1 Univ., available as Technical Report 93-1367,
Dept. of Computer Science, Cornel1 Univ., July 1993.

[27] R. Rivest, ”The MD4 message digest algorithm,” Proc. Advances zn
Cyptology: Crypt0 ‘90, pp. 303-311, Springer-Verlag, 1991.

[28] R.L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Comm. ACM,
vol. 21, no. 2, pp. 120-126, Feb. 1978.

[29] E. Snekkenes, “Roles in cryptographic protocols,” Proc. 1992 IEEE
Symp. Security and Privacy, pp. 105-119.

[30] I? Syverson, ”On key distribution protocols for repeated authenti-
cation,“ Operating Systems Review, vol. 27, no. 4, pp. 24-30, Oct.
1993.

[31] V. Varadharajan, P. Allen, and S. Black, “An analysis of the proxy
problem in distributed systems,” Proc. 1991 IEEE Symp. Security
and Privacy, pp. 255-275.

[32] V.L. Voydock and S.T. Kent, ”Security mechanisms in high-level
network protocols,” Computing Surveys, vol. 15, no. 2, pp. 135-
171,1983.

[33] E. Wobber, M. Abadi, M. Burrows, and B. Lampson,
“Authentication in the Taos operating system,” ACM Trans. Com-
puter Systems, vol. 12, no. 1, pp. 3-32, Feb. 1994.

[34] T.Y.C. Woo and S.S. Lam, “Authentication for distributed sys-
tems,” Computer, vol. 25, no. 1, pp. 39-52, Jan. 1992.

[35] T.Y.C. Woo and S.S. Lam,. “A lesson on authentication protocol
design; Operating Systems Review, vol. 28, no. 3, pp.24-37, July
1994.

[36] R. Yahalom, B. Klein, and T. Beth, “Trust relations in secure sys-
tems-A distributed authentication perspective,” Proc. 1993 IEEE
Symp. Security und Privacy, pp. 150-164.

