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1. INTRODUCTION

Concepts and methods from programming languages have long been useful in se-
curity (e.g., [Morris 1973]). In recent years, they have played a significant role in
understanding security protocols. They have given rise to programming calculi for
these protocols (e.g., [Abadi and Fournet 2001; Abadi and Gordon 1999; Amadio
and Lugiez 2000; Cervesato et al. 1999; Dam 1998; Durante et al. 1999; Durgin
et al. 2001; Focardi and Gorrieri 1997; Lincoln et al. 1998; Meadows 1997; Sumii
and Pierce 2001]). They have also suggested several approaches for reasoning about
protocols, leading to theories as well as tools for formal protocol analysis. We de-
scribe some of these approaches below. Although several of them are incomplete
(in the sense that they sometimes fail to establish security properties), they are
applicable to many protocols, including infinite-state protocols, often with little
effort. Thus, they provide an attractive alternative to finite-state model checking
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(e.g., [Lowe 1996]) and to human-guided theorem proving (e.g., [Paulson 1998]).
In this work we pursue these language-based approaches to protocol analysis

and aim to clarify their interconnections. We examine and further develop two
techniques that represent two popular, substantial, but largely disjoint lines of
research. One technique relies on a typed process calculus, the other on untyped
logic programs. We contribute to these two techniques, in particular by extending
the former with a flexible, generic treatment of many cryptographic operations.
We also establish an equivalence between the two techniques. We believe that this
equivalence is surprising and illuminating.

The typed process calculus belongs in a line of research that exploits standard
static-analysis ideas and adapts them with security twists. There are by now sev-
eral type systems for processes in which types not only track the expected structure
of values and processes but also give security information [Abadi 1999; Abadi and
Blanchet 2003b; Cardelli et al. 2000; Gordon and Jeffrey 2001; 2002; Hennessy and
Riely 2000; Honda et al. 2000]. A related approach relies on control-flow analy-
sis [Bodei et al. 1998]; it has an algorithmic emphasis, but it is roughly equivalent
to typing at least in important special cases [Bodei 2000]. Such static analyses have
applications in a broader security context (e.g., [Abadi et al. 1999; Heintze and
Riecke 1998; Myers 1999; Volpano et al. 1996]); security protocols constitute a par-
ticularly challenging class of examples. To date, however, such static analyses have
dealt case by case with operations on data, and in particular with cryptographic
operations. In this paper, we develop a general treatment of these operations.

In another line of research, security protocols are represented as logic programs,
and they are analyzed symbolically with general provers [Denker et al. 1998; Wei-
denbach 1999] or with special-purpose algorithms and tools [Debbabi et al. 1997;
Cervesato et al. 1999; Compton and Dexter 1999; Blanchet 2001; Selinger 2001;
Goubault-Larrecq 2002; Blanchet 2002; Blanchet and Podelski 2003; Comon-Lundh
and Cortier 2003; Abadi and Blanchet 2003a; Goubault-Larrecq 2004; Goubault-
Larrecq et al. 2004; Blanchet 2004]. (See also [Kemmerer et al. 1994] for some of
the roots of this approach.) In some of this work [Cervesato et al. 1999; Compton
and Dexter 1999], the use of linear logic enables a rather faithful model of protocol
state, reducing (or eliminating) the possibility of false alarms; on the other hand,
the treatment of protocols with an unbounded number of sessions can become quite
difficult. Partly for this reason, and partly because of the familiarity and relative
simplicity of classical logic, algorithms and tools that rely on classical logic pro-
grams are prevalent. Superficially, these algorithms and tools are quite different
from typing and control-flow analysis. However, in this paper we show that one of
these tools can be viewed as an implementation of a type system.

More specifically, we develop a generic type system for a process calculus that ex-
tends the pi calculus [Milner 1999] with constructor operations and corresponding
destructor operations. These operations may be, for instance, tupling and projec-
tion, symmetric (shared-key) encryption and decryption, asymmetric (public-key)
encryption and decryption, digital signatures and signature checking, and one-way
hashing (with no corresponding destructor). As in the applied pi calculus [Abadi
and Fournet 2001], these operations are not hardwired. The applied pi calculus is
even more general in that it does not require the classification of operations into
Journal of the ACM, Vol. V, No. N, Month 20YY.
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constructors and destructors; we expect that it can be treated along similar lines
but with more difficulty (see Sections 2 and 8). Our type system for the process
calculus gives secrecy information. The basic soundness theorem for the type sys-
tem, which we prove only once (rather than once per choice of operations), states
that well-typed processes do not reveal their secrets.

We compare this generic type system with an automatic protocol checker. The
checker takes as input a process and translates it into an abstract representation
by logic-programming rules. This representation and its manipulation, but not the
translation of processes, come from previous work [Blanchet 2001], which develops
an efficient tool for establishing secrecy properties of protocols. We show that
establishing a secrecy property of a protocol with this checker corresponds to typing
the protocol in a particular instance of the generic type system. This result implies
a soundness property for the checker. Conversely, as a completeness property, we
establish that the checker corresponds to the “best” instance of our generic type
system: if a secrecy property can be established using any instance of the type
system, then it can also be established by the checker.

Throughout this paper, we use the following concept of secrecy (e.g., [Abadi
2000]): a protocol P preserves the secrecy of data M if P never publishes M , or
anything that would permit the computation of M , even in interaction with an
adversary Q. For instance, M may be a cryptographic key; its secrecy means that
no adversary can obtain the key by attacking P . Although this property allows the
possibility that P reveals partial information about M , the property is attractive
and often satisfactory.

For example, consider the following protocol (presented informally here, and
studied more rigorously in the body of this paper):

Message 1. A → B : pencrypt((k, pKA), pKB)
Message 2. B → A : pencrypt((k,KAB), pKA)
Message 3. A → B : sencrypt(s,KAB)

This protocol establishes a session key KAB between two parties A and B, then uses
the key to transmit a secret s from A to B. It relies on a public-key encryption
function pencrypt , on a shared-key encryption function sencrypt , and on public
keys pKA for A and pKB for B. For pencrypt and sencrypt , the second argument
is the encryption key, the first the plaintext being encrypted. First, A creates a
challenge k (a nonce), sends it to B paired with A’s public key, encrypted under
B’s public key. Then B replies with the same nonce and the session key KAB ,
encrypted under A’s public key. When A receives this message, it recognizes k; it
is then confident that the key KAB has been created by B. Finally, A sends the
secret s under KAB . Can an attacker obtain s? The answer to this question may
partly depend on delicate points that the informal description of the protocol does
not clarify, such as whether a public key can be mistaken for a shared key. Once
we address those points through a formal description of the protocol, we can apply
our analyses for establishing the secrecy of s or for identifying vulnerabilities.

The next section presents our process calculus, without types. Section 3 gives
a (fairly standard) definition of secrecy. Section 4 presents our type system, and
Section 5 gives the main soundness theorems for the type system and related results.
As an application, Section 6 explains how the type system can be instantiated to
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M, N ::= terms

x, y, z variable

a, b, c, k, s name
f(M1, . . . , Mn) constructor application

P, Q ::= processes

M〈N〉.P output
M(x).P input

0 nil

P | Q parallel composition
!P replication

(νa)P restriction

let x = g(M1, . . . , Mn) in P else Q destructor application
let x = M in P local definition

if M = N then P else Q conditional

Fig. 1. Syntax of the process calculus

handle shared-key and public-key encryption operations. Section 7 formalizes and
studies the logic-programming protocol checker. Section 8 discusses an extension
(to general equational theories). Section 9 concludes. An appendix contains some
proofs.

2. THE PROCESS CALCULUS (UNTYPED)

This section introduces our process calculus, by giving its syntax and its operational
semantics.

2.1 Syntax and Informal Semantics

The syntax of our calculus is summarized in Figure 1. It distinguishes a category of
terms (data) and one of processes (programs). It assumes an infinite set of names
and an infinite set of variables; a, b, c, k, s, and similar identifiers range over
names, and x, y, and z range over variables. Names represent atomic data items,
such as nonces and keys, while variables are formal parameters that can be replaced
by any term (atomic or complex). The syntax also assumes a set of symbols for
constructors and destructors, each with an arity; we often use f for a constructor
and g for a destructor.

Constructors are used to build terms. Therefore, the terms are variables, names,
and constructor applications of the form f(M1, . . . ,Mn). On the other hand, de-
structors do not appear in terms, but only manipulate terms in processes. They
are partial functions on terms that processes can apply. The process let x =
g(M1, . . . ,Mn) in P else Q tries to evaluate g(M1, . . . ,Mn); if this succeeds, then
x is bound to the result and P is executed, else Q is executed. More precisely, the
semantics of a destructor g of arity n is given by a partial function from n-tuples
of terms to terms, such that g(σM1, . . . , σMn) = σg(M1, . . . ,Mn) if g(M1, . . . ,Mn)
is defined and σ is a substitution that maps names and variables to terms. We
may isolate a minimal set def(g) of equations g(M ′

1, . . . ,M
′
n) = M ′ that define g,

where M ′
1, . . . ,M

′
n,M ′ are terms without free names, and all variables of M ′ occur

in M ′
1, . . . ,M

′
n. Then g(M1, . . . ,Mn) is defined if and only if there exists a sub-

stitution σ and an equation g(M ′
1, . . . ,M

′
n) = M ′ in def(g) such that Mi = σM ′

i
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for all i ∈ {1, . . . , n}, and g(M1, . . . ,Mn) = σM ′. This set of equations may be
infinite, but it is usually finite and small in concrete examples.

Using these constructors and destructors, we can represent data structures, such
as tuples, and cryptographic operations, for instance as follows:

—ntuple(M1, . . . ,Mn) is the tuple of the terms M1, . . . ,Mn, where ntuple is a
constructor. (We sometimes abbreviate ntuple(M1, . . . ,Mn) to (M1, . . . ,Mn).)
The n projections are destructors ithn for i ∈ {1, . . . , n}, defined by

ithn(ntuple(M1, . . . ,Mn)) = Mi

—sencrypt(M,N) is the symmetric (shared-key) encryption of the message M un-
der the key N , where sencrypt is a constructor. The corresponding destructor
sdecrypt is defined by

sdecrypt(sencrypt(M,N), N) = M

Thus, sdecrypt(M ′, N) returns the decryption of M ′ if M ′ is a message encrypted
under N .

—In order to represent asymmetric (public-key) encryption, we may use two con-
structors pk and pencrypt : pk(M) builds a public key from a secret M and
pencrypt(M,N) encrypts M under N . The corresponding destructor pdecrypt is
defined by

pdecrypt(pencrypt(M, pk(N)), N) = M

—As for digital signatures, we may use a constructor sign, and write sign(M,N)
for M signed with the signature key N , and the two destructors checksignature
and getmessage with the equations:

checksignature(sign(M,N), pk(N)) = M

getmessage(sign(M,N)) = M

—We may represent a one-way hash function by the constructor H. There is no
corresponding destructor; so we model that the term M cannot be retrieved from
its hash H(M).

Thus, the process calculus supports many of the operations common in security
protocols. It has limitations, though: for example, XOR cannot be directly rep-
resented by a constructor or by a destructor. We explain how we can treat such
primitives in Section 8.

The other constructs in the syntax of Figure 1 are standard; most of them come
from the pi calculus.

—The input process M(x).P inputs a message on channel M , and executes P with
x bound to the input message. The output process M〈N〉.P outputs the message
N on the channel M and then executes P . Here, we use an arbitrary term M to
represent a channel: M can be a name, a variable, or a constructor application,
but the process blocks if M does not reduce to a name at runtime. Our calculus
is monadic (in that the messages are terms rather than tuples of terms), but a
polyadic calculus can be simulated since tuples are terms. It is also synchronous
(in that a process P is executed after the output of a message). As usual, we
may omit P when it is 0.

Journal of the ACM, Vol. V, No. N, Month 20YY.
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—The nil process 0 does nothing.

—The process P | Q is the parallel composition of P and Q.

—The replication !P represents an unbounded number of copies of P in parallel.

—The restriction (νa)P creates a new name a, and then executes P .

—The local definition let x = M in P executes P with x bound to the term M .

—The conditional if M = N then P else Q executes P if M and N reduce to the
same term at runtime; otherwise, it executes Q. As usual, we may omit an else
clause when it consists of 0.

The name a is bound in the process (νa)P . The variable x is bound in P in
the processes M(x).P , let x = g(M1, . . . ,Mn) in P else Q, and let x = M in P .
We write fn(P ) and fv(P ) for the sets of names and variables free in P , respec-
tively. A process is closed if it has no free variables; it may have free names.
We identify processes up to renaming of bound names and variables. We write
{M1/x1, . . . ,Mn/xn} for the substitution that replaces x1, . . . , xn with M1, . . . ,
Mn, respectively. When σ is such a substitution and D is some expression, we may
write σD or Dσ for the result of applying σ to D; the distinction is one of emphasis
at most. Except when stated otherwise, substitutions always map variables (not
names) to expressions.

As mentioned in the introduction, our calculus resembles the applied pi calcu-
lus [Abadi and Fournet 2001]. Both calculi are extensions of the pi calculus with
(fairly arbitrary) functions on terms. However, there are also important differences
between these calculi. The first one is that we use destructors instead of the equa-
tional theories of the applied pi calculus. (Section 8 contains further material on
equational theories.) The second difference is that our calculus has a built-in error-
handling construct (the else clause of the destructor application), whereas in the
applied pi calculus the error-handling must be done “by hand”. This error-handling
construct makes typing easier.

2.2 An Example

As an example, we return to the exchange presented in the introduction, namely:

Message 1. A → B : pencrypt((k, pKA), pKB)
Message 2. B → A : pencrypt((k,KAB), pKA)
Message 3. A → B : sencrypt(s,KAB)

Next we show how to express this protocol in the process calculus. We return again
to this example in later sections, and there we discuss its formal analysis.

Informal protocol descriptions, such as the one for this protocol, are often am-
biguous [Abadi 2000], so several different process-calculus expressions may be rea-
sonable counterparts to an informal description. We start with a relatively simple
representation of the protocol, given in the following process P :

P
∆= (νsKA)(νsKB)let pKA = pk(sKA) in

let pKB = pk(sKB) in e〈pKA〉.e〈pKB〉.(A | B)
Journal of the ACM, Vol. V, No. N, Month 20YY.
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A
∆= (νk)e〈pencrypt((k, pKA), pKB)〉.

e(z).let (x, y) = pdecrypt(z, sKA) in
if x = k then e〈sencrypt(s, y)〉

B
∆= e(z).let (x, y) = pdecrypt(z, sKB) in

(νKAB)e〈pencrypt((x, KAB), y)〉.
e(z′).let s′ = sdecrypt(z′,KAB) in 0

Here we write let (x, y) = M in Q instead of let z = M in let x = 1th2(z) in let y =
2th2(z) in Q, using pattern-matching on tuples. The keys sKA and sKB are the
decryption keys that match pKA and pKB , respectively, and e is a public channel.
The messages e〈pKA〉 and e〈pKB〉, which publish pKA and pKB on e, model the
fact that these keys are public. This code corresponds to a basic, one-shot version
of the protocol, in which A talks only to B and in which honest hosts that play the
roles of A and B use different keys.

It is easy to extend the code to represent more elaborate, general versions of the
protocol. For instance, the following process P ′ represents a version in which A
and B run an unbounded number of sessions, A can talk to any host (whose public
key A receives in xpKB

), and the hosts that play the roles of A and B may have
the same key:

P ′ ∆= (νsKA)(νsKB)let pKA = pk(sKA) in
let pKB = pk(sKB) in e〈pKA〉.e〈pKB〉.(!A′ | !B′ | !B′′)

A′ ∆= e(xpKB
).(νk)e〈pencrypt((k, pKA), xpKB

)〉.
e(z).let (x, y) = pdecrypt(z, sKA) in if x = k then

(if xpKB
= pKA then e〈sencrypt(sA, y)〉

| if xpKB
= pKB then e〈sencrypt(sB , y)〉)

B′ ∆= e(z).let (x, y) = pdecrypt(z, sKB) in
(νKAB)e〈pencrypt((x,KAB), y)〉.
e(z′).let s′ = sdecrypt(z′,KAB) in 0

B′′ ∆= e(z).let (x, y) = pdecrypt(z, sKA) in
(νKAB)e〈pencrypt((x,KAB), y)〉.
e(z′).let s′ = sdecrypt(z′,KAB) in 0

Here B′′ is much like B′ but uses the same key as A′. (A separate definition of
B′′ is needed because, in the applied pi calculus, the syntactically different names
sKA and sKB never mean the same. Of course, the code duplication can easily be
avoided by using a variable parameter for the keys.)

This and other variants can be written rather directly as scripts in the input
syntax of the automatic protocol checker, which is quite close to that of the process
calculus. The following script illustrates this point:

(* First some declarations, with equations *)

(* Shared-key encryption *)
Journal of the ACM, Vol. V, No. N, Month 20YY.
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fun sencrypt/2.
reduc sdecrypt(sencrypt(x , y), y) = x .

(* Public-key encryption *)

fun pencrypt/2.
fun pk/1.
reduc pdecrypt(pencrypt(x , pk(y)), y) = x .

(* Declarations of free names *)

private free sA, sB.
free e.

(* A secrecy query, for protocol analysis *)

query attacker : sA;
attacker : sB.

(* The processes *)

let processA′ =
in(e, xpkB);
new k ;
out(e, pencrypt((k , pkA), xpkB));
in(e, z );
let (x , y) = pdecrypt(z , skA) in
if x = k then
(
if xpkB = pkA then
out(e, sencrypt(sA, y))

)
|
(
if xpkB = pkB then
out(e, sencrypt(sB, y))

).

let processB ′ =
in(e, z );
let (x , y) = pdecrypt(z , skB) in
new Kab;
out(e, pencrypt((x ,Kab), y));
in(e, z2 );
let s2 = sdecrypt(z2 ,Kab) in
0.

let processB ′′ =
Journal of the ACM, Vol. V, No. N, Month 20YY.
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in(e, z );
let (x , y) = pdecrypt(z , skA) in
new Kab;
out(e, pencrypt((x ,Kab), y));
in(e, z2 );
let s2 = sdecrypt(z2 ,Kab) in
0.

process new skA;
new skB ;
let pkA = pk(skA) in
let pkB = pk(skB) in
out(e, pkA);
out(e, pkB);
((!processA′) | (!processB ′) | (!processB ′′))

As can be seen from this example, writing a model of a protocol in the process
calculus is much like programming it in a little language with concurrency, mes-
sage passing on named channels, and high-level, “black-box” operations on data
(including cryptographic functions). In this respect, the calculus resembles many
of the other programming calculi for protocols mentioned in the introduction.

The literature contains additional examples that provide evidence of the effec-
tiveness of this process calculus and related ones for the analysis of a range of
protocols. In particular, we have recently used this process calculus in the study
of a protocol for certified email [Abadi et al. 2002; Abadi and Blanchet 2003a] and
of the JFK protocol (a proposed replacement for IKE in IPsec) [Aiello et al. 2002;
Abadi et al. 2004].

2.3 Formal Semantics

The rules of Figure 2 axiomatize the reduction relation → for processes, thus defin-
ing the operational semantics of our calculus. As is often done in process calculi
(e.g., [Milner 1999]), auxiliary rules axiomatize the structural congruence relation≡.
This relation is useful for transforming processes so that the reduction rules can be
applied. Both ≡ and → are defined only on closed processes.

We write →∗ the reflexive and transitive closure of →. As in [Abadi and Blanchet
2003b], we say that the process P outputs M immediately on c if and only if
P ≡ c〈M〉.Q | R for some processes Q and R. We say that the process P outputs
M on c if and only if P →∗ Q and Q outputs M immediately on c for some
process Q.

3. A DEFINITION OF SECRECY

As indicated in the introduction, we use the following informal definition of secrecy:
a protocol P preserves the secrecy of data M if P never publishes M , or anything
that would permit the computation of M , even in interaction with an adversary Q.
Equivalently, a protocol P preserves the secrecy of data M if P in parallel with an
adversary Q will never output M on a public channel. The interaction between P
and Q takes place by communication on shared channels. These primarily include

Journal of the ACM, Vol. V, No. N, Month 20YY.
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P | 0 ≡ P P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R)

!P ≡ P | !P

(νa1)(νa2)P ≡ (νa2)(νa1)P

a /∈ fn(P )

(νa)(P | Q) ≡ P | (νa)Q

P ≡ Q

P | R ≡ Q | R

P ≡ Q

!P ≡ !Q

P ≡ Q

(νa)P ≡ (νa)Q

P ≡ P

Q ≡ P

P ≡ Q

P ≡ Q Q ≡ R

P ≡ R

a〈M〉.Q | a(x).P → Q | P{M/x}
(Red I/O)

g(M1, . . . , Mn) = M ′

let x = g(M1, . . . , Mn) in P else Q → P{M ′/x}
(Red Destr 1)

g(M1, . . . , Mn) is not defined

let x = g(M1, . . . , Mn) in P else Q → Q
(Red Destr 2)

let x = M in P → P{M/x}
(Red Let)

if M = M then P else Q → P
(Red Cond 1)

M 6= N

if M = N then P else Q → Q
(Red Cond 2)

P → Q

P | R → Q | R
(Red Par)

P → Q

(νa)P → (νa)Q
(Red Res)

P ′ ≡ P, P → Q, Q ≡ Q′

P ′ → Q′ (Red ≡)

Fig. 2. Structural congruence and reduction

public channels (such as those of the Internet), on which Q may eavesdrop, modify,
and inject messages; they may also include other channels known to Q. In addition
to these shared channels, P may use private channels for its internal computations.

Next we give a formal counterpart for this informal definition, in the context of
our process calculus and relying on the operational semantics of Section 2.3.

We represent the adversary Q as a process of the calculus, with some hypotheses
that characterize Q’s initial capabilities. We formulate these hypotheses simply by
using a set of names S . Intuitively, Q knows the names in S initially; in particular,
these names may represent the cryptographic keys, communication channels, and
nonces that Q knows initially. In the course of computation, Q may acquire some
additional capabilities (for instance, additional cryptographic keys) not represented
in S , by creating fresh names and receiving terms in messages.

In order to represent that Q may initially know complex terms rather than just
names, we may let P begin with the output of these terms on a public channel
c ∈ S , so the restriction that S is a set of names entails no loss of generality.
Journal of the ACM, Vol. V, No. N, Month 20YY.
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Definition 3.1. Let S be a finite set of names. The closed process Q is a S -
adversary if and only if fn(Q) ⊆ S . The closed process P preserves the secrecy of
M from S if and only if P | Q does not output M on c for any S -adversary Q and
any c ∈ S .

If P preserves the secrecy of M from S , then it clearly cannot output M on some
c ∈ S , that is, on one of the channels known to the adversary. This guarantee
corresponds to the informal requirement that P never publishes M on its own.
Moreover, P cannot publish data that would enable an adversary to compute M ,
because the adversary could go on to output M on some c ∈ S .

For instance, the process (νk)a〈sencrypt(s, k)〉 preserves the secrecy of s from
{a}. This process publishes an encryption of s on the channel a, but not the de-
cryption key; hence s does not escape. Similarly, the process (νa)a〈sencrypt(s, k)〉
preserves the secrecy of s from {k}; here the key is published but the channel re-
mains private. On the other hand, the process a〈sencrypt(s, k)〉 does not preserve
the secrecy of s from {a, k}: the adversary

a(x).a〈sdecrypt(x, k)〉

can receive sencrypt(s, k) on a, decrypt s, and resend it on a.
As an additional example, we may apply this definition of secrecy to the process

P of the example of Section 2.2. We may ask whether P preserves the secrecy of
s from {e}. This property would mean that an attacker with access to e cannot
learn s. Section 6.1 shows that this property indeed holds.

Definitions along these lines are quite common in protocol analysis. They are
particularly popular and useful for treating the secrecy of keys and other atomic
data items. There are however alternatives, in particular some definitions based
on the concept of noninterference. According to those, a protocol parameter (such
as the identity of a participant) is secret if an adversary cannot tell an instance
of the protocol with one value of the parameter from an instance with a different
value. The adversary may actually have these values, but ignore which is in use.
In contrast, Definition 3.1 implies that, when a process P keeps the secrecy of a
term M , the adversary does not have M . See [Abadi 2000] for further details and
discussion.

4. THE TYPE SYSTEM

This section presents a general type system for our process calculus: Section 4.1
describes parameters and assumptions of the type system, and Section 4.2 describes
its judgments and the type rules, which Figure 3 gives. The following sections
include instances of this general type system.

4.1 Parameters and Requirements

The type system is parameterized by a set of types Types and a non-empty subset
TPublic ⊆ Types. These parameters will be fixed in each instance of the type system.
Always, TPublic is intended as the set of types of data that can be known by the
attacker. The set TPublic is crucial in formulating our secrecy results, in which we
assume that the attacker has names with types in TPublic and prove that it does
not have names with types not in TPublic.
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The type system relies on a function conveys : Types → P(Types) that satisfies
property (P0):

(P0) If T ∈ TPublic, then conveys(T ) = TPublic.

Intuitively, conveys(T ) is the set of types of data that are conveyed by a channel
of type T . (It is empty when elements of T cannot be used as channels.) Data
conveyed by a public channel is public, since the adversary can obtain it by listening
on the channel. Conversely, public data can appear on a public channel, since the
adversary can send it.

The type system also relies on a partial function from types to types Of :
Typesn → Types for each constructor f of arity n, and a function from types
to sets of types Og : Typesn → P(Types) for each destructor g of arity n. Basically,
these operators Of and Og give the types of constructor and destructor applica-
tions (much like type declarations for f and g), so they determine the type rules for
constructors and destructors. As the type rules say, if M1, . . . ,Mn have respective
types T1, . . . , Tn, f is a constructor of arity n, and Of (T1, . . . , Tn) is defined, then
f(M1, . . . ,Mn) has type Of (T1, . . . , Tn). Similarly, if M1, . . . ,Mn have respective
types T1, . . . , Tn, g is a destructor of arity n, and g(M1, . . . ,Mn) is defined, then
g(M1, . . . ,Mn) has a type in Og(T1, . . . , Tn).

These constructor and destructor applications need not have unique or most gen-
eral types (but terms do have unique types in a given environment). Constructors
and destructors can accept arguments of different types, and return results whose
types depend on the types of the arguments. In this sense, we may say that they
are overloaded functions; this overloading subsumes some forms of subtyping and
parametric polymorphism.

We require the following properties:

(P1) If Ti ∈ TPublic for all i ∈ {1, . . . , n}, then Of (T1, . . . , Tn) is defined and Of (T1,
. . . , Tn) ∈ TPublic.

(P2) If Ti ∈ TPublic for all i ∈ {1, . . . , n} and T ∈ Og(T1, . . . , Tn), then T ∈ TPublic.
(P3) For each equation g(M1, . . . ,Mn) = M in def(g), if E ` Mi : Ti for all i ∈

{1, . . . , n}, then there exists T ∈ Og(T1, . . . , Tn) such that E ` M : T .

These properties are both reasonable and necessary for the soundness of the type
system. The first two properties reflect that the result of applying a function to
public terms should also be public, since the adversary can compute it. These
properties are important in the proof of the Typability Lemma (Lemma 5.1.4 in
Section 5). The third property essentially says that the definition of Og on types
is compatible with the definition of g on terms. This property is useful for type
preservation when a destructor is applied, in the proof of the Subject Reduction
Lemma (Lemma 5.1.3 in Section 5).

Thus, in summary, the type system is parameterized by:

—the set of types Types,
—the subset TPublic ⊆ Types,
—the function conveys : Types → P(Types),
—a partial function Of : Typesn → Types for each constructor f of arity n, and
Journal of the ACM, Vol. V, No. N, Month 20YY.



Analyzing Security Protocols with Secrecy Types and Logic Programs · 13

—a function Og : Typesn → P(Types) for each destructor g of arity n,

and these parameters are subject to conditions (P0, P1, P2, P3).
As it stands, the type system is not parameterized by a subtyping relation. On

the other hand, we sometimes find it convenient to use specific subtyping relations
in instances of the type system, without however a “subsumption” rule [Cardelli
1997]. This rule is present in many programming languages with subtyping (but not
all: see for example Objective Caml). It would enables us to view every element of a
type T as having a type T ′ whenever T is a subtype of T ′, and therefore to apply any
function f that expects an argument of type T ′ to any element of type T . It would
be fairly easy to add this rule, should one wish to do so; we have developed some
of the corresponding theory. We have not needed this rule because, as explained
above, our constructors and destructors can accept arguments of different types,
and return results whose types depend on the types of the arguments. Therefore, a
function f that expects an argument of type T ′ can be defined to handle arguments
of any other type T as well.

The soundness of the type system depends on the proper definition of construc-
tors and destructors. In particular, the result of a constructor must be a new term,
not equal to any other term. For instance, the identity function cannot be a con-
structor (but it may be a destructor). Otherwise, taking the identity function as
a constructor, we could type it with Oid(T ) = T ′ ∈ TPublic for all T , so it could
convert a secret type into a public one, and this would lead to wrong secrecy proofs.
Once the constructors and destructors are defined correctly and the required prop-
erties (P0, P1, P2, P3) hold, the type system provides secrecy guarantees, as we
show in the next section.

4.2 Judgments and Rules

Figure 3 gives the rules of the type system. In the rules, the metavariable u ranges
over names and variables (that is, over atomic terms), and T over types. The rules
concern three judgments:

—E ` � means that E is a well-formed typing environment.
—E ` M : T means that M is a term of type T in the environment E.
—E ` P says that the process P is well-typed in the environment E.

The type rules for nil, parallel composition, replication, restriction, and local
definition are standard. We use a Curry-style typing for restriction, so we do not
mention a type of a explicitly in the construct (νa). (That is, we do not write
(νa : T ) for some T .) This style of typing gives rise to a form of polymorphism:
the type of a can change according to the environment. We could easily have a
variant with explicit types on restrictions. The resulting type system would be less
powerful, but our soundness results would still hold.

By the rule (Output), the process M〈N〉.P is well-typed only if data of the type
T ′ of N can be conveyed on a channel of the type T of M , that is, T ′ ∈ conveys(T ).
Conversely, for typechecking the process M(x).P via the rule (Input), the variable x
is considered with all types T ′ ∈ conveys(T ) where T is the type of M . The universal
quantification on the type of x is unusual; it arises because a channel may convey
data of several types. In security protocols, this flexibility is important because
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Well-formed environments:

∅ ` �
(Env ∅)

E ` � u /∈ dom(E)

E, u : T ` �
(Env atom)

Terms:

E ` � (u : T ) ∈ E

E ` u : T
(Atom)

E ` � ∀i ∈ {1, . . . , n}, E ` Mi : Ti Of (T1, . . . , Tn) is defined

E ` f(M1, . . . , Mn) : Of (T1, . . . , Tn)
(Constructor application)

Processes:

E ` M : T E ` N : T ′ T ′ ∈ conveys(T ) E ` P

E ` M〈N〉.P
(Output)

E ` M : T ∀T ′ ∈ conveys(T ), E, x : T ′ ` P

E ` M(x).P
(Input)

E ` �
E ` 0

(Nil)

E ` P E ` Q

E ` P | Q
(Parallel composition)

E ` P

E ` !P
(Replication)

E, a : T ` P

E ` (νa)P
(Restriction)

∀i ∈ {1, . . . , n}, E ` Mi : Ti ∀T ∈ Og(T1, . . . , Tn), E, x : T ` P E ` Q

E ` let x = g(M1, . . . , Mn) in P else Q
(Destructor application)

E ` M : T E, x : T ` P

E ` let x = M in P
(Local definition)

E ` M : T E ` N : T ′ if T = T ′ then E ` P E ` Q

E ` if M = N then P else Q
(Conditional)

Fig. 3. Type rules

a channel may convey data from the adversary and from honest participants, and
types can help distinguish these two cases.

The rule (Constructor application) types f(M1, . . . ,Mn) according to the cor-
responding operator Of . The rule (Destructor application) is similar to (Input);
in let x = g(M1, . . . ,Mn) in P else Q, the variable x is considered with all the
possible types of g(M1, . . . ,Mn), that is, all elements of Og(T1, . . . , Tn).

Rule (Conditional) exploits the property that if two terms M and N have different
types then they are certainly different. In this case, if M = N then P else Q may
be well-typed without P being well-typed.

The constructs if M = N then P else Q and let x = M in P can be defined as
special cases from let x = g(M1, . . . ,Mn) in P else Q, and their typing follows:
Journal of the ACM, Vol. V, No. N, Month 20YY.
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—Let equals be a binary destructor with equals(M,M) = M (and equals(M,N)
undefined otherwise), Oequals(T, T ) = {T}, and Oequals(T, T ′) = ∅ if T 6= T ′.
Then if M = N then P else Q can be defined and typed as

let x = equals(M,N) in P else Q

where x /∈ fv(P ).
—Let id be a unary destructor with id(M) = M and Oid(T ) = {T}. Then let x =

M in P can be defined and typed as

let x = id(M) in P else 0

Because of these encodings, we may omit the cases of if M = N then P else Q and
let x = M in P in various arguments and proofs. The encodings also suggest that
the typing rule (Conditional) for if M = N then P else Q is more natural than
might seem at first sight.

In the rules (Input) and (Destructor application), the type system uses univer-
sal quantifications over a possibly infinite set of types, and the rule (Restriction)
involves picking a type from a possibly infinite set. These features are important
for the richness of the type system. For example, had we attached a single type
to the variable in (Destructor application), we could not have dealt with situations
in which a process receives an encrypted message with a cleartext of a statically
unknown type.

On the other hand, these features are challenging from an algorithmic perspective:
typechecking and type inference are not easy to implement in general. Unless ex-
plicit types are given, typechecking requires guessing the types of restricted names.
Even worse, typechecking requires considering bound variables with a potentially
infinite set of types, and verifying hypotheses for each of those types. That is why
the instance presented in Section 6.1 is intended primarily for manual proofs.

Despite these difficulties, typechecking is certainly not out of reach, as we show.
First, we demonstrate that the set of types is finite in significant cases, by providing
an example in Section 6.2. Moreover, the logic-programming protocol checker of
Section 7 yields a practical implementation in cases in which the sets are infinite.

Finally, having a very general (infinitary) type system strengthens our relative
completeness result of Section 7.3. This result shows that the checker can prove all
secrecy properties that can be proved with any instance of the type system, even
infinitary instances.

5. PROPERTIES OF THE TYPE SYSTEM

Next we study the properties of the type system. We first establish a subject-
reduction result and other basic lemmas, then use these results for proving a the-
orem about secrecy. Technically, we follow the same pattern as in the special case
(protocols with asymmetric communication) treated in our previous work [Abadi
and Blanchet 2003b], but some of the proofs require new arguments.

5.1 Subject Reduction and Typability

Lemma 5.1.1 (Substitution). If E,E′ ` M : T and E, x : T,E′ ` M ′ : T ′ then
E,E′ ` M ′{M/x} :T ′. If E,E′ ` M :T and E, x :T,E′ ` P then E,E′ ` P{M/x}.
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Proof. The proof is by induction on the derivations of E, x :T,E′ ` M ′ :T ′ and
of E, x : T,E ` P . The treatment of all rules is straightforward.

Lemma 5.1.2 (Subject congruence). If E ` P and P ≡ Q then E ` Q.

Proof. This proof is similar to the corresponding proof for the type system of
Cardelli, Ghelli, and Gordon [Cardelli et al. 2000]; it is an easy induction on the
derivation of P ≡ Q. In the case of scope extrusion, we use a weakening lemma,
which is easy to prove by induction on type derivations.

The subject-reduction lemma says that typing is preserved by computation.

Lemma 5.1.3 (Subject reduction). If E ` P and P → Q then E ` Q.

Proof. The proof is by induction on the derivation of P → Q.

—In the case of (Red I/O), we have

a〈M〉.Q | a(x).P → Q | P{M/x}

We assume E ` a〈M〉.Q | a(x).P . This judgment must have been derived using
the rule (Parallel composition), so E ` a〈M〉.Q and E ` a(x).P . The judgment
E ` a(x).P must have been derived by (Input) from E ` a : T and ∀T ′ ∈
conveys(T ), E, x :T ′ ` P for some T . The judgment E ` a〈M〉.Q must have been
derived by (Output) from E ` a : T (for the same T as in the (Input) derivation,
since each term has at most one type), E ` M : T ′, T ′ ∈ conveys(T ), and E ` Q.
By the substitution lemma (Lemma 5.1.1), we obtain E ` P{M/x}. By (Parallel
composition), E ` Q | P{M/x}.

—In the case of (Red Destr 1), we have g(M1, . . . ,Mn) = M ′ and

let x = g(M1, . . . ,Mn) in P else Q → P{M ′/x}

We assume E ` let x = g(M1, . . . ,Mn) in P else Q. This judgment must
have been derived by (Destructor application) from ∀i ∈ {1, . . . , n}, E ` Mi : Ti,
and ∀T ∈ Og(T1, . . . , Tn), E, x : T ` P for some T1, . . . , Tn. There exists an
equation g(N1, . . . , Nn) = N ′ in def(g) and a substitution σ such that ∀i ∈
{1, . . . , n},Mi = σNi and M ′ = σN ′. For each variable xj that occurs in
N1, . . . , Nn, we have a subterm σxj of M1, . . . ,Mn, and a type Txj

must have
been given to this subterm when typing M1, . . . ,Mn, so we have E ` σxj :Txj

for
each variable xj that occurs in N1, . . . , Nn. (All occurrences of each variable xj

have the same type, since each term has at most one type.) Since E ` σNi : Ti,
we have E′ ` Ni : Ti where E′ is the environment that associates each variable
xj with the type Txj

. Since g(N1, . . . , Nn) = N ′ is in def(g), by (P3), there
exists T ∈ Og(T1, . . . , Tn), such that E′ ` N ′ : T . By the substitution lemma
(Lemma 5.1.1), E ` M ′ : T . Since E, x : T ` P , the substitution lemma yields
E ` P{M ′/x}.

—The cases (Red Let) and (Red Cond 1) follow by (Red Destr 1). (Recall that
local definitions and conditionals can be encoded as destructor applications.)

The remaining cases are easy.

In the study of programming languages, it is common to complement subject-
reduction properties with progress properties. A typical progress property says
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that well-typed programs do not get stuck as a result of dynamic type errors—for
example, attempting to multiply a boolean and an integer. Dynamic type errors
are meaningful whenever the language’s execution model includes dynamic type
information, such as different tags on booleans and integers. Without such tags, on
the other hand, the representations of booleans and integers may well be multiplied,
though the result of such an operation will typically be implementation-dependent.

In our context, by analogy, one might consider stating a progress property that
would guarantee that no “dynamic secrecy-type error” causes a process to get stuck.
A “dynamic secrecy-type error” might be using public data as non-public data, or
vice versa. Like ordinary dynamic type errors, “dynamic secrecy-type errors” are
meaningful if the execution model includes dynamic type information, in this case
tags that indicate secrecy types. The operational semantics of our process calculus
does not however include such tags. Indeed, it is deliberately independent of any
secrecy information. Furthermore, our typings do not imply any progress property:
as the following typability lemma says, every process is well-typed (at least in a
fairly trivial way that makes its free names and free variables public).

Lemma 5.1.4 (Typability). Let P be an untyped process. If fn(P ) ⊆ {a1,
. . . , an}, fv(P ) ⊆ {x1, . . . , xm}, T ′

i ∈ TPublic for all i ∈ {1, . . . , n}, and Ti ∈ TPublic

for all i ∈ {1, . . . ,m}, then

a1 : T ′
1, . . . , an : T ′

n, x1 : T1, . . . , xm : Tm ` P

Proof. We first prove by induction that all terms are of a type in TPublic; that
is:

a1 : T ′
1, . . . , an : T ′

n, x1 : T1, . . . , xm : Tm ` M : T

with T ∈ TPublic if fn(M) ⊆ {a1, . . . , an}, fv(M) ⊆ {x1, . . . , xm}, T ′
i ∈ TPublic for

all i ∈ {1, . . . , n}, and Ti ∈ TPublic for all i ∈ {1, . . . ,m}.

—For names and variables, this follows by Rule (Atom).

—For composite terms f(M1, . . . ,Mk), this follows by Rule (Constructor applica-
tion) and induction hypothesis, since if T ′′

i ∈ TPublic for all i ∈ {1, . . . , k}, then
Of (T ′′

1 , . . . , T ′′
k ) ∈ TPublic by (P1).

Now we prove the claim, by induction on the structure of P .

—For output, notice that if T ∈ TPublic, then TPublic ⊆ conveys(T ) by (P0).

—For input, if T ∈ TPublic, then TPublic ⊇ conveys(T ) by (P0).

—In the case of restriction, we let the type of the new name be in TPublic.

—For destructor application, notice that if T ′′
i ∈ TPublic for all i ∈ {1, . . . , k}, then

T ∈ TPublic for all T ∈ Og(T ′′
1 , . . . , T ′′

k ), by (P2).

This typability lemma is important because it means that any process that rep-
resents an adversary is well-typed. It is a formal counterpart to the informal idea
that the type system cannot constrain the adversary.
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5.2 Secrecy

The secrecy theorem says that if a closed process P is well-typed in an environment
E, and a name s is not of a type in TPublic according to E, then P preserves the
secrecy of s from S , where S is the set of names that are of a type in TPublic

according to E. In other words, P preserves the secrecy of names whose type is
not in TPublic against adversaries that can output, input, and compute on names
of types in TPublic.

Theorem 5.2.1 (Secrecy). Let P be a closed process. Suppose that E ` P ,
E ` s : T ′, and T ′ /∈ TPublic. Let S = {a | E ` a : T and T ∈ TPublic}. Then P
preserves the secrecy of s from S.

This secrecy theorem is a consequence of the subject-reduction lemma and the
typability lemma.

Proof. Suppose that S = {a1, . . . , al}, let Ti be the type of ai, so (ai : Ti) ∈ E
with Ti ∈ TPublic.

In order to derive a contradiction, we assume that P does not preserve the secrecy
of s from S . Then there exists a process Q with fv(Q) = ∅ and fn(Q) ⊆ S ,
such that P | Q →∗ R and R ≡ c〈s〉.Q′ | R′, where c ∈ S . By Lemma 5.1.4,
a1 : T1, . . . , al : Tl ` Q, so E ` Q. Therefore, E ` P | Q. By Lemma 5.1.3, E ` R,
and by Lemma 5.1.2, E ` c〈s〉.Q′ | R′. Since c ∈ S , we have E ` c : T and
T ∈ TPublic for some T . The judgment E ` c〈s〉.Q′ must be derived by (Output)
from E ` c : T and E ` s : T ′ with T ′ ∈ conveys(T ). Furthermore, T ′ ∈ TPublic by
(P0), contradicting the hypotheses of the theorem. So P preserves the secrecy of s
from S .

We restate a special case of the theorem, as it may be particularly clear.

Corollary 5.2.2. Suppose that a:T, s:T ′ ` P with T ∈ TPublic and T ′ /∈ TPublic.
Then P preserves the secrecy of s from a. That is, for all closed processes Q such
that fn(Q) ⊆ {a}, P | Q does not output s on a.

Suppose that the secrecy theorem implies that a process P preserves the secrecy
of two names s and s′, treating each of these names separately. The two applications
of the secrecy theorem may in general rely on two different ways of showing that
P is well-typed, with two different typing environments E and E′. We must have
that E ` s :T and E′ ` s′ :T ′ for some types T, T ′ /∈ TPublic. However, we may also
have that E ` s′ : T1 and E′ ` s : T ′

1 for some types T1, T
′
1 ∈ TPublic. Ideally, we

may like to have a single environment E such that E ` P , E ` s :T , and E ` s′ :T ′

with T, T ′ /∈ TPublic. Thus, E would make secret as much as possible, providing a
“most secret typing” for P . In general, most secret typings are not always possible.
For example, the instance of Section 6.1 does not guarantee the existence of most
secret typings. (The proof is very similar to that in [Abadi and Blanchet 2003b,
Section 5.3].) In contrast, in the instance of Section 7, the types generated by the
verifier yield most secret typings.

6. SOME INSTANCES OF THE TYPE SYSTEM

As an important example, we show how the general type system applies to symmet-
ric and asymmetric encryption. Specifically, we show two instances of the general
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type system, one infinitary and the other finitary, for processes that use symmetric
and asymmetric encryption, built using the constructors ntuple, sencrypt , pencrypt ,
and pk , and the corresponding destructors ithn, sdecrypt , and pdecrypt , introduced
in Section 2. These instances are similar in scope and power to previous special-
purpose type systems [Abadi and Blanchet 2003b; Abadi 1999], but they treat
additional constructs and could easily treat even more.

In both instances, we include types for public and secret data, Public and Secret
(as well as types with more structure, such as certain types for tuples). It would be
straightforward to extend the instances with additional levels of secrecy, for example
introducing an extra type TopSecret. Our results carry over to such extensions, and
they can imply, for example, that even when data of type Secret is allowed to become
public (by letting Secret ∈ TPublic), data of type TopSecret need not be. Such results
are perhaps reminiscent of classic work on multilevel security (e.g., [Denning 1982]).
However, unlike in that classic work, we need not require that the types form a
lattice. We also have different concerns (for example, protecting against network
attacks rather than against Trojan horses), and obtain different security guarantees
(since our definition of secrecy does not preclude all information flows).

6.1 An Infinitary Instance

For the first instance, the grammar of types is given in Figure 4. Informally, types
have the following meanings:

—Public is the type of public data.

—Secret is the type of secret data.

—T1 × . . .× Tn is the type of tuples, whose components are of types T1, . . . , Tn.

—C[T ] is the type of a channel that can convey data of type T and that cannot be
known by the adversary. (Channels that can be known by the adversary are of
type Public.) Channel types are ordinary data types, so channel names can be
encrypted and can be sent in messages.

—KSecret[T ] is the type of symmetric keys that can be used to encrypt data of type
T and that cannot be known by the adversary. (Symmetric keys that can be
known by the adversary are of type Public.)

—EKSecret[T ] is the type of secret asymmetric encryption keys that can be used to
encrypt cleartexts of type T .

—DKSecret[T ] is the type of asymmetric decryption keys for cleartexts of type T
and such that the corresponding encryption keys are secret. These decryption
keys are also secret.

—EKPublic[T ] is the type of public asymmetric encryption keys that can be used
to encrypt cleartexts of type T . The adversary can use these keys to encrypt its
messages, so public messages can also be encrypted under these keys.

—DKPublic[T ] is the type of asymmetric decryption keys for cleartexts of type T
and such that the corresponding encryption keys are public. These decryption
keys are however secret. When decrypting a message with such a key, the result
can be of type T (in normal use of the key) or of type Public (when the adversary
has used the corresponding encryption key to encrypt one of its messages).
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T ::= types
Public public data

Secret secret data

T1 × . . .× Tn tuple
C[T ] secret channel

KSecret[T ] secret shared key

DKSecret[T ] decryption key whose corresponding

encryption key is secret

EKSecret[T ] secret encryption key

DKPublic[T ] decryption key whose corresponding
encryption key is public

EKPublic[T ] public encryption key

Fig. 4. Grammar of types in an instance of the type system

TPublic = {T | T ≤ Public}

= {Public, EKPublic[T ]} ∪ {T1 × . . .× Tn | ∀i ∈ {1, . . . , n}, Ti ∈ TPublic}.

If T ≤ Public, then conveys(T ) = TPublic;

conveys(C[T ]) = {T ′ | T ′ ≤ T}.

Ontuple(T1, . . . , Tn) = T1 × . . .× Tn.

If T1 ≤ Public and T2 ≤ Public, then Osencrypt (T1, T2) = Public;

if T ′ ≤ T, then Osencrypt (T
′, KSecret[T ]) = Public.

If T1 ≤ Public and T2 ≤ Public, then Opencrypt (T1, T2) = Public;

if T ′ ≤ T, then Opencrypt (T
′, EKL[T ]) = Public.

If T1 ≤ Public, then Opk (T1) = Public;

Opk (DKL[T ]) = EKL[T ].

Oithn (T1 × . . .× Tn) = {Ti}.
If T ≤ Public, then Osdecrypt (Public, T ) = TPublic;

Osdecrypt (Public, KSecret[T ]) = {T ′ | T ′ ≤ T}.
If T ≤ Public, then Opdecrypt (Public, T ) = TPublic;

Opdecrypt (Public, DKSecret[T ]) = {T ′ | T ′ ≤ T};

Opdecrypt (Public, DKPublic[T ]) = {T ′ | T ′ ≤ T} ∪ TPublic.

Other cases: conveys(T ) = ∅, Of (T1, . . . , Tn) is undefined, Og(T1, . . . , Tn) = ∅.

Fig. 5. Definition of TPublic and type operators in an instance of the type system

Journal of the ACM, Vol. V, No. N, Month 20YY.



Analyzing Security Protocols with Secrecy Types and Logic Programs · 21

We define TPublic and the type operators of the system in Figure 5. For this
purpose, we let the subtyping relation ≤ be reflexive and transitive, with

C[T ] ≤ Secret,

KSecret[T ] ≤ Secret,

DKSecret[T ] ≤ Secret,

EKSecret[T ] ≤ Secret,

DKPublic[T ] ≤ Secret,

EKPublic[T ] ≤ Public,
Public× . . .× Public ≤ Public,
if ∃i ∈ {1, . . . , n}, Ti = Secret then T1 × . . .× Tn ≤ Secret,
if T1 ≤ T ′

1, . . . , Tn ≤ T ′
n then T1 × . . .× Tn ≤ T ′

1 × . . .× T ′
n.

Importantly, the definitions allow encryption under a public key of type EKPublic[T ]
to accept data both of type Public and of type T . For the corresponding decryp-
tion, we handle both cases: Opdecrypt(Public,DKPublic[T ]) includes both subtypes
of T and subtypes of Public. (A similar idea appears in the special-purpose type
system of [Abadi and Blanchet 2003b].) As explained above, we do not need a
“subsumption” rule.

Proposition 6.1.1. These definitions satisfy the constraints of the general type
system (P0, P1, P2, P3).

Proof. (P0), (P1), and (P2) are obvious. We prove (P3).

—ithn(ntuple(M1, . . . ,Mn)) = Mi. Suppose that E ` ntuple(M1, . . . ,Mn) : T .
This judgment must have been derived by (Constructor application). Therefore,
T = T1 × . . .× Tn and E ` Mi : Ti, with Ti ∈ Oithn

(T ).
—sdecrypt(sencrypt(M,N), N) = M . Suppose that E ` sencrypt(M,N) : T1 and

E ` N : T2. The former judgment must have been derived by (Constructor
application). Therefore, E ` M : T and Osencrypt(T, T2) = T1 = Public for
some T . By definition of Osencrypt , we have two cases.
In case T ≤ Public and T2 ≤ Public, we obtain E ` M : T and T ∈ TPublic =
Osdecrypt(Public, T2).
Otherwise, T2 = KSecret[T ′] with T ≤ T ′, so E ` M :T and T ∈ Osdecrypt(Public,
T2).

—pdecrypt(pencrypt(M, pk(N)), N) = M . Suppose that E ` pencrypt(M, pk(N)) :
T1 and E ` N : T2. The former judgment must have been derived by applying
(Constructor application) twice, from E ` M : T with Opencrypt(T,Opk (T2)) =
T1 = Public for some T . By definition of Opk , we have three cases.
In case T2 ≤ Public, we have Opk (T2) = Public. Moreover, since Opencrypt(T,
Public) = Public, we also have T ∈ TPublic. Thus, E ` M : T and T ∈ TPublic =
Opdecrypt(Public, T2).
In case T2 = DKSecret[T ′], we have Opk (T2) = EKSecret[T ′]. Moreover, since
Opencrypt(T,EKSecret[T ′]) = Public, we also have T ≤ T ′. Thus, E ` M : T and
T ∈ Opdecrypt(Public, T2).
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Otherwise, T2 = DKPublic[T ′], and we have Opk (T2) = EKPublic[T ′]. Moreover,
since Opencrypt(T,EKPublic[T ′]) = Public, we also have T ≤ T ′ or T ∈ TPublic.
We obtain E ` M : T and T ∈ Opdecrypt(Public, T2).

As an immediate corollary, Theorem 5.2.1 applies, so we can prove secrecy by
typing. For example, the type system can be used to establish that s remains secret
in the process P of the example protocol of Section 2.2. For this proof, we define
E

∆= s : Secret, e : Public, and derive E ` P . In the (Restriction) rule, we choose the
types

TsKA

∆= DKPublic[Secret×KSecret[Secret]]

for sKA and

TsKB

∆= DKPublic[Secret× EKPublic[Secret×KSecret[Secret]]]

for sKB . Then pk(sKA) has the type

TpKA

∆= Opk (TsKA
)

= EKPublic[Secret×KSecret[Secret]]

and pk(sKB) has the type

TpKB

∆= Opk (TsKB
)

= EKPublic[Secret× EKPublic[Secret×KSecret[Secret]]]

The remainder of the process is typed in the environment:

E′ ∆= E, sKA : DKPublic[Secret×KSecret[Secret]],

sKB : DKPublic[Secret× EKPublic[Secret×KSecret[Secret]]],

pKA : EKPublic[Secret×KSecret[Secret]],

pKB : EKPublic[Secret× EKPublic[Secret×KSecret[Secret]]]

We have that TpKA
∈ conveys(Public) and TpKB

∈ conveys(Public) (since these
types are subtypes of Public). Then we only have to show that E′ ` A and E′ ` B.
In the typing of A, we choose k of type Secret. Then

E′, k : Secret ` pencrypt((k, pKA), pKB) : Public

follows by (Constructor application), so the output e〈pencrypt((k, pKA), pKB)〉 is
well-typed by (Output). In the input e(z), by (Input), z can be of any subtype of
Public, then by (Destructor application), we have to prove E′, k:Secret, x:Tx, y:Ty `
if x = k then e〈sencrypt(s, y)〉, where either Tx ≤ Secret and Ty ≤ KSecret[Secret]
or Tx ≤ Public and Ty ≤ Public.

—In the first case, the conditional is well-typed, since the output is well-typed.
—In the second case, the conditional is well-typed, since x and k cannot have the

same type.
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For typing B, by (Input), the type of z is a subtype of Public. By (Destructor
application), we have to show that

E′, x : Tx, y : Ty ` (νKAB)
(

e〈pencrypt((x, KAB), y)〉.
e(z′).let s′ = sdecrypt(z′,KAB) in 0

)
where either Tx ≤ Secret and Ty ≤ EKPublic[Secret×KSecret[Secret]], or Tx ≤ Public
and Ty ≤ Public.

—In the first case, we choose KAB of type KSecret[Secret]. We have

Tx ×KSecret[Secret] ≤ Secret×KSecret[Secret]

and Ty = EKPublic[Secret×KSecret[Secret]] (the only subtype of EKPublic[Secret×
KSecret[Secret]] is itself), so Opencrypt(Tx ×KSecret[Secret], Ty) = Public.

—In the second case, we choose KAB of type Public. We have Tx×Public ≤ Public
and Ty ≤ Public, therefore Opencrypt(Tx × Public, Ty) = Public.

In both cases, it follows that the encryption is of type Public by (Constructor
application), and that the output is well-typed. In both cases, also, the input
e(z′).let s′ = sdecrypt(z′,KAB) in 0 is clearly well-typed. Thus, we obtain E ` P .
Finally, by Theorem 5.2.1, we conclude that P preserves the secrecy of s from {e}.

As for the process P ′ of Section 2.2, we cannot show that it preserves the secrecy
of sA or sB from {e} using this instance of the type system. This difficulty stems
from two different uses of the key sKA, which appear because A plays both roles
in the protocol. (Indeed, if sA or sB were of type Secret, then y would be of
type KSecret[Secret] in A′, so sKA would have a type of the form DKPublic[T ×
KSecret[Secret]], and y could be of type KSecret[Secret] in B′′ in conflict with the use
of y as public encryption key.) In Section 6.2, we present a variant that avoids this
difficulty. We postpone the formal analysis of the process P ′ itself to Section 7.

6.2 A Finitary Instance

Typechecking may be difficult, or at least non-trivial, in infinitary instances such
as the one of Section 6.1, in which the type rules contain universal quantifications
over infinite sets of types. In this section, we present a weaker instance that deals
with the same function symbols but uses only a finite number of types. For this
finitary instance, automatic typechecking and type inference are easy by exhaustive
exploration of all typings.

The set of types of this instance is:

Types = {Public,Secret,EKPublic,Public-Secret-EKPublic}

These types have the following meanings:

—Public is the type of public data and Secret is the type of secret data, as in the
previous instance.

—EKPublic is the type of public asymmetric encryption keys such that the corre-
sponding decryption keys are secret.

—Public-Secret-EKPublic is the type of triples whose first component is of type
Public, second component is of type Secret, and third component is of type
EKPublic.
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TPublic = {EKPublic, Public}.

If T ∈ TPublic, then conveys(T ) = TPublic;

conveys(Secret) = {Public-Secret-EKPublic}.

If T ∈ TPublic, then O3tuple(T, Secret, EKPublic) = Public-Secret-EKPublic;

Ontuple(Secret, . . . , Secret) = Secret;

Ontuple(EKPublic, . . . , EKPublic) = EKPublic;

if T1, . . . , Tn ∈ TPublic and there exists i ∈ {1, . . . , n} such that Ti 6= EKPublic,

then Ontuple(T1, . . . , Tn) = Public.

Osencrypt (Public-Secret-EKPublic, Secret) = Public;

if T1, T2 ∈ TPublic, then Osencrypt (T1, T2) = Public.

Opencrypt (Public-Secret-EKPublic, EKPublic) = Public;

if T1, T2 ∈ TPublic, then Opencrypt (T1, T2) = Public.

Opk (Secret) = EKPublic;

if T1 ∈ TPublic, then Opk (T1) = Public.

Oithn (EKPublic) = {EKPublic};
Oithn (Public) = TPublic;

Oithn (Secret) = {Secret};

O1th3 (Public-Secret-EKPublic) = TPublic;

O2th3 (Public-Secret-EKPublic) = {Secret};

O3th3 (Public-Secret-EKPublic) = {EKPublic}.
If T ∈ TPublic, then Osdecrypt (Public, T ) = TPublic;

Osdecrypt (Public, Secret) = {Public-Secret-EKPublic}.
If T ∈ TPublic, then Opdecrypt (Public, T ) = TPublic;

Opdecrypt (Public, Secret) = {Public-Secret-EKPublic, EKPublic, Public}.

Other cases: conveys(T ) = ∅, Of (T1, . . . , Tn) is undefined, Og(T1, . . . , Tn) = ∅.

Fig. 6. Definition of TPublic and type operators in another instance of the type system
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We define TPublic and the type operators of the system in Figure 6. The re-
sulting instance of the type system has similarities with the special-purpose type
system of [Abadi 1999]. However, that type system does not handle public-key
encryption; more importantly, it establishes a different notion of secrecy (a form of
non-interference), and accordingly its typing of tests is more restrictive in order to
prevent the so-called “implicit” information flows.

Proposition 6.2.1. These definitions satisfy the constraints of the general type
system (P0, P1, P2, P3).

Proof. (P0), (P1), and (P2) are obvious. We prove (P3).

—ithn(ntuple(M1, . . . ,Mn)) = Mi. Suppose that E ` ntuple(M1, . . . ,Mn):T . This
judgment must have been derived by (Constructor application), so we have four
cases, one for each case in the definition of Ontuple .
(1) n = 3, T = Public-Secret-EKPublic, E ` M1 : T ′ with T ′ ∈ TPublic, E ` M2 :

Secret, E ` M3 : EKPublic, and T ′ ∈ TPublic = O1th3(T ), Secret ∈ O2th3(T ),
EKPublic ∈ O3th3(T ).

(2) T = Secret, E ` Mi : Secret, and Secret ∈ Oithn(Secret).
(3) T = EKPublic, E ` Mi : EKPublic, and EKPublic ∈ Oithn

(EKPublic).
(4) T = Public, E ` Mi : Ti with Ti ∈ TPublic, and Ti ∈ TPublic = Oithn

(Public).
—sdecrypt(sencrypt(M,N), N) = M . Suppose that E ` sencrypt(M,N) : T1 and

E ` N : T2. The former judgment must have been derived by (Constructor
application). Therefore, E ` M : T and Osencrypt(T, T2) = T1 = Public for
some T . By definition of Osencrypt , we have two cases.
In case T, T2 ∈ TPublic, we obtain E ` M : T and T ∈ TPublic = Osdecrypt(Public,
T2).
Otherwise, T2 = Secret and T = Public-Secret-EKPublic, so E ` M : T and
T ∈ Osdecrypt(Public, T2).

—pdecrypt(pencrypt(M, pk(N)), N) = M . Suppose that E ` pencrypt(M, pk(N)) :
T1 and E ` N : T2. The former judgment must have been derived by applying
(Constructor application) twice, from E ` M : T with Opencrypt(T,Opk (T2)) =
T1 = Public for some T . By definition of Opk , we have two cases.
In case T2 ∈ TPublic, we have Opk (T2) = Public. Moreover, since Opencrypt(T,
Public) = Public, we also have T ∈ TPublic. Thus, E ` M : T and T ∈ TPublic =
Opdecrypt(Public, T2).
Otherwise, T2 = Secret, and we have Opk (T2) = EKPublic. Moreover, since
Opencrypt(T,EKPublic) = Public, we also have T = Public-Secret-EKPublic or
T ∈ TPublic. We obtain E ` M : T and T ∈ Opdecrypt(Public, T2).

The process P of Section 2.2 clearly does not typecheck in this type system,
since the type system supports encryption of only public data and triples, and the
protocol uses encryption of pairs containing secrets. This point illustrates that
this instance is more restrictive than the instance of the previous section. We can
however adapt the protocol to obtain a similar protocol that does typecheck. More
precisely, we modify the encryptions so that their cleartexts are always of type
Public-Secret-EKPublic. Thus the protocol becomes:
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Message 1. A → B : pencrypt((aPublic, k, pKA), pKB)
Message 2. B → A : pencrypt((a′Public, (k,KAB), a′

EKPublic), pKA)
Message 3. A → B : sencrypt((a′′Public, s, a

′′
EKPublic),KAB)

where aPublic and similar fields indicate arbitrary padding of the appropriate types.
This protocol can be represented by the following process:

P
∆= (νsKA)(νsKB)let pKA = pk(sKA) in

let pKB = pk(sKB) in e〈pKA〉.e〈pKB〉.(A | B)

A
∆= (νk)(νaPublic)e〈pencrypt((aPublic, k, pKA), pKB)〉.

e(z).let (x′
1, (x, y), x′

3) = pdecrypt(z, sKA) in
if x = k then (νa′′Public)(νa′′EKPublic)
e〈sencrypt((a′′Public, s, a

′′
EKPublic), y)〉

B
∆= e(z).let (x1, x, y) = pdecrypt(z, sKB) in

(νKAB)(νa′Public)(νa′EKPublic)
e〈pencrypt((a′Public, (x,KAB), a′EKPublic), y)〉.
e(z′).let (x′′

1 , s′, x′′
3) = sdecrypt(z′,KAB) in 0

This process is typable in this instance of the type system: letting E
∆= s : Secret, e :

Public, we can show that E ` P . In the (Restriction) rule, we choose the type
Secret for sKA and sKB . Then pk(sKA) and pk(sKB) have the type Opk (Secret) =
EKPublic. The remainder of the process is typed in the environment:

E′ ∆= E, sKA : Secret, sKB : Secret, pKA : EKPublic, pKB : EKPublic

We check that EKPublic ∈ conveys(Public) (since this type is in TPublic), so the
outputs e〈pKA〉.e〈pKB〉 are well-typed. Then we only have to show that E′ ` A
and E′ ` B. In the typing of A, we choose k of type Secret, aPublic of type Public.
Then

E′, k : Secret, aPublic : Public ` pencrypt((aPublic, k, pKA), pKB) : Public

follows by (Constructor application), so the output e〈pencrypt((aPublic, k, pKA),
pKB)〉 is well-typed by (Output). In the input e(z), by (Input), z can be of
type Public or EKPublic, then by (Destructor application), (x′

1, (x, y), x′
3) can be

of type Public-Secret-EKPublic, Public, or EKPublic, so (x, y) can be of type Secret,
Public, or EKPublic, hence we have to prove E′, k : Secret, x : Tx, y : Ty, a′′Public :
Public, a′′

EKPublic : EKPublic ` if x = k then e〈sencrypt((a′′Public, s, a
′′
EKPublic), y)〉,

where either Tx = Ty = Secret or Tx, Ty ∈ TPublic.

—In the first case, the conditional is well-typed, since the output is well-typed.

—In the second case, the conditional is well-typed, since x and k cannot have the
same type.

For typing B, by (Input), the type of z is in TPublic. By (Destructor application),
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we have to show that

E′, x : Tx, y : Ty ` (νKAB)(νa′Public)(νa′EKPublic)
e〈pencrypt((a′Public, (x,KAB), a′EKPublic), y)〉.
e(z′).let (x′′

1 , s′, x′′
3) = sdecrypt(z′,KAB) in 0

where either Tx = Secret and Ty = EKPublic, or Tx, Ty ∈ TPublic.

—In the first case, we choose KAB of type Secret, a′Public of type Public, and
a′
EKPublic of type EKPublic. Then (a′Public, (x,KAB), a′

EKPublic) is of type Public-
Secret-EKPublic and Opencrypt(Public-Secret-EKPublic,EKPublic) = Public.

—In the second case, we choose KAB , a′Public, and a′
EKPublic of type Public. Then

(a′Public, (x, KAB), a′
EKPublic) is of type Public and Opencrypt(Public, Ty) = Public.

In both cases, it follows that the encryption is of type Public by (Constructor
application), and that the output is well-typed. The input e(z′).let (x′′

1 , s′, x′′
3) =

sdecrypt(z′,KAB) in 0 is clearly well-typed in both cases. Thus, we obtain E ` P .
Finally, by Theorem 5.2.1, we conclude that P preserves the secrecy of s from {e}.

We can adapt the process P ′ of Section 2.2 in a similar way, with the redefinitions:

P ′ ∆= (νsKA)(νsKB)let pKA = pk(sKA) in
let pKB = pk(sKB) in e〈pKA〉.e〈pKB〉.(!A′ | !B′ | !B′′)

A′ ∆= e(xpKB
).(νk)(νaPublic)e〈pencrypt((aPublic, k, pKA), xpKB

)〉.
e(z).let (x′

1, (x, y), x′
3) = pdecrypt(z, sKA) in

if x = k then
(if xpKB

= pKB then (νa′′Public)(νa′′EKPublic)
e〈sencrypt((a′′Public, sB , a′′EKPublic), y)〉
| if xpKB

= pKA then (νa′′Public)(νa′′EKPublic)
e〈sencrypt((a′′Public, sA, a′′EKPublic), y)〉)

B′ ∆= e(z).let (x1, x, y) = pdecrypt(z, sKB) in
(νKAB)(νa′Public)(νa′EKPublic)
e〈pencrypt((a′Public, (x,KAB), a′EKPublic), y)〉.
e(z′).let (x′′

1 , s′, x′′
3) = sdecrypt(z′,KAB) in 0

B′′ ∆= e(z).let (x1, x, y) = pdecrypt(z, sKA) in
(νKAB)(νa′Public)(νa′EKPublic)
e〈pencrypt((a′Public, (x,KAB), a′EKPublic), y)〉.
e(z′).let (x′′

1 , s′, x′′
3) = sdecrypt(z′,KAB) in 0

We can show that this variant is well-typed in this instance of the type system:
e : Public, sA : Secret, sB : Secret ` P ′. Thus, we obtain that this process (but not
the original process P ′ of Section 2.2) preserves the secrecy of sA and sB from {e}.

As in these examples, this finitary instance of the type system requires a rather
strong discipline in the format of data encrypted under secret keys or sent on secret
channels. While this discipline may not be hard to follow in writing new processes,
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it typically requires rewriting other processes before they can be typechecked. Even
when the rewriting may appear simple, it may strengthen the processes in question.
For example (as suggested above and explained fully in Section 7) the original
process P ′ of Section 2.2 does not satisfy the secrecy properties that hold for its
well-typed variant. What might be perceived as a disappointment if one is interested
in the properties of the original process is a positive outcome if one aims to obtain
security guarantees.

We return to the analysis of the original processes P and P ′ of Section 2.2 in
Section 7.

7. THE PROTOCOL CHECKER

In this section we give a precise definition of a protocol checker based on untyped
logic programs, then study its properties, in particular proving its equivalence to
the type system. This equivalence is considerably less routine and predictable than
properties such as subject reduction (Lemma 5.1.3).

As explained in the introduction, the checker takes as input a process and trans-
lates it into an abstract representation by logic-programming rules. This repre-
sentation and its manipulation, but not the translation of processes, come from
previous work [Blanchet 2001]. Interested readers may consult that work for fur-
ther explanations of the material in the early part of Section 7.1.

In our definition and study of the checker, we emphasize its use for proving se-
crecy properties, in particular that names remain secret in the sense defined in
Section 3. However, the checker has also been used for establishing other security
properties. In particular, it has been quite effective in proofs of authenticity prop-
erties, expressed as correspondences between events [Blanchet 2002]. Recently, it
has also been used in establishing certain process equivalences that capture strong
secrecy properties [Blanchet 2004].

7.1 Definition of the Protocol Checker

Given a closed process P0 and a set of names S , the protocol checker builds a set
of rules, in the form of Horn clauses.

The rules use two predicates: attacker and message. The fact attacker(p) means
that the attacker may have p, and the fact message(p, p′) means that the message
p′ may appear on channel p.

F ::= facts
attacker(p) attacker knowledge
message(p, p′) channel messages

Here p and p′ range over patterns (or “terms”, but we prefer the word “patterns”
in order to avoid confusion), which are generated by the following grammar:

p ::= patterns
x, y, z variable
a[p1, . . . , pn] name
f(p1, . . . , pn) constructor application

For each name a in P0 we have a corresponding pattern construct a[p1, . . . , pn]. We
treat a as a function symbol, and write a[p1, . . . , pn] rather than a(p1, . . . , pn) only
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for clarity. If a is a free name, then the arity of this function is 0. If a is bound by
a restriction (νa)P in P0, then this arity is the number of input statements above
the restriction (νa)P in the abstract syntax tree of P0. Without loss of generality,
we assume that each restriction (νa)P in P0 has a different name a, and that this
name is different from any free name of P0. Thus, in the checker, a new name
behaves as a function of the inputs that take place (lexically) before its creation.
For instance, when we represent a process of the form (νb)a(x).(νc)Q, we use the
pattern a[] for the name a, b[] for b, and c[x] for c. Basically, we map a and b to
constants, and c to a function of the input x.

We use the same patterns even when we treat processes with more replications,
such as !(νb)a(x).!(νc)Q. Despite the replications, we use a single pattern for b,
and one that depends only on x for c. Thus, we distinguish names only when
they are created after receiving different inputs. In contrast, a restriction in a
process always generates fresh names; hence the rules will not exactly reflect the
operational semantics of processes, but this approximation is useful for automation
and harmless in most examples. As we show below, this approximation is also
compatible with soundness and completeness theorems that prove the equivalence
between the type system and the logic-programming system.

The rules comprise rules for the attacker and rules for the protocol. Next we
define these two kinds.

7.1.1 Rules for the Attacker. Initially, the attacker has all the names in a set S ,
hence the rules attacker(a[]) for each a ∈ S . Moreover, the abilities of the attacker
are represented by the following rules:

For each constructor f of arity n,
attacker(x1) ∧ . . . ∧ attacker(xn) ⇒ attacker(f(x1, . . . , xn))

(Rf)

For each destructor g,
for each equation g(M1, . . . ,Mn) = M in def(g),
attacker(M1) ∧ . . . ∧ attacker(Mn) ⇒ attacker(M)

(Rg)

message(x, y) ∧ attacker(x) ⇒ attacker(y) (Rl)
attacker(x) ∧ attacker(y) ⇒ message(x, y) (Rs)

The rules (Rf) and (Rg) mean that the attacker can apply all operations to all
terms it has, (Rf) for constructors, (Rg) for destructors. The set of these rules is
finite if the set of constructors and each of the sets def(g) is finite; handling this
set is easiest in this finite case. In (Rg), notice that the terms M1, . . . ,Mn,M do
not contain destructors, that equations in def(g) do not have free names, and that
terms without free names are also patterns, so the rules have the required format.
Rule (Rl) means that the attacker can listen on all the channels it has, and (Rs)
that it can send all the messages it has on all the channels it has.

7.1.2 Rules for the Protocol. When a function ρ associates a pattern with each
name and variable, and f is a constructor, we extend ρ as a substitution by
ρ(f(M1, . . . ,Mn)) = f(ρ(M1), . . . , ρ(Mn)).

The translation [[P ]]ρh of a process P is a set of rules, where the environment
ρ is a function that associates a pattern with each name and variable, and h is a
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sequence of facts of the form message(p, p′). The empty sequence is denoted by ∅;
the concatenation of a fact F to the sequence h is denoted by h ∧ F .

—[[0]]ρh = ∅
—[[P | Q]]ρh = [[P ]]ρh ∪ [[Q]]ρh

—[[!P ]]ρh = [[P ]]ρh

—[[(νa)P ]]ρh = [[P ]](ρ[a 7→ a[p′1, . . . , p
′
n]])h

if h = message(p1, p
′
1) ∧ . . . ∧message(pn, p′n)

—[[M(x).P ]]ρh = [[P ]](ρ[x 7→ x])(h ∧message(ρ(M), x))
—[[M〈N〉.P ]]ρh = [[P ]]ρh ∪ {h ⇒ message(ρ(M), ρ(N))}
—[[let x = g(M1, . . . ,Mn) in P else Q]]ρh =
∪{[[P ]]((σρ)[x 7→ σ′p′])(σh) | g(p′1, . . . , p

′
n) = p′ is in def(g) and (σ, σ′) is a most

general pair of substitutions such that σρ(M1) = σ′p′1, . . . , σρ(Mn) = σ′p′n} ∪
[[Q]]ρh

Thus, the translation of a process is, very roughly, a set of rules that enable us
to prove that it sends certain messages. The sequence h keeps track of messages
received by the process, since these may trigger other messages.

—The translation of 0 is the empty set, because this process does nothing.
—The translation of a parallel composition P | Q is the union of the translations

of P and Q, because P | Q sends the messages of P and Q plus any messages
that result from the interaction of P and Q.

—Replication is ignored, because the target logic is classical, so all logical rules are
applicable arbitrarily many times.

—For restriction, we replace the restricted name a in question with a pattern a[. . .]
that depends on the messages received, as recorded in the sequence h.

—The sequence h is extended in the translation of an input, with the input in
question.

—On the other hand, the translation of an output adds a clause; this clause repre-
sents that reception of the messages in h can trigger the output in question.

—Finally, the translation of a destructor application takes the union of the clauses
for the case where the destructor succeeds (with an appropriate substitution) and
those for the case where the destructor fails; thus the translation avoids having
to determine whether the destructor will succeed or fail.

7.1.3 Summary and Secrecy Results. Let ρ = {a 7→ a[] | a ∈ fn(P0)}. We define
the rule base corresponding to the closed process P0 as:

BP0,S = [[P0]]ρ∅ ∪ {attacker(a[]) | a ∈ S} ∪ {(Rf), (Rg), (Rl), (Rs)}

As an example, Figure 7 gives the rule base for the process P of the end of
Section 2.1. In this rule base, all occurrences of message(c[],M) where c ∈ S
are replaced by attacker(M). These two facts are equivalent by the rules (Rl)
and (Rs). The rules for tuples are omitted; these rules are built-in in the protocol
checker [Blanchet 2001].

We have the following secrecy result. Let s ∈ fn(P0). If attacker(s[]) cannot be
derived from BP0,S , then P0 preserves the secrecy of s from S . This result is the
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attacker(x) ∧ attacker(y) ⇒ attacker(pencrypt(x, y))

attacker(x) ⇒ attacker(pk(x))

attacker(pencrypt(m, pk(k))) ∧ attacker(k) ⇒ attacker(m)

attacker(x) ∧ attacker(y) ⇒ attacker(sencrypt(x, y))

attacker(sencrypt(m, k)) ∧ attacker(k) ⇒ attacker(m)

attacker(x) ∧ attacker(y) ⇒ message(x, y)

message(x, y) ∧ attacker(x) ⇒ attacker(y)

attacker(e[])

attacker(pk(sKA[]))

attacker(pk(sKB []))

attacker(pencrypt((k[], pk(sKA[])), pk(sKB [])))

attacker(pencrypt((k[], x), pk(sKA[]))) ⇒ attacker(sencrypt(s[], x))

attacker(pencrypt((x, y), pk(sKB [])))

⇒ attacker(pencrypt((x, KAB [pencrypt((x, y), pk(sKB []))]), y))

Fig. 7. Rules for the process P of Section 2.2

basis for a method for proving secrecy properties. Of course, whether a fact can be
derived from BP0,S may be undecidable, but in practice there exist algorithms that
terminate on numerous examples of protocols. In particular, we can use variants of
resolution algorithms, such as resolution with free selection, as in [Blanchet 2001].
It has been shown that this algorithm always terminates for a class of protocols
called tagged protocols [Blanchet and Podelski 2003]. Intuitively, a tagged protocol
is a protocol in which each application of a cryptographic constructor (in particu-
lar, each encryption and each signature) is distinguished from others by a constant
tag. For instance, to encrypt m under k, we write sencrypt((c,m), k) instead of
sencrypt(m, k), where c is a constant tag. Different encryptions in the protocol use
different tags, and the receiver of a message always checks the tags. Experimentally,
the algorithm also terminates on many non-tagged protocols. Comon and Cortier
show that an algorithm using ordered binary resolution, ordered factorization, and
splitting terminates on protocols which blindly copy at most one term in each mes-
sage [Comon-Lundh and Cortier 2003]. (A blind copy happens when a participant
sends back part of a message it received without looking at what is contained inside
this part.)

The secrecy result discussed above can be proved directly. Instead, below we
establish it by showing that we can build a typing of P0 in a suitable instance
of our general type system; the result then follows from Theorem 5.2.1. We also
establish a completeness theorem, as a converse: the checker yields the “best”
instance of our general type system.

7.2 Correctness

We use the rule base BP0,S to define an instance of our general type system, as
follows.

—The grammar of types is:
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T ::= types
a[T1, . . . , Tn] name
f(T1, . . . , Tn) constructor application

The types are exactly closed patterns.
—TPublic = {T | attacker(T ) is derivable from BP0,S} (that is, the protocol checker

says that the attacker may have T ).
—conveys(T ) = {T ′ | message(T, T ′) is derivable from BP0,S} (that is, the protocol

checker says that the channel T may convey T ′).
—Of (T1, . . . , Tn) = f(T1, . . . , Tn).
—Og(T1, . . . , Tn) = {σM | there exists an equation g(M1, . . . ,Mn) = M in def(g),

σ maps variables to types, and for all i ∈ {1, . . . , n}, σMi = Ti}.
(Notice that this definition is compatible with the definition of Oid and Oequals

in the encoding of let and conditionals of Section 4.)

We have the following two results:

Proposition 7.2.1. The checker’s type system satisfies the constraints (P0, P1,
P2, P3) of the general type system.

Lemma 7.2.2. Let P0 be a closed process and E = {a : a[] | a ∈ fn(P0)}. Then
E ` P0.

The proofs of these results are in an appendix.
The secrecy theorem for the protocol checker follows from these results and the

secrecy theorem for the general type system (Theorem 5.2.1):

Theorem 7.2.3 (Secrecy). Let P0 be a closed process and s ∈ fn(P0). If
attacker(s[]) cannot be derived from BP0,S , then P0 preserves the secrecy of s
from S.

Proof. Let E = {a : a[] | a ∈ fn(P0)}, and E′ = {a : a[] | a ∈ fn(P0) ∪ S}. By
Lemma 7.2.2, E ` P0, so E′ ` P0. Since attacker(s[]) cannot be derived from BP0,S ,
we have s[] /∈ TPublic. Let S ′ = {b | E′ ` b : T and T ∈ TPublic}. By Theorem 5.2.1
(and Proposition 7.2.1), P0 preserves the secrecy of s from S ′. We have S ⊆ S ′.
(If b ∈ S , then attacker(b[]) ∈ BP0,S , so b[] ∈ TPublic and E′ ` b : b[], so b ∈ S ′.)
Therefore, a fortiori, P0 preserves the secrecy of s from S .

For example, attacker(s[]) is not derivable from BP,{e} where P is the process
of Section 2.2, so we can show using this theorem that P preserves the secrecy of
s from {e}. We can also show that the process P ′ preserves the secrecy sB from
{e}. However, attacker(sA[]) is derivable from BP ′,{e}, so we cannot prove that P ′

preserves the secrecy of sA from {e}. More precisely, we can derive attacker(sA[])
as follows. The clauses

attacker(pk(sKA[])) (1)
attacker(xpKB

) ⇒ attacker(pencrypt((k[xpKB
], pk(sKA[])), xpKB

)) (2)

attacker(pencrypt((k[pk(sKA[])], y), pk(sKA[]))) ∧ attacker(pk(sKA[]))
⇒ attacker(sencrypt(sA[], y))

(3)

attacker(sencrypt(x, y)) ∧ attacker(y) ⇒ attacker(x) (4)
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are in BP ′,{e}: (1) comes from the output e〈pKA〉, (2) comes from the output of
message 1 by A e〈pencrypt((k, pKA), xpKB

)〉, (3) comes from the output of message
3 by A e〈sencrypt(sA, y)〉, and (4) means that the adversary can decrypt when it
has the key; it is (Rg) for the destructor sdecrypt . By (1), attacker(pk(sKA[]))
is true; by (2), we derive attacker(pencrypt((k[pk(sKA[])], pk(sKA[])), pk(sKA[])));
by (3), we derive attacker(sencrypt(sA[], pk(sKA[]))); and by (4), we finally obtain
attacker(sA[]). This derivation corresponds to an attack against the protocol:

Message 1. A → C(A) : pencrypt((k, pKA), pKA)
Message 2. C → A : pencrypt((k, pKA), pKA)
Message 3. A → C(A) : sencrypt(s, pKA)

First A sends message 1 to itself playing the role of B. (This corresponds to
applying the clause (2).) The attacker C intercepts this message and sends it
back to A as message 2. A then replies with message 3 sencrypt(s, pKA). (This
corresponds to applying the clause (3).) The attacker can decrypt this reply. (This
corresponds to applying the clause (4).) This attack depends on A mistaking its
own public key for a session key. Such “type confusions” are not always possible in
concrete implementations (for example, because public keys and session keys may
have different lengths). When they are, they can be prevented by tagging data
with type tags. The “type confusions” can also be prevented through discipline:
for example, in Section 6.2, the constraint that encryptions must take plaintexts
of type Public-Secret-EKPublic prevents the attack on a variant of P ′. In this and
many similar cases, type systems can support the prudent design of protocols.

We may note that this protocol is also subject to another attack, which does not
compromise the secrecy of sA and sB and which resembles Lowe’s attack against
the Needham-Schroeder public-key protocol [Lowe 1996]:

Message 1. A → C : pencrypt((k, pKA), pKC)
Message 1’. C(A) → B : pencrypt((k, pKA), pKB)
Message 2. B → C(A) : pencrypt((k, KAB), pKA)
Message 2’. C → A : pencrypt((k,KAB), pKA)
Message 3. A → C : sencrypt(s,KAB)
Message 3’. C(A) → B : sencrypt(s,KAB)

In this attack, A executes a run with the adversary C, and C uses this run to
execute a run of the protocol with B as if it were A. C decrypts the first message
received from A, encrypts it with B’s public key, and sends it to B. B then replies
with the second message, which C simply forwards to A. A replies with the last
message, which C forwards to B to complete the run. A then believes that k, KAB ,
and s are secrets shared with C, while B believes that they are secrets shared with
A. C can obtain k (but not s and KAB). We can exhibit this attack by adding
one more message B → A : sencrypt(s′, k). The fact attacker(s′[]) is then derivable
from the clauses that represent the protocol and the adversary, as expected since the
resulting protocol does not preserve the secrecy of s′. This attack can be prevented
by adding the public key pKB of B in the second message.

With this addition and the addition of tags (discussed above), we obtain the
following exchange:
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Message 1. A → B : pencrypt((c1, k, pKA), pKB)
Message 2. B → A : pencrypt((c2, k, KAB , pKB), pKA)
Message 3. A → B : sencrypt(s,KAB)
Message 4. B → A : sencrypt(s′, k)

where c1 and c2 are tags for messages 1 and 2, respectively. We have studied a
process that represents this exchange. Using the checker, we have proved that
this process preserves the secrecy of s and s′, as desired. (We omit details of this
analysis for the sake of brevity.)

Despite what the previous examples might suggest, a derivation of the fact
attacker(s[]) does not always correspond to an actual attack that compromises
the secrecy of the corresponding name s. For instance, the process P0 = (νc)(c〈s〉 |
c(x).d〈c〉) preserves the secrecy of s from {d}, but the checker cannot establish
it because attacker(s[]) is derivable from the clauses (Rl), message(c[], s[]), and
message(c[], x) ⇒ attacker(c[]) that are in BP0,{d}. (Note that message(d[], c[]) is
equivalent to attacker(c[]) since d is a public channel.) These clauses do not take
into account that the output c〈s〉 must have been executed before the adversary
gets the channel c. This incompleteness is not specific to the checker. In particu-
lar, our relative completeness result (below) implies that no instance of our general
type system can prove that P0 preserves the secrecy of s from {d}. Furthermore,
in practice, the checker rarely signals false attacks when applied to processes that
correspond to actual protocols.

7.3 Completeness

The protocol checker is incomplete in the sense that it fails to prove some true
properties. However, as the next theorem states, the protocol checker is relatively
complete: it is as complete as the type system of Section 4.

Theorem 7.3.1 (Completeness). Let P0 be a closed process, s a name, and
S a set of names. Suppose that an instance of the general type system proves
(by Theorem 5.2.1) that P0 preserves the secrecy of s from S. Then attacker(s[])
cannot be derived from BP0,S , so the protocol checker also proves that P0 preserves
the secrecy of s from S.

This completeness result shows the power of the protocol checker. This power
is not only theoretical: it has been demonstrated in practice on several exam-
ples [Blanchet 2001], from simple protocols like variants of the Needham-Schroeder
protocols [Needham and Schroeder 1978] to Skeme [Krawczyk 1996], a certified
email protocol [Abadi et al. 2002; Abadi and Blanchet 2003a], and JFK [Aiello
et al. 2002; Abadi et al. 2004].

The completeness result does not however mean that the protocol checker con-
stitutes the only useful instance of the general type system. In particular, simpler
instances are easier to use in manual reasoning. Presenting those instances by type
rules (rather than logic programs) is often quite convenient. Moreover, the checker
does not always terminate, in particular when it tries to establish properties of
an infinite family of types; in other instances of the type system, we may merge
those types (obtaining some finite proofs at the cost of completeness). Similarly,
the (rare) case where a set def(g) is large or infinite is more problematic for the
checker than for the general type system. Finally, the general type system may
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be combined with other type-based analyses for proving protocol properties other
than secrecy (e.g., as in [Gordon and Jeffrey 2001], which deals with authenticity
properties).

The proof of the theorem requires establishing a correspondence between types
T of an instance of the general type system and closed patterns Tc (which are the
types of the checker according to Section 7.2): we define a partial function φ that
maps Tc to T . Then we prove that all rules of BP0,S are satisfied, in the following
sense:

Definition 7.3.2. The closed fact attacker(Tc) is said to be satisfied if φ(Tc)
is defined and φ(Tc) ∈ TPublic. The closed fact message(Tc, T

′
c) is satisfied if

φ(T ′
c) ∈ conveys(φ(Tc)). The sequence of closed facts F1 ∧ . . . ∧ Fn is satisfied

if for all i ∈ {1, . . . , n}, Fi is satisfied. The rule F1 ∧ . . . ∧ Fn ⇒ F is satisfied if,
for every closed substitution σ such that σ(F1 ∧ . . . ∧ Fn) is satisfied, σF is also
satisfied.

Therefore, all facts derived from BP0,S are satisfied. Moreover, if s is proved secret
by the instance of the general type system, then attacker(s[]) is not satisfied. (If
attacker(s[]) were satisfied, we would also have that φ(s[]) ∈ TPublic, so the instance
of the general type system would not be able to prove the secrecy of s.) Hence,
attacker(s[]) cannot be derived from BP0,S . The result follows.

The rest of this section gives a more detailed explanation of the proof. We
consider a closed process P0, a name s, and a set of names S . We also consider
an instance of the general type system, and assume that this instance proves (by
Theorem 5.2.1) that P0 preserves the secrecy of s from S . That is, we assume that,
in this instance, there exists an environment E0 such that E0 ` P0, E0 ` s : T with
T /∈ TPublic, and S = {a | E0 ` a : T and T ∈ TPublic}. Without loss of generality,
we may assume that E0 contains only names. We fix a proof of E0 ` P0 for the
rest of this argument.

Now we consider the protocol checker. All values concerning this system have
index c. The set of types is:

Tc ::= types
a[Tc1, . . . , Tcn] name
f(Tc1, . . . , Tcn) constructor application

Intuitively, a well-chosen environment for a subprocess P of P0 is an environment
that can be used to type P in a “standard” proof that P0 is well-typed, using the
type system associated with the protocol checker in Section 7.2. A “standard” proof
is one in which types introduced by the rule (Restriction) for (νa)Q are of the form
a[Tc1, . . . , Tcn], where Tc1, . . . , Tcn are the types of the variables bound by inputs
above (νa)Q in P0’s syntax tree.

A (Tc1, . . . , Tcn)-well-chosen environment for P is similar, except that the param-
eters (Tc1, . . . , Tcn) indicate which types should be chosen for the variables bound
by inputs. Note that a (Tc1, . . . , Tcn)-well-chosen environment for P does not al-
ways exist, for example when the number of parameters (Tc1, . . . , Tcn) does not
correspond to the number of variables bound by inputs above P in P0.

Definition 7.3.3. Let Tc1, . . . , Tcn be closed patterns. A (Tc1, . . . , Tcn)-well-
chosen environment for an occurrence of a subprocess of P0 is defined as follows:
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—A ()-well-chosen environment for P0 is ρ0 = {a 7→ a[] | (a : T ) ∈ E0}.
—If Ec is a (Tc1, . . . , Tcn)-well-chosen environment for M〈N〉.P ,

then Ec is a (Tc1, . . . , Tcn)-well-chosen environment for P .
—If Ec is a (Tc1, . . . , Tcn)-well-chosen environment for M(x).P ,

then Ec[x 7→ Tcn+1] is a (Tc1, . . . , Tcn, Tcn+1)-well-chosen environment for P , for
all Tcn+1.

—If Ec is a (Tc1, . . . , Tcn)-well-chosen environment for P | Q,
then Ec is a (Tc1, . . . , Tcn)-well-chosen environment for P and Q.

—If Ec is a (Tc1, . . . , Tcn)-well-chosen environment for !P ,
then Ec is a (Tc1, . . . , Tcn)-well-chosen environment for P .

—If Ec is a (Tc1, . . . , Tcn)-well-chosen environment for (νa)P ,
then Ec[a 7→ a[Tc1, . . . , Tcn]] is a (Tc1, . . . , Tcn)-well-chosen environment for P .

—If Ec is a (Tc1, . . . , Tcn)-well-chosen environment for let x = g(M1, . . . ,Mn) in P
else Q,
then Ec is a (Tc1, . . . , Tcn)-well-chosen environment for Q,
and if in addition there exist an equation g(M ′

1, . . . ,M
′
n) = M ′ in def(g) and a

substitution σ such that for all i ∈ {1, . . . , n}, σM ′
i = Ec(Mi),

then Ec[x 7→ σM ′] is a (Tc1, . . . , Tcn)-well-chosen environment for P .
(In writing Ec(Mi), we view Ec as a function on atoms and extend it to terms
as a substitution.)

A pair (ρ, h) is a well-chosen pair for P if h = message(c1, p1)∧ . . .∧message(cn, pn)
and, for every closed substitution σ, σρ is a (σp1, . . . , σpn)-well-chosen environment
for P .

A (Tc1, . . . , Tcn)-well-chosen environment for P depends not only on the pro-
cess P , but on its occurrence in P0. However, notice that if P = (νa)P ′ and we
fix the bound name a, the occurrence of the process P is unique, since different
restrictions in P0 must create different names. We will have that, if [[P ]]ρh is called
during the evaluation of [[P0]]ρ0∅ for ρ0 = {a 7→ a[] | (a : T ) ∈ E0}, then (ρ, h) is a
well-chosen pair for P .

The function φ is defined so that if a type Tc appears in a standard proof that
P0 is well-typed using the type system associated with the protocol checker in
Section 7.2, then φ(Tc) appears in the corresponding place in the proof of E0 ` P0

in the instance of the general type system under consideration.

Definition 7.3.4. The partial function φ : Tc → T from types of the protocol
checker to types of the instance of the general type system is defined by induction
on the term Tc:

—φ(f(Tc1, . . . , Tcn)) = Of (φ(Tc1), . . . , φ(Tcn)). (Therefore, φ(f(Tc1, . . . , Tcn)) is
undefined if Of (φ(Tc1), . . . , φ(Tcn)) is undefined.)

—If E0 ` a : T , then φ(a[]) = T .
—When a is bound by a restriction in P0, we define φ(a[Tc1, . . . , Tcn]) as follows. Let

P be the process such that (νa)P is a subprocess of P0. Let Ec be a (Tc1, . . . , Tcn)-
well-chosen environment for (νa)P . Let E = φ◦Ec. Then φ(a[Tc1, . . . , Tcn]) = T ′

where T ′ is such that E, a : T ′ ` P is a judgment used to prove E0 ` P0. There
is at most one such judgment, so T ′ is unique.
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If a (Tc1, . . . , Tcn)-well-chosen environment for (νa)P does not exist, or if no
suitable judgment E, a : T ′ ` P appears in the proof of E0 ` P0, then φ(a[Tc1,
. . . , Tcn]) is undefined.

This definition is recursive, and we can check that it is well-founded using the
following ordering. Names are ordered by a < b if a is bound above b in P0, or a is
free and b is bound in P0. The ordering on terms is then the lexicographic ordering
of pairs containing as first component the multiset of names that appear in the term
and as second component the size of the term. In the first case of the definition
of φ, the first component is constant or decreases and the second one decreases. In
the third case, the first component decreases: when defining φ(a[Tc1, . . . , Tcn]), in
the recursive calls used to compute φ ◦ Ec, the name a at the top of the term has
disappeared, and the only names that have appeared with the computation of the
well-chosen environment are free names or names bound above a (therefore names
smaller than a).

In an appendix, we establish the following three lemmas:

Lemma 7.3.5. Let a ∈ S. The fact attacker(a[]) is satisfied.

Lemma 7.3.6. The rules for the attacker are satisfied.

Lemma 7.3.7. Let P be an occurrence of a subprocess of P0, and (ρ, h) be a
well-chosen pair for P . If, for every closed substitution σ such that σh is satisfied,
φ ◦σρ ` P has been proved to obtain E0 ` P0, then the rules in [[P ]]ρh are satisfied.
In particular, the rules in [[P0]]ρ0∅ are satisfied, where ρ0 = {a 7→ a[] | (a :T ) ∈ E0}.

Using these lemmas, we obtain the theorem as indicated above:

Proof of Theorem 7.3.1. All the rules in BP0,S are satisfied, by Lemmas
7.3.5, 7.3.6, and 7.3.7. By induction on derivations, we easily see that all facts
derived from BP0,S are satisfied. Moreover, E0 ` s : T , with T /∈ TPublic. By
definition of φ, φ(s[]) = T /∈ TPublic. Therefore, attacker(s[]) is not satisfied, so
attacker(s[]) cannot be derived from BP0,S , that is, the checker claims that P0

preserves the secrecy of s from S .

8. TREATMENT OF GENERAL EQUATIONAL THEORIES

As Section 2.1 indicates, the classification of functions into constructors and de-
structors has limitations; for example, XOR does not fit in either class, so it is hard
to treat. A convenient way to overcome these limitations is to allow more general
equational theories, as in the applied pi calculus [Abadi and Fournet 2001]. This
section briefly describes one treatment of those equational theories.

In this treatment, we assume that terms are subject to an equational theory T ,
defined by a set of equations M = N in which the terms M and N do not contain
free names. The equational theory is the smallest congruence relation that includes
this set of equations and that is preserved by substitution of terms for variables.
We write T ` M = N when M equals N in the equational theory.

We can extend the semantics of our calculus to handle equational theories. For
this purpose, we can either require that the definitions of destructors be invariant
under the equational theory, or allow destructors that can non-deterministically
yield several values. In either case, we add the structural congruence P{M/x} ≡
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P{N/x} when T ` M = N , and make sure that an else branch of a destructor is
selected only when no equation makes it possible to apply the destructor. Similarly,
for a conditional, the else branch should be selected only when the corresponding
terms are not equal modulo T .

It is fairly straightforward to extend the generic type system to equational theo-
ries. It suffices to add the condition that if two terms are equal then they have the
same types:

(P4) If E ` M : T and T ` M = N , then E ` N : T .

On the other hand, defining useful instances of the generic type system (in the style
of Section 6.1) can sometimes be difficult. For instance, it is not clear what types
should be used for XOR or for Diffie-Hellman key-agreement operations, though we
have ideas on the latter.

In extending the protocol checker of Section 7, we can use essentially the same
Horn clauses to represent a protocol, but these Horn clauses have to be considered
modulo an equational theory, and that raises difficult issues. We have to perform
unifications modulo an equational theory, or to use other techniques for reasoning on
Horn clauses modulo equations, such as paramodulation [Bachmair and Ganzinger
1998]. (Correspondingly, in our proofs, the types that correspond to the checker
would be quotients of closed patterns by an equational theory.)

For simplicity, the current implementation of the checker includes only a simple
treatment of equations. To each constructor f is attached a finite set of equations
f(M1, . . . ,Mn) = M which is required to satisfy certain closure conditions. It is
then easy to generate appropriate Horn clauses for representing a protocol. Obvi-
ously, this approach limits which equational theories can be handled. For instance,
this approach permits the equation f(x, g(y)) = f(y, g(x)), which can be used to
model Diffie-Hellman operations [Abadi and Fournet 2001], but unification modulo
an equational theory could yield a more detailed model [Meadows and Narendran
2002; Goubault-Larrecq et al. 2004].

9. CONCLUSION

This paper makes two main contributions:

(1) a type system for expressing and proving secrecy properties of security protocols
with a generic treatment of many cryptographic operations;

(2) a tight relation between two useful but superficially quite different approaches
to protocol analysis, respectively embodied in the type system and in a logic-
programming tool.

The first contribution can be seen as the continuation of a line of work on static
analyses for security, discussed in the introduction. So far, those static analyses
have been developed successfully but often in ad hoc ways. We believe that type
systems such as ours not only are useful in examples but also shed light on the
constraints and the design space for static analyses.

In the last few years, there has been a vigorous proliferation of frameworks and
techniques for reasoning about security protocols. Their relations are seldom ex-
plicit or obvious. Moreover, little is known about how to combine techniques. The
second contribution is part of a broader effort to understand those relations. It
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focuses on techniques based on types and on logic programs because of their ef-
fectiveness and their popularity, illustrated by the many references given in the
introduction. Previous work (in particular [Durgin and Mitchell 1999]) suggests
connections between (untyped) process calculi and logic-programming notations
for protocols; we go further by relating proof methods in those two worlds. Such
connections are perhaps the start of a healthy consolidation.

APPENDIX: ADDITIONAL PROOFS

This appendix contains a few proofs omitted in the main body of the paper.

A.1 Proofs of Proposition 7.2.1 and Lemma 7.2.2

If a finite function E maps atoms to types, we write E also for the environment
that binds each atom u in dom(E) with u :E(u). The bindings can be in any order.
In addition, the function E is extended to all terms as a substitution.

Lemma A.1.1. In the type system of Section 7.2, if E binds all names and vari-
ables in M to types (that is, closed patterns), then

E ` M : E(M)

Proof. The proof is by induction on the term M .

—For an atom u, we have E ` u : E(u) by (Atom), hence the result.
—For a composite term f(M1, . . . ,Mn), we have E ` Mi : E(Mi) by induction hy-

pothesis. Therefore, by (Constructor application), we obtain E ` f(M1, . . . ,Mn):
E(f(M1, . . . ,Mn)) since

Of (E(M1), . . . , E(Mn)) = f(E(M1), . . . , E(Mn))
= E(f(M1, . . . ,Mn))

Proof of Proposition 7.2.1. The proof relies on the rules that represent the
attacker in the checker.

(P0) The rule attacker(x)∧ attacker(y) ⇒ message(x, y) is in BP0,S . If T ∈ TPublic

and T ′ ∈ TPublic, then attacker(T ) and attacker(T ′) can be derived from BP0,S .
So message(T, T ′) can also be derived from BP0,S and T ′ ∈ conveys(T ). There-
fore, T ∈ TPublic implies TPublic ⊆ conveys(T ).
Conversely, the rule attacker(x)∧message(x, y) ⇒ attacker(y) is also in BP0,S .
If T ∈ TPublic and T ′ ∈ conveys(T ) then T ′ ∈ TPublic. Therefore, T ∈ TPublic

implies TPublic ⊇ conveys(T ).
(P1) The rule attacker(x1) ∧ . . . ∧ attacker(xn) ⇒ attacker(f(x1, . . . , xn)) is in

BP0,S . Therefore, if T1 ∈ TPublic, . . . , Tn ∈ TPublic, then Of (T1, . . . , Tn) ∈
TPublic.

(P2) Assume that T ∈ Og(T1, . . . , Tn). Then there exists an equation g(M1, . . . ,
Mn) = M in def(g) and a substitution σ such that Ti = σMi for all i and
T = σM . The rule attacker(M1) ∧ . . . ∧ attacker(Mn) ⇒ attacker(M) is in
BP0,S . If attacker(T1) ∧ . . . ∧ attacker(Tn) can be derived from BP0,S , then
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attacker(T ) can also be derived from BP0,S ; therefore, if Ti ∈ TPublic for all
i ∈ {1, . . . , n}, then T ∈ TPublic.

(P3) If g(M1, . . . ,Mn) = M is in def(g), and E ` Mi :Ti for all i, then Ti = E(Mi)
by Lemma A.1.1 and the uniqueness of the type of a term. So, taking T =
E(M), we have T ∈ Og(T1, . . . , Tn), by definition of Og, and E ` M : T , by
Lemma A.1.1.

Proof of Lemma 7.2.2. We prove by induction on the process P that, if

(1) ρ binds all free names and variables of P to patterns,
(2) BP0,S ⊇ [[P ]]ρh,
(3) σ is a closed substitution, mapping all variables of h and of the image of ρ to

patterns,
(4) for all p and p′, if message(p, p′) ∈ h then σp′ ∈ conveys(σp),

then σρ ` P .

—Case 0: σρ ` 0 is always true (since σρ is well-formed).
—Case P | Q: Assume that [[P | Q]]ρh = [[P ]]ρh ∪ [[Q]]ρh ⊆ BP0,S . Assume that σ

satisfies (3) and (4). By induction hypothesis, σρ ` P and σρ ` Q, so σρ ` P | Q
by (Parallel composition).

—Case !P : Assume that [[!P ]]ρh = [[P ]]ρh ⊆ BP0,S . Assume that σ satisfies (3) and
(4). By induction hypothesis, σρ ` P , so σρ ` !P by (Replication).

—Case (νa)P : Let h = message(c1, p1) ∧ . . . ∧message(cn, pn). Assume that

[[(νa)P ]]ρh = [[P ]](ρ[a 7→ a[p1, . . . , pn]])h ⊆ BP0,S

Assume that σ satisfies (3) and (4). By induction hypothesis, σρ, a : σ(a[p1, . . . ,
pn]) ` P . Therefore, σρ ` (νa)P by (Restriction).

—Case M(x).P : Assume that

[[M(x).P ]]ρh = [[P ]](ρ[x 7→ x])(h ∧message(ρ(M), x)) ⊆ BP0,S

Assume that σ satisfies (3) and (4). By Lemma A.1.1, σρ ` M : σρ(M). Let
h′ = h ∧message(ρ(M), x). Let T ∈ conveys(σρ(M)). Let σ′ = σ[x 7→ T ]. Then
σ′x ∈ conveys(σ′ρ(M)), then message(p, p′) ∈ h′ implies σ′p′ ∈ conveys(σ′p).
By induction hypothesis, σ′ρ, x : σ′x ` P . So for all T ∈ conveys(σρ(M)),
σρ, x : T ` P . By (Input), σρ ` M(x).P .

—Case M〈N〉.P : Assume that

[[M〈N〉.P ]]ρh = [[P ]]ρh ∪ {h ⇒ message(ρ(M), ρ(N))} ⊆ BP0,S

Assume that σ satisfies (3) and (4). By induction hypothesis, σρ ` P . By
Lemma A.1.1, σρ ` M : σρ(M) and σρ ` N : σρ(N). The rule R = h ⇒
message(ρ(M), ρ(N)) is in BP0,S . By condition (4), for each message(p, p′) in h,
σp′ ∈ conveys(σp), so message(σp, σp′) is derivable from BP0,S . Using the rule
R, the fact message(σρ(M), σρ(N)) is also derivable from BP0,S . Therefore, we
have σρ(N) ∈ conveys(σρ(M)). By (Output), σρ ` M〈N〉.P .
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—Case let x = g(M1, . . . ,Mn) in P else Q: Assume that

[[let x = g(M1, . . . ,Mn) in P else Q]]ρh =
∪ {[[P ]]((σ1ρ)[x 7→ σ′

1p
′])(σ1h)

| g(p′1, . . . , p
′
n) = p′ is in def(g)} ∪ [[Q]]ρh

⊆ BP0,S

where (σ1, σ
′
1) is a most general pair of substitutions such that σ1ρ(M1) =

σ′
1p

′
1, . . . , σ1ρ(Mn) = σ′

1p
′
n. Assume that σ satisfies (3) and (4). By Lemma A.1.1,

σρ ` Mi : σρ(Mi) for all i ∈ {1, . . . , n}.
If T ∈ Og(σρ(M1), . . . , σρ(Mn)), then there exist an equation g(p′1, . . . , p

′
n) = p′

in def(g) and a substitution σ′ such that, for all i, σρ(Mi) = σ′p′i and T = σ′p′.
Then there exists σ′′ such that σ = σ′′σ1 and σ′ = σ′′σ′

1. Moreover, we have

[[P ]](σ1ρ[x 7→ σ′
1p

′])(σ1h) ⊆ BP0,S

For all message(p1, p2) ∈ σ′′σ1h = σh, we have p2 ∈ conveys(p1). By induction
hypothesis on P , we have σ′′σ1ρ, x : σ′′σ′

1p
′ ` P , that is, σρ, x : σ′p′ ` P .

Therefore, if T ∈ Og(σρ(M1), . . . , σρ(Mn)), then σρ, x : T ` P . Finally, by
induction hypothesis on Q, σρ ` Q. By (Destructor application), σρ ` let x =
g(M1, . . . ,Mn) in P else Q.

In particular, BP0,S ⊇ [[P0]]ρ∅, where ρ = {a 7→ a[] | a ∈ fn(P0)}. Then, with
E = σρ = {a : a[] | a ∈ fn(P0)}, we obtain E ` P0.

A.2 Proof of Lemmas 7.3.5, 7.3.6, and 7.3.7

Proof of Lemma 7.3.5. Since a ∈ S , (a : T ) ∈ E0, with T ∈ TPublic. By
definition of φ, φ(a[]) = T ∈ TPublic. Therefore, attacker(a[]) is satisfied.

Lemma A.2.1. Let Ec be a partial function from atoms to closed patterns, de-
fined for all names and variables of M . The function Ec is extended to a substitu-
tion.

(1 ) If φ ◦ Ec ` M : T then T = φ(Ec(M)) (in particular, φ(Ec(M)) is defined).
(2 ) If φ(Ec(M)) is defined, then φ ◦ Ec ` M : φ(Ec(M)).

(If φ(Ec(M)) is defined, then φ is defined on Ec(u) for all u ∈ fn(M)∪ fv(M).)

Proof. The proof of (1) is by induction on M .

—Case M is an atom u. Since φ ◦ Ec ` u : T must have been derived by (Atom),
T = φ(Ec(u)).

—Case M is a composite term f(M1, . . . ,Mn). Since φ ◦ Ec ` M : T can be ob-
tained only by (Constructor), for each i ∈ {1, . . . , n}, φ ◦ Ec ` Mi : Ti and T =
Of (T1, . . . , Tn). Therefore, by induction hypothesis, Ti = φ(Ec(Mi)) and, by defi-
nition of φ, T = Of (φ(Ec(M1)), . . . , φ(Ec(Mn))) = φ(f(Ec(M1), . . . , Ec(Mn))) =
φ(Ec(M)).

The proof of (2) is also by induction on M .

—Case M is an atom u. By (Atom), φ ◦ Ec ` u : φ(Ec(u)).
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—Case M is a composite term f(M1, . . . ,Mn). Since φ(Ec(M)) = φ(f(Ec(M1),
. . . , Ec(Mn))) = Of (φ(Ec(M1)), . . . , φ(Ec(Mn))) is defined, φ(Ec(Mi)) is defined
for all i ∈ {1, . . . , n}. By induction hypothesis, we have φ ◦Ec ` Mi : φ(Ec(Mi)).
Moreover, Of (φ(Ec(M1)), . . . , φ(Ec(Mn))) is defined, therefore, by (Construc-
tor), φ ◦ Ec ` M : φ(Ec(M)).

Proof of Lemma 7.3.6. Let us prove first that attacker(x) ∧message(x, y) ⇒
attacker(y) is satisfied. Let σ be any closed substitution. If attacker(σx) and
message(σx, σy) are satisfied, then φ(σx) ∈ TPublic, so by (P0), conveys(φ(σx)) =
TPublic and φ(σy) ∈ conveys(φ(σx)) = TPublic. Then attacker(σy) is satisfied.
Therefore, the rule attacker(x) ∧message(x, y) ⇒ attacker(y) is satisfied.

Similarly, attacker(x) ∧ attacker(y) ⇒ message(x, y) is satisfied.
Let f be a constructor. Let us prove that attacker(x1) ∧ . . . ∧ attacker(xn) ⇒

attacker(f(x1, . . . , xn)) is satisfied. Let σ be any closed substitution. Assume that
attacker(σx1), . . . , attacker(σxn) are satisfied. Then for all i ∈ {1, . . . , n}, φ(σxi) ∈
TPublic, therefore φ(f(σx1, . . . , σxn)) = Of (φ(σx1), . . . , φ(σxn)) ∈ TPublic by (P1).
Then attacker(f(σx1, . . . , σxn)) is satisfied. Therefore, the rule attacker(x1)∧ . . .∧
attacker(xn) ⇒ attacker(f(x1, . . . , xn)) is satisfied.

Assume that there is an equation g(M1, . . . ,Mn) = M in def(g), and let us
prove that attacker(M1)∧ . . .∧ attacker(Mn) ⇒ attacker(M) is satisfied. For every
closed substitution σ, if attacker(σM1), . . . , attacker(σMn) are satisfied, then for
all i ∈ {1, . . . , n}, φ(σMi) ∈ TPublic, so Og(φ(σM1), . . . , φ(σMn)) ⊆ TPublic by
(P2). Moreover, for all i ∈ {1, . . . , n}, φ ◦ σ ` Mi : φ(σMi) by Lemma A.2.1(2),
therefore φ ◦ σ ` M : T and T ∈ Og(φ(σM1), . . . , φ(σMn)) for some T by (P3).
By Lemma A.2.1(1), T = φ(σM), so φ(σM) ∈ Og(φ(σM1), . . . , φ(σMn)). Hence
φ(σM) ∈ TPublic, so attacker(σM) is satisfied. Therefore, the rule attacker(M1) ∧
. . . ∧ attacker(Mn) ⇒ attacker(M) is satisfied.

Proof of Lemma 7.3.7. By induction on P .

—Case 0: [[0]]ρh = ∅, so the result is obvious.
—Case P | Q: Let (ρ, h) be a well-chosen pair for P | Q. Let σ be such that σh is

satisfied, and E = φ ◦ σρ. If E ` P | Q has been proved to obtain E0 ` P0, this
must have been derived by (Parallel composition), therefore E ` P and E ` Q
have been proved to obtain E0 ` P0. Since this is true for any σ such that
σh is satisfied, and (ρ, h) is also a well-chosen pair for P and Q, by induction
hypothesis, the rules in [[P ]]ρh and in [[Q]]ρh are satisfied. Therefore, the rules in
[[P | Q]]ρh = [[P ]]ρh ∪ [[Q]]ρh are satisfied.

—Case !P : Let (ρ, h) be a well-chosen pair for !P . Let σ such that σh is satisfied,
and E = φ◦σρ. If E ` !P has been proved to obtain E0 ` P0, this must have been
derived by (Replication), then E ` P has been proved to obtain E0 ` P0. Since
this is true for any σ such that σh is satisfied, and (ρ, h) is also a well-chosen
pair for P , by induction hypothesis, the rules in [[P ]]ρh are satisfied. Therefore,
the rules in [[!P ]]ρh = [[P ]]ρh are satisfied.

—Case (νa)P : Let (ρ, h) be a well-chosen pair for (νa)P . Let σ be such that σh
is satisfied, and E = φ ◦ σρ. If E ` (νa)P has been proved to obtain E0 `
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P0, this must have been derived by (Restriction), then there exists T such that
E, a : T ` P has been proved to obtain E0 ` P0. By definition of φ, T =
φ(a[σp1, . . . , σpn]), where h = message(c1, p1) ∧ . . . ∧ message(cn, pn), since σρ
is a (σp1, . . . , σpn)-well-chosen environment for (νa)P . We have that (ρ[a 7→
a[p1, . . . , pn]], h) is a well-chosen pair for P , and for any σ such that σh is satisfied,
φ◦σρ, a:φ(a[σp1, . . . , σpn]) ` P has been proved to obtain E0 ` P0. By induction
hypothesis, the rules in [[(νa)P ]]ρh = [[P ]](ρ[a 7→ a[p1, . . . , pn]])h are satisfied.

—Case M(x).P : Let (ρ, h) be a well-chosen pair for M(x).P . We assume that
for all σ such that σh is satisfied, and E = φ ◦ σρ, E ` M(x).P has been
proved to obtain E0 ` P0. Then this must have been derived by (Input), there-
fore E ` M : T and ∀T ′ ∈ conveys(T ), E, x : T ′ ` P . By Lemma A.2.1(1),
T = φ(σρ(M)). Let h′ = h ∧ message(ρ(M), x). If σ′ is such that σ′h′ is satis-
fied, then message(σ′ρ(M), σ′x) is satisfied, and φ(σ′x) ∈ conveys(φ(σ′ρ(M))) =
conveys(T ). Moreover, σ′h is satisfied, so we can apply the reasoning above to
σ′ instead of σ, therefore E, x : φ(σ′x) ` P for E = φ ◦ σ′ρ. Let ρ′ = ρ[x 7→ x].
Then (ρ′, h′) is a well-chosen pair for P , and φ ◦ σ′ρ′ ` P has been proved to
obtain E0 ` P0. By induction hypothesis, the rules in [[M(x).P ]]ρh = [[P ]]ρ′h′ are
satisfied.

—Case M〈N〉.P : Let (ρ, h) be a well-chosen pair for M〈N〉.P . Let σ be such that
σh is satisfied, and E = φ ◦ σρ. If E ` M〈N〉.P has been proved to obtain
E0 ` P0, then this must have been derived by (Output), therefore E ` M : T ,
E ` N : T ′, T ′ ∈ conveys(T ), and E ` P . By Lemma A.2.1(1), T = φ(σρ(M))
and T ′ = φ(σρ(N)), therefore φ(σρ(N)) ∈ conveys(φ(σρ(M))).
Let R = h ⇒ message(ρ(M), ρ(N)), and let σ′ be any closed substitution. If
σ′h is satisfied, the argument of the paragraph above can be applied to σ′.
Then φ(σ′ρ(N)) ∈ conveys(φ(σ′ρ(M))), so message(σ′ρ(M), σ′ρ(N)) is satisfied.
Therefore, R is satisfied.
We have that (ρ, h) is a well-chosen pair for P , and for all σ such that σh is
satisfied, E ` P has been proved to obtain E0 ` P0. By induction hypothesis on
P , the rules in [[P ]]ρh are satisfied.
Hence the rules in [[M〈N〉.P ]]ρh = [[P ]]ρh ∪ {R} are satisfied.

—Case let x = g(M1, . . . ,Mn) in P else Q: Let (ρ, h) be a well-chosen pair for
let x = g(M1, . . . ,Mn) in P else Q. We assume that for all σ such that σh is
satisfied, and E = φ◦σρ, E ` let x = g(M1, . . . ,Mn) in P else Q has been proved
to obtain E0 ` P0. This must have been derived by (Destructor application), then
∀i ∈ {1, . . . , n}, E ` Mi : Ti, ∀T ∈ Og(T1, . . . , Tn), E, x : T ` P , and E ` Q. By
Lemma A.2.1(1), Ti = φ(σρ(Mi)).
Assume that there is an equation g(p′1, . . . , p

′
n) = p′ in def(g). Let ρ′ = σ1ρ[x 7→

σ′
1p

′] and h′ = σ1h where (σ1, σ
′
1) is the most general pair of substitutions

such that σ1ρ(M1) = σ′
1p

′
1, . . . , σ1ρ(Mn) = σ′

1p
′
n. Let σ′′ be such that σ′′h′

is satisfied. Then σ = σ′′σ1 is such that σh is satisfied, so the argument of
the paragraph above can be applied to σ. Moreover σρ(Mi) = σ′′σ′

1p
′
i. We

have φ ◦ σ′′σ′
1 ` p′i : φ(σ′′σ′

1p
′
i) (by Lemma A.2.1(2)). Therefore, by (P3),

φ◦σ′′σ′
1 ` p′:φ(σ′′σ′

1p
′) with φ(σ′′σ′

1p
′) ∈ Og(φ(σ′′σ′

1p
′
1), . . . , φ(σ′′σ′

1p
′
n)). That is,

φ(σ′′σ′
1p

′) ∈ Og(T1, . . . , Tn). Therefore E, x:φ(σ′′σ′
1p

′) ` P . That is, φ◦σ′′ρ′ ` P .
This is true for any σ′′ such that σ′′h′ is satisfied, and (ρ′, h′) is a well-chosen
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pair for P , therefore by induction hypothesis, the rules in [[P ]]ρ′h′ are satisfied.
Moreover, (ρ, h) is also a well-chosen pair for Q, then by induction hypothesis,
the rules in [[Q]]ρh are satisfied.
Therefore, the rules in [[let x = g(M1, . . . ,Mn) in P else Q]]ρh are satisfied.

In particular, for [[P0]]ρ0∅, (ρ0, ∅) is a well-chosen pair for P0, and E0 = {a : φ(a[]) |
(a : T ) ∈ E0} = φ ◦ σρ0, for any σ. Therefore, φ ◦ σρ0 ` P0 has been proved to
obtain E0 ` P0. Then the rules in [[P0]]ρ0∅ are satisfied.
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applicatifs (JFLA’04) (Sainte-Marie-de-Ré, France). INRIA, Rocquencourt, France.
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