Hyperproperties

Michael R. Clarkson Fred B. Schneider

{clarkson,fbs}@cs.cornell.edu
Department of Computer Science
Cornell University

Computing and Information Science Technical Report
http://hdl.handle.net/1813/9480

January 25, 2008

http://hdl.handle.net/1813/9480

Hyperproperties™

Michael R. Clarkson

Fred B. Schneider

{clarkson,fbs}@cs.cornell.edu
Department of Computer Science
Cornell University

Abstract

Properties, which have long been used for reasoning
about systems, are sets of traces. Hyperproperties, intro-
duced here, are sets of properties. Hyperproperties can
express security policies, such as secure information flow,
that properties cannot. Safety and liveness are generalized
to hyperproperties, and every hyperproperty is shown to be
the intersection of a safety hyperproperty and a liveness hy-
perproperty. A verification technique for safety hyperprop-
erties is given and is shown to generalize prior techniques
for verifying secure information flow. Refinement is shown
to be valid for safety hyperproperties. A topological char-
acterization of hyperproperties is given.

1 Introduction

Important classes of security policies cannot be ex-
pressed using what have been termed properties |1}, 24, 43|
111,134,401, sets of execution traces [[18]] for which member-
ship of a trace depends on the trace alone and not on which
other traces are in the property. For example, noninter-
ference [12] is a confidentiality policy that stipulates com-
mands executed on behalf of users holding high clearances
have no effect on system behavior observed by users with
only low clearances. It is not a property, because whether
some given trace is allowed depends on whether another
trace (obtained by deleting command executions by high
users) is allowed. As a second example, stipulating a bound
on average response time over all executions is an availabil-
ity policy that cannot be specified as a property, because the
acceptability of delays in any given execution depends on
the magnitude of delays in all other executions.

Methods for specifying and reasoning about properties
that a system satisfies are well understood [36] 20} [19]]. It
has been shown that every property is the intersection of a
safety property and a liveness propertyP_-] where

*Supported in part by AFOSR grant F9550-06-0019, National Science
Foundation Grants 0430161 and CCF-0424422 (TRUST), an Intel Foun-
dation PhD Fellowship, and a gift from Microsoft Corporation.

'Lamport [[16] gave the first informal definitions for safety and liveness

e a safety property proscribes “bad things” and can be
proved using an invariance argument, and

e a liveness property prescribes “good things” and can
be proved using a well-foundedness argument.

Safety and liveness thus not only form an intuitively ap-
pealing fundamental basis from which all properties can be
constructed, but they also are associated with specific veri-
fication methods. An analogous theory for security policies
would be quite appealing. The fact that security policies
also proscribe and prescribe behaviors of systems suggests
that such a theory might exist.

This paper initiates the development of that theory by in-
troducing hyperproperties, which are sets of properties (i.e.,
sets of sets of traces), and defining two interesting classes
of hyperproperties: safety and liveness. We show:

e Hyperproperties can describe properties and, more-
over, can describe security policies, such as noninter-
ference and average response time, that properties can-
not. Indeed, we have not been able to find require-
ments on system behavior that cannot be specified as
a hyperproperty. Deterministic, nondeterministic, and
probabilistic system models all can be handled using
hyperproperties.

e Every hyperproperty is the intersection of a safety hy-
perproperty and a liveness hyperproperty. (Henceforth,
we shorten these terms to hypersafety and hyperlive-
ness.) Hypersafety and hyperliveness thus form a fun-
damental basis from which all hyperproperties can be
constructed.

e The topological characterization of properties [3] can
be generalized to characterize hyperproperties, and the
result is equivalent to the lower Vietoris topology [42,
26,137

properties, appropriating the terms from Petri net theory, and he gave the
first formal definition of safety [18]. Alpern and Schneider [3] gave the first
formal definition of liveness and the proof that all properties are the inter-
section of safety and liveness properties; they later established the corre-
spondence of safety to invariance and of liveness to well-foundedness [4].

We have not obtained complete verification methods for
hypersafety or for hyperliveness, but we have been able to
generalize prior work on using invariance arguments to ver-
ify information-flow policies [6, |40]. Our generalization is
applicable to a class of hyperproperties we introduce called
k-safety.

The theory we have developed is also able to shed light
on the problematic status of refinement for security policies.
Refinement never invalidates a property but can invalidate
a hyperproperty: Consider a system 7 that nondeterminis-
tically chooses to output 0, 1, or the value of a secret bit
h. System 7 satisfies the security policy “The possible out-
put values are independent of the values of secrets.” But
one refinement of 7 is the system that always outputs h,
and this does not satisfy the security policy. Previous work
has identified certain policies [23]] and composition opera-
tors [24] that are suitable for use with refinement; we show
in this paper that satisfaction of safety hyperproperties is
preserved under refinement of nondeterminism, yielding an
entire class of security policies to which refinement is ap-
plicable.

We proceed as follows. Hyperproperties, hypersafety, k-
safety, and hyperliveness are defined and explored in Sec-
tions and [3] respectively. Section [6] presents the
hyperproperty intersection theorem, topology is addressed
in Section [7} and Section [§] concludes. A guide to nota-
tion is provided in Appendix [A] the formal details of some
of our longer examples of hyperproperties are given in Ap-
pendix [B] and all proofs appear in Appendix [C|

2 Hyperproperties

Many formalisms exist for modeling systems. We model
system execution with traces, where a frace is a sequence
of states; by employing rich enough notions of state, this
model is sufficiently general to encode many other repre-
sentations of executions] The structure of a state is not im-
portant in the following definitions, so we leave X, the set of
states, abstract. However, the structure of a state is impor-
tant for real examples, so we introduce predicates and func-
tions, on states and on traces, as needed—e.g., for events,
timing, and probability.

Traces may be finite or infinite and are categorized into
the following sets:

\Ilfin E*
Wing) g
U 2 Ug U Wiy

(1>

2 Appendix [B| discusses how to model a labeled transition system as a
set of traces, without losing information about the nondeterministic struc-
ture of the system. We leave the investigation of the meaning of hyper-
properties in other models [45] as future work.

For trace ¢t = s¢s1 ... and index ¢, define the following
indexing notation:

tm £ S;
t[Z} £ $0S81..-954
t[l] & SiSi+1 .- -

Concatenation of finite trace ¢ and (finite or infinite) trace ¢’
is denoted tt’. The empty trace is denoted e.

A system is modeled by a non-empty set of infinite
traces, called its executions. If a system execution termi-
nates (and thus could be represented by a finite trace), we
represent it as an infinite trace by infinitely stuttering the
final state in the finite trace.

2.1 Properties

A property is a set of infinite traces. The set of all prop-
erties is
Prop 2 P(Win),

where P denotes powerset. A set T' of traces satisfies a
property P, denoted T' |= P, iff all the traces of T are in P:

TEP 2 TCP

Some security policies are expressible as properties. For
example, consider the policy, “The system may not write to
the network after reading from a file.” Formally, this is the
set of traces

NRW 2 {t€ Ui |-(3Fi,jEN:i<j
A isFileRead(t[i])
A isNetworkWrite(t[j]))}, 2.1

where isFileRead and isNetworkWrite are predicates on
states. Similarly, access control is a property requiring ev-
ery operation to be consistent with its requestor’s rights:

AC & {teV,¢|(VieN:
rights(t[i]) C acm(t[i — 1])[subj(t[i]),
obj (t[i)])}- (2.2)

Function acm(s) yields the access control matrix in state s.
Function subj(s) yields the subject who requested the op-
eration that led to state s, function obj(s) yields the object
involved in that operation, and function rights(s) yields the
right(s) necessary for the operation to be allowed.

As another example, guaranteed service is a property re-
quiring that every request for service is eventually satisfied:

[I>

GS {tG\Ifinf‘(ViENZ
isReq(t[i]) =

(37 > 1 : isRespToReq(t[j],t[i])))}. (2.3)

Predicate isReq(s) identifies whether a request is initi-
ated in state s, and predicate isRespToReq(s', s) identifies
whether state s’ completes the response to the request initi-
ated in state s.

2.2 Hyperproperties

A hyperproperty is a set of sets of infinite traces, or
equivalently, a set of properties. The set of all hyperproper-
ties is

HP 2 P(P(Wiy))
= P(Prop).

The interpretation of a hyperproperty as a security policy
is that the hyperproperty specifies exactly the systems al-
lowed by that policy. Each property in a hyperproperty is
an allowed system, specifying exactly which executions are
possible for that system. Thus a set 7' of traces satisfies
hyperproperty H, denoted T' = H, iff T' is in H:

TEH = TcH.

Note the use of bold type to denote hyperproperties and sets
of hyperproperties. See Appendix [A]for a guide to our other
typographical conventions and notation.

Given a property P, there is a unique hyperproperty,
which we denote [P], that expresses the same policy as P.
We call this hyperproperty the /ift of P. For P and [P] to
express the same policy, they must be satisfied by the same
sets of traces. Thus we can derive a definition of [P]:

(VT eProp: TP = TEI[P])
(VT eProp: TCP =TEeP])

[Pl={T € Prop | T C P}
= [P]=P(P).
Consequently, [P] £ P(P).

2.3 Hyperproperties in Action

Properties are satisfied by traces, whereas hyperproper-
ties are satisfied by sets of traces. This additional level of
sets means that hyperproperties can be more expressive than
properties. We explore this added expressivity with some
examples.

Information flow. Information-flow security policies ex-
press requirements on what information may be learned by
users of a system. Users interact with systems by provid-
ing inputs and observing outputs. To model this interaction,
define function ev(s) as the input or output event, if any,
that occurs when a system transitions to state s. Assume
that at most one event, input or output, can occur at each

transition. Extend this notation to ev(t), denoting the se-
quence of events resulting from application of ev(+) to each
state in trace ¢ | We further assume that each user of a sys-
tem is cleared at confidentiality level L, representing low
(i.e., public) information, or H, representing high (i.e., se-
cret) information, and that each event is labeled with one of
these confidentiality levels. Define ev(¢) to be the subse-
quence of low events contained within ev(t), and ev gy, (¢)
to be the subsequence of high input events contained within
ev(t).

Noninterference, as defined by Goguen and Mese-
guer [12], requires that commands issued by users hold-
ing high clearances be removable without affecting observa-
tions of users holding low clearances. Treating commands
as inputs and observations as outputs, we model this policy
as a hyperproperty requiring a system to contain, for any
trace t, a trace ¢’ that has no high inputs yet has the same
low events as ¢:

GMNI = {T € Prop|T € GMSys

= (VteT: (3t eT:
evim(t') =€
A evp(t) =ev(t)))}. (2.4)

Antecedent T' € GMSys expresses the requirement that 7'
be a system satisfying the assumptions made by Goguen
and Meseguer’s formalization: 7" must be deterministic, and
total with respect to inputs. We omit formalizing these re-
quirements as hyperproperties.

Generalized noninterference [22]] generalizes Goguen
and Meseguer’s definition of noninterference to nondeter-
ministic systems. McLean’s formulation [24] of general-
ized noninterference requires a system to contain, for any
traces t1 and to, an interleaved trace t3 whose high inputs
are the same as t; and whose low events are the same as t.
This is a hyperproperty:

GNI = {T cProp|(Vt;,to €T :

(3 t3 €T : eva(tg) = eva(tl)
A evp(ts) = evp(t2)))}. (2.5)

Observational determinism 33, 146| requires a system to
appear to a low user as a deterministic function of only the
low inputs. Thus, it is a hyperproperty requiring that if any

two traces have the same first j — 1 low events, then these
traces must have equivalent 5™ low events:

OD = {T cProp| (Vt1,t2€T,jEN:

evL(tl)[..j — 1] = e’UL(tQ)[..j — 1]
= evp(t1)[j] =i evi(t2)[j]
Voevp(t)f] mow evi(t2)[i])}. (2.6)

3Depending on the nature of events in the particular system that is being
modeled, it may be appropriate for ev(t) to eliminate stuttering of events.

Here we have extended trace indexing notation to apply to
sequences of events. Events /; and [are low input equiv-
alent, denoted I =2;, I, iff they are both low input events
(although the value input need not be the same in the two
events). In contrast, events /; and /5 are low output equiva-
lent, denoted Iy =, lo, iff they are both low output events
of the same value.

Bisimulation-based definitions of information-flow secu-
rity policies can also be formulated as hyperpropertiesﬂ We
give an example in Appendix [B] by formulating, as hyper-
property BCNI, Boudol and Castellani’s [[7]] bisimulation-
based definition of noninterference.

All information-flow security policies we investigated
were found to be hyperproperties—not properties. This is
suggestive, but any stronger statement about the connec-
tion between information flow and hyperproperties would
require a formal definition of information flow policies, and
none is universally accepted. We believe, however, that in-
formation flow is intrinsically tied to correlations between
(not within) executions. Hyperproperties are sufficiently ex-
pressive to formulate such correlations, whereas properties
are not. In particular, GMNI is not a property, as argued
in Section [T} GNI is not a property because the presence of
any two traces in the system necessitates the presence of a
third trace, and OD is not a property because whether some
trace is allowed depends on the low events appearing in all
other traces of the system.

Service level agreements. A service level agreement
(SLA) specifies acceptable performance of a system. Such
specifications commonly use statistics, including:

e average response time, the average time that elapses
between a request and a response;

e time service factor, the percentage of requests that are
serviced within a specified time; and

e percentage uptime, the percentage of time during
which the system is available to accept and service re-
quests.

These statistics can be used to define policies with respect
to each individual execution of a system or across all exe-
cutions of a system. In the former case, the SLA would be
a property. For example, the policy “The average response
time in each execution is less than 1 second” might not be
satisfied by a system if there are executions in which some
response times are much greater than 1 second. Yet if these

“4Since hyperproperties are trace-based, this might at first seem to
contradict results, such as Focardi and Gorrieri’s [L1], stating that
bisimulation-based definitions are stronger (i.e., a finer equivalence) than
trace-based definitions. However, by employing a richer notion of
state [36 §1.3] in traces than Focardi and Gorrieri do, our hyperproper-
ties are able to express bisimulations.

executions are rare, then the system might still satisfy the
policy “The average response time over all executions is
less than 1 second.” This latter SLA is not a property, but it
is a hyperproperty and can be stated formally as

[I>

RT {T € Prop |

mean(U respTime(t)) < 1}. 2.7)
teT

Function mean(X) denotes the mean of a set X of real
numbers, and function respTime(t) denotes the set of re-
sponse times (in seconds) from request/response events in
trace tB| Policies derived from the other SLA statistics
above can similarly be expressed as hyperproperties.

Refinement. One of the key differences between proper-
ties and hyperproperties is how they behave with respect
to refinement of nondeterminism—removing traces from a
system’s set of executions. A system .S is refined by system
S"iff S D S’. By definition, whenever a system satisfies
a property, any refinement of the system also satisfies the
property. Thus, properties are refinement-closed:

SEPASD2S = S EP

A hyperproperty is refinement-closed if whenever a sys-
tem satisfies the hyperproperty, any refinement of the sys-
tem also satisfies the hyperproperty. Define RC to be the
set of refinement-closed hyperproperties. Hyperproperties
resulting from lifted properties are refinement-closed:

SEPIASDS = S§E[P
However, hyperproperties in general are not refinement-
closed. System 7 (Section [)) illustrates this fact.

Beyond hyperproperties? We introduced another level
of sets when generalizing properties to hyperproperties, and
in doing so we gained expressive power for specifying poli-
cies on systems. Thus, it is natural to ask whether intro-
ducing yet one more level of sets might also be useful. We
believe it is not. Suppose, for sake of contradiction, that
some set H of hyperproperties (i.e., H is a set of sets of
sets of traces) was more expressive than any hyperproperty.
Whatever the definition of satisfaction, £ must either be
satisfied or not satisfied by any system S. So consider set
H of all systems that satisfies H. But H is a hyperproperty
(since it is a set of sets of traces), and H is equivalent to H,,
so H is not more expressive than any hyperproperty.

SFor mean(-) to be well-defined, it suffices that there be only a finite
number of requests in 7" and that every request is serviced in finite time.
The formulation of RT assumes all traces are equally likely. Modeling
the case where some traces are more likely than others requires a proba-
bility measure on sets of traces. Obtaining such a measure is discussed in
Section 6]

Another way to rationalize adding a level of sets would
be to consider policies on sets of systems. For example, a
policy might require that a set of systems exhibit sufficient
diversity [32], meaning the systems all implement the same
functionality but differ in their implementation details. This
policy can be modeled as a hyperproperty on a single sys-
tem that is a produclﬂ of all the systems in the set. More
generally, a policy on a sequence S of systems might be
modeled as a set ‘H of sequences of hyperproperties. Again,
by taking the product of each element of H, we obtain an
equivalent hyperproperty.

The above conclusions will not surprise students of
mathematical logic [25]. In first-order logic, variables range
over individual elements of some universe; in second-order
logic, variables may also range over subsets of the uni-
verse. If the universe is the set ;¢ of traces, then proper-
ties are first-order predicates on traces, and hyperproperties
are second-order predicates on traces. Second-order logic
is more expressive than first-order logic [41, §2.2], just as
hyperproperties are more expressive than properties. Fur-
ther, any higher-order logic (which would have variables
ranging over sets (of sets of...sets) of subsets of the uni-
verse) is reducible to second-order logic [41), §4.3], just as
we have reduced extra levels of sets, above, to hyperprop-
erties. We leave further investigation of this connection as
future work. One interesting avenue to explore would be
whether the full power of second-order logic is necessary
to express hyperproperties of interest. This has ramifica-
tions for verification of hyperproperties, because although
full second-order logic cannot be effectively and completely
axiomatized, fragments of it can be [41, §2.3].

3 Hypersafety

According to Alpern and Schneider [3]], the “bad thing”
in a safety property must be both

e finitely observable, meaning its occurrence can be de-
tected in finite time, and

e irremediable, so its occurrence can never be remedi-
ated by future events.

For example, no-read-then-write NRW and access
control AC' (2.2)) are both safety. The bad thing for NRW
is a finite trace in which a network write occurs after a file
read. This bad thing is finitely observable, because the write
can be detected in some finite prefix of the trace, and irre-
mediable, because the network write can never be undone.
For AC, the bad thing is similarly a finite trace in which an
operation is performed without appropriate rights.

%The product of systems Tj; and Th is the system com-
prising traces over pairs of states, defined as: 77 X Th S
{(t1[0},t2[0})(t1[1],tl[Q]) . ‘ tp € Ty N tg € TQ}. Generaliz-
ing, the product of a set of n systems comprises traces over n-tuples of
states.

A bad thing is a finite trace that cannot be a prefix of any
execution satisfying the safety property. A finite trace ¢ is
a prefix of a (finite or infinite) trace ¢’, denoted ¢t < ¢/, iff
t' = tt" for some t” € V.

Safety property. A property S is a safety property (3]
iff

(VtE\IJinf:t§§S = (Am e Vg - m <t A
(V' EUins - m <t = t'¢09))). O

Define SP to be the set of all safety properties. Notice that
SP is itself a hyperproperty.

We generalize safety to hypersafety by generalizing the
bad thing from a finite trace to a finitg’| set of finite traces.
Define Obs to be the set of such observations:

Obs & Pin(wg),

where 7" (X') denotes the set of all finite subsets of set X.
Prefix < on sets of traces is defined asﬂ

T<T & (VteT:(3teT :t<t)).

Note that this definition allows 7" to contain new traces that
have no prefix in 7.

Safety hyperproperty. A hyperproperty S is a safety
hyperproperty (equivalently, is hypersafety) ift

(VT eProp:T¢S = (IMe€Obs: M<T
A (VT €Prop: M<T = T'¢8)). O

The definition of hypersafety parallels the definition of
safety—the only change is that the domains involved now
include an extra level of sets. Define SHP to be the set of all
safety hyperproperties.

Some consequences of the definition of hypersafety are:

e Goguen and Meseguer’s noninterference GMNI (2.4)
is hypersafety. The bad thing is a pair (¢,¢') of traces
where ¢’ contains no high inputs and contains the same
low inputs as t, yet ¢ and ¢’ have different low outputs.

e Observational determinism OD (2.6) is hypersafety.
The bad thing is a pair of traces whose first j — 1 low
events are the same, yet whose j1 events are different
low outputs.

7Infinite sets might at first seem an attractive alternative, and many of
the results in the rest of this paper would still hold. However, the topolog-
ical characterization given in Section [7](specifically, Propositions[5]and [6)
would be sacrificed.

80ther definitions of prefix are possible, but inconsistent with our no-
tion of observation. This definition coincides with the ordering of the lower
(or Hoare) powerdomain on traces. We discuss this in Section

o Safety properties lift to safety hyperproperties.

Proposition 1. (VS € Prop S €SP «—

[S] € SHP)

e Set SP of all safety properties is not a safety hyperpro-
perty: There is no bad thing that prevents an arbitrary
property from being extended to some safety property.

Refinement of hypersafety. All safety hyperproperties
are refinement-closed. Intuitively, this is because if a bad
thing excludes property 71" from membership in some safety
hyperproperty, then any property of which 7" is a refinement
would also contain the same bad thing.

Theorem 1. SHP C RC

By this theorem, any information-flow security policy
that is not refinement-closed cannot be hypersafety. For ex-
ample, generalized noninterference GNI (2.3) is not hyper-
safety, because it is not refinement-closed: a system con-
taining traces t1 and to, yet not containing the interleaved
trace t3 required by the definition of GNI, may be extended
to a system containing ts.

Relational hyperproperties. A program might be mod-
eled as a system with a single action, which transitions from
the input state (the initial state in the execution) to the out-
put state (the final state in the execution) with no other ob-
servable statesﬂ Define a relational hyperproperty as a hy-
perproperty on traces with such a single action. The first
state in each trace is the initial state, the second state is the
final state, and the second state is infinitely stuttered to pro-
duce an infinite trace. Define W i to be the set of such traces,
and define RHP to be P(P(T¥Rr)), the set of all relational
hyperproperties.

Relational hyperproperties facilitate the definition of an
information-flow security policy that is commonly used in
language-based security [35]. This policy, which we call
relational noninterference, requires execution of a program
7 to maintain the equivalence of states to a low observer.
That is, if s} is the output state resulting from executing 7
with input state s;, and s; and s5 are low-equivalent, then s}
must be low-equivalent to s5. In our formalism, relational
noninterference can be defined as:

RNI 2 [T CVUg|(Vt;,ta €T :
€UL(t1)[O] = eUL(tQ)[O]

— €UL(t1)[1] = 6’[}L(t2)[1])}. (31)

Inspecting this definition reveals it is a refinement of obser-

vational determinism OD (2.6) where j = 1. Since OD is
hypersafety, RNI is also hypersafety.

9Since some programs do not terminate on some inputs, a special out-
put state might be added to denote nontermination.

4 Beyond 2-Safety

Recent work gives system transformations that reduce
verifying secure information flow to verifying a property
of some transformed system. (Recall that secure informa-
tion flow is a hyperproperty but not a property.) Pottier and
Simonet [31]] develop a type system for verifying secure in-
formation flow based on simultaneous reasoning about two
executions of a program. Darvas et al. [[10] show that secure
information flow can be expressed in dynamic logic. Barthe
et al. [6] give an equivalent formulation for Hoare logic and
temporal logic, based on a self-composition construction.

Define the sequential self-composition of P as the pro-
gram P; P’, where P’ denotes program P, but with every
variable renamed to a primed variable—e.g., variable x is
renamed to x’. Then, one way to verify that (termination-
insensitive) relational noninterference RNI holds of
program P is to establish the following property of trans-
formed program P; P’:

If for every low variable [, before execution [= I’
holds, then when execution terminates [= [’ still
holds, no matter what the values of high variables
were.

Barthe et al. generalize the self-composition operator from
; to any operator that satisfies certain conditions, and they
note that parallel composition satisfies these conditions.
They also relax the equality constraints in the above prop-
erty to partial equivalence relations, obtaining a generaliza-
tion of relational noninterference.

Terauchi and Aiken [40] further generalize the applica-
bility of self-composition by showing that it can be used to
verify any 2-safety property, which they define informally
as a “property that can be refuted by observing two finite
traces;” their formal definition is very similar to a relational
hyperproperty.

Using hyperproperties, we can show that the above re-
sults are a special case of a more general theorem. Define a
k-safety hyperproperty as a safety hyperproperty in which
the bad thing never involves more than k traces.

k-safety hyperproperty. A hyperproperty S is a k-
safety hyperproperty (equivalently, is k-safety) iff

(VT €Prop:T¢8S = (IM € Obs :
M<T AN|M| <k A (VT €Prop:
M<T = T'¢8)). O

This is the definition of hypersafety, with an added conjunct
“|M| < k™. Given a particular k, define KSHP(k) to be the
set of all k-safety hyperproperties.

As an example of a k-safety hyperproperty for any k,
consider a system that stores a secret by splitting it into

k shares. Suppose that an action of the system is to out-
put share 7. Then a hyperproperty of interest might be that
the system cannot, across any of its executions, output all
k shares (thereby outputting sufficient information for the
secret to be reconstructed). We denote this k-safety hyper-
property as SS.

Note that the 1-safety hyperproperties are the lifted
safety properties,

KSHP(1) = {[S]| S €SP},
since the bad thing for a safety property is a single trace.
Thus “1-safety” and “safety” are synonymous.

The Terauchi and Aiken definition of 2-safety proper-
ties (which we now identify as KSHP(2), the 2-safety hy-
perproperties) is based on a relational model of program
execution, so it is limited to expressing relational 2-safety
hyperproperties. Relational noninterference RNI (3.T) is
an example of such a hyperproperty. Our definition, based
on a trace model of execution, is more general and allows
us to conclude that Goguen and Meseguer’s noninterfer-
ence GMNI (2.4) and observational determinism OD ,
which are not relational, are also 2-safety hyperpropert%

Define the parallel self-composition of system S as the
product system S x .S consisting of traces over ¥ x X:

Sx S & {01, ¢[1])... |[t€S At €S}

Define the k-product of system .S, denoted S* . to be the k-
fold parallel self-composition of .S, comprising traces over
¥*. Self-composition S x S is equivalent to 2-product S2.
Previous work has shown how to reduce a 2-safety hy-
perproperty of system S to a related safety property of S2.
The following theorem generalizes that. Let Sys be the set
of all systems. Then, for any system .S, any k-safety hyper-
property of S can be reduced to a safety property of S*.

Theorem 2. (V.S € Sys, K € KSHP(k) : (3K € SP :
SEK < S*EK))

The proof of this theorem (in Appendix |[C) shows how to
construct K from K. Thus, Theorem [2] suggests a verifica-
tion technique for k-safety, namely to reduce a k-safety hy-
perproperty to a safety property, then verify the safety prop-
erty is satisfied by S* using invariance arguments. Since in-
variance arguments are relatively complete for safety prop-
erties [4], Theorem [2] yields a relatively complete verifica-
tion methodology for k-safety.

However, Theorem [2] does not provide the relatively
complete verification procedure we seek for hypersafety,
because there are safety hyperproperties that are not k-
safety for any k. For example, consider the hyperproperty

10This conclusion resolves the conjecture of Terauchi and Aiken that
(termination-sensitive) secure information flow over infinite traces is ‘“2-
liveness [sic],” for some definition of 2-liveness.

“a system cannot output all k shares of a secret for any k-
secret sharing;” formally, this is

sS £ Ussk.
k

This is not k-safety for any k, yet it is hypersafety, since any
property not contained in it violates some SS.

S Hyperliveness

According to Alpern and Schneider [3], the “good thing”
in a liveness property is

e always possible, no matter what has occurred so far,
and

e possibly infinite, so it need not be a discrete event.

For example, guaranteed service GS (2.3) is a liveness
property in which the good thing is the eventual response
to a request. This good thing is always possible because a
response can always be appended to any finite trace con-
taining a request, and it is not infinite because the response
is a discrete event.

Liveness property. Property L is a liveness property [3]]
iff

(VteWgn: Bt €Wipe 1t <t ANt el)) O

Define LP to be the set of all liveness properties. Not sur-
prisingly, LP is itself a hyperproperty.

Just as with hypersafety, we generalize liveness to hy-
perliveness by generalizing a finite trace to a finite set of
finite traces. The definition of hyperliveness is essentially
the same as the definition of liveness, except for an addi-
tional level of sets.

Liveness hyperproperty. Hyperproperty L is a liveness
hyperproperty (equivalently, is hyperliveness) itf

(VT €Obs: (3T €Prop : T<T' ANT'€L)). O

Define LHP to be the set of all liveness hyperproperties.
Some consequences of the definition of hyperliveness
are:

o Average response time RT is not liveness but
it is hyperliveness: the good thing is that the aver-
age response time is low enough. If this policy were
approximated by limiting the maximum (rather than
mean) response time in each execution, the hyperpro-
perty would instead be a lifted safety property.

e The only hyperproperty that is both hypersafety and
hyperliveness is true, where true = Prop, the maxi-
mal hyperproperty with respect to the subset relation.
(The minimal hyperproperty false, where false = {(}},
is hypersafety but not hyperliveness.)

e Liveness properties lift to liveness hyperproperties.

Proposition 2. (VL € Prop L €lP «—

[L] € LHP)

e Set LP of all liveness properties is a liveness hyper-
property: Every observation can be extended to any
liveness property.

e Similarly, set SP of all safety properties is a liveness
hyperproperty: Every observation can be extended to
some safety property.

Possibilistic information flow. Some information-flow
security policies, such as observational determinism
OD (2.6) and relational noninterference RNI (3.1)), restrict
nondeterminism of a system from being publicly observ-
able. However, it could be useful to have observable non-
determinism. First, systems might exhibit nondeterminism
due to scheduling. For example, if the scheduler cannot be
influenced by secret information (i.e., the scheduler does
not serve as a covert timing channel), then it is reasonable
to allow the scheduler to behave nondeterministically. Sec-
ond, nondeterminism is a useful modeling abstraction when
dealing with probabilistic systems (which we consider in
more detail in Section [6). When the exact probabilities for
a system are unknown, they can be abstracted by nondeter-
minism. For at least these reasons, there has been a history
of research on possibilistic information-flow security poli-
cies, beginning with nondeducibility [39] and generalized
noninterference [22]. Such policies are founded on the in-
tuition that low observers of a system should gain little from
their observations. Typically, these policies require that ev-
ery low observation is consistent with some large set of pos-
sible high behaviors.

McLean [24]] argues that every possibilistic information-
flow security policy is expressible as a selective interleaving
function. Such functions, given two executions of a system,
specify another trace that must also be an execution of the
system, as did the definition of generalized noninterference
GNI (23). McLean shows that possibilistic information-
flow policies can be expressed as closure with respect to se-
lective interleaving functions. Mantel [21] generalizes from
these functions to closure operators, which extend a set S
of executions to a set S’ such that S C S’. Mantel argues
that every possibilistic information-flow policy can be ex-
pressed as a closure operator.

Given a closure operator (! that expresses a possibilistic
information-flow policy, the hyperproperty P¢; induced by
Clis:

Po, = {CUT)|T € Prop}.
Define the set PIF of all such hyperproperties to be | J -, Pcs.

It is now easy to see that these are liveness hyperproperties:
any observation 7" can be extended to its closure.

Proposition 3. PIF C LHP

Possibilistic information-flow policies, other than true, are
therefore never hypersafety. Another way to reach this
conclusion is to observe that closure operators sometimes
yield hyperproperties that are not refinement-closed—yet,
by Theorem [I] every safety hyperproperty is refinement-
closed.

Temporal logics. Consider the hyperproperty “for every
initial state, there is some terminating trace, though not all
traces need terminate,” denoted as DT. In branching-time
temporal logic, DT could be expressed more precisely as

DT £ Oterminates, 5.1

where terminates is a state predicate and ¢ is the “not
never” operator@ There is no liveness property equivalent
to DT [17]; an approximation would be the liveness prop-
erty that requires every trace to terminate. However, DT
is hyperliveness because any finite trace can be extended to
a set of executions, at least one of which terminates. This
example suggests that hyperproperties can be models for
branching-time temporal predicates whereas properties are
limited to modeling linear-time temporal predicates.

6 Other Hyperproperties

Hyperproperties are not necessarily either hypersafety
or hyperliveness. Consider a medical information system
that must maintain the confidentiality of patient records and
must also eventually notify patients whenever their records
are accessed [5]. Assuming the confidentiality requirement
is interpreted as observational determinism OD (2.6), this
system must both prevent bad things (OD, which is hyper-
safety) as well as guarantee good things (eventual notifica-
tion, which can be formulated as liveness). As another ex-
ample, consider a proactive secret sharing system that must
maintain and periodically refresh a secret. Maintaining the
confidentiality of the secret can be formulated as hyper-
safety, and the eventual refresh of the secret shares can be
formulated either as liveness (if every execution must even-
tually complete the refresh) or hyperliveness (if only some
executions must complete). Both of these examples illus-
trate hyperproperties that are intersections of (hyper)safety
and (hyper)liveness.

In fact, every hyperproperty is the intersection of a safety
hyperproperty and a liveness hyperproperty. This general-
izes the result of Alpern and Schneider [3]] that every prop-
erty is the intersection of a safety property and a liveness

property.
Theorem 3. (YPc HP : (3S€SHP,LcLHP : P=
SNL))

1Some temporal logics, such as CTL [8], express this formula as
EFterminates.

Probabilistic Hyperproperties. Although the formula-
tion of systems and hyperproperties in Section [2| did not
include probabilities, it is straightforward to incorporate
them. A probabilistic system transitions from a state s to
a state s’ with probability p(s, s’) Define Pr; s(T) to be
the probability with which set 7" of finite traces is produced
by system .S with initial state s. This measure can be con-
structed from p(-, -) [15, 29]] and used in the definitions of
hyperproperties.

In information-flow security, the original motivations for
adding probability to system models were to address covert
channels and to establish connections between information
theory and information flow [27, |44} [13]]. A security pol-
icy that emerged from this line of research was probabilis-
tic noninterference [14,|29]. Intuitively, this policy requires
that the probability of every low trace be the same for every
low-equivalent initial state. A formulation of this as hyper-
property PNI appears in Appendix [B] PNI is an example
of a hyperproperty that is intrinsically neither hypersafety
nor hyperliveness: If two low traces have differing proba-
bilities in some observation, it may or may not be possible
to extend the observation to make the probabilities equal.
Because it is neither always possible nor always impossible
to do so, PNI is neither hypersafety nor hyperliveness.

To measure quantity of leakage from repeated experi-
ments in probabilistic programs, Clarkson et al. [9] use a
probabilistic denotational semantics. This semantics can be
used to define a system, and the traces of the system repre-
sent repeated executions of the program. The hyperproperty
“the quantity of leakage over every series of experiments on
deterministic program S is less than & bits” (denoted QL)
then can be shown to be hypersafety. For details, see Ap-
pendix [B]

The channel capacity of a system is the rate (defined as a
limit over all execution lengths) at which information flows
through the system [[L3]. The hyperproperty “the channel
capacity is k bits” (denoted CC) can be shown to be hy-
perliveness. Intuitively, no matter what the rate is for some
finite prefix of the system, the rate can changed to any arbi-
trary amount by an appropriate extension that conveys more
or less information.

7 Topology

Topology enables an elegant characterization of the
structure of hyperproperties. We begin by summarizing the
topology of properties [38]].

Consider an observer of an execution of a system, who is
permitted to see each new state as it is produced by the sys-
tem; otherwise, the system is opaque to the observer. The
observer attempts to determine whether property P holds of

121f this probability is dependent on the history of execution, then the
implementation must have available, in each state, enough information to
reconstruct that history.

the system. At any point in time, the observer has seen only
a finite prefix of the (infinite) execution. Thus, the observer
should declare that the system satisfies P, after observing
finite trace ¢, only if all possible extensions of ¢ will also
satisfy P. Abramsky names such properties finitely observ-
able [2].

As with the bad thing for a safety property, a finitely ob-
servable property must be detectable in finite time, and once
detected, hold thereafter. Formally, O is a finitely observ-
able property iff

(VtE\I’inf:tGO = (HmE\I/ﬁn:mSt
AN (Yt €Wy :m <t = t €0))).

Define O to be the set of finitely observable properties.
Finitely observable properties satisfy two closure condi-
tions. First, if Oy,...,0,, are finitely observable, then
i, O; is also finitely observable. Second, if O is a (po-
tentially infinite) set of finitely observable properties, then
Uoeo O is also finitely observable. Thus we say that O is
closed under finite intersections and infinite unions.

Recall that a topology on a set S is a set 7 C P(S5)
such that 7 is closed under finite intersections and infinite
unions. The elements of 7 are called open sets. Because
O satisfies these requirements, it is a topology on Wi,s. We
call O the Plotkin topology after its inventor.

A convenient way to characterize a topology is to define
a base or a subbase for the topology. A base of topology
T is a set B C 7 such that every open set is a (potentially
infinite) union of elements of 3. A subbaseisaset A C 7T
such that the collection of finite intersections of .4 is a base
for 7. A base (also a subbase) of the Plotkin topology is

OB £ {Tt|t€\IJﬁn},

where 1 t £ {t' € W¢ | t < t'} is the completion of a
finite trace . When ¢ < t’ we say that t’ extends t. The
completion of ¢ is thus the set of all infinite extensions of ¢.
The open sets O of the Plotkin topology are the sets in the
closure of OF under infinite unions.

Alpern and Schneider [3] established that safety proper-
ties correspond to closed sets, and liveness properties cor-
respond to dense sets, in the Plotkin topology. A closed set
is the complement of an open set, and a set that is dense in
T intersects every non-empty open set in 7. (Hereafter, we
shorten dense in T to dense.) Intuitively, non-membership
in a closed set is finitely observable, with a finite trace con-
stituting the bad thing for a safety property. And any finite
observation can be extended to be in a dense set, constitut-
ing a good thing, so that dense set is live.

We want to construct a topology on sets of traces that
extends this correspondence to hyperproperties. The most
important step is generalizing the notion of finite observ-
ability from properties to hyperproperties. Section[3|already

did this in generalizing a finite trace to a finite set of finite
traces—i.e., an observation. The observer, as before, sees
the system produce each new state in the execution. How-
ever, the observer may now reset the system at any time,
causing it to begin a new execution. At any finite point in
time, the observer has now collected a finite set of finite
(thus partial) executionsE] An observation is thus an ele-
ment of Obs, as defined in Section 3]

An extension of an observation should allow the observer
to perform additional resets of the system, yielding a larger
set of traces. An extension should also allow each execution
to proceed longer, yielding longer traces. So an extension
corresponds to trace set prefix < as defined in Section
The completion of observation M € Obs is

TM & {T€cProp|M<T}

We can now define our topology on sets of traces in terms
of its subbase:

0% 2 {1 M| M € Obs}.

The base OF of our topology is then OB (losed under
finite intersections. The base and subbase turn out to be the
same sets.

Proposition 4. OF = 058

Finally, the topology @ is O closed under infinite unions.
Thus, open sets are unions of completed observations.

Next, we provide the appropriate characterizations of
safety and liveness for this topology. Define C to be the
closed sets and D to be the dense sets.

Proposition 5. SHP =C
Proposition 6. LHP = D

Thus, just as safety and liveness correspond to closed and
dense sets in the Plotkin topology, hypersafety and hyper-
liveness correspond to closed and dense sets in our general-
ization of that topology.

The topology we developed here is actually equivalent
to well-known topology. The Vietoris (or finite or convex
Vietoris) topology is a standard construction of a topology
on sets out of an underlying topology [42] 26]]. This con-
struction can be decomposed into the lower Vietoris and
upper Vietoris constructions [37]], which also yield topolo-
gies. Define U (7) to be the lower Vietoris construction,
which given topology 7 on space X produces a topology
on P(X). Our underlying topology was on traces, and we
constructed the lower Vietoris topology on sets of traces.

Theorem 4. O =G (O)

13Equivalently, instead of allowing resets, the observer could run a finite
collection of copies of the system. At any finite point in time, an observa-
tion can be made, comprising the set of traces the copies have produced.

10

This theorem yields another topological characterization
of safety hyperproperties. The set of lifted safety proper-
ties, closed under infinite intersections and finite unions (de-
noted Z), is the set of safety hyperproperties.

Corollary 1. SHP = Z({[S] | S € SP})

Powerdomains. A powerdomain is a construction used to
model the semantics of nondeterminism [30]]. The defini-
tion of prefix < over sets of traces in Section |3| suggests
we are working with the lower (or Hoare) powerdomain on
traces. Theorem W] validates this, since the lower Vietoris
topology corresponds to the lower powerdomain [37]]. The
two other standard powerdomain constructions, the upper
(or Smyth) and convex (or Plotkin) powerdomains, simi-
larly correspond to the upper and convex Vietoris topolo-
gies [37]. These two topologies use different open sets than
the lower Vietoris topology we are using, changing the no-
tions of observable and trace prefix: The upper construction
makes all open sets refinable, whereas the convex construc-
tion makes the impossibility of the production of a state
observable. Thus, neither the upper nor the convex con-
structions yield opens sets that are the finitely observable
properties; the equivalence of closed sets and hypersafety
consequently is lost. This means that the upper and convex
powerdomains on traces are unsuitable for our purposes. It
is possible that these powerdomains might nonetheless be
useful for a different semantic domain than traces; we leave
this as future work.

8 Concluding Remarks

Many examples of security policies have been classified
as hyperproperties in this paper. Figure [l| summarizes this
classification.

Although this paper formulates security policies with hy-
perproperties, security policies are typically formulated in
terms of confidentiality, integrity, and availability. The re-
lation between these two formulations is an open question,
but we can offer some observations:

e Information-flow confidentiality is not a property, but
it is a hyperproperty, and it can be hypersafety (e.g.,
observational determinism) or hyperliveness (e.g.,
generalized noninterference).

e Availability is sometimes hypersafety (maximum re-
sponse time in any execution, which is also safety) and
sometimes hyperliveness (mean response time over all
executions).

o Integrity, which we have not discussed in this paper,
also includes examples from both hypersafety and hy-
perliveness.

HP

KSHP(2)

[SP]=KSHP(1)
false

Figure 1. Classification of security policies

The language of confidentiality, integrity, and availability
therefore would seem to be orthogonal to hypersafety and
hyperliveness. The language of hypersafety and hyperlive-
ness has the advantages of being formalized and providing
an orthogonal basis for constructing security policies. In
contrast, there is no formalization that simultaneously char-
acterizes confidentiality, integrity, and availabilitym nor are
confidentiality, integrity, and availability orthogonalE|

In this work, we developed a theory of hyperproperties
that parallels the theory of properties. There is a relatively
complete verification methodology for properties: Given a
property P, construct a safety property S and a liveness
property L such that P = S N L, then use invariance argu-
ments to verify S and well-foundedness arguments to ver-
ify L [3|14]. We have taken steps toward generalizing this
methodology to apply to hyperproperties. Theorem [3|shows
that every hyperproperty P can be expressed as the inter-
section of a safety hyperproperty S and a liveness hyper-
property L, and the proof of Theorem [3] shows that S and
L can be constructed from P. If S is a k-safety hyperpro-
perty, then by Theorem 2] it can be verified using reasoning
about safety. It remains an open question whether general
methods exist that are relatively complete for verification of
safety hyperproperties that are not k-safety, or for liveness
hyperpropertiesm Such methods would complete the ver-

14The closest example of which we are aware is Zheng and Myers [47]],
who formalize a particular noninterference policy for confidentiality, in-
tegrity, and availability.

15For example, the requirement that a principal be unable to read a value
could be interpreted as confidentiality or unavailability of that value.

161f as discussed at the end of Section the full power of second-order
logic is necessary to express hyperproperties, then such methods could not

ification methodology for hyperproperties. Then, security
might take its place as “just another” functional requirement
to be verified.

Acknowledgments

We thank Graeme Bailey, Stephen Chong, Dexter Kozen,
Ueli Maurer, Andrew Myers, and Tom Roeder for discus-
sions about this work. We also thank Martin Abadi, Stephen
Chong, Michael George, Leslie Lamport, Jed Liu, John
McLean, John Mitchell, Greg Morrisett, Tamara Rezk, Tom
Roeder, and Tachio Terauchi for their comments on a draft
of this paper.

References

[1] Martin Abadi and Leslie Lamport. Composing Spec-
ifications. ACM Transactions on Programming Lan-
guages and Systems, 15(1):73-132, 1993.

[2] Samson Abramsky. Domain Theory in Logical Form.
Annals of Pure and Applied Logic, 51:1-77, 1991.

[3] Bowen Alpern and Fred B. Schneider. Defining Live-
ness. Information Processing Letters, 21(4):181-185,
1985.

[4] Bowen Alpern and Fred B. Schneider.
ing Safety and Liveness.
2(3):117-126, 1987.

Recogniz-
Distributed Computing,

exist. Nonetheless, methods for verifying fragments of the logic might
suffice for verifying classes of hyperproperties that correspond to security
policies.

(5]

(6]

(7]

(8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

Ross J. Anderson. A Security Policy Model for Clin-
ical Information Systems. IEEE Symposium on Secu-
rity and Privacy, pages 30—43, 1996.

Gilles Barthe, Pedro R. D’ Argenio, and Tamara Rezk.
Secure Information Flow By Self-Composition. /[EEE
Computer Security Foundations Workshop, pages
100-114, Pacific Grove, California, June 2004.

Gérard Boudol and Ilaria Castellani. Noninterference
for Concurrent Programs and Thread Systems. Theo-
retical Computer Science, 281(1-2):109-130, 2002.

Edmund M. Clarke, E. Allen Emerson, and A. Prasad
Sistla. Automatic Verification of Finite-State Concur-
rent Systems Using Temporal Logic Specifications.

ACM Transactions on Programming Languages and
Systems, 8(2):244-263, 1986.

Michael R. Clarkson, Andrew C. Myers, and Fred B.
Schneider. Belief in Information Flow. IEEE Com-
puter Security Foundations Workshop, pages 31-45,
Aix-en-Provence, France, June 2005.

Adam Darvas, Reiner Hihnle, and David Sands. A
Theorem Proving Approach to Analysis of Secure In-
formation Flow. Workshop on Issues in the Theory of
Security, Warsaw, Poland, April 2003.

Riccardo Focardi and Roberto Gorrieri. Classifica-
tion of Security Properties (Part I: Information Flow).
Foundations of Security Analysis and Design 2000,
volume 2171 of Lecture Notes in Computer Science,
pages 331-396, Springer, 2001.

Joseph A. Goguen and Jose Meseguer. Security Poli-
cies and Security Models. [EEE Symposium on Se-
curity and Privacy, pages 11-20, Oakland, California,
April 1982.

James W. Gray, III. Towards a Mathematical Founda-
tion for Information Flow Security. IEEE Symposium
on Security and Privacy, pages 21-34, Oakland, Cali-
fornia, May 1991.

James W. Gray, III and Paul F. Syverson. A Logical
Approach to Multilevel Security of Probabilistic Sys-
tems. Distributed Computing, 11(2):73-90, 1998.

Joseph Y. Halpern. Reasoning About Uncertainty.
MIT Press, Cambridge, Massachusetts, 2003.

Leslie Lamport. Proving the Correctness of Multipro-
cess Programs. IEEE Transactions on Software Engi-
neering, 3(2):125-143, 1977.

12

[17]

[27]

Leslie Lamport. “Sometime” is Sometimes ‘“Not
Never”: On the Temporal Logic of Programs.
ACM Symposium on Principles of Programming Lan-
guages, pages 174-185, Las Vegas, North Dakota,
January 1980.

Leslie Lamport. Basic Concepts: Logical Foundation.
Distributed Systems: Methods and Tools for Specifi-
cation, An Advanced Course, volume 190 of Lecture
Notes in Computer Science, pages 19-30, Springer,
1985.

Leslie Lamport. Specifying Systems: The TLA+ Lan-
guage and Tools for Hardware and Software Engi-
neers. Addison-Wesley, 2002.

Zohar Manna and Amir Pnueli. Temporal Verifica-
tion of Reactive Systems: Safety. Springer, New York,
1995.

Heiko Mantel. Possibilistic Definitions of Security:
An Assembly Kit. IEEE Computer Security Founda-
tions Workshop, pages 185-199, Cambridge, United
Kingdom, July 2000.

Daryl McCullough. Specifications for Multi-Level Se-
curity and a Hook-Up Property. IEEE Symposium on
Security and Privacy, pages 161-166, Oakland, Cali-
fornia, April 1987.

Daryl McCullough. A Hookup Theorem for Multi-
level Security. IEEE Transactions on Software Engi-
neering, 16(6):563-568, June 1990.

John McLean. A General Theory of Composition for a
Class of “Possibilistic”” Properties. IEEE Transactions
on Software Engineering, 22(1):53—67, 1996.

John McLean. 2008. Personal communication.

Ernest Michael. Topologies on Spaces of Subsets.
Transactions of the American Mathematical Society,
71(1):152-182, July 1951.

Jonathan Millen. Covert Channel Capacity. IEEE
Symposium on Security and Privacy, pages 60-66,
Oakland, California, April 1987.

Robin Milner. Communication and Concurrency.
Prentice Hall, 1989.

Kevin R. O’Neill, Michael R. Clarkson, and Stephen
Chong. Information-Flow Security for Interactive Pro-
grams. IEEE Computer Security Foundations Work-
shop, pages 190-201, Venice, Italy, July 2006.

Gordon Plotkin. Domains. Available from
http://homepages.inf.ed.ac.uk/gdp/
publications/Domains.ps, 1983.

http://homepages.inf.ed.ac.uk/gdp/publications/Domains.ps
http://homepages.inf.ed.ac.uk/gdp/publications/Domains.ps

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

Francois Pottier and Vincent Simonet. Information
Flow Inference for ML. ACM Symposium on Prin-
ciples of Programming Languages, pages 319-330,
Portland, Oregon, January 2002.

Riccardo Pucella and Fred B. Schneider. Indepen-
dence from Obfuscation: A Semantic Framework
for Diversity. IEEE Computer Security Foundations
Workshop, pages 230-241, Venice, Italy, July 2006.

A. W. Roscoe. CSP and Determinism in Security
Modelling. IEEE Symposium on Security and Privacy,
pages 114-127, Oakland, California, May 1995.

John Rushby. Security Requirements Specifications:
How and What? (Extended Abstract). Symposium
on Requirements Engineering for Information Secu-
rity, Indianapolis, Indiana, March 2001.

Andrei Sabelfeld and Andrew C. Myers. Language-
Based Information-Flow Security. IEEE Journal on
Selected Areas in Communications, 21(1):5-19, Jan-
uary 2003.

Fred B. Schneider.
Springer, 1997.

On Concurrent Programming.

Michael B. Smyth. Power Domains and Predicate
Transformers: A Topological View. International Col-
loquium on Automata, Languages, and Programming,
pages 662—-675, Barcelona, Spain, July 1983.

Michael B. Smyth. Topology. Background: Mathe-
matical Structures, volume 1 of Handbook of Logic in
Computer Science, Oxford University Press, 1992.

David Sutherland. A Model of Information. Na-
tional Security Conference, pages 175-183, Gaithers-
burg, Maryland, 1986.

Tachio Terauchi and Alexander Aiken. Secure Infor-
mation Flow as a Safety Problem. Static Analysis Sym-
posium, volume 3672 of Lecture Notes in Computer
Science, pages 352-367, Springer, London, United
Kingdom, September 2005.

Johan van Benthem and Kees Doets. Higher-Order
Logic. Elements of Classical Logic, volume 1 of
Handbook of Philosophical Logic, D. Reidel Publish-
ing, 1983.

Leopold Vietoris. Bereiche Zweiter Ordnung.
Monatschefte fiir Mathematik und Physik, 33:49-62,
1923.

Dennis Volpano. Safety Versus Secrecy (Invited Pa-
per). Static Analysis Symposium, pages 303-311,
1999.

13

[44] Gray, III, James W. Probabilistic Interference. IEEE

A

Symposium on Security and Privacy, pages 170-179,
1990.

Glynn Winskel and Mogens Nielsen. Models for Con-
currency. Semantic Modelling, volume 4 of Hand-
book of Logic in Computer Science, Oxford University
Press, 1994.

Steve Zdancewic and Andrew C. Myers. Obser-
vational Determinism for Concurrent Program Secu-
rity. IEEE Computer Security Foundations Workshop,
pages 29-43, Pacific Grove, California, June 2003.

Lantian Zheng and Andrew C. Myers. End-to-End
Auvailability Policies and Noninterference. IEEE Com-
puter Security Foundations Workshop, pages 272-286,
Aix-en-Provence, France, June 2005.

Summary of Notation

P is a property, H is a hyperproperty, M is a named set
of properties, and N is a named set of hyperproperties. We
use bold to denote “hyper” and sans serif to denote named
sets. Predicates and functions always begin with lower case,
whereas properties always begin with upper case.

3 set of all states
Ws, set of all finite traces
Wi.s set of all infinite traces
U set of all traces
t[i] trace index

t[..i] trace prefix

t[i..] trace suffix

Prop set of all properties

‘P powerset operator
N the natural numbers
NRW property “no read then write”
AC property “access control”
GS property “guaranteed service”
HP set of all hyperproperties
[P] lift of property P to equivalent hyperproperty
GMNI hyperproperty “Goguen and Meseguer’s non-
interference”

GNI hyperproperty “generalized noninterference”
OD hyperproperty “observational determinism”
RT hyperproperty “average response time”

RC set of all refinement-closed hyperproperties
SP set of all safety properties
PFin finite powerset operator (set of all finite sub-
sets)
Obs set of all observations
< trace (or trace set) prefix

SHP set of all safety hyperproperties

Ur setof all relational traces

RHP
RNI
KSHP(k)
Sys

set of all relational hyperproperties
hyperproperty “relational noninterference”
set of all k-safety hyperproperties

set of all systems

SS hyperproperty “secret sharing”
LP set of all liveness properties
LHP set of all liveness hyperproperties
true maximal hyperproperty
false minimal hyperproperty
PIF set of all possibilistic information-flow hy-
perproperties
DT hyperproperty “sometimes terminates”
PNI hyperproperty “probabilistic noninterfer-
ence”
QL hyperproperty “quantitative leakage”
CC hyperproperty “channel capacity”
O open sets of Plotkin topology
T completion of observation
O open sets of our topology
C closed sets of our topology
D dense sets of our topology
U, lower Vietoris construction

closure under infinite intersection and finite
union

B Example Hyperproperties

Bisimulation. Boudol and Castellani [7] give a
bisimulation-based noninterference policy for concur-
rent programs. They model execution as a binary relation
— on program terms and memories—a program term
P and a memory u step to a new program term P’ and
memory p’. Define ¥ p, the set of states for program P,
to be the set of pairs of a program term and a memory,
prog(s) to be the program term in state s, and mem(s)
to be the memory in state s. Define traces(P) to be the
set of all traces ¢ such that prog(¢[0]) is P, and for all 4,
t[i{] — t[¢ + 1]; this yields a semantic model of P as a set
of traces.

Let =7, be an equivalence relation on memories such that
W1 =p Mo means pq and po are indistinguishable to a low
observer. Say that state s can fake a step to state s’ when
there exists some trace ¢ in traces(P) such that, for some
i, we have t[i{] = s and t[i + 1] = s’. Informally, define
mf (read “bisimilar”) to be a binary relation on X p such
that if s; is bisimilar to so, then s; and s, must have indis-
tinguishable memories to a low observer. Further, if s; can
take a step to reach state s}, then either s} remains bisimilar
to so, Or s2 can take a step to reach s/, where s} and s, are
bisimilar. Formally, bisimilarity a7 is the largest symmet-

14

ric binary relation on X p such that

s1 %f so = mem(s1) =1, mem(sz)
A (3t € traces(P),i € N,sy € X :
tli] =s1 A tli+1] =5
— s\ =l sy
V (3t € traces(P),j € N,sy € 3 :
tlil=s2 A t[j+1] =53 A
s1 R 85))-

Boudol and Castellani define program P to be secure,
which we denote as BCNI (P), iff it is bisimilar to itself in
all initially low-equivalent memories:

BCONI(P) £ (Ypa,p2 : p =r pio
= (PHLLl) zlLD (P>/1'2))'

The hyperproperty BCNI containing all secure programs
according to Boudol and Castellani’s definition is:

BCNI = {T €Prop| (3P : T = traces(P)

A BCNI(P)}. (B.1)

We have shown how to model a particular bisimulation-
based definition of noninterference as a hyperproperty. But
the example also suggests a general methodology for mod-
eling other bisimulation-based definitions:

1. Model the system used in such a definition as a set of
traces, enriching set X of states as appropriate.

2. State the bisimulation ~ over 3.
3. Define the hyperproperty, using ~=.

Although the second and third steps in this methodology de-
pend on the particular bisimulation-based definition being
modeled, there is a general construction for the first step.
The system model generally used for bisimulation-based
definitions is a labeled transition system, a triple (S, L, —)
where S is a set of LTS-states L is a set of labels, and —
is a relation on S x L x S [28]]. Elements of relation —

are usually notated s RN S92, meaning that the system has a
transition labeled ¢ from LTS-state s; to LTS-state so.

To model labeled transition system (.S, L, —) as a set of
traces, it suffices to define the state space X for systems to
be S x L. Given state s € %, let st(s) denote the LTS-
state from s and lab(s) denote the label from s. Define
traces(S, L, —) to be

lab(t[i+1])
—

{t] (VieN : st(t]i) st(tfi +1]))}.

17We use the term LTS-state to distinguish these from the states defined
in Section[2}

Note that this construction would not work with an im-
poverished notion of state, as observed by Focardi and Gor-
rieri [11] for states that are elements of L. Defining a state
as an element of S x L captures enough information in the
set of traces to express bisimulation-based policies.

Probabilistic noninterference. To formulate probabilis-
tic noninterference as a hyperproperty, we need some nota-
tion:

o Let the low equivalence class of a finite trace ¢ be de-
noted [t],, where

[tlr = {t' € Wgn | ev(t,L) = ev(t',L)}.

Prs.s([t]1) is the probability that system S, starting in
state s, produces an execution low-equivalent to ¢.

e Let the set of initial states of property 71" be denoted
Init(T'), where

Init(T) £ {s|{s}<T}.
Probabilistic noninterference can then be expressed as

PNI = {T € Prop| (Vsy,s2 € Init(T) :

ev(sy, L) = ev(se, L) =
(Vt € Winr :
Pro, o([t]lL) = Pro, 2 ([t]2)))}-

Hyperproperty PNI is neither hypersafety nor hyperlive-
ness. It is not hypersafety, because even if T fails to be
in PNI because of some equivalence class [t]r, it may be
possible to extend 7" to be in PNI by extending some pre-
fix of [t];, in T[g] Neither is PNI hyperliveness: A sys-
tem that deterministically produces two non-low-equivalent
traces from two initial low-equivalent states cannot be ex-
tended to satisfy PNI.

Quantitative flow. In the model of Clarkson et al. [9]], a
state has a high component and a low component. A re-
peated experiment on program S is a series of executions of
S. In each execution, the initial state must have the same
high component but may have a different low component.
We use traces to represent repeated experiments. The
first event in the trace is the high component of the initial
state. After this follows a series of pairs of low input and
low output events. Each low output must have the correct

18Consider two low-equivalent initial states s1 and so of 7. Suppose
that the probability of [¢]z, from s1 is 0, but that the probability of some
prefix of [¢]r, is 1. Further suppose that the probability of [¢], from sg
is 1. These assumptions imply that 7" ¢ PNI. But it may be possible to
extend the prefix of [¢], from s1 such that the trace is now low-equivalent
to t. This extended system would now satisfy PNI. Thus PNI is not
hypersafety.

15

probability of occurring according to S, the initial high in-
put component, and the most recent low input component.
The probabilistic behavior of S is modeled by a semantics
[S] that maps inputs states to output distributions. Thus,
([S]s)(s’) is the probability that S begun in state s termi-
nates in state s’.

Let Syst(S) denote the system of such traces resulting
from program S:

Syst(S) = {t€ Vg, | (Veveni :
ev(t[i], H) = ev(t[0], H)
A p(tli+1]) = ([STe[e)) (ti + 1]))}-

Note that p(s) is not defined at all states in these traces. Fur-
ther, the set of program states must be finite for the proba-
bility distributions to be well-defined.

We now formalize the quantity of flow over a trace t.
Each pair of states ¢[i] and ¢[i + 1] can be used to define
an experiment, which describes how an attacker’s beliefs
change as a result of observing execution of the program.
The quantity of flow in an experiment follows from defini-
tions given in [9], and the quantity of flow over the trace is
the sum of the flow for each experiment in the trace:

(t1=1)/2
Qbu,t) & > Q(E(ti, b))
=0
E(t,i,by) = (pre =E(t,i— 1).post;
h = ev(t[2i], H);l = ev(t][2i], L);
post = §(bg,1)|ev(t[2i + 1], L) [H)
0(bm,l) = As.bp(ev(s,H) - Pr([(ev(s, H)UI),

ev(s, L)]).

Hyperproperty QL is the set of all systems that exhibit
less than k bits of flow over any experiment:

QL = {T e€Prop|(3S: T = Syst(9)

C Proofs

Proposition[l, (VS € Prop : S € SP < [S] € SHP)
Proof. By mutual implication.

(=) Let S be an arbitrary safety property. We want to show
that [S] is a safety hyperproperty—i.e., any property T'
not in [S] contains some bad thing.

First, we find a bad thing M for T'. By the definition
of lifting, [S] = P(S) = {P € Prop | P C S}. Since
T is not in this set, T € S. So some trace ¢ is in T’
but not in S. By the definition of safety, if ¢ ¢ .S, there

is some finite trace m that is a bad thing for S. So no
extension of m is in S. Define M to be {m}.

Second, we show that M is irremediable. Note that
M < T because m < tandt € T. Let 7" be an
arbitrary property that extends M—i.e., M < T’. By
the definition of <, there exists a t’ € T such that
m < t’. We established above that no extension of
misin S, so t' ¢ S. But, again by the definition of
lifting, 7" ¢ [S], since T” contains a trace not in S.

Thus, by definition, [S] is hypersafety.
(<) Let S be an arbitrary property such that [S] is hyper-
safety. We want to show that S is safety. Our strategy
is as above—we find a bad thing and then show that it
is irremediable.

Consider any ¢ such that ¢ ¢ S. By the definition of
lifting, we have that {t} ¢ [S]. By the definition of
hypersafety applied to [S], there exists an M < {t}
such that for all 77 > M, we have T" ¢ [S]. Consider
M: All traces in it must be prefixes of ¢, by the defi-
nition of <. Choose the longest such prefix in M and
denote it as m*. This m™* serves as a bad thing for ¢, as
we show next.

Let ¢’ be arbitrary such that m* < ¢/, andlet 77 = {¢'}.
By construction, M < T7, so T” ¢ [S] by the above
application of the definition of hypersafety. But this
implies that ¢’ ¢ S, by the definition of lifting.

We have shown that, for any ¢ ¢ S, there exists an
m < t, such that for any ¢ > m, we have t' ¢ S.
Therefore, S is safety, by definition.

Theorem[ll SHP c RC

Proof. Assume that S is hypersafety. For sake of contra-
diction, also assume that S is not refinement-closed. This
latter assumption implies that there exist two properties 7'
and 7" such that T € S,and T’ ¢ S, yet T D T’. By the
definition of hypersafety, since 7" ¢ S, there exists an ob-
servation M that is a bad thing for 7’—i.e., M < T and for
allT” > M, T"” ¢ S. Consider this M. By the definition
of <,sinceT D T'and M < T’ we have M < T. Then
T is an instance of 7" above, which means 7" ¢ S. But this
contradicts T € §. Therefore, S must be refinement-closed.

To see that the subset relation is strict, consider liveness
property guaranteed service GS (2.3). When lifted to hyper-
property [GS], the result is refinement-closed by definition
of [-]. But GS is liveness, and therefore cannot be safety or
hypersafety. O

16

Theorem[2} (VS € Sys, K € KSHP(k) :
SEK — S* k- K))

(3K €SP :

Proof. Let K be an arbitrary k-safety hyperproperty of sys-
tem S. Our strategy is to construct a safety property K that
holds of system S* exactly when K holds of S.

Since K is k-safety, every property not contained in it
has some bad thing of size at most k—i.e., for all ' ¢ K,
there exists an observation M where |[M| < kand M < T,
such that for all 77 > M, T’ ¢ K. We construct the set M
of all such bad things:

1>

M {M €Obs||M|<k A (3T € Prop :

T¢KANM<T A (VT €Prop :
T'>M = T ¢K))}

Consider a property T such that |T| < k. Construct a
finite list of traces t1,%s, ..., % such that ¢; € T for all <.
Further, we require that no ¢; is equal to any ¢;, for any ¢ and
I, unless |T'| < k. We construct a trace ¢ such that ¢[5] is the
tuple (¢1[4], t2[4], - - - , tx[4]); note that ¢ is a trace over state
space ¥¥. Let trace ¢ so constructed from 7" be denoted
zip,, (T), and let the inverse of this construction be denoted
unzipy (t). We can also apply this notation to observations,
which are finite sets of finite traces[[’]

Now, consider zip;, (M) for any M € M. This is a bad
thing for K and system S*. So we can now construct safety
property K. Let K be the set of traces over X* such that no
trace in K is a bad thing for any M € M:

[I>

K {t" | -(3M cObs: M e M

A zip(M) <)},

where t* denotes a trace ¢ over space XF.

To see that K is safety, suppose that t* ¢ K. Then by
the definition of K, there must exist some M € M such that
zip,, (M) < t*. Consider any trace u* > zip, (M). By the
definition of K, we have that u* ¢ K. Thus, for any trace
t* not in K, there is some finite bad thing zip, (M), such
that no extension u* of the bad thing is in K. By definition,
K is therefore safety.

Finally, we need to show that S satisfies K exactly when
Sk satisfies K. We do so by mutual implication.

(=) Suppose S | K. Then, by definition, S € K. For
sake of contradiction, suppose that S¥ ¢ K. Then,
by the definition of subset, there exists some t* € S*
such that t* ¢ K. Let T be unzip,(t*). By the defi-
nition of K, there must exist some M € M such that

19n this case, the ¢; have finite and potentially differing length. So if
J > |ti|, let ¢;[j] = L for some new state L. ¢ X. Thus, zip, (T) is a
trace over state space (XU _L)¥. We redefine trace prefix < over this space
to ignore L: let ¢ < ¢’ iff, for some ¢’ that is a trace over 3, [t] = [t/]¢",
where [t] is the truncation of ¢ that removes any L states. For notational
simplicity, we omit this technicality in the remainder of the proof.

zip, (M) < t*. Applying unzip,(-) to this predicate,
and noting that unzip is monotonic with respect to <,
we obtain M < wunzip,(t*). By the definition of T,
we then have that M < T'. By the construction of M,
T therefore cannot be in K. By the construction of S*
and the definition of 7', each trace in 7" must also be a
trace of S. So by definition, 7" < S. By transitivity,
we have that M < S. By the construction of M, S
then cannot be in K. But this contradicts the fact that
S € K. Therefore, S* C K, so by definition Sk E K.

Suppose S¥ = K. Then, by definition, S* C K.
Suppose, for sake of contradiction, that S does not sat-
isfy K. Then, by definition, S ¢ K. Since K is k-
safety, this means that there exists an M < S, where
|M| < E, such that for all " > M, T’ ¢ K. Let
mF be zip, (M), and let s* be a trace of S* such that
mF < sF (such a trace must exist since M < S).
By the construction of K, for any t* > mF, we have
that ¢* ¢ K. Therefore, sk ¢ K, and it follows that
Sk ¢ K. But this contradicts the fact that S* C K.
Therefore, S € K, so by definition S = K.

(<)

O

Proposition2} (VL € Prop : L € LP <= [L] € LHP)
Proof. By mutual implication.

(=) Let L be an arbitrary liveness property. We want to
show that [L] is a liveness hyperproperty—i.e., any ob-
servation M can be extended to a property 7 that is
contained in [L]. So let M be an arbitrary observa-
tion. By the definition of liveness, for each m € M,
there exists some ¢t > m such that ¢t € L. For a given
m, let that trace ¢ be denoted t,,. Construct the set
T = U, erritm}- Since all the ¢, are elements of L,
we have T' C L. By the definition of lifting, it follows
that 7" is contained in [L]. Further, T' extends M by the
construction of 7T'. Thus, T satisfies the requirements
of the property we needed to construct. By definition,
[L] is hyperliveness.

(<) Let L be an arbitrary property such that [L] is hyper-
liveness. We want to show that L is liveness. So con-
sider an arbitrary trace ¢, and let T = {t}. Since [L]
is hyperliveness, we have that there exists a 7" such
that T < 7" and 77 € [L]. Since T < T’ and
T = {t}, there exists a t’ such thatt < ¢’ and ¢’ € T”,
by the definition of <. By the definition of lifting, if
t' € T' € [L], then it must be the case that ¢’ € L.
Thus, for any ¢, there exists a ¢’ such that ¢ < ¢’ and
t' € L. Therefore, L is liveness, by definition.

O

17

Proposition[3 PIF C LHP

Proof. Let P be an arbitrary possibilistic information-flow
hyperproperty, and let Clp be the closure operator that Man-
tel [21] would associate with P Then, by Mantel’s Def-
inition 10, it must be the case that P = {Clp(T) | T €
Prop}. Closure operators must satisfy three axioms; below,
we use one of these: X C CI(X).

To show that P is hyperliveness, let T € Obs be arbi-
trary. By the definition of hyperliveness, we need to show
that there exists a T” € Prop such that 7' < T”" and T” € P.
Let T' be Clp(T), where T denotes the embedding of T
into Prop by infinitely stuttering the final state of each trace
in 7', as discussed in Section@ By the closure axiom above,
we have that 7' C Clp(T)). So by the definition of <, we
can conclude T' < (I p(T) = T’. Further, 7" must be
an element of P since it is the Clp-closure of property T.
Therefore, T” satisfies the required conditions, and P is hy-
perliveness.

To see that the subset relation is strict, consider liveness
property GS (guaranteed service) from Section 2} It cor-
responds to liveness hyperproperty [GS], but has no corre-
sponding closure operator. For suppose that such a closure
operator did exist, and consider an infinite trace ¢ in which
service fails to occur. The closure of any set containing ¢
must still contain ¢, by the axiom above. But then the clo-
sure does not satisfy G\S, and so the closure operator cannot
correspond to [GS)]. O

Theorem[3} (VP € HP : (3S € SHP,L € LHP : P =
SAL))

This theorem can be easily proved by adapting either the
logical [36] or topological [3]] proof of the intersection the-
orem for ordinary properties. The domains involved are
merely upgraded to include an additional level of sets. Here
we take the former approach and rehearse the logical proof.

Proof. Our strategy is as follows. Given hyperproperty P,
we construct safety hyperproperty S that contains P as a
subset. We also construct liveness hyperproperty L that
contains P. The intersection of S and L then necessarily
contains P, and we will show that the intersection is, in fact,
exactly P.

To construct S, we define the safety hyperproperty
Safe(P), which stipulates that the hyperliveness of P is
never violated. A bad thing for this safety hyperproperty
is any set of traces that cannot be extended to satisfy P. So
we require that Safe(P) contains only sets T of traces such

20More precisely, Mantel argues that every “possibilistic information-
flow property [sic]” can be expressed as a basic security predicate, and
that each basic security predicate induces a set of closure operators. Any
element of this set suffices to instantiate Clp. Also, Mantel’s closure op-
erators were over finite traces, and we have generalized to infinite traces.

that any observation of 7" can be extended to satisfy P. For-
mally,

Safe(P) & {T €Prop|(VM €Obs: M <T
= (3T €Prop: M <T'
AT € P))}
It is straightforward to establish that Safe(P) is hypersafety.

Any set T not contained in Safe(P) must satisfy the nega-
tion of the predicate in the above definition of Safe(P)—

ie, (M €Obs : M <T AN (VI' €Prop : M <
T = T’ ¢ P)). This is exactly the definition of
hypersafety.

Similarly, to construct L, we define the liveness hyper-
property Live(P). It stipulates that is always possible either
to satisfy P or to become impossible, due to some bad thing,
to satisfy P. In the latter case, a safety hyperproperty has
been violated—namely, Safe(P). Formally,

Live(P) P U Safe(P),

where H denotes the complement of hyperproperty H with
respect to HP. To show that Live(P) is hyperliveness, con-
sider any observation 7'. Suppose that T' can be extended
to some property 7" such that 77 € P. Then T” is also in
Live(P), so Live(P) is hyperliveness for 7. On the other
hand, if T" cannot be extended to satisfy P, then T is a bad
thing for Safe(P)—ie., (VT € Prop : T <T' =
T’ ¢ P). Thus T is not in Safe(P), and therefore it is in
Safe(P). Thus, Live(P) is again hyperliveness for 7. We
conclude that Live(P) is hyperliveness.

Next, note that P C Safe(P), because any element 7" of
P satisfies the definition of Safe(P). In particular, for any
M < T, there is a 7" > M such that 77 € P—namely,
T’ =T. Thus, Safe(P) = P U Safe(P).

Finally, let § = Safe(P) and L = Live(P), and we
prove the theorem by simple set manipulation:

SNL Safe(P) N Live(P)

(P U Safe(P)) N (P U Safe(P))
P N (Safe(P) U Safe(P))
PNHP

P

Proposition@ of = 0%
Proof. By mutual containment.

(©) By definition, the elements of OPF are finite intersec-
tions of elements of O°F. Thus, every element of
O3B is already trivially an element of OF.

18

(2) Let N be an arbitrary element of o5, By the defini-
tion of a base, we can write N as ﬂz T M;, where i
ranges over a finite index set and each M; is an obser-
vation. We want to show that there exists an element
T N of OB such that N =T N. So consider N. Every
property 7 in it must extend every M;. Thus, by the
definition of <, every such property 7" extends | J, M;.
Therefore N =7 J, M;. Our desired observation [V is
thus , M;. Note that, for IV to be a valid observation,
it must be a finite set. The union over M; must there-
fore result in a finite set—which it does, since ¢ ranges
over a finite index set.

O

Proposition[5} SHP =C
Proof. By mutual containment.

(©) Let S be an arbitrary safety hyperproperty. We need
to show that it is also a closed set. By the definition
of closed, this is equivalent to showing that S is the
complement of an open set. Our strategy is to construct
hyperproperty O, show that O and S are equal, and
show that O is open.

By the definition of hypersafety, we have that any
property 7' that is not a member of S—and thus is a
member of S—must contain some bad thing. Consider
the set M € P(Obs) of all bad things for S. M con-
tains one or more elements for every property in S':

M

{MeObs|3T€ES: M<T
AN (VT €Prop: M <T
= T'e8))}

Next, define O as the completion of M—i.e., the set
of all properties that extend a bad thing for S

U 1M

MeM
— {T|3MeM:M<T)},

0o 4

(C.1)

where the equality follows by the definition of T M.
Since each such property 7" violates S, we would sus-
pect that O is the complement of S. This is indeed the
case:

Claim. O=S

Proof. (By mutual containment.)

(©) Suppose T € O. Then by equa-
tion [C.1} there is some M € M such
that M < T'. By the definition of M,
any extension of M is an element of S.
Since T is such an extension, T € S.

()

(D) Suppose T € S. Then T ¢ S, so by
the definition of hypersafety, (3M €
Obs : M <T A (VT' € Prop :
M<T = T ¢8)). Consider
that M. It must be a member of M, by
definition. Since M < T, we have that
T € O by equation|C.T} O

All that remains is to show that O is open. First, note
that T M, for any M € Obs, is by definition an ele-
ment of O@°Z. Thus each of the sets T M in the defi-
nition of O is open. Second, by the definition of open
sets, a union of open sets is open. O is such a union,
and is therefore open.

Let C be an arbitrary closed set. We need to show that
it is also hypersafety. Our strategy is to identify, for
any property 7' not in C, a bad thing for 7. If such
a bad thing exists for all 7, then C is by definition
hypersafety.

Since C is closed, it is by definition the complement of
an open set. By Proposition [d] we can therefore write
C as follows:

c = UM, (C.2)

where each M, is an observation.

Let T be an arbitrary property such that T ¢ C, or
equivalently, such that 7' € C. Then T must be in at
least one of the infinite unions in equation Thus,
there must exist an ¢ such that

T € TM;
{U € Prop | M; < U},

(C.3)

where the equality follows from the definition of .

We construct the bad thing M for T" by defining:

L

M M;.

We have that M < T, because of equation

To show that M is a bad thing for 7', consider any
T > M. By the definition of M, T > M;. By
equation it follows that 7", like T, is a member of
1 M;. By equation|C.2} 7" € ‘C. Therefore, T" ¢ C.

We have now shown that for any 7" ¢ C, there exists
an M < T, such that for all T/ > M, T’ ¢ C. Thus
C is hypersafety, by definition.

19

Proposition[6} LHP =D
Proof. By mutual containment.

(©) Let L be an arbitrary liveness hyperproperty. We need
to show that L is dense. By the definition of dense,
we must therefore show that L intersects every non-
empty open set. So let O be an arbitrary non-empty
open set. We need to show that L N O is non-empty.
By Proposition 4| and the definition of open, we can
write O as | J; T M;. Consider an arbitrary M;. Since
L is hyperliveness, there exists a T' > M; such that
T € L. Further, by the definition of T, we have that
T € O. Therefore, T' € L N O, and it follows that L
is dense, by definition.

(2) Let D be an arbitrary dense set. To show that D is
hyperliveness, we must show that any observation T’
can be extended to a property 7" contained in D—i.e.,
(VI'€Obs: (3T €Prop : T<T' A T €D)).
So let T" be an arbitrary observation. Let O7 be the
completion of T":

or 217

{T" € Prop | T <T'} (C.4)

O is an element of O the subbase of our topology,
by definition. Thus, by the definition of a subbase, O
is an open set. By the definition of a dense set (which is
that a dense set intersects every open set), we therefore
have that O N D # (). Let T' be any element in the
set O N D. By equation|C.4] we have T < T".

We have now shown that, for an arbitrary observation
T, there exists a property 7" such that T < 7" and
T’ € D. Therefore, D is hyperliveness, by definition.

O

Theorem[d O =3,(0)

The lower Vietoris topology U.(7) on underlying
topology 7 over space X is defined as the topology induced
by subbase U377 (T) [37]. The subbase is defined as fol-
lows:

ViP(T) £ {(0)|0eT},

where (T') is defined as follows:
(T) £ {UePX)|UNT +0}.

Operators [-] (from Section [2)) and (-) bear some similarity
to the modal logic operators [J (necessity) and ¢ (possibil-
ity). For property 7', [T] denotes the set of all refinements
of T'—i.e., the hyperproperty in which 7' is necessary. Sim-
ilarly, (T") denotes the set of all properties that share a trace
with T—i.e., the hyperproperty in which 7" is always possi-
ble.

Proof. By mutual containment.

(S

)

Suppose O € O. By the definitions of a base
and of @, we can write O as Ufo T M;, where
each M, is an element of ObsEr] Now we calculate:

Ui 1 M;
(definition of T)
UiAT | T = M;}
(definition of <)
Ur{T | (7" my € M - (3teT = my; <t))}
(definition of 1)
USAT | (v mij € M; 1 mg; NT # 0)}
(definition of (-))
Us{T | (v mi; € M; = T € (T my))}
(definition of N)

Ui~ N5 (T may)

Since T m;; € OF by definition, and OF C O by the
definition of base, we have that (T m;;) € T75(0).
Thus, by the definition of subbase, [J7~ (; (1 mi;) €
U1, (O). Therefore, by the calculation above, we can
conclude O € U (O).

Suppose O € U (O). By the definition of sub-
base and U, we can write O as | J;~ ﬂj (Oij), where
each O;; is an element of O. Now we calculate:

Ui N;(04)
(definition of (-))
Ui AT [TN Oy # 0}

Since O;; is open in the base topology O, it can be
rewritten a union of base open sets 1 ¢;;, where each
151 1s a finite trace:

We continue calculating:

(rewriting O;;)

U MAT T 0 (U T tin) # 0}

21We decorate quantifications (such as {J and V) with oo to denote an
infinite range, and with * to denote a finite range.

20

(set theory)
US{T | (V5 : (3%k : T N1tk #0))}
(definition <)
UrAT [(v : 3%k« {tijn} <T))}
(set theory; let k" be the k guaranteed above
to exist for a given 7 and j)
UiAT | Uj tijwr < T}
< let Mi = U; tijk:’ >
UiAT | M; < T}
(definition of 1)
Ui T M;

Finally, since M; is a finite set of finite traces, it is an
element of Obs. So by definition, T M; € OB Thus
by the definition of base, Ufo T M; € O. Therefore,
by the calculation above, we can conclude O € O.

O

Corollary[l} SHP =Z=({[S] | S € SP})

Proof. Let S be an arbitrary safety hyperproperty. By The-
orem[3] S is a closed set in topology O. By Theorem[d] S is
thus also a closed set in topology U1, (O). By the definition
of closed, S is the complement of an open set in topology
01,(0). By the definition of a base, we can thus write S as
unions of intersections of base elements. Letting ~ denote
set complement, we calculate:

S
(definition of base)
Ui~ N;(0i;)
(definition of (-))
U MAT 1 TN 05 # 0}
(double negation)
~Ur AT I TN Oy # 0}
(set theory)
~NUAT | TNnO; =0}

= (set theory)
~NUAT [T € Oy}
= (definition of [-])
~N;"Uj [04]
Removing a complement from each side of the above
equation, we obtain

s = NUYlos;l.

i

21

Since each O;; is open in topology O, we have that O;; is
closed in O. By the fact that closed sets in O correspond
to safety properties [3]], O;; is a safety property. There-
fore, S is the infinite intersection of finite unions of safety
properties, and by definition of = must be an element of
E({[S] |5 € SP}).

Similarly, given an arbitrary element of Z({[S] | S €
SP}), the same reasoning used above establishes that it is
also an element of SHP. Therefore, by mutual containment,
the two sets are equal.

O

	Introduction
	Hyperproperties
	Properties
	Hyperproperties
	Hyperproperties in Action

	Hypersafety
	Beyond 2-Safety
	Hyperliveness
	Other Hyperproperties
	Topology
	Concluding Remarks
	Summary of Notation
	Example Hyperproperties
	Proofs

