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Abstract

We present a declarative authorization language that strikes
a careful balance between syntactic and semantic simplic-
ity, policy expressiveness, and execution efficiency. The syn-
tax is close to natural language, and the semantics consists
of just three deduction rules. The language can express
many common policy idioms using constraints, controlled
delegation, recursive predicates, and negated queries. We
describe an execution strategy based on translation to Dat-
alog with Constraints, and table-based resolution. We show
that this execution strategy is sound, complete, and always
terminates, despite recursion and negation, as long as sim-
ple syntactic conditions are met.

1. Introduction

Many applications depend on complex and changing
authorization criteria. Some domains, such as electronic
health records or eGovernment, require that authorization
complies with evolving legislation. Distributed systems,
such as web services or shared grid computations, involve
frequent ad hoc collaborations between entities with no pre-
established trust relation, each with their own authorization
policies. Hence, these policies must be phrased in terms of
principal attributes, asserted by adequate delegation chains,
as well as traditional identities. To deploy and maintain
such applications, it is essential that all mundane autho-
rization decisions be automated, according to some human
readable policy that can be refined and updated, without the
need to change (and re-validate) application code.

To this end, several declarative authorization manage-
ment systems have been proposed; they feature high-level
languages dedicated to authorization policies; they aim at
improving scalability, maintenance, and availability by sep-
arating policy-based access control decisions from their im-
plementation mechanisms. Despite their advantages, these
systems are not much used. We conjecture that the poor us-
ability of policy languages remains a major obstacle to their
adoption.

In this paper, we describe the design and semantics of
SecPAL, a new authorization language that improves on us-
ability in several respects. The following is an overview of
the main technical contributions and features of SecPAL.

Expressiveness Our design is a careful composition of
three features for expressing decentralized authorization
policies: delegation, constraints, and negation.

• Flexible delegation of authority is the essence of de-
centralized management.

We employ a delegation primitive (“can say”) that cov-
ers a wider spectrum of delegation variants than ex-
isting authorization languages, including those specif-
ically designed for flexible delegation such as XrML
[20], SPKI/SDSI [26] and Delegation Logic (DL) [36].
The semantics of “can say” is close to the “controls”
operator in the original logical treatment of authoriza-
tion, the ABLP logic [2].

• Support for domain-specific constraints is also impor-
tant, but existing solutions only consider a specific
class of constraints (e.g. temporal constraints [13], pe-
riodicity [12], set constraints [48]) or are very restric-
tive to preserve decidability and tractability (e.g. unary
constraints [38], constraint-compact domains [10]),
and disallow constraints required for expressing id-
ioms commonly used in practice.

We provide a set of mild, purely syntactic safety con-
ditions that allow an open choice of constraints with-
out loss of efficiency. SecPAL can thus express a wide
range of idioms, including policies with parameter-
ized roles and role hierarchies, separation of duties and
threshold constraints, expiration requirements, tempo-
ral and periodicity constraints, policies on structured
resources such as file systems, and revocation.

• Negation is useful for expressing idioms such as sepa-
ration of duties, but its liberal adoption can make poli-
cies hard to understand, and its combination with re-
cursion can cause intractability and semantic ambigu-
ity [47].
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We introduce a syntax for authorization queries, sepa-
rate from policy assertions. We permit negation within
queries (even universally quantified negation), but not
within assertions. This separation avoids intractabil-
ity and ambiguity, and simplifies the task of authoring
policies with negation.

Clear, readable syntax The syntax of some policy lan-
guages, such as XACML [41] and XrML, is defined only
via an XML schema; policies expressed directly in XML
are verbose and hard to read and write. On the other hand,
policy authors are usually unfamiliar with formal logic, and
would find it hard to learn the syntax of most logic-based
policy languages (e.g. [36, 34, 22, 39, 29, 38, 10]). Sec-
PAL has a concrete syntax consisting of simple statements
close to natural language. (It also has an XML schema for
exchanging statements between implementations.)

Succinct, unambiguous semantics Languages such as
XACML, XrML, or SPKI/SDSI [26] are specified by a
combination of lengthy descriptions and algorithms that
are ambiguous and, in some cases, inconsistent. Post-
hoc attempts to formalise these languages are difficult and
reveal their semantic ambiguities and complexities (e.g.
[31, 30, 1]).

For example, it was recently proved that the evaluation
algorithms of XrML and the related MPEG REL are not
guaranteed to terminate.1 Moreover, the analysis in [37]
shows that the algorithm for SPKI/SDSI is incomplete; in
fact, the language is likely to be undecidable due to the com-
plex structure of SPKI’s authorization tags.

Logic-based languages have a formal semantics and,
thus, are unambiguous. In many cases, however, the seman-
tics is specified only indirectly, by translation to another lan-
guage with a formal semantics, such as Datalog [34, 22, 39],
Datalog with Constraints [38, 10] or Prolog [36]. Instead,
for the purpose of succinct specification, we define three de-
duction rules that directly specify the meaning of SecPAL
assertions, independently of any other logic.

Effective decision procedures We show that SecPAL
query evaluation is decidable and tractable (with polyno-
mial data complexity) by translation into Datalog with Con-
straints. We describe a deterministic tabling resolution al-
gorithm tailored to efficient evaluation of SecPAL autho-
rization queries with constraints and negation, and present
correctness and complexity theorems for the evaluation of
policies that meet our syntactic safety conditions.

Extensibility SecPAL builds on the notion of tunable ex-
pressiveness introduced in Cassandra [9] and defines sev-

1Personal communication, Vicky Weissman.

eral extension points at which functionality can be added in
a modular and orthogonal way. For example, the parameter-
ized verbs, the environment functions, and the language of
constraints can all be extended by the user without affecting
our results.

In combination, we believe that SecPAL achieves a good
balance between syntactic and semantic simplicity, policy
expressiveness, and execution efficiency for decentralized
authorization. Although system implementation is not the
subject of this paper, SecPAL has been implemented and
deployed as the core authorization mechanism of a large
system-development project, initially targeted at grid ap-
plications [25]. The system provides a PKI-based, SOAP-
encoded infrastructure for exchanging policy assertions. It
also includes a policy-editing tool and support for invoking
authorization queries from C#. It relies on an instance of our
evaluation algorithm specialized for some fixed, domain-
specific verbs and constraints. The development of a formal
semantics for SecPAL, in parallel with its experimental use
for access control within a distributed computing environ-
ment, has led to many improvements in its design.

Contents The rest of the paper is organized as follows.
Section 2 illustrates SecPAL on a simple example. Sec-
tion 3 defines the syntax and semantics of SecPAL asser-
tions. Section 4 defines SecPAL authorization queries, built
as conjunctions, disjunctions and negations of facts and
constraints. Section 5 shows how to express a variety of
authorization policy idioms in SecPAL. Sections 6 and 7
give our algorithm for evaluating authorization queries and
establish its formal soundness and completeness. SecPAL
assertions are first translated into Datalog with Constraints
(Section 6); the resulting program is then evaluated using
a deterministic variant of resolution with tabling for a se-
ries of Datalog queries obtained from the SecPAL query
(Section 7). Section 8 summarizes related works and con-
cludes. A technical report [7] contains full proofs and dis-
cusses SecPAL’s mechanism for fine-grained revocation of
assertions.

2. A simple example

To introduce the main features of SecPAL, we consider
an example in the context of a simplified grid system.
Access control in grids typically involves interaction be-
tween several administrative domains with individual poli-
cies and requires attribute-based authorization and delega-
tion [50, 18, 49].

Assume that Alice wishes to perform some data mining
on a computation cluster. To this end, the cluster needs to
fetch Alice’s dataset from her file server. A priori, the clus-
ter may not know of Alice, and the cluster and the file server
may not share any trust relationship.
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We identify principals by names Alice, Cluster, File-
Server, . . . ; these names stand for public signature-
verification keys in the SecPAL implementation.

Alice sends to the cluster a request to run the com-
mand dbgrep /project/data plus a collection of tokens
for the request, expressed as three SecPAL assertions:

STS says Alice is a researcher (1)
FileServer says Alice can read /project (2)
Alice says Cluster can read /project/data if

currentTime()≤ 07/09/2006
(3)

Every assertion is XML-encoded and signed by its is-
suer. Assertion (1) is an identity token issued by STS, some
security token server trusted by the cluster. Assertion (2)
is a capability for Alice to read her files, issued by File-
Server. Assertion (3) delegates to Cluster the right to
access a specific file on that server, for a limited period of
time; it is specifically issued by Alice to support her re-
quest.

Before processing the request, the cluster authenticates
Alice as the requester, validates her tokens, and runs the
query Cluster says Alice can execute dbgrep against the
set of assertions formed by its local policy plus these to-
kens. (In practice, an authorization query table on the clus-
ter maps user requests to corresponding queries.) Assume
the local policy of the cluster includes the assertions:

Cluster says STS can say0 x is a researcher (4)
Cluster says x can execute dbgrep if

x is a researcher
(5)

Assertions (4) and (5) state that Cluster defers to STS to
say who is a researcher, and that any researcher may run
dbgrep. (More realistic assertions may well include more
complex conditions.) Here, we deduce that Cluster says
Alice is a researcher by (1) and (4), then deduce the target
assertion by (5).

The cluster then executes the task, which involves re-
questing chunks of /project/data hosted on the file
server. To support its requests, the cluster forwards Al-
ice’s credentials. Before granting access to the data, the file
server runs the query Cluster can read /project/data
against its local policy plus Alice’s tokens. Assume the lo-
cal policy of the server includes the assertion

FileServer says x can say∞ y can read file if
x can read dir, file� dir,
markedConfidential(file) 6= Yes

(6)

Assertion (6) is a constrained delegation rule; it states that
any principal x may delegate the right to read a file, pro-
vided x can read a directory dir that includes the file and
the file is not marked as confidential. The first condition

is a conditional fact (that can be derived from other as-
sertions), whereas the last two conditions are constraints.
Here, by (3) and (6) with x = Alice and y = Cluster, the
first condition follows from (2) and we obtain that File-
Server says Cluster can read /project/data provided
that FileServer successfully checks the two constraints
currentTime() ≤ 07/09/2006 and markedConfidential(/
project/data) 6= Yes.

In the delegation rules (4) and (6), the “can say” asser-
tions have different subscripts: in (4), can say0 prevents STS
from re-delegating the delegated fact; conversely, in (6),
can say∞ indicates that y can re-delegate read access to file
by issuing adequate can say tokens.

Assume now that the cluster distributes the task to sev-
eral computation nodes, such as Node23. In order for
Node23 to gain access to the data, Cluster may issue its
own delegation token, so that the query FileServer says
Node23 can read /project/data may be satisfied by ap-
plying (6) twice, with x = Alice then x = Cluster. Alter-
natively, FileServer may simply issue the assertion

FileServer says Node23 can act as Cluster (7)

This means roughly that every fact concerning Cluster
also applies to Node23. Every fact in SecPAL takes the
form e verbphrase, where e is the subject of the fact, and
verbphrase is the remainder. Assertion (7) means that for
any verbphrase, FileServer says Node23 verbphrase fol-
lows from FileServer says Cluster verbphrase.

3. Syntax and semantics

We give a core syntax for SecPAL. (The full SecPAL lan-
guage provides additional syntax for grouping assertions,
for instance to delegate a series of rights in a single asser-
tion; these additions can be reduced to the core syntax. It
also enforces a typing discipline for constants, functions,
and variables, omitted here as it does not affect the seman-
tics of the language.)

Assertions An authorization policy is specified as a set
AC of assertions (called assertion context) of the form

A says fact if fact1, ..., factn,c

where the facts are sentences that state properties on princi-
pals, defined below. In the assertion, A is the issuer; fact1,
. . . , factn are the conditional facts; and c is the constraint.
Assertions are similar to Horn clauses, with the difference
that (1) they are qualified by some principal A who issues
and vouches for the asserted claim; (2) facts can be nested,
using the verb phrase can say, by means of which delega-
tion rights are specified; and (3) variables in the assertion
are constrained by c, a first-order formula that can express
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e.g. temporal, inequality, path and regular expression con-
straints. The following defines the grammar of facts.

e ::= x (variables)
| A (constants)

pred ::= can read [-] (predicates)
| has access from [-] till [-]
| . . .

D ::= 0 (no re-delegation)
| ∞ (with re-delegation)

verbphrase ::= pred e1 ... en for n = Arity(pred)
| can sayD fact (delegation)
| can act as e (principal aliasing)

fact ::= e verbphrase

Constants represent data such as IP addresses, URLs,
dates, and times. We use A, B, C as meta variables for con-
stants, usually for denoting principals. Variables only range
over the domain of constants — not predicates, facts, claims
or assertions. Predicates are user-defined, application-
specific verb phrases (intended to express capabilities of a
subject) of fixed arity with holes for their object parame-
ters; holes may appear at any fixed position in verbphrases,
as in e.g. has access from [−] till [−]. In the grammar above,
pred e1 ... en denotes the verb phrase obtained by inserting
the arguments e1 up to en into the predicate’s holes. We say
that a fact is nested when it includes a can say, and is flat
otherwise. For example, the fact Bob can read f is flat, but
Charlie can say0 Bob can read f is nested.

Constraints Expressions r occurring in constraints range
over variables, constants and applications f (r1, ...,rn) of
built-in functions such as CurrentTime(). Constraints range
over any constraint domain that includes the following basic
constraints: the trivial constraint (True), equality (r1 = r2),
numerical inequalities (r1 ≤ r2; for expressing e.g. tempo-
ral constraints), path constraints (r1 � r2; for hierarchical
resources), and regular expressions (r matches regExp) for
ad hoc string filtering. Constraint domains are closed un-
der variable renaming, conjunction (c1,c2), and negation
(not(c)).

Additional constraints can be added without affecting
decidability or tractability. The only requirement is that the
validity of ground constraints is decidable in polynomial
time. (A phrase of syntax is ground when it contains no
variables.) We write |= c iff the constraint c is ground and
valid. Validity is defined with respect to an implicit current
state for evaluating functions such as CurrentTime(). We
omit the standard definition of validity for basic constraints.

We use a sugared notation for constraints that can be de-
rived from the basic ones, e.g. False, r1 6= r2, and c1 or c2.
We usually omit the True constraint, and also omit the if
in assertions with no conditional facts, writing A says fact
for A says fact if True. We write keywords, function names

and predicates in sans serif, constants in typewriter font,
and variables in italics. We use a vector notation to de-
note a (possibly empty) list of items, e.g. writing f (~r) for
f (r1, ...,rn).

Safety Conditions The expressiveness of an authoriza-
tion language depends to a large extent on the supported
classes of constraints. However, adding a wide range of dif-
ferent constraint classes to a language is nontrivial: even
if the constraint classes are tractable on their own, mixing
them can result in an intractable or even undecidable lan-
guage. Therefore, constraints have so far been either ex-
cluded or heavily restricted, to an extent that not even our
basic constraint domain would be allowed. For example,
RTC [38] allows only a subclass of unary constraints, and
Cassandra [10] allows only constraint-compact constraint
domains. [48] only consider set constraints, and in [12],
only temporal periodicity constraints are considered. Fur-
thermore, these systems require complex operations such as
satisfiability checking or existential quantifier elimination
that can be hard to implement, although ease of implemen-
tation is crucial for the success of a standard.

We observe that a wide range of constraints are used
in authorization policies, but that their variables are al-
ways instantiated before constraint evaluation. Accord-
ingly, rather than restricting constraints, SecPAL’s safety
conditions (Definition 3.1) only ensure that constraints will
be ground at runtime, once all conditional facts have been
satisfied. This approach facilitates high expressiveness
while preserving decidability and tractability, and also sim-
plifies the evaluation algorithm (Section 7), thus making it
much easier to implement.

Definition 3.1 (Assertion safety). The assertion A says
fact if fact1, ..., factn,c is safe iff the following conditions
hold:

• all conditional facts are flat;

• all variables in c also occur somewhere else in the as-
sertion;

• if fact is flat, all variables in fact also occur in a condi-
tional fact.

Note the similarity to the safety condition in Datalog
where all variables in the head literal must also occur in a
conditional literal [17]. SecPAL’s safety conditions are less
restrictive, as variables in “can say” assertions need not oc-
cur in any conditional fact.

At first sight, the safety conditions seem to rule out blan-
ket permissions such as FileServer says x can read Foo
(everybody can read Foo). However, this is not a prob-
lem in practice, because it is possible to make the asser-
tion safe by adding a conditional fact qualifying x, for ex-
ample “if x is a user”. The list of users could either be
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stored locally, or the server could delegate to a trusted
third party, e.g. by FileServer says TrustedDirectory
can say0 x is a user. Alternatively, the server may ac-
cept self-issued statements: FileServer says x can say0
x is a user.

The safety condition guarantees that the evaluation of the
Datalog translation, as described in Section 7, is complete
and terminates in all cases.

Semantics To be practically usable, a policy language
should not only have a simple, readable syntax, but also
a simple, intuitive semantics. We now describe a formal
semantics consisting of only three deduction rules that di-
rectly reflect the intuition suggested by the syntax. This
proof-theoretic approach enhances simplicity and clarity,
far more than if we had instead taken the translation to Dat-
alog with Constraints in Section 6 as the language specifi-
cation.

Let a substitution θ be a function mapping variables to
constants and variables, and let ε be the empty substitution.
Substitutions are extended to constraints, predicates, facts,
claims, assertions etc. in the natural way, and are usually
written in postfix notation. We write vars(X) for the set of
free variables occurring in a phrase of syntax X .

Each deduction rule consists of a set of premises and a
single consequence of the form AC ,D |= A says fact where
vars(fact) = /0 and the delegation flag D is 0 or ∞. Intu-
itively, the deduction relation holds if the consequence can
be derived from the assertion context AC . If D = 0, no in-
stance of the rule (can say) occurs in the derivation.

(cond)

(A says fact if fact1, ..., factk where c) ∈ AC
AC ,D |= A says factiθ for all i ∈ {1..k}
|= cθ vars(factθ) = /0

AC ,D |= A says factθ

(can say)

AC ,∞ |= A says B can sayD fact
AC ,D |= B says fact
AC ,∞ |= A says fact

(can act as)

AC ,D |= A says B can act as C
AC ,D |= A says C verbphrase
AC ,D |= A says B verbphrase

Rule (cond) allows the deduction of matching assertions
in AC with all free variables substituted by constants. All
conditional facts must be deducible with the same delega-
tion flag D as in the conclusion. Furthermore, the substitu-
tion must also make the constraint ground and valid.

Rule (can say) deduces an assertion made by A by com-
bining a can say assertion made by A and a matching as-
sertion made by B. This rule applies only if the delegation
flag in the conclusion is ∞. The matching assertion made
by B must be proved with the delegation flag D read from

A’s can say assertion. Therefore, if D is 0, then the match-
ing assertion must be proved without any application of the
(can say) rule. If on the other hand D is ∞, then B can re-
delegate. In Section 5, we show that the boolean delegation
flag D ∈ {0,∞} is sufficient for expressing a wide range of
complex delegation policies, including depth-restricted del-
egation.

Rule (can act as) asserts that all facts applicable to C also
apply to B, when B can act as C is derivable. A corollary is
that can act as is a transitive relation.

Proposition 3.2. Let AC A be the set of all assertions in
AC whose issuer is A. We have AC ,0 |= A says fact iff
AC A,0 |= A says fact.

Proposition 3.2 implies that if A says fact is deduced
from a zero-depth delegation assertion A says B can say0
fact then the delegation chain is guaranteed to depend only
on assertions issued by B. XrML and DL [36] also support
depth restrictions, but these can be defeated as their con-
structs for depth-restricted delegation do not guarantee this
property. Section 5 discusses this issue in more detail.

4. Authorization queries

Authorization requests are decided by querying an as-
sertion context (containing local as well as imported asser-
tions). In SecPAL, authorization queries consist of atomic
queries of the form A says fact and constraints, combined
by logical connectives including negation:

q ::= e says fact | q1, q2 | q1 or q2 | not(q) | c | ∃x(q)

Negative conditions enable policies such as separation of
duties, threshold and prohibition policies (see Section 5).
However, coupling negation with a recursive language
may cause semantic ambiguities [47], higher computational
complexity, or even undecidability [42]. Our solution is
based on the observation that negated conditions can be
effectively separated from recursion by allowing negation
only in authorization queries. Collecting negations at the
level of authorization queries also makes for clearer poli-
cies whose consequences are easier to foresee. Indeed,
SecPAL authorization queries could be further extended by
even more powerful composition operators such as aggre-
gation (as in Cassandra [9]) or threshold operators (as in
RTT [39]), without changing the assertion semantics and
without affecting the complexity results.

We write θ−x to denote the substitution that has domain
dom(θ)−{x} and is equivalent to θ on this domain. The
semantics of authorization queries is defined by the relation
AC ,θ ` q, as follows:
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AC ,θ ` e says fact iff AC ,∞ |= eθ says factθ, and
dom(θ)⊆ vars(e says fact)

AC ,θ1θ2 ` q1, q2 iff AC ,θ1 ` q1 and AC ,θ2 ` q2θ1
AC ,θ ` q1 or q2 iff AC ,θ ` q1 or AC ,θ ` q2
AC ,ε ` not(q) iff AC ,ε 0 q and vars(q) = /0

AC ,ε ` c iff |= c
AC ,θ−x ` ∃x(q) iff AC ,θ ` q

Given a query q and an authorization context AC , an
authorization algorithm should return the answer set of all
substitutions θ such that AC ,θ ` q. If the query is ground,
the answer set is either empty (meaning “no”) or a single-
ton set containing the empty substitution ε (meaning “yes”).
In the general case, i.e. if the query contains variables, the
substitutions in the answer set are all the variable assign-
ments that make the query true. For example, the answer
set for the query Alice says x can read Foo contains all
assignments to x of principals who can read Foo according
to Alice. This returns more information than just “yes, the
query can be satisfied for some x”. Section 7 gives an algo-
rithm for finding this set of substitutions.

Safety Conditions We now give a safety condition on
queries to guarantee that (1) the answer set includes a fi-
nite number of substitutions, given that the assertions in the
assertion context are safe; and (2) subqueries of the form
not(q) or c are always ground when they are evaluated, un-
der the assumption that conjunctive queries are evaluated
from left to right (see Section 7).

We first define a deduction relation  with judgments of
the form I  q : O where q is a query and I,O are sets of
variables. Intuitively, the set I collects the variables that can
be assumed to be instantiated before evaluating q, and I]O
collects the variables that are guaranteed to be instantiated
after evaluating q.

fact is flat
I  e says fact : vars(e says fact)− I

vars(c)⊆ I
I  c : /0

I  q1 : O1 I  q2 : O2

I  q1 or q2 : O1∩O2

I  q : O vars(q)⊆ I
I  not(q) : /0

I  q1 : O1 I∪O1  q2 : O2

I  q1, q2 : O1∪O2

I  q : O x /∈ I
I  ∃x(q) : O−{x}

Definition 4.1 (Authorization query safety). An autho-
rization query q is safe iff there exists a set of variables O
such that /0  q : O.

For example, the query x says y can read f , not(y says
x can read f ) is safe, because all variables occurring un-
der the negation get instantiated by the left hand side of the
conjunction. In contrast, x says y can read f ,not(y says
z can read f ) is not safe, because z will not be instantiated
by the time the negated subquery is evaluated.

Safety can be checked by recursively traversing all
subqueries and thereby constructing the set O (which is
uniquely determined by the query and I).

Authorization query tables Conceptually, authorization
queries are part of the local policy and should be kept
separate from imperative code. In SecPAL, authorization
queries belonging to a local assertion context are kept in a
single place, the authorization query table. This table pro-
vides an interface to authorization queries by mapping pa-
rameterized operation names to queries. Upon a request,
the resource guard calls an instantiated operation (instead
of issuing a query directly) that gets mapped by the table to
the corresponding authorization query, which is then used
to query the assertion context.

For example, an authorization query table could contain
the mapping:

check-access-permission(x) :
FileServer says x has access from t1 till t2,
t1 ≤ currentTime()≤ t2,
not ∃t3, t4(
FileServer says x has no access from t3 till t4,
t3 ≤ currentTime()≤ t4)

When the operation check-access-permission is called,
the above authorization query (with x instantiated) is evalu-
ated against the assertion context, and the answer is returned
to the resource guard, which can then enforce the policy.

This example features a universally quantified negated
statement, encoded by a negated existential quantifier. It
also illustrates how a prohibition policy with a Deny-
Override conflict resolution rule can be written in SecPAL.
More elaborate conflict resolution rules such as assertions
with different priorities can also be encoded on the level of
authorization queries. Just as with negative conditions, pro-
hibition makes policies less comprehensible and should be
used sparingly, if at all [27, 23].

5. Policy idioms

In this section, we give examples of assertions and
queries to show how SecPAL can express a wide range of
policy idioms, in comparison with other authorization lan-
guages.

Discretionary/Mandatory Access Control (DAC/MAC)
Assertion (6) from Section 1 is an example of a DAC pol-
icy: users with read permissions can delegate that right.
Languages with restricted or no recursion such as XACML
[41] or Lithium [29] cannot express such a policy. The
path constraint in the assertion facilitates delegation at the
granularity of single files within a hierarchical file system.
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The support of hierarchical resources is a common require-
ment in practice, but existing authorization languages can-
not express a policy such as Assertion (6). For example, in
RTC [38], the path constraint cannot take two variable argu-
ments, as only unary constraints are allowed in order to pre-
serve tractability. It is SecPAL’s safety conditions that allow
expressive constraint domains without losing efficiency.

As an example of a simple MAC policy, Assertions (8)
and (9) below implement the Simple Security Property and
the *-Property from the Bell-LaPadula model [11], respec-
tively.

FileServer says x can read f if
x is a user, f is a file, level(x)≥ level(f)

(8)

FileServer says x can write f if
x is a user, f is a file, level(x)≤ level(f)

(9)

Roles The can act as verb phrase can express role mem-
bership as well as role hierarchies in which roles inherit
all privileges of less senior roles. The following assertions
model a part of the hierarchy of medical careers in the UK
National Health Service (NHS).

NHS says FoundationTrainee can read /docs/ (10)
NHS says SpecialistTrainee can act as

FoundationTrainee
(11)

NHS says SeniorMedPractitioner can act as
SpecialistTrainee

(12)

NHS says Alice can act as
SeniorMedPractitioner

(13)

The first assertion assigns a privilege to a role; the second
and third establish seniority relations between roles; and
the last assertion assigns Alice the role of a Senior Medical
Practitioner. From these assertions it follows that NHS says
Alice can read /docs/. This example illustrates that Sec-
PAL principals can represent roles as well as individuals;
the principal FoundationTrainee is a role, while the prin-
cipal Alice is an individual.

Parameterized roles can add significant expressiveness to
a role-based system and reduce the number of roles [28, 40].
In SecPAL, parameterized roles, attributes and privileges
can be encoded by introducing verb phrases with arguments
that correspond to the parameters, as in Assertion (14).

NHS says x can access health record of patient if
x is a treating clinician of patient

(14)

Separation of duties In this simple example of separation
of duties, a payment transaction proceeds in two phases,
initiation and authorization, which are required to be exe-
cuted by two distinct bank managers. The following shows
a fragment of the authorization query table. The operation

can-initiate-payment(R,P) is called by the resource
guard when a principal R attempts to initialize a payment
P. If this is successful, the resource guard adds Bank says
R has initiated P to the local assertion context. The oper-
ation can-authorize-payment is called when a principal
attempts to authorize a payment:

can-initiate-payment(requester,payment) :
Bank says requester is a manager,
not(∃x(Bank says x has initiated payment))

(15)

can-authorize-payment(requester,payment) :
Bank says requester is a manager,
Bank says x has initiated payment,
x 6= requester

(16)

The requirement that a successful execution of
can-initiate-payment adds a new fact to the asser-
tion context is not specified within the authorization query
table. However, SecPAL can be extended to support
dynamic insertions and deletions of facts [8], which is
also useful for RBAC policies with role activation and
deactivation within sessions.

Threshold-constrained trust SPKI/SDSI has the con-
cept of k-of-n threshold subjects (at least k out of n given
principals must sign a request) to provide a fault tolerance
mechanism. RT T has the language construct of “threshold
structures” for similar purposes [39]. There is no need for
a dedicated threshold construct in SecPAL, because thresh-
old constraints can be expressed directly. In the following
example, Alice trusts a principal if that principal is trusted
by at least three distinct, trusted principals. We assume a
function “distinct” that takes as argument a list of constants
and returns Yes if the list contains no duplicates, and No
otherwise. Since the assertion is safe, the list will be fully
instantiated at the time the function is called.

Alice says x is trusted by Alice if
x is trusted by a, x is trusted by b, x is trusted by c,
distinct([a,b,c]) = Yes

(17)

Alice says x can say∞ y is trusted by x if
x is trusted by Alice

(18)

Attribute-based delegation Attribute-based (as opposed
to identity-based) authorization enables collaboration be-
tween parties whose identities are initially unknown to each
other. The authority to assert that a subject holds an at-
tribute (such as being a student) may then be delegated to
other parties, who in turn may be characterised by attributes
rather than identity.

In the example below, a shop gives a discount to stu-
dents every Friday. Both this temporal periodicity require-
ment and the expiration date of the student attribute can be
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expressed by a constraint. The authority over the student
attribute is delegated to holders of the university attribute,
and authority over the university attribute is delegated to a
known principal, the Board of Education.

Shop says x is entitled to discount if
x is a student till date,
currentTime()≤ date, currentDay() = Friday

(19)

Shop says univ can say∞ x is a student till date if
univ is a university

(20)

Shop says BoardOfEducation can say∞

univ is a university
(21)

SPKI/SDSI [26], DL [36], Binder [22], RT [39] and Cas-
sandra [10] can all express attribute-based delegation and
linked local name spaces. SecPAL makes the delegation
step explicit and thus allows for more fine-grained delega-
tion control, as demonstrated in the following examples of
various sorts of delegation. There are other general tech-
niques to constrain delegation; for example, Bandmann,
Firozabadi and Dam [4] propose the use of regular expres-
sions to constrain the shape of delegation trees.

Constrained delegation Delegators may wish to restrict
the parameters of the delegated fact. Such policies typically
require domain-specific constraints that are not supported
by previous languages for the sake of tractability. In the
example below, a Security Token Server (STS) is given the
right to issue tickets for accessing some resource for a spec-
ified validity period of no longer than eight hours.

FileServer says STS can say∞

x has access from t1 till t2 if
t2− t1≤ 8 hours

(22)

The delegation depth in Assertion (22) is unlimited, so STS
can in turn delegate the same right to some STS2, possibly
with additional constraints. For example, with Assertion
(23) issued by STS, FileServer accepts tickets issued by
STS2 with a validity period of at most eight hours, where
the start date is not before 01/01/2007 (but STS2 may not
re-delegate).

STS says STS2 can say0 x has access from t1 till t2 if
t1≥ 01/01/2007 (23)

Depth-bounded delegation The verb phrase can say0
fact allows no further delegation of fact, while can say∞ fact
allows arbitrary further delegation. This dichotomy may
seem restrictive at first sight. However, SecPAL can express
any fixed integer delegation depth by nesting can say0. In
the following example, Alice delegates the authority over is
a friend facts to Bob and allows Bob to re-delegate at most
one level further.

Alice says Bob can say0 x is a friend (24)
Alice says Bob can say0 x can say0 y is a friend (25)

Suppose Bob re-delegates to Charlie with the assertion
Bob says Charlie can say∞ x is a friend. Now, Alice
says Eve is a friend follows from Charlie says Eve is a
friend. Since Alice does not accept any longer delegation
chains, Alice (in contrast to Bob) does not allow Charlie to
re-delegate with Charlie says Doris can say0 x is a friend.

SPKI/SDSI has a boolean delegation depth flag that cor-
responds to the 0 or ∞ subscript in can say but cannot ex-
press any other integer delegation depths. In XrML [20] and
DL, the delegation depth can be specified, and can be either
an integer or ∞. However, in both languages, the depth re-
strictions can be defeated by Charlie:

Charlie says x is a friend if x is a friend2 (26)
Charlie says Doris can say0 x is a friend2 (27)

In XrML and DL, Charlie can then re-delegate to Doris via
is a friend2, thereby circumventing the depth specification.
The SecPAL semantics prevents this by threading the depth
restriction through the entire branch of the proof; this is a
corollary of Proposition 3.2. It would be much harder to de-
sign a semantics with this guaranteed property if the depth
restriction could be any arbitrary integer; this is also why
XrML and DL cannot be easily “fixed” to support integer
delegation depth that is immune to this kind of attack.

Width-bounded delegation Suppose Alice wants to del-
egate authority over is a friend facts to Bob. She does not
care about the length of the delegation chain, but she re-
quires every delegator in the chain to satisfy some prop-
erty, e.g. to possess an email address from fabrikam.com.
The following assertions implement this policy by encod-
ing constrained transitive delegation using the can say verb
phrase with a 0 subscript. Principals with the is a dele-
gator attribute are authorized by Alice to assert is a friend
facts, and to transitively re-delegate this attribute, but only
amongst principals with a matching email address.

Alice says x can say0 y is a friend if
x is a delegator

(28)

Alice says Bob is a delegator (29)
Alice says x can say0 y is a delegator if

x is a delegator,
y possesses Email email,
email matches *@fabrikam.com

(30)

If these are the only assertions by Alice that mention the
predicate is a friend or is a delegator, then any derivation of
Alice says x is a friend can only depend on Bob or princi-
pals with a matching email address. As with depth-bounded
delegation, this property cannot be enforced in SPKI/SDSI,
DL or XrML.
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6. Translation into Datalog with Constraints

We now give a translation from SecPAL assertion con-
texts into equivalent programs in Datalog with Constraints.
In Section 7, we then exploit Datalog’s computational com-
plexity properties (polynomial data complexity) and use the
translated Datalog program for query evaluation.

Our terminology for Datalog with Constraints is as fol-
lows. (See [17] or [3] for a detailed introduction to Datalog
and [43, 42] for Datalog with Constraints.) A literal, P, con-
sists of a predicate name plus an ordered list of parameters,
each of which is either a variable or a constant. A clause,
written P0 ← P1, . . . ,Pn,c, consists of a head literal, a list
of body literals, and a constraint. A Datalog program, P ,
is a finite set of clauses. The semantics of a program P is
the least fixed point of the standard immediate consequence
operator TP , denoted by T ω

P ( /0). Intuitively, this is the set of
all ground literals deducible from P .

We treat expressions of the form e1 saysk fact as Datalog
literals, where k is either a variable or 0 or ∞. This can be
seen as a sugared notation for a literal where the predicate
name is the string concatenation of all infix operators
(says, can say, can act as, and predicates) occurring in
the expression, including subscripts for can say. The
arguments of the literal are the collected expressions be-
tween these infix operators. For example, the expression A
saysk x can say∞ y can say0 B can act as z is shorthand for
says can say infinity can say zero can act as(A,k,x,y,B,z).

Algorithm 6.1. The translation of an assertion context AC
proceeds as follows:

1. If fact0 is flat, then an assertion A says
fact0 if fact1, ..., factn,c is translated into the clause A
saysk fact0← A saysk fact1, ...,A saysk factn,c where
k is a fresh variable.

2. Otherwise, fact0 is of the form e0 can sayK0
... en−1

can sayKn−1
fact, for some n ≥ 1, where fact is flat.

Let ˆfactn ≡ fact and ˆfacti ≡ ei can sayKi
ˆfacti+1, for i∈

{0..n−1}. Note that fact0 = ˆfact0. Then the assertion

A says fact0 if fact1, ..., factm,c

is translated into a set of n + 1 Datalog clauses as fol-
lows.

(a) We add the Datalog clause

A saysk
ˆfact0← A saysk fact1, ...,A saysk factm,c

where k is a fresh variable.
(b) For each i ∈ {1..n}, we add a Datalog clause

A says∞
ˆfacti← x saysKi−1

ˆfacti,

A says∞ x can sayKi−1
ˆfacti

where x is a fresh variable.

3. Finally, for each Datalog clause created above with
head A saysk e verbphrase we add a clause

A saysk x verbphrase← A saysk x can act as e,
A saysk e verbphrase

where x is a fresh variable.

Intuitively, the says subscript keeps track of the delegation
depth, just like the D in the three semantic rules in Section 3.
This correspondence is reflected in the following theorem
that relates the Datalog translation to the SecPAL semantics.

Theorem 6.2 (Soundness and completeness). Let P be
the Datalog translation of the assertion context AC . We
have A saysD fact ∈ T ω

P ( /0) iff AC ,D |= A says fact.

7. Evaluation of authorization queries

This section describes an algorithm for evaluating au-
thorization queries (Section 4) against a SecPAL assertion
context.

The first step is to evaluate atomic Datalog queries of
the form e says∞ fact (i.e., computing all query instances
that are in T ω

P ( /0)) against the Datalog program P obtained
by translation. The usual bottom-up approach [3], where
the fixed-point model is precomputed for all queries, is not
suitable, as the assertion context may be completely differ-
ent between different requests. Furthermore, top-down res-
olution algorithms are usually more efficient in computing
fully or partially instantiated goals. However, standard SLD
resolution (as used in e.g. Prolog) may run into loops even
for simple assertion contexts. Tabling, or memoing, is an
efficient approach for guaranteeing termination by incorpo-
rating some bottom-up techniques into a top-down resolu-
tion strategy [45, 24, 19]. Tabling has also been applied to
Datalog with Constraints, but requires complex constraint
solving procedures [46].

Our tabling algorithm is a simplified and determinis-
tic version that is tailored to the clauses produced by the
translation of a safe assertion context (as described in Sec-
tion 6). It does not require constraint solving and is thus
simpler to implement. A node is either a root node of
the form 〈P〉, where the index P is a literal, or a sextu-
ple 〈P; ~Q;c;S; ~nd;Cl〉, where ~Q is a list of literals (the sub-
goals), c a constraint, S a literal (the partial answer), ~nd a
list of sextuple nodes (the child nodes), and Cl a clause. The
algorithm makes use of two tables. The answer table Ans
maps literals to sets of answer nodes (i.e., nodes where ~Q is
empty and c = True). The set Ans(P) is used to store all
the found answer nodes pertaining to a query 〈P〉. The wait
table Wait maps literals to sets of nodes with nonempty
lists of subgoals. Wait(P) is a list of all those nodes whose
current subgoal (i.e., the left-most subgoal) is waiting for
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RESOLVE-CLAUSE(〈P〉)
Ans(P) := /0;
foreach (Q← ~Q,c) ∈ P do

if nd = resolve(〈P;Q :: ~Q;c;Q; [ ];Cl〉,P)
exists then
PROCESS-NODE(nd)

PROCESS-ANSWER(nd)
match nd with 〈P; [ ];c; ; ; 〉 in

if nd /∈Ans(P) then
Ans(P) := Ans(P)∪{nd};

foreach nd′ ∈Wait(P) do
if nd′′ = resolve(nd′,nd) exists then

PROCESS-NODE(nd′′)

PROCESS-NODE(nd)
match nd with 〈P; ~Q;c; ; ; 〉 in

if ~Q = [ ] then
PROCESS-ANSWER(nd)

else match ~Q with Q0 :: in
if there exists Q′0 ∈ dom(Ans)

such that Q0⇒ Q′0 then
Wait(Q′0) := Wait(Q′0)∪{nd};
foreach nd′ ∈Ans(Q′0) do

if nd′′ = resolve(nd,nd′) exists then
PROCESS-NODE(nd′′)

else
Wait(Q0) := {nd};
RESOLVE-CLAUSE(〈Q0〉)

Figure 1. A tabled resolution algorithm for evaluating Datalog queries.

answers from 〈P〉. Whenever a new answer for 〈P〉 is pro-
duced, the computation of these waiting nodes is resumed.

Before presenting the algorithm in detail, we define a
number of terms. The function simplify is a function on
constraints whose return value is always an equivalent con-
straint, and if the argument is ground, the return value is
either True or False. The infix operators :: and @ denote
the cons and the append operations on lists, respectively.
The most general unifier of literals P and Q is denoted by
mgu(P,Q). Let P be an instance of Q iff P = Qθ for some
substitution θ, in which case we write P⇒ Q.

A node nd ≡ 〈P;Q :: ~Q;c;S; ~nd;Cl〉 and a literal Q′

are resolvable iff some Q′′ is a fresh variable renam-
ing of Q′, θ ≡ mgu(Q,Q′′) exists and d ≡ simplify(cθ) 6=
False. Their resolvent is nd′′ ≡ 〈P; ~Qθ;d;Sθ; ~nd;Cl〉, and
θ is their resolution unifier. We write resolve(nd,Q′) =
nd′′ if nd and Q′ are resolvable. By extension, a node
nd ≡ 〈P;Q :: ~Q;c;S; ~nd;Cl〉 and an answer node nd′ ≡
〈 ; [ ];True;Q′; ; 〉 are resolvable iff nd and Q′ are resolv-
able with resolution unifier θ, and their resolvent is nd′′ ≡
〈P; ~Qθ;d;Sθ; ~nd@[nd′];Cl〉. We write resolve(nd,nd′) =
nd′′ if nd and nd′ are resolvable.

Figure 1 shows the pseudocode of our Datalog evaluation
algorithm. Let P be a literal and Ans be an answer table.
Then AnswersP (P,Ans) is defined as

{θ : 〈 ; ; ;S; ; 〉 ∈Ans(P′),S = Pθ,dom(θ)⊆ vars(P)}

if there exists a literal P′ ∈ dom(Ans) such that P⇒ P′. In
other words, if the supplied answer table already contains a
suitable answer set, we can just return the existing answers.
If no such literal exists in the domain of Ans and if the ex-
ecution of RESOLVE-CLAUSE(〈P〉) terminates with initial
answer table Ans and an initially empty wait table, then
AnswersP (P,Ans) is defined as

{θ : 〈 ; ; ;S; ; 〉 ∈Ans′(P),S = Pθ,dom(θ)⊆ vars(P)}

where Ans′ is the modified answer table after the call. In
all other cases AnswersP (P,Ans) is undefined.

The function AnswersP evaluates atomic authorization
queries. Based on this function, the following algorithm
evaluates general authorization queries that are constructed
from atomic ones. Let AC be an assertion context and P its
Datalog translation. The function AuthAnsAC on authoriza-
tion queries is defined in Figure 2.

The following theorem shows that AuthAnsAC is an al-
gorithm for evaluating safe queries.

Theorem 7.1 (Finiteness, soundness, and completeness
of query evaluation). For all safe assertion contexts AC
and safe authorization queries q,

1. AuthAnsAC (q) is defined and finite, and

2. AC ,θ ` q iff θ ∈ AuthAnsAC (q).

The evaluation of the base case e says fact calls the func-
tion AnswersP with an empty answer table. But since the
answer table after each call remains sound and complete
with respect to its domain (it will just have a larger domain),
an efficient implementation could initialize an empty table
only for the first call in the evaluation of an authorization
query, and then reuse the existing, and increasingly popu-
lated, answer table for each subsequent call to AnswersP .

Finally, the following theorem states that SecPAL has
polynomial data complexity. Data complexity [3, 21] is
a measure of the computation time for evaluating a fixed
query with fixed intensional database (IDB) but variable ex-
tensional database (EDB). This measure is most often used
for policy languages, as the size of the EDB (the number
of “plain facts”) typically exceeds the size of the IDB (the
number of “rules”) by several orders of magnitude.

Theorem 7.2. Let M be the number of flat atomic asser-
tions (i.e., those without conditional facts) in AC and let N
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AuthAnsAC (e says fact) = AnswersP (e says∞ fact, /0)

AuthAnsAC (q1, q2) = {θ1θ2 | θ1 ∈ AuthAnsAC (q1) and θ2 ∈ AuthAnsAC (q2θ1)}
AuthAnsAC (q1 or q2) = AuthAnsAC (q1)∪AuthAnsAC (q2)

AuthAnsAC (not(q)) =


{ε} if vars(q) = /0 and AuthAnsAC (q) = /0

/0 if vars(q) = /0 and AuthAnsAC (q) 6= /0

undefined otherwise

AuthAnsAC (c) =


{ε} if |= c
/0 if vars(c) = /0 and 6|= c
undefined otherwise

AuthAnsAC (∃x(q)) = {θ−x | θ ∈ AuthAnsAC (q)}

Figure 2. SecPAL evaluation algorithm

be the maximum length of constants occurring in these as-
sertions. The time complexity of computing AuthAnsAC is
polynomial in M and N.

8. Discussion

Related work The ABLP logic [2, 35] introduced the
“says” modality and the use of logic rules for expressing
decentralized authorization policies. The semantics of Sec-
PAL’s delegation operators “can say∞” and “can act as” are
related to the “controls” and “speaks for” operators, respec-
tively, of ABLP. In current work, Abadi and Garg are inves-
tigating translations from SecPAL to the ABLP logic.

PolicyMaker and Keynote [16, 15] introduced the notion
of decentralized trust management. Quite a few other autho-
rization languages have been developed since. SPKI/SDSI
[26] is an experimental IETF standard using certificates to
specify decentralized authorization. Authorization certifi-
cates grant permissions to subjects specified either as public
keys, or as names defined via linked local name spaces [44],
or as k-out-of-n threshold subjects. Grants can have validity
restrictions and indicate whether they may be delegated.

XrML [20] (and its offspring, MPEG REL) is an XML-
based language targeted at specifying licenses for Digi-
tal Rights Management. Grants may have validity restric-
tions and can be conditioned on other existing or deducible
grants. A grant can also indicate under which conditions
it may be delegated to others. XACML [41] is another
XML-based language for describing access control poli-
cies. A policy grants capabilities to subjects that satisfy
the specified conditions. Deny policies explicitly state pro-
hibitions. XACML defines policy combination rules for
resolving conflicts between permitting and denying poli-
cies such as First-Applicable, Deny-Override or Permit-
Override. XACML does not support delegation and is thus

not well suited for decentralized authorization.
Policy languages such as Binder [22], SD3 [34], Delega-

tion Logic (DL) [36] and the RT family of languages [39]
use Datalog as basis for both syntax and semantics. To sup-
port attribute-based delegation, these languages allow pred-
icates to be qualified by an issuing principal. Cassandra
[10, 9] and RTC [38] are based on Datalog with Constraints
[32, 42] for higher expressiveness. The Cassandra frame-
work also defines a transition system for evolving policies
and supports automated credential retrieval and automated
trust negotiation.

Much research has been done on logic-based access con-
trol languages for single administrative domains that do not
require decentralized delegation of authority. Many of these
are also based on Datalog or Datalog with Constraints, e.g.
[12, 14, 33, 5, 48]. Lithium [29] is a language for reasoning
about digital rights and is based on a different fragment of
first order logic. It is the only language allowing real logical
negation in the conclusion as well as in the premises of pol-
icy rules. This is useful for analysing merged policies, but
Lithium restricts recursion and cannot easily express dele-
gation.

Conclusions We have designed an authorization language
that supports fine-grained delegation control for decentral-
ized systems, highly expressive constraints and negative
conditions that are needed in practice but cannot be ex-
pressed in other languages. Combining all these features
in a single language without sacrificing decidability and
tractability is nontrivial. If authorization queries are ex-
tended by an aggregation operator (which can be easily
done without modifying the assertion semantics and with-
out sacrificing polynomial data complexity), SecPAL can
(safely) express the entire benchmark policy in [6], one of
the largest and most complex examples of a formal autho-

20th IEEE Computer Security Foundations Symposium (CSF'07)
0-7695-2819-8/07 $20.00  © 2007



rization policy to date. Despite its expressiveness, we ar-
gue that SecPAL is relatively simple and intuitive, due to
the resemblance of its syntax to natural language, its small
semantic specification and its purely syntactic safety condi-
tions.

A prototype of SecPAL, including an auditing infrastruc-
ture and editing tools, has been implemented as part of
a project investigating access control solutions for multi-
domain grid computing environments [25]. The implemen-
tation is XML-based and makes use of web services pro-
tocols for interoperability. Active Directory, Kerberos and
X.509 infrastructures are used for key and identity man-
agement. A primary focus of this effort is on developing
flexible and robust mechanisms for expressing trust rela-
tionships and constrained delegation of rights within a uni-
form authentication and authorization framework. Scenar-
ios, similar to the one described in Section 1, have been
demonstrated using the prototype. Future work includes
tools for policy authoring, deployment, and formal analy-
sis.
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