
Logics in Security Winter 2014

Homework for Module 4
Instructor: Deepak Garg TA: Iulia Boloşteanu
dg@mpi-sws.org iulia mb@mpi-sws.org

Release date: 02.02.2015 Due date: 14.02.2015

General instructions: Attempt all questions. Submit your homework via email to both
the instructor and the TA before midnight on the due date. The LATEX source for this
homework will be provided to help you typeset. You can also typeset using any other
means, including simple ASCII.

Homework instructions: This homework is divided into two sections. Section 1 tests
your understanding of programming language semantics, typing and type-safety, as taught
in class. Section 2 tests your understanding of the type system for information flow from
the paper of Volpano, Smith and Irvine.

1 Operational Semantics and Types

For this section, refer to the operational semantics in Appendix A and the typing rules in
Appendix B. Appendix C is not to be referred for this section.

Problem 4-1 (5 points)
Expression determinism lemma. A key lemma in the proof of type-safety that we
discussed in class is determinism of expression evaluation. Prove that lemma here: If
µ, e ⇓ v1 and µ, e ⇓ v2 then v1 = v2.
State clearly what you are are inducting on. Independent of what you induct on, you only
need to write the induction cases corresponding to the following forms of e: v, l, and e1 +e2.

Problem 4-2 (5 points)
Progress theorem. The progress theorem says that a well-typed program that is not skip
must always reduce further. Formally, if λ ` p and λ ` µ and p 6= skip, then there exist
µ′, p′ such that µ, p→ µ′, p′.
The proof proceeds by induction on the derivation of λ ` p. In class, we covered all cases
of the proof except p = while e do p′. Show that case of the proof.

Problem 4-3 (5 points)
Type-safety. Consider the program p = (` := true; if ` then ` := false else ` := 1).
Assuming the typing context is λ = {` : int}, answer the following questions:

1. Is p well-typed, i.e., is λ ` p provable? Justify your answer.

2. Is p unsafe, i.e., can p reach a stuck (bad) state by reduction starting from any
memory µ? (Recall that a program is bad/stuck when it is not skip and no reduction
is possible.)

4-1

4-2

2 Types for information flow control

For this section, refer to the operational semantics in Appendix A and the typing rules in
Appendix C. Appendix B is not to be referred for this section.

Problem 4-4 (10 points)
Lattices. The following exercise is designed to help you better understand the structure
of lattices.

Definition 1. (Complete lattice) A partially ordered set (S,v) is called a complete lattice
if every subset M of S has a least upper bound and a greatest lower bound in (S,v).

The least upper bound (also called lub or join) of two elements a, b ∈ L is written a t b.
The greatest lower bound (glb or meet) of two elements a, b ∈ L is written a u b.

1. On natural numbers other than 0, consider the following order: a v b if and only if
a divides b, i.e., b mod a = 0. For each of the following sets S, is (S,v) a complete
lattice? Justify your answers.

(a) S = N\0 (all positive natural numbers).
(b) S = {1, 2, 3, 4, 12, 24, 36, 48}.
(c) S = {k | k divides n} where n is a fixed integer.
(d) S = {k | n divides k} where n is a fixed integer.

2. Consider the lattice defined in 1(b) above. Calculate the following joins and meets:
2 t 3, 12 t 24, 2 u 3, 24 t 36, 48 u 36, 12 u 3.

Problem 4-5 (7 points)
Information flow. Let λ be a typing context — an assignment of lattice elements to
memory locations. Recall that a program p is non-interfering (secure in the sense that it
does not have any bad information flows) if the following hold for all τ, µ1, µ2, µ

′
1, µ

′
2: If for

all l such that λ(l) v τ , µ1(l) = µ2(l) and, additionally, µ1, p ⇒ µ′
1 and µ2, p ⇒ µ′

2, then
for all l such that λ(l) v τ , µ′

1(l) = µ′
2(l).

1. Let the lattice be L v H and let λ = {x : L, y : H, z : H}. Consider the following
program:

if (y = 1) then {
x := 1;
}
else {
z := y + 1;
}
x := 1;

a. Assuming the initial memory is µ = {x 7→ 5, y 7→ 1, z 7→ 2}, what is the final
memory µ′ after the execution of the program?

4-3

b. Using the type system of Appendix C, derive a type of the form τ cmd for the
program. If no type can be derived, explain where the derivation fails and why the
program cannot be typed.

c. Is this program non-interfering? Justify your answer.

2. Let the lattice be L = {L v M1, L v M2,M1 v H,M2 v H} and let λ = {a : L, b :
M1, c : M2, d : H}. Consider the following program:

while (a > 0) do {
b := b+ a;
a := a− 1;
}
if (b+ 2 == 0) then
d := d+ b;

else
d := d+ c;

a. Using the type system of Appendix C, derive a type of the form τ cmd for the
program. If no type can be derived, explain where the derivation fails and why the
program cannot be typed.

b. Is this program non-interfering? Justify your answer.

A Syntax and Operational Semantics

Syntax:

Values v ::= 0 | 1 | 2 . . . | true | false
Expressions e ::= v | ` | e1 + e2 | e1 − e2 | e1 == e2 | e1 > e2
Commands p ::= skip | ` := e | p1; p2 | if (e) then p1 else p2 | while (e) do p
Memory µ ::= `1 7→ v1, . . . , `n 7→ vn

Semantic rules for expressions:

Note: For any connective o in {+,−,==, >}, ô denotes the underlying arithmetic operator.

µ, v ⇓ v µ, ` ⇓ µ(`)
µ, e1 ⇓ v1 µ, e2 ⇓ v2 v1+̂v2 = v

µ, e1 + e2 ⇓ µ, v

µ, e1 ⇓ v1 µ, e2 ⇓ v2 v1−̂v2 = v

µ, e1 − e2 ⇓ µ, v
µ, e1 ⇓ v1 µ, e2 ⇓ v2 (v1=̂=v2) = v

µ, e1 == e2 ⇓ µ, v

µ, e1 ⇓ v1 µ, e2 ⇓ v2 (v1>̂v2) = v

µ, e1 > e2 ⇓ µ, v

4-4

Small-step or reduction semantics for commands:

µ, e ⇓ v
µ, ` := e→ µ[` 7→ v], skip

µ, p1 → µ′, p′
1

µ, p1; p2 → µ′, p′
1; p2 µ, (skip; p)→ µ, p

µ, e ⇓ true
µ, if (e) then p1 else p2 → µ, p1

µ, e ⇓ false
µ, if (e) then p1 else p2 → µ, p2

µ, e ⇓ true
µ,while (e) do p→ µ, p; while (e) do p

µ, e ⇓ false
µ,while (e) do p→ µ, skip

Big-step semantics for commands:

µ, skip⇒ skip
µ, e ⇓ v

µ, ` := e⇒ µ[` 7→ v]
µ, p1 ⇒ µ′ µ′, p2 ⇒ µ′′

µ, (p1; p2)⇒ µ′′

µ, e ⇓ true µ, p1 ⇒ µ′

µ, if e then p1 else p2 ⇒ µ′
µ, e ⇓ false µ, p2 ⇒ µ′

µ, if e then p1 else p2 ⇒ µ′

µ, e ⇓ true µ, (p; while e do p)⇒ µ′

µ,while e do p⇒ µ′
µ, e ⇓ false

µ,while e do p⇒ µ

B Typing rules
Types τ ::= int | bool
Type context λ ::= `1 : τ1, . . . , `n : τn

Typing rules for expressions:

n ∈ {0, 1, 2, . . .}
λ ` n : int

b ∈ {true, false}
λ ` b : bool

` : τ ∈ λ
λ ` ` : τ

λ ` e1 : int λ ` e2 : int
λ ` e1 + e2 : int

λ ` e1 : int λ ` e2 : int
λ ` e1 − e2 : int

λ ` e1 : int λ ` e2 : int
λ ` e1 == e2 : bool

λ ` e1 : int λ ` e2 : int
λ ` e1 > e2 : bool

Typing rules for commands:

λ ` skip
` : τ ∈ λ λ ` e : τ

λ ` ` := e

λ ` p1 λ ` p2

λ ` p1; p2

λ ` e : bool λ ` p1 λ ` p2

λ ` if e then p1 else p2

λ ` e : bool λ ` p
λ ` while e do p

4-5

Typing rule for memories:

λ ` v1 : λ(`1) . . . λ ` vn : λ(`n)
λ ` `1 7→ v1, . . . , `n 7→ vn

C Types for Information Flow Control

For information flow control, types τ are elements of a lattice (S,v). A type context λ
assigns types to memory locations. This is written λ ::= `1 : τ1, . . . , `n : τn.

Typing rules for expressions:

λ ` v : τ
` : τ ∈ λ
λ ` ` : τ

λ ` e1 : τ1 λ ` e2 : τ2 ◦ ∈ {+,−,==, >}
λ ` e1 ◦ e2 : τ1 t τ2

λ ` e : τ τ v τ ′

λ ` e : τ ′

Typing rules for commands:

λ ` skip : τ cmd
` : τ ∈ λ λ ` e : τ
λ ` ` := e : τ cmd

λ ` p1 : τ cmd λ ` p2 : τ cmd
λ ` p1; p2 : τ cmd

λ ` e : τ λ ` p1 : τ cmd λ ` p2 : τ cmd
λ ` if e then p1 else p2 : τ cmd

λ ` e : τ λ ` p : τ cmd
λ ` while e do p : τ cmd

λ ` p : τ cmd τ ′ v τ
λ ` p : τ ′ cmd

