
Robustly-Safe Compilation –
Technical Appendix

Marco Patrignani1,2 Deepak Garg3
1 Stanford University

2 CISPA Helmholz Center for Information Security
3 Max Planck Institute for Software Systems

Contents
1 The Untyped Source Language: LU 4

1.1 Syntax . 4
1.2 Dynamic Semantics . 4

1.2.1 Component Semantics . 5
1.3 Monitor Semantics . 7

2 The Target Language: LP 8
2.1 Syntax . 8
2.2 Operational Semantics of LP . 8

2.2.1 Component Semantics . 9
2.3 Monitor Semantics . 11

3 Language and Compiler Properties 12
3.1 Safety, Attackers and Robust Safety 12
3.2 Monitor Agreement and Attacker for LP and LU 12
3.3 Cross-language Relations . 13
3.4 Correct and Robustly-safe Compilation 15

3.4.1 Alternative definition for RSC 16
3.4.2 Compiling Monitors . 16

4 Compiler from LU to LP 18
4.1 Properties of the J·KL

U

LP Compiler 19
4.2 Back-translation from LP to LU 19

4.2.1 Values Backtranslation . 19
4.2.2 Skeleton . 20
4.2.3 Single Action Translation 21
4.2.4 The Back-translation Algorithm 〈〈·〉〉L

P

LU 26
4.2.5 Correctness of the Back-translation 26
4.2.6 Remark on the Backtranslation 27

5 The Source Language: Lτ 28
5.1 Static Semantics of Lτ . 29

5.1.1 Auxiliary Functions . 29
5.1.2 Typing Rules . 29
5.1.3 UN Typing . 32

1

5.2 Dynamic Semantics of Lτ . 33
5.2.1 Component Semantics . 34

6 Lπ: Extending LP with Concurrency and Informed Monitors 37
6.1 Syntax . 37
6.2 Dynamic Semantics . 37

6.2.1 Component Semantics . 38

7 Extended Language Properties and Necessities 39
7.1 Monitor Agreement for Lτ and Lπ 39
7.2 Properties of Lτ . 39
7.3 Properties of Lπ . 40

8 Compiler from Lτ to Lπ 41
8.1 Assumed Relation between Lτ and Lπ Elements 41
8.2 Compiler Definition . 41
8.3 Properties of the Lτ -Lπ Compiler 46
8.4 Cross-language Relation ∼∼∼β . 46

9 RSC : Third Instance with Target Memory Isolation 48
9.1 LI , a Target Language with Memory Isolation 48
9.2 Compiler from Lτ to LI . 48

10 The Second Target Language: LI 49
10.1 Syntax . 49
10.2 Operational Semantics of LI . 50

10.2.1 Component Semantics . 50
10.3 Monitor Semantics . 53
10.4 Monitor Agreement for LI . 53
10.5 Properties of LI . 54

11 Second Compiler from Lτ to LI 54
11.1 Properties of the Lτ -LI Compiler 58
11.2 Cross-language Relation ∼∼∼ϕ . 58

12 Proofs 60
12.1 Proof of Theorem 1 (PF -RSC and RSC are equivalent) 60
12.2 Proof of Theorem 2 (Compiler J·KL

U

LP is CC) 61
12.3 Proof of Theorem 3 (Compiler J·KL

U

LP is RSC) 65
12.4 Proof of Lemma 1 (Compiled code steps imply existence of source

steps) . 66
12.5 Proof of Theorem 4 (〈〈·〉〉L

P

LU is correct) 68
12.6 Proof of Theorem 5 (Typability Implies Robust Safety in Lτ) . . 73

12.6.1 Proof of Lemma 4 (Semantics and typed attackers coincide) 73
12.7 Proof of Theorem 6 (Compiler J·KL

τ

Lπ is CC) 77
12.8 Proof of Theorem 7 (Compiler J·KL

τ

Lπ is RSC) 80

2

12.9 Proofs for the Non-Atomic Variant of Lτ (Section 8.2) 83
12.10Proof of Theorem 8 (Compiler J·KL

τ

LI is CC) 85
12.11Proof of Theorem 9 (Compiler J·KL

τ

LI is RSC) 86

13 FAC and Inefficient Compiled Code 89

14 Towards a Fully Abstract Compiler from LU to LP 92
14.1 Language Extensions to LU and LP 92
14.2 The *·+LU

LP Compiler . 92
14.3 Proving that *·+LU

LP is a Fully Abstract Compiler 94

15 A Fully Abstract Compiler from LU to LP 95
15.1 The Source Language LU . 96
15.2 The Target Language LP . 96

15.2.1 Syntax Changes . 96
15.2.2 Semantics Changes . 97
15.2.3 A Fully Abstract Trace Semantics for LP 98
15.2.4 Results about the Trace Semantics 100

15.3 The Compiler *·+LU

LP . 101
15.3.1 Syntactic Sugar . 103
15.3.2 Support Data Structures 103
15.3.3 Support Functions . 104
15.3.4 Inlined Additional Statements (Preamble, Postamble, etc) 106

15.4 The Trace-based Backtranslation:
〈〈
·
〉〉LP

LU 107
15.4.1 The Skeleton . 107
15.4.2 The Common Prefix . 107
15.4.3 The Differentiator . 108

3

1 The Untyped Source Language: LU

This is a sequential while language with monitors.

1.1 Syntax

Whole Programs P ::= `root; H; F; I

Components C ::= `root; F; I

Contexts A ::= H; F [·]
Interfaces I ::= f

Functions F ::= f(x) 7→ s; return;

Operations ⊕ ::= + | −
Comparison ⊗ ::= == | < | >

Values v ::= b ∈ {true, false} | n ∈ N | 〈v, v〉 | `
Expressions e ::= x | v | e⊕ e | e⊗ e | 〈e, e〉 | e.1 | e.2 | !e
Statements s ::= skip | s; s | let x = e in s | if e then s else s

| call f e | let x = new e in s | x := e

Eval . Ctxs. E ::= [·] | e⊕ E | E⊕ n | e⊗ E | E⊗ n

| 〈e,E〉 | 〈E, v〉 | E.1 | E.2 | !E
Heaps H ::= ∅ | H; ` 7→ v

Monitors M ::= ({σ} , , σ0, `root, σc)
Mon. States σ ∈ S

Mon. Reds. ::= ∅ | ; (s,H, s)

Substitutions ρ ::= ∅ | ρ[v / x]

Prog . States Ω ::= C,H . (s)f
Labels λ ::= ε | α

Actions α ::= call f v H? | call f v H! | ret H! | ret H?

Traces α ::= ∅ | α · α

1.2 Dynamic Semantics
Rules LU-Jump-Internal to LU-Jump-OUT dictate the kind of a jump between
two functions: if internal to the component/attacker, in(from the attacker to
the component) or out(from the component to the attacker). Rule LU-Plug tells
how to obtain a whole program from a component and an attacker. Rule LU-
Whole tells when a program is whole. Rule LU-Initial State tells the initial state
of a whole program. Rule LU-Monitor Step tells when a monitor makes a single
step given a heap.

Helpers

4

(LU-Jump-Internal)

((f ′ ∈ I ∧ f ∈ I)∨
(f ′ /∈ I ∧ f /∈ I))

I ` f, f ′ : internal

(LU-Jump-IN)

f ∈ I ∧ f ′ /∈ I

I ` f, f ′ : in

(LU-Jump-OUT)

f /∈ I ∧ f ′ ∈ I

I ` f, f ′ : out

(LU-Plug)

A ≡ H; F [·] C ≡ `root; F′; I ` C,F : whole
main ∈ names(F)

A [C] = `root; H; `root 7→ 0; F; F′; I
(LU-Whole)

C ≡ `root; F′; I names(F) ∩ names(F′) = ∅
names(I) ⊆ names(F) ∪ names(F′) fv(F) ∪ fv(F′) = ∅

` C,F : whole
(LU-Initial State)

P ≡ `root; H; F; I C ≡ `root; F; I main(x) 7→ s; return; ∈ F

Ω0 (P) = C; H, `root 7→ 0 . (s[0 / x])main

1.2.1 Component Semantics

H . e ↪→→ e′ Expression e reduces to e′.

C,H . s
ε−−→ C′,H′ . s′ Statement s reduces to s′ and evolves the rest accordingly,

emitting label λ.

Ω
α

==⇒ Ω′ Program state Ω steps to Ω′ emitting trace α.

H . e ↪→→ e′

(ELU-ctx)

H . e ↪→→ e′

H . E [e] ↪→→ E [e′]

(ELU-val)

H . v ↪→→ v

(ELU-p1)

H . 〈v, v′〉 .1 ↪→→ v

(ELU-p2)

H . 〈v, v′〉 .2 ↪→→ v′

(ELU-op)

n⊕ n′ = n′′

H . n⊕ n′ ↪→→ n′′

(ELU-comp)

n⊗ n′ = b

H . n⊗ n′ ↪→→ b
(ELU-dereference)
` 7→ v ∈ H
H.!` ↪→→ v

C,H . s
λ−−→ C′,H′ . s′

(ELU-sequence)

C,H . skip; s
ε−−→ C,H . s

(ELU-step)

C,H . s
λ−−→ C,H′ . s′

C,H . s; s′′
λ−−→ C,H′ . s′; s′′

5

(ELU-if-true)
H . e ↪→→ true

C,H . if e then s else s′
ε−−→ C,H . s

(ELU-if-false)
H . e ↪→→ false

C,H . if e then s else s′
ε−−→ C,H . s

(ELU-letin)
H . e ↪→→ v

C,H . let x = e in s
ε−−→ C,H . s[v / x]

(ELU-alloc)

H . e ↪→→ v ` /∈ dom(H)

C,H . let x = new e in s
ε−−→ C,H; ` 7→ v . s[` / x]

(ELU-update)
H . e ↪→→ v

H = H1; ` 7→ v′; H2 H′ = H1; ` 7→ v; H2

C,H . ` := e
ε−−→ C,H′ . skip

(ELU-call-internal)

C.intfs ` f, f ′ : internal f ′ = f ′′; f ′

f(x) 7→ s; return; ∈ C.funs H . e ↪→→ v

C,H . (call f e)f′
ε−−→ C,H . (s; return;[v / x])f′;f
(ELU-callback)

f ′ = f ′′; f ′ f(x) 7→ s; return; ∈ F
C.intfs ` f ′, f : out H . e ↪→→ v

C,H . (call f e)f′
call f v H!−−−−−−−−−→ C,H . (s; return;[v / x])f′;f

(ELU-call)

f ′ = f ′′; f ′ f(x) 7→ s; return; ∈ C.funs
C.intfs ` f ′, f : in H . e ↪→→ v

C,H . (call f e)f′
call f v H?−−−−−−−−−→ C,H . (s; return;[v / x])f′;f

(ELU-ret-internal)

f ′ = f ′′; f ′ C.intfs ` f, f ′ : internal

C,H . (return;)f′;f
ε−−→ C,H . (skip)f′

(ELU-retback)

f ′ = f ′′; f ′ C.intfs ` f, f ′ : in

C,H . (return;)f′;f
ret H?−−−−−−→ C,H . (skip)f′

(ELU-return)

f ′ = f ′′; f ′ C.intfs ` f, f ′ : out

C,H . (return;)f′;f
ret H!−−−−−→ C,H . (skip)f′

Ω
α

==⇒ Ω′

6

(ELU-single)

Ω
α−−→ Ω′

Ω
α

==⇒ Ω′

(ELU-silent)

Ω
ε−−→ Ω′

Ω =⇒ Ω′

(ELU-trans)

Ω
α

==⇒ Ω′′

Ω′′
α′

===⇒ Ω′

Ω
α·α′

====⇒ Ω′

1.3 Monitor Semantics
Let reach(`o,H) return a set of locations {`} in H such that it is possible to
reach any ` ∈ {`} from `o just by expression evaluation.

reach(`,H) = {` | ∃e. H . e ↪→→ ` ∧ ` ∈ dom(H)}

To ensure monitor transitions have a meaning, they are assumed to be closed
under bijective renaming of locations.

M; H M′

(LU-Monitor Step)

M = ({σ} , , σ0, `root, σc) M′ = ({σ} , , σ0, `root, σf)
(σc,H

′, σf) ∈ H′ ⊆ H dom(H′) = reach(`root,H)

M; H M′

(LU-Monitor Step Trace Base)

M;∅ M

(LU-Monitor Step Trace)

M; H M′′ M′′; H M′

M; H · H M′

(LU-valid trace)

M; H M′ heaps(α) = H

M ` α

Monitor actions are the only part of traces that matter for safety, so we
define function heaps(·) that takes a general trace and elides all but the heap
of actions. This function is used by both languages so we typeset it in black.

heaps(∅) = ∅
heaps(call f v H? · α) = H · heaps(α)

heaps(call f v H! · α) = H · heaps(α)

heaps(ret H! · α) = H · heaps(α)

heaps(ret H? · α) = H · heaps(α)

7

2 The Target Language: LP

2.1 Syntax

Whole Programs P ::= kroot; F; I

Components C ::= kroot; F; I

Contexts A ::= F [·]
Interfaces I ::= f

Functions F ::= f(x) 7→ s; return;

Operations ⊕ ::= + | −
Comparison ⊗ ::= == | < | >

Values v ::= n ∈ N | 〈v,v〉 | k
Expressions e ::= x | v | e⊕ e | e⊗ e | 〈e, e〉 | e.1 | e.2 | !e with e

Statements s ::= skip | s; s | let x = e in s | ifz e then s else s | call f e

| x := e with e | let x = new e in s | let x = hide e in s

Eval . Ctxs. E ::= [·] | e⊕E | E⊕ n | e⊗E | E⊗ n | !E with v | !e with E

| 〈e,E〉 | 〈E,v〉 | E.1 | E.2
Heaps H ::= ∅ | H; n 7→ v : η | H; k

Tag η ::= ⊥ | k
Monitors M ::= ({σ} , , σ0,kroot, σc)

Mon. States σ ∈ S
Mon. Reds. ::= ∅ | ; (s,H, s)

Substitutions ρ ::= ∅ | ρ[v / x]

Prog . States Ω ::= C,H . (s)f
Labels λ ::= ε | α

Actions α ::= call f v H? | call f v H! | ret H! | ret H?

Traces α ::= ∅ | α · α

2.2 Operational Semantics of LP

Helpers

(LP-Jump-Internal)

((f ′ ∈ I ∧ f ∈ I)∨
(f ′ /∈ I ∧ f /∈ I))

I ` f , f ′ : internal

(LP-Jump-IN)

f ∈ I ∧ f ′ /∈ I

I ` f , f ′ : in

(LP-Jump-OUT)

f /∈ I ∧ f ′ ∈ I

I ` f , f ′ : out

8

(LP-Plug)

A ≡ F [·] C ≡ kroot; F′; I
` C,F : whole main(x) 7→ s; return; ∈ F

A [C] = kroot; F; F′; I
(LP-Whole)

C ≡ kroot; F′; I
names(F) ∩ names(F′) = ∅ names(I) ⊆ names(F)

` C,F : whole
(LP-Initial State)

P ≡ kroot; F; I C ≡ kroot; F; I main(x) 7→ s; return; ∈ F

Ω0 (P) = C,kroot; 0 7→ 0 : kroot . (s[0 / x])main

2.2.1 Component Semantics

H . e ↪→→ e′ Expression e reduces to e′.

C,H . s
ε−−→ C′,H′ . s′ Statement s reduces to s′ and evolves the rest accordingly,

emitting label λ.

Ω
α

==⇒ Ω′ Program state Ω steps to Ω′ emitting trace α.

H . e ↪→→ e′

(ELP-val)

H . v ↪→→ v

(ELP-p1)

H . 〈v,v′〉 .1 ↪→→ v

(ELP-p2)

H . 〈v,v′〉 .1 ↪→→ v′

(ELP-op)

n⊕ n′ = n′′

H . n⊕ n′ ↪→→ n′′

(ELP-comp)

if n⊗ n′ = true then n′′ = 0 else n′′ = 1

H . n⊗ n′ ↪→→ n′′

(ELP-deref-top)
n 7→ v : ⊥ ∈ H

H.!n with _ ↪→→ v

(ELP-deref-k)

n 7→ (v,k) ∈ H

H.!n with k ↪→→ v
(ELP-ctx)

H . e ↪→→ e′

H .E [e] ↪→→ E [e′]

C; H . s
λ−−→ C′; H′ . s′

(ELP-sequence)

C,H . skip; s
ε−−→ C,H . s

(ELP-step)

C,H . s
λ−−→ C,H . s′

C,H . s; s′′
λ−−→ C,H . s′; s

(ELP-if-true)
H . e ↪→→ 0

C,H . ifz e then s else s′
ε−−→ C,H . s

9

(ELP-if-false)
H . e ↪→→ n n 6≡ 0

C,H . ifz e then s else s′
ε−−→ C,H . s′

(ELP-letin)
H . e ↪→→ v

C,H . let x = e in s
ε−−→ C,H . s[v / x]

(ELP-new)

H = H1; n 7→ (v′,η) H . e ↪→→ v H′ = H; n + 1 7→ v : ⊥
C,H . let x = new e in s −→ C,H′ . s[n + 1 / x]

(ELP-hide)

H . e ↪→→ n k /∈ dom(H)
H = H1; n 7→ v : ⊥; H2 H′ = H1; n 7→ v : k; H2; k

C,H . let x = hide e in s
ε−−→ C,H′ . s[k / x]

(ELP-assign-top)
H . e ↪→→ v

H = H1; n 7→ _ : ⊥; H2 H′ = H1; n 7→ v : ⊥; H2

C,H . n := e with _ ε−−→ C,H′ . skip
(ELP-assign-k)

H . e ↪→→ v H . e′ ↪→→ k
H = H1; n 7→ _ : k; H2 H′ = H1; n 7→ v : k; H2

C,H . n := e with e′
ε−−→ C,H′ . skip

(ELP-call-internal)

C.intfs ` f , f ′ : internal f ′ = f ′′; f ′

f(x) 7→ s; return; ∈ C.funs H . e ↪→→ v

C,H . (call f e)f ′
ε−−→ C,H . (s; return;[v / x])f ′;f
(ELP-callback)

f ′ = f ′′; f ′ f(x) 7→ s; return; ∈ F
C.intfs ` f ′, f : outH . e ↪→→ v

C,H . (call f e)f ′
call f v H!−−−−−−−−−→ C,H . (s; return;[v / x])f ′;f

(ELP-call)

f ′ = f ′′; f ′ f(x) 7→ s; return; ∈ C.funs
C.intfs ` f ′, f : in H . e ↪→→ v

C,H . (call f e)f ′
call f v H?−−−−−−−−−→ C,H . (s; return;[v / x])f ′;f

(ELP-ret-internal)

C.intfs ` f , f ′ : internal f ′ = f ′′; f ′

C,H . (return;)f ′;f
ε−−→ C,H . (skip)f ′

(ELP-retback)

C.intfs ` f , f ′ : in f ′ = f ′′; f ′

C,H . (return;)f ′;f
ret H?−−−−−−→ C,H . (skip)f ′

10

(ELP-return)

C.intfs ` f , f ′ : out f ′ = f ′′; f ′

C,H . (return;)f ′;f
ret H!−−−−−→ C,H . (skip)f ′

Ω
α

==⇒ Ω′

(ELP-single)

Ω
α−−→ Ω′

Ω
α

==⇒ Ω′

(ELP-silent)

Ω
ε−−→ Ω′

Ω =⇒ Ω′

(ELP-trans)

Ω
α

==⇒ Ω′′

Ω′′
α′

===⇒ Ω′

Ω
α·α′

====⇒ Ω′

2.3 Monitor Semantics
Define reach(nr,kr,H) as the set of locations {n} such that it is possible to
reach any n ∈ {n} from nr using any expression and relying on capability kr as
well as any capability reachable from nr. Formally:

reach(nr,kr,H) =

{
n

∣∣∣∣∣ H . e ↪→→ !n with v ↪→→ v′

fv(e) = nr ∪ kr

}

M; H M′

(LP-Monitor Step)

M = ({σ} , , σ0,kroot, σc) M′ = ({σ} , , σ0,kroot, σf)
(sc,H

′, sf) ∈ H′ ⊆ H dom(H′) = reach(0,kroot,H)

M; H M′

(LP-Monitor Step Trace Base)

M;∅ M

(LP-Monitor Step Trace)

M; H M′′ M′′; H M′

M; H ·H M′

(LP-valid trace)

M; H M′ heaps(α) = H

M ` α

11

3 Language and Compiler Properties

3.1 Safety, Attackers and Robust Safety
These properties hold for both languages are written in black and only once.

Definition 1 (Safety).

M ` C : safe
def
= .

if ` C : whole

then if Ω0 (C)
α

==⇒ _

then M ` α

A program is safe for a monitor if the monitor accepts any trace the program
generates.

For now, we give an informal definition for function locs(A), which returns
all the locations statically bound in the heap and code of attacker A.

Definition 2 ((Informal) Attacker).

C ` A : attacker
def
= no location the component cares about ∈ locs(A)

An attacker is valid if it does not refer to the locations the component cares
about. We leave the notion of location the component cares about abstract and
instantiate it on a per-language basis later on.

Definition 3 (Robust Safety).

M ` C : rs
def
= ∀A.
if M_C

C ` A : attacker

then M ` A [C] : safe

A program is robustly safe if it is safe for any attacker it is composed with.
The definition of M_C is to be specified on a language-specific basis, as

the next section does for LU and LP.

3.2 Monitor Agreement and Attacker for LP and LU

Definition 4 (LU: M_C).

({σ} , , σ0, `root, σc)_(`root; F; I)

A monitor and a component agree if they focus on the same initial location
`root.

12

Definition 5 (LP: M_C).

({σ} , , σ0,kroot, σc)_(kroot; F; I)

A monitor and a component agree if they use the same capabilty kroot to
protect the initial location 0.

To define attackers, we define functions locs(A), which returns all the loca-
tions bound in the code and heap of A and function caps(A), which returns all
the capabilities bound in the code of A. Intuitively, the former is defined induc-
tively on the structure of functions, then statements, then expressions, where
it collects all ` in an expression e, and also on the structure of heaps, where it
collects all ` in a binding of the form `′ 7→ `. The latter is defined inductively on
the structure of functions, then statements, then expressions, where it collects
all k in an expression e.

Definition 6 (LU attacker).

C ` A : attacker
def
= C = (`root; F; I),A = H; F′

`root /∈ locs(A)

Definition 7 (LP attacker).

C ` A : attacker
def
= C = (kroot; F; I),A = F′

kroot /∈ caps(F′)

3.3 Cross-language Relations
Assume a partial bijection β : ` × n × η from source to target heap locations
such that

• if (`1,n, η) ∈ β and (`2,n, η) then `1 = `2;

• if (`,n1, η1) ∈ β and (`,n2, η2) then n1 = n2 and η1 = η2.

we use this bijection to parametrise the relation so that we can relate meaningful
locations.

For compiler correctness we rely on a β0 which relates initial locations of
monitors.

Assume a relation ≈β : v × β × v that is total so it maps any source value
to a target value v.

• ∀v.∃v.v≈β v.

This relation is used for defining compiler correctness. By inspecting the
semantics of LU, Rules ELP-sequence and ELP-if-true let us derive that

• true≈β 0;

• false≈β n where n 6= 0;

13

• `≈β 〈n,v〉 where

{
v = k if (`,n,k) ∈ β
v 6= k otherwise, so (`,n,⊥) ∈ β

• 〈v1, v2〉≈β 〈v1,v2〉 iff v1≈β v1 and v2≈β v2.

We overload the notation and use the same notation to indicate the (as-
sumed) relation between monitor states: σ≈σ.

We lift this relation to sets of states point-wise and indicate it as follows:
{σ}≈{σ}. In these cases the bijection β is not needed as states do not have
locations inside.

Function names are related when they are the same: f ≈β f .
Variables names are related when they are the same: x≈β x.
Substitutions are related when they replace related values for related vari-

ables: [v / x]≈β [v / x] iff v≈β v and x≈β x.

α≈β α

(Call relation)
f ≈ f v≈β v H≈β H

call f v H?≈β call f v H?

(Callback relation)
f ≈ f v≈β v H≈β H

call f v H!≈β call f v H!
(Return relation)

H≈β H

ret H!≈β ret H!

(Returnback relation)
H≈β H

ret H?≈β ret H?

(Epsilon relation)

ε≈β ε

Definition 8 (MRM). Given a monitor-specific relation σ≈σ on monitor
states, we say that a relation R on source and target monitors is a bisim-
ulation if the following hold whenever M = ({σ} , , σ0, `root, σc) and M =
({σ} , , σ0,kroot, σc) are related by R:

1. σ0≈σ0, and

2. σc≈σc, and

3. For all β containing (`root,0,kroot) and all H,H with H≈β H the following
hold:

(a) (σc,H,_) ∈ iff (σc,H,_) ∈ , and
(b) (σc,H, σ

′) ∈ and (σc,H, σ′) ∈ imply ({σ} , , σ0, `root, σ′)R({σ} , , σ0,kroot, σ
′).

Definition 9 (M≈M). M≈M is the union of all bisimulations MRM, which
is also a bisimulation.

H≈β H

(Heap relation)

H≈β H1; H2 `≈β 〈n, η〉 v≈β v
H = H1; n 7→ v : η; H2

H; ` 7→ v≈β H

(Empty relation)

∅≈β k

14

The heap relation is crucial. A source heap H is related to a target heap H
if for any location pointing to a value in the former, a related location points to
a related value in the target (Rule Heap relation). The base case (Rule Empty
relation) considers that in the target heap we may have keys, which are not
related to source elements.

As additional notation for states, we define when a state is stuck as follows

(Stuck state)

Ω = M ; F ; I ; H . s s 6≡ skip @Ω ′, λ.Ω
λ−−→→ Ω ′

Ω×

A state that terminated is defined as follows; this definition is given for a con-
current version of the language too (this is relevant for languages defined later):

(Terminated state)

Ω = M ; F ; I ; H . skip

Ω⇓

(Terminated soup)

Ω = M ; F ; I ; H .Π ∀π ∈ Π .M ; F ; I ; H . π
⇓

Ω⇓

To define compiler correctness, we rely on a cross-language relation for pro-
gram states. Two states are related if their monitors are related and if their
whole heap is related (Rule Related states – Whole).

Ω≈β Ω

(Related states – Whole)

Ω = M; F,F′; I; H . s

Ω = M; F,
q

F′
yLU

LP ; I; H . s
M≈β M H≈β H

Ω≈β Ω

3.4 Correct and Robustly-safe Compilation

Consider a compiler to be a function of this form: J·KST : C→ C, taking a source
component and producing a target component.

Definition 10 (Correct Compilation).

` J·KST : CC
def
= ∀C,∃β.

if Ω0

(
JCKST

)
α

==⇒ Ω

Ω⇓

Ω0 (C)≈β0 Ω0

(
JCKST

)
15

then Ω0 (C)
α

==⇒ Ω

β0 ⊆ β
Ω≈β Ω

α≈β α
Ω⇓

Technically, any sequence α above is empty, as I is empty (the program is
whole).

Definition 11 (Robust Safety Preserving Compilation).

` J·KST : RSC
def
= ∀C,M,M.

if M ` C : rs

M≈M

then M ` JCKST : rs

3.4.1 Alternative definition for RSC

Definition 12 (Property-Free RSC).

` J·KST : PF -RSC
def
= ∀C.

if ∀A, α.

JCKST ` A : attacker

` A
[
JCKST

]
: whole

Ω0

(
JCKST

)
α

==⇒ _

then ∃A, α.

C ` A : attacker

` A [C] : whole

Ω0 (C)
α

==⇒ _

heaps(α)≈β heaps(α)

The property-free characterisation of RSC is equivalent to its original char-
acterisation.

Theorem 1 (PF -RSC and RSC are equivalent).

∀J·KST,` J·K
S
T : PF -RSC ⇐⇒ ` J·KST : RSC

3.4.2 Compiling Monitors

We can change the definition of compiler to also compile the monitor so we are
not given a target monitor related to the source one, but the compiler gives

16

us that monitor. Consider this compiler to have this type and this notation:r
·
zS

T
: C→ C.

Definition 13 (Robustly-safe Compilation with Monitors).

`
r
·
zS

T
: rs-pres(M)

def
= ∀C,M.

if M ` C : rs

then
s

M

{S

T

`
s

C

{S

T

: rs

17

4 Compiler from LU to LP

Definition 14 (Compiler LU to LP). J·KL
U

LP : C→ C

JCKL
U

LP is defined as follows:

q
`root; F; I,M

yLU

LP = kroot;
q

F
yLU

LP ;
q

I
yLU

LP (J·KL
U

LP -Comp)

Jf(x) 7→ s; return;KL
U

LP = f(x) 7→ JsKL
U

LP ; return; (J·KL
U

LP -Function)

JfKL
U

LP = f (J·KL
U

LP-Interfaces)

Expressions

JtrueKL
U

LP = 0 (J·KL
U

LP-True)

JfalseKL
U

LP = 1 (J·KL
U

LP -False)

JnKL
U

LP = n (J·KL
U

LP -nat)

JxKL
U

LP = x (J·KL
U

LP -Var)

J`KL
U

LP = 〈n,v〉 (J·KL
U

LP-Loc)

J〈e1, e2〉KL
U

LP =
〈
Je1K

LU

LP , Je2K
LU

LP

〉
(J·KL

U

LP-Pair)

Je.1KL
U

LP = JeKL
U

LP .1 (J·KL
U

LP-P1)

Je.2KL
U

LP = JeKL
U

LP .2 (J·KL
U

LP-P2)

J!eKL
U

LP = !JeKL
U

LP .1 with JeKL
U

LP .2 (J·KL
U

LP -Deref)

Je⊕ e′KL
U

LP = JeKL
U

LP ⊕ Je′KL
U

LP (J·KL
U

LP-op)

Je⊗ e′KL
U

LP = JeKL
U

LP ⊗ Je′KL
U

LP (J·KL
U

LP-cmp)

Statements

JskipKL
U

LP = skip (J·KL
U

LP -Skip)

Jsu; sKL
U

LP = JsuK
LU

LP ; JsKL
U

LP (J·KL
U

LP -Seq)

Jlet x = e in sKL
U

LP = let x = JeKL
U

LP in JsKL
U

LP (J·KL
U

LP-Letin)

Jif e then st else seK
LU

LP = ifz JeKL
U

LP then JstK
LU

LP else JseK
LU

LP (J·KL
U

LP-If)

Jlet x = new e in sKL
U

LP = let xloc = new JeKL
U

LP in

let xcap = hide xloc in

let x = 〈xloc,xcap〉 in JsKL
U

LP

(J·KL
U

LP-New)

18

Jx := e′KL
U

LP = let x1 = x.1 in

let x2 = x.2 in

x1 := JeKL
U

LP with x2

(J·KL
U

LP-Assign)

Jcall f eKL
U

LP = call f JeKL
U

LP (J·KL
U

LP -call)

Note that the case for Rule (J·KL
U

LP -New) only works because we are in a se-
quential setting. In a concurrent setting an adversary could access xloc before it
is hidden, so the definition would change. See Rule (J·KL

τ

Lπ -New) for a concurrent
correct implementation.

J[v / x]KL
U

LP =
[
JvKL

U

LP

/
x
]

Optimisation We could optimise Rule (J·KL
U

LP-Deref) as follows:

• rename the current expressions except dereferencing to b;

• reform expressions both in Lτ and LP as e ::= b | let x = b in e | !b. In
the case of LP it would be · · · | !b with b.

This allows expressions to compute e.g., pairs and projections.

• rewrite the Rule (J·KL
U

LP-Deref) case for compiling !b into:

let x = JbKL
U

LP in let x1 = x.1 in let x2 = x.2 in !x1 with x2.

• as expressions execute atomically, this would also scale to the compiler for
concurrent languages defined in later sections.

We do not use this approach to avoid nonstandard constructs.

4.1 Properties of the J·KL
U

LP Compiler

Theorem 2 (Compiler J·KL
U

LP is CC). ` J·KL
U

LP : CC

Theorem 3 (Compiler J·KL
U

LP is RSC). ` J·KL
U

LP : RSC

4.2 Back-translation from LP to LU

4.2.1 Values Backtranslation

Here is how values are back translated.

〈〈·〉〉L
P

LU : v→ v

〈〈0〉〉L
P

LU = true

19

〈〈n〉〉L
P

LU = false if n 6= 0

〈〈n〉〉L
P

LU = n where n≈β n

〈〈k〉〉L
P

LU = 0

〈〈〈v,v′〉〉〉L
P

LU =
〈
〈〈v〉〉L

P

LU , 〈〈v′〉〉L
P

LU

〉
〈〈〈n,v〉〉〉L

P

LU = ` where `≈β 〈n,v〉

The backtranslation is nondeterministic, as ≈β is not injective. In this case
we cannot make it injective (in the next compiler we can index it by types and
make it so but here we do not have them). This is the reason why the back-
translation algorithm returns a set of contexts, as backtranslating an action
that performs call f v H? could result in either call f true H? or call f 0 H?.
Now depending on f’s body, which is the component to be compiled, supplying
true or 0 may have different outcomes. Let us assume that the compilation of f,
when receiving call f v H? does not get stuck. If f contains if x then s else s′,
supplying 0 will make it stuck. However, because we generate all possible con-
texts, we know that we generate also the context that will not cause f to be
stuck. This is captured in Lemma 1 below.

Lemma 1 (Compiled code steps imply existence of source steps).

∀
if Ω′′≈β Ω′′

Ω′′
α?

===⇒ C,H . JsKL
U

LP ; s′ρ

C,H . JsKL
U

LP ; s′ρ
α!

===⇒ Ω′

{α?} = {α? | α?≈β α?}
{ρ} = {ρ | ρ≈β ρ}

then ∃αj? ∈ {α?} , ρy ∈ {ρ} ,Cj,Hj, sj; s′jρ
′.

if Ω′′
αj?

====⇒ Cj,Hj . sj; s′jρ
′

then Cj,Hj . sj; s′jρy≈β C,H . JsKL
U

LP ; s′ρ

Cj,Hj . sj; s′jρy
α!

===⇒ Ω′

α!≈β α!

Ω′≈β Ω′

4.2.2 Skeleton

〈〈·〉〉L
P

LU : I→ F

20

〈〈f〉〉L
P

LU = f(x) 7→ incrementCounter(); return; (〈〈·〉〉L
P

LU -fun)

Functions call incrementCounter() before returning to ensure that when a
returnback is modelled, the counter is incremented right before returning and
not beforehand, as doing so would cause the possible execution of other bac-
translated code blocks. Its implementation is described below.

〈〈·〉〉L
P

LU : I→ A

〈〈
I
〉〉LP

LU = `i 7→ 1;

`glob 7→ 0

main(x) 7→ incrementCounter(); return;

incrementCounter() 7→ see below
register(x) 7→ see below
update(x) 7→ see below

〈〈f〉〉L
P

LU ∀f ∈ I

(〈〈·〉〉L
P

LU -skel)

We assume compiled code does not implement functions incrementCounter,
register and update, they could be renamed to not generate conflicts if they were.

The skeleton sets up the infrastructure. It allocates global locations `i, which
is used as a counter to count steps in actions, and `glob, which is used to keep
track of attacker knowledge, as described below. Then it creates a dummy for all
functions expected in the interfaces I as well as a dummy for the main. Dummy
functions return their parameter variable and they increment the global counter
before that for reasons explained later.

4.2.3 Single Action Translation

We use the shortcut ak to indicate a list of pairs of locations and tag to access
them 〈n, η〉 that is what the context has access to. We use functions .loc to
access obtain all locations of such a list and .cap to obtain all the capabilities
(or 0 when η = ⊥) of the list.

We use function incrementCounter to increment the contents of `i by one.

incrementCounter() 7→
let c = !`i in let l = `i in l := c + 1

Starting from location `g we keep a list whose elements are pairs locations-
numbers, we indicate this list as Lglob.

We use function register(〈`, n〉) which adds the pair 〈`, n〉 to the list Lglob.
Any time we use this we are sure we are adding a pair for which no other
existing pair in Lglob has a second projection equal to n. This function can be

21

defined as follows:

register(x) 7→
let xl = x.1

in let xn = x.2

in Lglob :: 〈xl, xn〉

Lglob is a list of pair elements, so it is implemented as a pair whose first projection
is an element (a pair) and its second projection is another list; the empty list
being 0. Where :: is a recursive function that starts from `glob and looks for its
last element (i.e., it performs second projections until it hits a 0), then replaces
that second projection with 〈〈xl, xn〉 , 0〉

Lemma 2 (register(`, n) does not add duplicates for n). For n supplied as pa-
rameter by 〈〈·〉〉L

P

LU , C; H . register(`, n)
ε−−→ C; H′ . skip and 〈_, n〉 /∈ Lglob

Proof. Simple analysis of Rules (〈〈·〉〉L
P

LU -call) to (〈〈·〉〉L
P

LU -ret-loc).

We use function update(n, v) which accesses the elements in the Lglob list,
then takes the second projection of the element: if it is n it updates the first
projection to v, otherwise it continues its recursive call. If it does not find an
element for n, it gets stuck

Lemma 3 (update(n, v) never gets stuck). C; H . update(n, v)
ε−−→ C; H′ . skip

for n and v supplied as parameters by 〈〈·〉〉L
P

LU and H′=H[` 7→ v / ` 7→ _] for
`≈β 〈n,_〉.

Proof. Simple analysis of Rules (〈〈·〉〉L
P

LU -call) and (〈〈·〉〉L
P

LU -retback).

We use the meta-level function reachable(H,v,ak) that returns a set of
pairs 〈n 7→ v : η, e〉 such that all locations in are reachable from H starting
from any location in ak∪ v and that are not already in ak and such that e is a
sequence of source-level instructions that evaluate to ` such that `≈β 〈n,_〉.

Definition 15 (Reachable).

reachable(H,v,ak) =



〈n 7→ v : k, e〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n ∈ reach(nst,kst,H)

where nst ∈ v ∪ ak.loc

and kst ∈ kroot ∪ ak.cap

and n 7→ v : k ∈ H

and H.!e ↪→→ !n with k

and ∀H.H≈β H

H . 〈〈e〉〉L
P

LU ↪→→ `

and (`,n,k) ∈ β



22

Intuitively, reachable(·) finds out which new locations have been allocated
by the compiled component and that are now reachable by the attacker (the
first projection of the pair, n 7→ v : η). Additionally, it tells how to reach those
locations in the source so that we can register(·) them for the source attacker
(the backtranslated context) to access.

In this case we know by definition that e can only contain one ! and several
·.1 or ·.2. The base case for values is as before.

〈〈·〉〉L
P

LU : e→ e

〈〈!e〉〉L
P

LU = !〈〈e〉〉L
P

LU

〈〈e.1〉〉L
P

LU = 〈〈e〉〉L
P

LU .1

〈〈e.2〉〉L
P

LU = 〈〈e〉〉L
P

LU .2

The next function takes the following inputs: an action, its index, the previ-
ous function’s heap, the previous attacker knowledge and the stack of functions
called so far. It returns a set of: code, the new attacker knowledge, its heap, the
stack of functions called and the function where the code must be put. In the
returned parameters, the attacker knowledge, the heap and the stack of called
functions serve as input to the next call.

〈〈·〉〉L
P

LU : α× n ∈ N×H× n× η × f →
{

s× n× η ×H× f × f
}

〈〈
call f v H?,

n,Hpre,ak, f

〉〉LP

LU

=





if !`i == n then

incrementCounter()

let x1 = new v1 in register(〈x1, n1〉)
· · ·
let xj = new vj in register(〈xj, nj〉)
update(m1, u1)

· · ·
update(ml, ul)

call f v

else skip


,ak′,H, f; f, f ′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∀

v1 = 〈〈v1〉〉L
P

LU

· · ·

vj = 〈〈vj〉〉L
P

LU

u1 = 〈〈u1〉〉L
P

LU

· · ·

ul = 〈〈ul〉〉L
P

LU

v = 〈〈v〉〉L
P

LU


(〈〈·〉〉L

P

LU -call)
where H \Hpre = Hn

Hn = n1 7→ v1 : η1, · · · ,nj 7→ vj : ηj

and H ∩Hpre = Hc

Hc = m1 7→ u1 : η′1, · · · ,ml 7→ ul : η′l

and ak′ = ak, 〈n1, η1〉 , · · · , 〈nj, ηj〉

23

and f = f ′f ′

〈〈
call f v H!,

n,Hpre,ak, f

〉〉LP

LU

=





if !`i == n then

incrementCounter()

let l1 = e1 in register(〈l1, n1〉)
· · ·
let lj = ej in register(〈lj, nj〉)

else skip


,ak′,H, f; f, f


(〈〈·〉〉L

P

LU -callback-loc)
if reachable(H,v,ak) = 〈n1 7→ v1 : η1, e1〉 , · · · , 〈nj 7→ vj : ηj, ej〉

and ak′ = ak, 〈n1, η1〉 , · · · , 〈nj, ηj〉

〈〈
ret H?,

n,Hpre,ak, f; f

〉〉LP

LU

=





if !`i == n then

//no incrementCounter() as explained

let x1 = new v1 in register(〈x1, n1〉)
· · ·
let xj = new vj in register(〈xj, nj〉)
update(m1, u1)

· · ·
update(ml, ul)

else skip


,ak′,H, f, f

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∀

v1 = 〈〈v1〉〉L
P

LU

· · ·

vj = 〈〈vj〉〉L
P

LU

u1 = 〈〈u1〉〉L
P

LU

· · ·

ul = 〈〈ul〉〉L
P

LU


(〈〈·〉〉L

P

LU -retback)
where H \Hpre = Hn

Hn = n1 7→ v1 : η1, · · · ,nj 7→ vj : ηj

and H ∩Hpre = Hc

Hc = m1 7→ u1 : η′1, · · · ,ml 7→ ul : η′l

and ak′ = ak, 〈n1, η1〉 , · · · , 〈nj, ηj〉

〈〈
ret H!,

n,Hpre,ak, f; f

〉〉LP

LU

=





if !`i == n then

incrementCounter()

let l1 = e1 in register(〈l1, n1〉)
· · ·
let lj = ej in register(〈lj, nj〉)

else skip


,ak′,H, f, f ′


(〈〈·〉〉L

P

LU -ret-loc)

24

if reachable(H,0,ak) = 〈n1 7→ v1 : η1, e1〉 , · · · , 〈nj 7→ vj : ηj, ej〉
and ak′ = ak, 〈n1, η1〉 , · · · , 〈nj, ηj〉
and f = f ′f ′

This is the back-translation of functions. Each action is wrapped in an if
statement checking that the action to be mimicked is that one (the same function
may behave differently if called twice and we need to ensure this). After the if,
the counter checking for the action index `i is incremented. This is not done
in case of a return immediately, but only just before the return itself, so the
increment is added in the skeleton already. (there could be a callback to the
same function after the return and then we wouldn’t return but execute the
callback code instead)

When back-translating a ?-decorated, we need to set up the heap correctly
before the call itself. That means calculating the new locations that this action
allocated (Hn), allocating them and registering them in the Lglob list via the
register(·) function. These locations are also added to the attacker knowledge
ak′. Then we need to update the heap locations we already know of. These
locations are Hc and as we know them already, we use the update(·) function.

When back-translating a !-decorated action we need to calculate what part of
the heap we can reach from there, and so we rely on the reachable(·) function
to return a list of pairs of locations n and expressions e. We use n to expand
the attacker knowledge ak′ as these locations are now reachable. We use e to
reach these locations in the source heap so that we can register them and ensure
they are accessible through Lglob.

Finally, we use parameter f to keep track of the call stack, so making a call
to f pushes f on the stack (f; f) and making a return pops a stack f; f to f. That
stack carries the information to instantiate the f in the return parameters, which
is the location where the code needs to be allocated.

〈〈·〉〉L
P

LU : α× n ∈ N×H× n× η × f →
{

s, f
}

〈〈∅〉〉L
P

LU = ∅ (〈〈·〉〉L
P

LU -listact-b)

〈〈
αα, n,Hpre,ak, f

〉〉LP

LU =

s, f; s, f

∣∣∣∣∣∣ s,ak′,H′, f ′, f =
〈〈
α, n,Hpre,ak, f

〉〉LP

LU

s, f ∈
〈〈
α, n+ 1,H′,ak′, f ′

〉〉LP

LU


(〈〈·〉〉L

P

LU -listact-i)

This recursive call ensures the parameters are passed around correctly. Note
that each element in a set returned by the single-action back-translation has
the same ak′, H and f ′, the only elements that change are in the code s due to
the backtranslation of values. Thus the recursive call can pass those parameters
taken from any element of the set.

25

4.2.4 The Back-translation Algorithm 〈〈·〉〉L
P

LU

〈〈·〉〉L
P

LU : I× α→ {A}

〈〈
I, α
〉〉LP

LU =


A

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A = Askel 1 s, f

for all s, f ∈
{

s, f
}

where
{

s, f
}

= 〈〈α, 1,H0,∅,main〉〉L
P

LU

H0 = 0 7→ 0 : kroot

Askel =
〈〈

I
〉〉LP

LU


(〈〈·〉〉L

P

LU -main)

This is the real back-translation algorithm: it calls the skeleton and joins it
with each element of the set returned by the trace back-translation.

1: A× s, f → A

A 1 ∅ = A (〈〈·〉〉L
P

LU -join)

H; F1; · · · ; F; · · · ; Fn 1 s, f; s, f = H; F1; · · · ; F′; · · · ; Fn 1 s, f

where F = f(x) 7→ s′; return;

F′ = f(x) 7→ s; s′; return;

When joining we add from the last element of the list so that the functions
we create have the concatenation of if statements (those guarded by the counter
on `i) that are sorted (guards with a test for `i = 4 are before those with a test
`i = 5).

4.2.5 Correctness of the Back-translation

Theorem 4 (〈〈·〉〉L
P

LU is correct).

∀

if Ω0

(
A
[
JCKL

U

LP

])
α

==⇒ Ω

Ω
ε

==⇒ Ω′

I = names(A)

α ≡ α′ · α?

`i; `glob /∈ β

then ∃A ∈ 〈〈I, α〉〉L
P

LU

such that Ω0 (A [C])
α

==⇒ Ω

and α≈β α

26

Ω≈β Ω

Ω.H.`i = ||α||+ 1

The back-translation is correct if it takes a target attacker that will reduce
to a state together with a compiled component and it produces a set of source
attackers such that one of them, that together with the source component will
reduce to a related state performing related actions. Also it needs to ensure the
step is incremented correctly.

4.2.6 Remark on the Backtranslation

Some readers may wonder whether the hassle of setting up a source-level repre-
sentation of the whole target heap is necessary. Indeed for those locations that
are allocated by the context, this is not. If we changed the source semantics to
have an oracle that predicts what a let x = new e in s statement will return as
the new location, we could simplify this. In fact, currently the backtranslation
stores target locations in the list Lglob and looks them up based on their target
name, as it does not know what source name will be given to them. The oracle
would obviate this problem, so we could hard code the name of these locations,
knowing exactly the identifier that will be returned by the allocator. For the
functions to be correct in terms of syntax, we would need to pre-emptively al-
locate all the locations with that identifier so that their names are in scope and
they can be referred to.

However, the problem still persists for locations created by the component,
as their names cannot be hard coded, as they are not in scope. Thus we would
still require reach to reach these locations, register to add them to the list and
update to update their values in case the attacker does so.

Thus we simplify the scenario and stick to a more standard, oracle-less se-
mantics and to a generalised approach to location management in the back-
translation.

27

5 The Source Language: Lτ

This is an imperative, concurrent while language with monitors.

Whole Programs P ::= ∆; H; F; I

Components C ::= ∆; F; I

Contexts A ::= H; F [·]
Interfaces I ::= f

Functions F ::= f(x : τ) 7→ s; return;

Operations ⊕ ::= + | −
Comparison ⊗ ::= == | < | >

Values v ::= b ∈ {true, false} | n ∈ N | 〈v, v〉 | `
Expressions e ::= x | v | e⊕ e | e⊗ e | !e | 〈e, e〉 | e.1 | e.2

Statements s ::= skip | s; s | let x : τ = e in s | if e then s else s

| x := e | let x = newτ e in s | call f e

| (‖ s) | endorse x = e as ϕ in s

Types τ ::= Bool | Nat | τ × τ | Ref τ | UN

Superficial Types ϕ ::= Bool | Nat | UN× UN | Ref UN

Eval . Ctxs. E ::= [·] | e⊕ E | E⊕ n | e⊗ E | E⊗ n

| !E | 〈e,E〉 | 〈E, v〉 | E.1 | E.2

Heaps H ::= ∅ | H; ` 7→ v : τ

Monitors M ::= ({σ} , , σ0,∆, σc)
Mon. States σ ∈ S

Mon. Reds. ::= ∅ | ; (s, s)

Environments Γ ,∆ ::= ∅ | Γ; (x : τ)

Store Env . ∆ ::= ∅ | ∆; (` : τ)

Substitutions ρ ::= ∅ | ρ[v / x]

Processes π ::= (s)f

Soups Π ::= ∅ | Π ‖ π
Prog . States Ω ::= C,H . Π

Labels λ ::= ε | α
Actions α ::= call f v? | call f v! | ret ! | ret ?

Traces α ::= ∅ | α · α

We highlight elements that have changed from LU.

28

5.1 Static Semantics of Lτ

The static semantics follows these typing judgements.

` C : UN Component C is well-typed.
C ` F : τ Function F takes arguments of type τ under component C.
∆, Γ ` � Environments Γ and ∆ are well-formed.
∆ ` ok Environment ∆ is safe.
τ ` ◦ Type τ is insecure.
∆, Γ ` e : τ Expression e has type τ inΓ.
C,∆, Γ ` s Statement s is well-typed in C and Γ.
C,∆, Γ ` π Single process π is well-typed in C and Γ.
C,∆, Γ ` Π Soup Π is well-typed in C and Γ.
` H : ∆ Heap H respects the typing of ∆.
` M Monitor M is valid.

5.1.1 Auxiliary Functions

We rely on these standard auxiliary functions: names(·) extracts the defined
names (e.g., function and interface names). fv(·) returns free variables while
fn(·) returns free names (i.e., a call to a defined function). dom(·) returns
the domain of a particular element (e.g., all the allocated locations in a heap).
We denote access to the parts of C and P via functions .funs, .intfs and .mon.
We denote access to parts of M with a dot notation, so M.∆ means ∆ where
M = ({σ} , , σ0,∆, σc).

5.1.2 Typing Rules

` C

(TLτ -component)

C ≡ ∆; F; I C ` F : UN names(F) ∩ names(I) = ∅ ∆ ` ok

` C : UN

C ` F : UN

(TLτ -function)

F ≡ f(x : UN) 7→ s; return; C,∆; x : UN ` s
C ≡ ∆; F; I ∀f ∈ fn(s), f ∈ dom(C.funs) ∨ f ∈ dom(C.intfs)

C ` F : UN

∆, Γ ` �

29

(TLτ -env-e)

∅;∅ ` �

(TLτ -env-var)

∆, Γ ` � x /∈ dom(Γ)

∆, Γ; (x : τ) ` �

(TLτ -env-loc)

∆, Γ ` � l /∈ dom(∆)

∆; (l : τ); Γ ` �

∆, Γ ` ok

(TLτ -safe-e)

∅ ` ok

(TLτ -safe-loc)

∆ ` ok l /∈ dom(Γ) UN /∈ τ
Γ; (l : τ) ` ok

∆, Γ ` UN

(TLτ -env-e)

∅ ` UN

(TLτ -env-var)

∆, Γ ` UN x /∈ dom(Γ)

Γ, (x : UN) ` UN

(TLτ -env-loc)

∆, Γ ` UN l /∈ dom(Γ)

Γ, (l : UN) ` UN

τ ` ◦

(TLτ -bool-pub)

Bool ` ◦

(TLτ -nat-pub)

Nat ` ◦

(TLτ -pair-pub)

τ ` ◦ τ ′ ` ◦
τ × τ ′ ` ◦

(TLτ -un-pub)

UN ` ◦
(TLτ -references-pub)

Ref UN ` ◦

∆, Γ ` e : τ

(TLτ -true)
∆, Γ ` �

∆, Γ ` true : Bool

(TLτ -false)
∆, Γ ` �

∆, Γ ` false : Bool

(TLτ -nat)
∆, Γ ` �

∆, Γ ` n : Nat

(TLτ -var)
x : τ ∈ Γ

∆, Γ ` x : τ

(TLτ -loc)
l : τ ∈ ∆

∆, Γ ` l : Ref τ

(TLτ -pair)
∆, Γ ` e1 : τ
∆, Γ ` e2 : τ ′

∆, Γ ` 〈e1, e2〉 : τ × τ ′
(TLτ -proj-1)

∆, Γ ` e : τ × τ ′
∆, Γ ` e.1 : τ

(TLτ -proj-2)

∆, Γ ` e : τ × τ ′

∆, Γ ` e.2 : τ ′

(TLτ -dereference)
∆, Γ ` e : Ref τ

∆, Γ ` !e : τ
(TLτ -op)

∆, Γ ` e : Nat ∆, Γ ` e′ : Nat

∆, Γ ` e⊕ e′ : Nat

(TLτ -cmp)

∆, Γ ` e : Nat ∆, Γ ` e′ : Nat

∆, Γ ` e⊗ e′ : Bool
(TLτ -coercion)

C,∆, Γ ` e : τ τ ` ◦
C,∆, Γ ` e : UN

C,∆, Γ ` s

30

(TLτ -skip)

C,∆, Γ ` skip

(TLτ -function-call)

((f ∈ dom(C.funs)) ∨ (f ∈ dom(C.intfs)))
∆, Γ ` e : UN

∆, Γ ` call f e
(TLτ -sequence)
C,∆, Γ ` su
C,∆, Γ ` s

C,∆, Γ ` su; s

(TLτ -letin)
∆, Γ ` e : τ

C, Γ; x : τ ` s

C,∆, Γ ` let x : τ = e in s

(TLτ -assign)
∆, Γ ` x : Ref τ

∆, Γ ` e′ : τ

C,∆, Γ ` x := e′

(TLτ -new)
∆, Γ ` e : τ

C, Γ; x : Ref τ ` s

C,∆, Γ ` let x = newτ e in s

(TLτ -if)
∆, Γ ` e : Bool

C,∆, Γ ` st C,∆, Γ ` se
C,∆, Γ ` if e then st else se

(TLτ -fork)
C,∆, Γ ` s

C,∆, Γ ` (‖ s)

(TLτ -endorse)

∆, Γ ` e : UN C,∆, Γ; (x : ϕ) ` s

C,∆, Γ ` endorse x = e as ϕ in s

C,∆, Γ ` π

(TLτ -process)
C,∆, Γ ` s

C,∆, Γ ` (s)f

C,∆, Γ ` Π

(TLτ -soup)
C,∆, Γ ` π C,∆, Γ ` Π

C,∆, Γ ` π ‖ Π

` H : ∆

(Lτ -Heap-ok-i)
` :7→ v : τ ∈ H ` : τ ∈ ∆
` H : ∆ ∆∅ ` v : τ

` H : ∆; ` : τ

(Lτ -Heap-ok-b)

` H : ∅

` M

(Lτ -Monitor)

M ≡ ({s} , , s0,∆, sc) ∀s∃s′.(s, s′) ∈
` M

Notes Monitor typing just ensures that the monitor is coherent and that it
can’t get stuck for no good reason.

31

5.1.3 UN Typing

Attackers cannot have newτ t terms where τ is different from UN.

∆, Γ `UN e : UN

(TULτ -base)

A = H; F [·] ∆ `UN F
dom(H) ∩ dom(∆) = ∅ dom(∆) ∩ (fv(F) ∪ fv(H)) = ∅

∆ `UN A
(TULτ -true)
∆, Γ ` �

∆, Γ `UN true : UN

(TULτ -false)
∆, Γ ` �

∆, Γ `UN false : UN

(TULτ -nat)
∆, Γ ` �

∆, Γ `UN n : UN

(TULτ -var)
x : τ ∈ Γ

∆, Γ `UN x : UN

(TULτ -loc)

l : UN /∈ ∆
∆, Γ `UN l : UN

(TULτ -pair)
∆, Γ `UN e1 : UN
∆, Γ `UN e2 : UN

∆, Γ `UN 〈e1, e2〉 : UN
(TULτ -proj-1)

∆, Γ `UN e : UN

∆, Γ `UN e.1 : UN

(TULτ -proj-2)
∆, Γ `UN e : UN

∆, Γ `UN e.2 : UN

(TULτ -dereference)
∆, Γ `UN e : UN

∆, Γ `UN !e : UN
(TULτ -op)

∆, Γ `UN e : UN ∆, Γ `UN e′ : UN

∆, Γ `UN e⊕ e′ : UN
(TULτ -cmp)

∆, Γ `UN e : UN ∆, Γ `UN e′ : UN

∆, Γ `UN e⊗ e′ : UN

C,∆, Γ `UN s

(TULτ -skip)

C,∆, Γ `UN skip

(TULτ -function-call)

((f ∈ dom(C.funs)) ∨ (f ∈ dom(C.intfs)))
∆, Γ `UN e : UN

∆, Γ `UN call f e
(TULτ -sequence)
C,∆, Γ `UN su
C,∆, Γ `UN s

C,∆, Γ `UN su; s

(TULτ -letin)
∆, Γ `UN e : UN

C, Γ; x : UN `UN s

C,∆, Γ `UN let x : UN = e in s
(TULτ -assign)

∆, Γ `UN x : UN
∆, Γ `UN e′ : UN

C,∆, Γ `UN x := e′

(TULτ -new)
∆, Γ `UN e : UN

C, Γ; x : UN `UN s

C,∆, Γ `UN let x = newUN e in s
(TULτ -if)

∆, Γ `UN e : Bool
C,∆, Γ `UN st C,∆, Γ `UN se
C,∆, Γ `UN if e then st else se

(TULτ -fork)
C,∆, Γ `UN s

C,∆, Γ `UN (‖ s)

32

5.2 Dynamic Semantics of Lτ

Function mon-care(·) returns the part of a heap the monitor cares for (Rule Lτ -
Monitor-related heap). Rules Lτ -Jump-Internal to Lτ -Jump-OUT dictate the
kind of a jump between two functions: if internal to the component/attacker,
in(from the attacker to the component) or out(from the component to the at-
tacker). Rule Lτ -Plug tells how to obtain a whole program from a component
and an attacker. Rule Lτ -Initial State tells the initial state of a whole program.
Rule Lτ -Initial-heap produces a heap that satisfies a ∆, initialised with base
values. Rule Lτ -Monitor Step tells when a monitor makes a single step given a
heap.

mon-care(·)

(Lτ -Monitor-related heap)

H′ = {` 7→ v : τ | ` 7→ v : τ ∈ H}
` mon-care(H,∆) = H′

Helpers

(Lτ -Jump-Internal)

((f ′ ∈ I ∧ f ∈ I)∨
(f ′ /∈ I ∧ f /∈ I))

I ` f, f ′ : internal

(Lτ -Jump-IN)

f ∈ I ∧ f ′ /∈ I

I ` f, f ′ : in

(Lτ -Jump-OUT)

f /∈ I ∧ f ′ ∈ I

I ` f, f ′ : out

(Lτ -Plug)

A ≡ H; F [·] C ≡ ∆; F′; I
` C,F : whole ∆ ` H0 main(x : UN) 7→ s; return; ∈ F

A [C] = ∆; H ∪ H0; F; F′; I
(Lτ -Whole)

C ≡ ∆; F′; I
names(F) ∩ names(F′) = ∅

names(I) ⊆ names(F) ∪ names(F′)

` C,F : whole
(Lτ -Initial State)

P ≡ ∆; H; F; I
C ≡ ∆; F; I main(x) 7→ s; return; ∈ F

Ω0 (P) = C,H . (s[0 / x])main

∆ ` H0

(Lτ -Initial-heap)
∆ ` H ∅ ` v : τ

∆, ` : τ ` H; ` 7→ v : τ

M; H M′

33

(Lτ -Monitor Step)

M = ({σ} , , σ0,∆, σc) M′ = ({σ} , , σ0,∆, σf)
(σc, σf) ∈ ` H : ∆

M; H M′

(Lτ -Monitor Step Trace Base)

M;∅ M

(Lτ -Monitor Step Trace)

M; H M′′ M′′; H M′

M; H · H M′

(Lτ -valid trace)

M; H M′ heaps(α) = H

M ` α

5.2.1 Component Semantics

H . e ↪→→ e′ Expression e reduces to e′.

C,H . π
λ−−→ C′,H′ . π Process π reduces to π′ and evolves the rest accordingly.

C,H . Π
λ−−→ C′,H′ . Π′ Soup Π reduce to Π′ and evolve the rest accordingly.

Ω
α

==⇒ Ω′ Program state Ω steps to Ω′ emitting trace α.

H . e ↪→→ e′

(ELτ -val)

H . v ↪→→ v

(ELτ -p1)

H . 〈v, v′〉 .1 ↪→→ v

(ELτ -p2)

H . 〈v, v′〉 .1 ↪→→ v′

(ELτ -op)

n⊕ n′ = n′′

H . n⊕ n′ ↪→→ n′′

(ELτ -comp)

n⊗ n′ = b

H . n⊗ n′ ↪→→ b
(ELτ -dereference)

H . e ↪→→ ` ` 7→ v : τ ∈ H
H.!` ↪→→ v

(ELτ -ctx)

H . e ↪→→ e′

H . E [e] ↪→→ E [e′]

C,H . π
ε−−→ C′,H′ . π′

(ELτ -sequence)

C,H . skip; s
ε−−→ C,H . s

(ELτ -step)

C,H . s
λ−−→ C,H . s′

C,H . s; s′′
λ−−→ C,H . s′; s

(ELτ -if-true)
H . e ↪→→ true

C,H . if e then s else s′
ε−−→ C,H . s

(ELτ -if-false)
H . e ↪→→ false

C,H . if e then s else s′
ε−−→ C,H . s′

34

(ELτ -letin)
H . e ↪→→ v

C,H . let x : τ = e in s
ε−−→ C,H . s[v / x]

(ELτ -alloc)

` /∈ dom(H) H . e ↪→→ v

C,H . let x = newτ e in s
ε−−→ C,H; ` 7→ v : τ . s[` / x]

(ELτ -update)

H = H1; ` 7→ v′ : τ ; H2

H′ = H1; ` 7→ v : τ ; H2

C,H . ` := v
ε−−→ C,H′ . skip

(ELτ -endorse)

H . e ↪→→ v ∆,∅ ` v : ϕ ∆ = {` : τ | ` 7→ v : τ ∈ H}
C,H . endorse x = e as ϕ in s

ε−−→ C,H . s[v / x]
(ELτ -call-internal)

C.intfs ` f, f ′ : internal f ′ = f ′′; f ′

f(x : τ) : τ ′ 7→ s; return; ∈ C.funs H . e ↪→→ v

C,H . (call f e)f′
ε−−→ C,H . (s; return;[v / x])f′;f
(ELτ -callback)

f ′ = f ′′; f ′ f(x : τ) : τ ′ 7→ s; return; ∈ F
C.intfs ` f ′, f : out H . e ↪→→ v

C,H . (call f e)f′
call f v!−−−−−−−→ C,H . (s; return;[v / x])f′;f

(ELτ -call)

f ′ = f ′′; f ′ f(x : τ) : τ ′ 7→ s; return; ∈ C.funs
C.intfs ` f ′, f : in H . e ↪→→ v

C,H . (call f e)f′
call f v?−−−−−−−→ C,H . (s; return;[v / x])f′;f
(ELτ -ret-internal)

C.intfs ` f, f ′ : internal f ′ = f ′′; f ′

C,H . (return;)f′;f
ε−−→ C,H . (skip)f′

(ELτ -retback)

C.intfs ` f, f ′ : in f ′ = f ′′; f ′

C,H . (return;)f′;f
ret ?−−−−→ C,H . (skip)f′

(ELτ -return)

C.intfs ` f, f ′ : out f ′ = f ′′; f ′ H . e ↪→→ v

C,H . (return;)f′;f
ret !−−−−→ C,H . (skip)f′

C,H . Π
λ−−→ C′,H′ . Π′

35

(ELτ -par)

Π = Π1 ‖ (s)f ‖ Π2

Π′ = Π1 ‖ (s′)f′ ‖ Π2

C,H . (s)f
λ−−→ C′,H′ . (s′)f′

C,H . Π
λ−−→ C′,H′ . Π′

(ELτ -fail)

Π = Π1 ‖ (s)f ‖ Π2

C,H . (s)f
ε−−→ fail

C,H . Π
ε−−→ fail

(ELτ -fork)

Π = Π1 ‖ ((‖ s) ; s′)f ‖ Π2

Π′ = Π1 ‖ (skip; s′)f ‖ Π2 ‖ (s)∅

C,H . Π
ε−−→ C,H . Π′

Ω
α

==⇒ Ω′

(ELτ -single)

Ω
α−−→ Ω′

Ω
α

==⇒ Ω′

(ELτ -silent)

Ω
ε−−→ Ω′

Ω =⇒ Ω′

(ELτ -trans)

Ω
α

==⇒ Ω′′

Ω′′
α′

===⇒ Ω′

Ω
α·α′

====⇒ Ω′

36

6 Lπ: Extending LP with Concurrency and In-
formed Monitors

6.1 Syntax
This extends the syntax of Section 2.1 with concurrency and a memory alloca-
tion instruction that atomically hides the new location.

Whole Programs P ::= H0; F; I

Components C ::= H0; F; I

Statements s ::= · · · | (‖ s) | destruct x = e as B in s or s

| let x = newhide e in s

Patterns B ::= nat | pair

Monitors M ::= ({σ} , , σ0,H0, σc)

Single Process π ::= (s)f
Processes Π ::= ∅ | Π ‖ π

Prog . States Ω ::= C,H .Π

6.2 Dynamic Semantics
Following is the definition of the mon-care(·) function for Lπ.

mon-care(·)

(Lπ-Monitor-related heap)

H′ = {n 7→ v : η | n ∈ dom(H0) and n 7→ v : η ∈ H}
mon-care(H,H0) = H′

Helpers

(Lπ-Plug)

A ≡ F [·] C ≡ H0; F′; I
` C,F : whole main(x) 7→ return;s ∈ F

C `att A ∀n 7→ v : k ∈ H0,k ∈ H0

A [C] = H0; F; F′; I
(Lπ-Initial State)

P ≡ H0; F; I main(x) 7→ s; return; ∈ F

Ω0 (P) = P,H0 . (s[0 / x])main

M; H M′

37

(Lπ-Monitor Step)

M = ({σ} , , σ0,H0, σc) M′ = ({σ} , , σ0,H0, σf)
(sc, mon-care(H,H0), sf) ∈

M; H M′

(Lπ-Monitor Step Trace Base)

M;∅ M

(Lπ-Monitor Step Trace)

M; H M′′ M′′; H M′

M; H ·H M′

(Lπ-valid trace)

M; H M′

M ` mon H

6.2.1 Component Semantics

C,H .Π
ε−−→ C′,H′ .Π′ Processes Π reduce to Π′ and evolve the rest accordingly.

C,H . s
ε−−→ C′,H′ . s′

(ELπ-destruct-nat)
H . e ↪→→ n

C,H . destruct x = e as nat in s or s′
ε−−→ C,H . s[n / x]

(ELπ-destruct-pair)

H . e ↪→→ 〈v,v′〉
C,H . destruct x = e as pair in s or s′

ε−−→ C,H . s[〈v,v′〉 / x]
(ELπ-destruct-not)

otherwise
C,H . destruct x = e as B in s or s′

ε−−→ C,H . s′

(ELπ-new)

H = H1; n 7→ (v, η) H . e ↪→→ v k /∈ dom(H)

C,H . let x = newhide e in s
ε−−→ C,H; n + 1 7→ v : k; k . s[〈n + 1,k〉 / x]

C,H .Π ↪→→ C′,H′ .Π′

(ELπ-par)

Π = Π1 ‖ (s)f ‖ Π2

Π′ = Π1 ‖ (s′)f ′ ‖ Π2

C,H . (s)f ↪→→ C′,H′ . (s′)f ′

C,H .Π ↪→→ C′,H′ .Π′

(ELπ-fork)

Π = Π1 ‖ ((‖ s))f ‖ Π2

Π′ = Π1 ‖ (0)f ‖ Π2 ‖ (s)∅

C,H .Π ↪→→ C,H .Π′

38

7 Extended Language Properties and Necessities

7.1 Monitor Agreement for Lτ and Lπ

Definition 16 (Lτ : M_C).

({σ} , , σ0,∆, σc)_(∆; F; I)

A monitor and a component agree if they focus on the same set of locations
∆.

Definition 17 (Lπ: M_C).

({σ} , , σ0,H0, σc)_(H0; F; I)

A monitor and a component agree if they focus on the same set of locations,
protected with the same capabilities H0

7.2 Properties of Lτ

Definition 18 (Lτ Semantics Attacker).

C `attacker A
def
=

{
∀` ∈ dom(C.∆), ` /∈ locs(A)

no let x = newτ e in s in A such that τ 6= UN

This semantic definition of an attacker is captured by typing below, which
allows for simpler reasoning.

Definition 19 (Lτ Attacker).

C `att A
def
= C = ∆; F; I,∆ `UN A

C `att π
def
= π = (s)f;f and f ∈ C.itfs

C `att Π −→ Π′
def
= Π = Π1 ‖ π ‖ Π2 and Π′ = Π1 ‖ π′ ‖ Π2

and C `att π and C `att π′

The two notions of attackers coincide.

Lemma 4 (Semantics and typed attackers coincide).

C `attacker A ⇐⇒ (C `att A)

Theorem 5 (Typability Implies Robust Safety in Lτ).

∀C,M

if ` C : UN

C_M

then M ` C : rs

39

7.3 Properties of Lπ

Definition 20 (Lπ Attacker).

C `att A
def
= C = H0; F; I,∀k ∈ H0.k /∈ fv(A)

C `att π
def
= π = (s)f ;f and f ∈ C.itfs

C `att Π −→ Π′
def
= Π = Π1 ‖ π ‖ Π2 and Π′ = Π1 ‖ π′ ‖ Π2

and C `att π and C `att π′

40

8 Compiler from Lτ to Lπ

8.1 Assumed Relation between Lτ and Lπ Elements
We can scale the≈β relation to monitors, heaps, actions and processes as follows.

M≈M

(Ok Mon)

M = ({σ} , , σ0,H0, σc)
∀σ ∈ {σ}, mon-care(H; ∆)≈β mon-care(H,H0).
if ` H : ∆ then ∃σ′.(σ, mon-care(H,H0), σ′) ∈

β,∆ `M
(Monitor relation)

M = ({σ} , , σ0,∆, σc) M = ({σ} , , σ0,H0, σc)
β0,∆ `M β0 = (dom(∆), dom(H0),H0.η)

M≈M

∆ `β H0 ∆,H ` v : τ

(Initial-heap)
∆ ` H ∆,H `β v: τ

`≈β 〈n,k〉
∆, ` : τ `β H; n 7→ v : k

(Initial-value)

(τ ≡ Bool ∧ v ≡ 0) ∨ (τ ≡ Nat ∧ v ≡ 0) ∨
(τ ≡ Ref τ ∧ v ≡ n′ ∧ n′ 7→ v′ : k′ ∈ H ∧ `′≈β 〈n′,k′〉 ∧ ` : τ ∈ ∆,∆,H ` v′: τ) ∨

(τ ≡ τ1 × τ2 ∧ v ≡ 〈v1,v2〉 ∧∆,H ` v1: τ1 ∧∆,H ` v2: τ2)

∆,H `β v: τ

Π≈β Π

(Single process relation)

f ≈ f
(skip)f ≈β (skip)f

(Process relation)
Π≈β Π π≈β π

Π ‖ π≈β Π ‖ π

8.2 Compiler Definition

Definition 21 (Compiler Lτ to Lπ). J·KL
τ

Lπ : C→ C

41

Given that C = ∆; F; I if ` C : UN then JCKL
τ

Lπ is defined as follows:

u

wwwww
v

(TLτ -component)

C ≡ ∆; F; I
C ` F : UN

names(F) ∩ names(I) = ∅
∆ ` ok
` C : UN

}

�����
~

Lτ

Lπ

= H0;
q

F
yLτ

Lπ ;
q

I
yLτ

Lπ if ∆ `β0 H0

(J·KL
τ

Lπ -Component)
u

wwwww
v

(TLτ -function)

F ≡ f(x : UN) 7→ s; return;
C,∆; x : UN ` s

∀f ∈ fn(s), f ∈ dom(C.funs)
∨f ∈ dom(C.intfs)

C ` F : UN

}

�����
~

Lτ

Lπ

= f(x) 7→ JC; ∆; x : UN ` sKL
τ

Lπ ; return;

(J·KL
τ

Lπ -Function)

JfKL
τ

Lπ = f (J·KL
τ

Lπ -Interfaces)

Expressions

u

v
(TLτ -true)
∆, Γ ` �

∆, Γ ` true : Bool

}

~

Lτ

Lπ

= 0 (J·KL
τ

Lπ -True)

u

v
(TLτ -false)
∆, Γ ` �

∆, Γ ` false : Bool

}

~

Lτ

Lπ

= 1 (J·KL
τ

Lπ -False)

u

v
(TLτ -nat)
∆, Γ ` �

∆, Γ ` n : Nat

}

~

Lτ

Lπ

= n (J·KL
τ

Lπ -Nat)

t
(TLτ -var)
x : τ ∈ Γ

∆, Γ ` x : τ

|Lτ

Lπ

= x (J·KL
τ

Lπ -Var)

t
(TLτ -loc)
` : τ ∈ ∆

∆, Γ ` ` : τ

|Lτ

Lπ

= 〈n,v〉 (J·KL
τ

Lπ -Loc)

u

ww
v

(TLτ -pair)
∆, Γ ` e1 : τ
∆, Γ ` e2 : τ ′

∆, Γ ` 〈e1, e2〉 : τ × τ ′

}

��
~

Lτ

Lπ

=
〈
J∆, Γ ` e1 : τKL

τ

Lπ , J∆, Γ ` e2 : τ ′KL
τ

Lπ

〉
(J·KL

τ

Lπ -Pair)

42

u

v
(TLτ -proj-1)

∆, Γ ` e : τ × τ ′
∆, Γ ` e.1 : τ

}

~

Lτ

Lπ

= J∆, Γ ` e : τ × τ ′KL
τ

Lπ .1 (J·KL
τ

Lπ -P1)

u

v
(TLτ -proj-2)

∆, Γ ` e : τ × τ ′

∆, Γ ` e.2 : τ ′

}

~

Lτ

Lπ

= J∆, Γ ` e : τ × τ ′KL
τ

Lπ .2 (J·KL
τ

Lπ -P2)

u

v
(TLτ -dereference)

∆, Γ ` e : Ref τ

∆, Γ ` !e : τ

}

~

Lτ

Lπ

= !J∆, Γ ` e : Ref τKL
τ

Lπ .1 with J∆, Γ ` e : Ref τKL
τ

Lπ .2

(J·KL
τ

Lπ -Deref)
u

w
v

(TLτ -op)
∆, Γ ` e : Nat
∆, Γ ` e′ : Nat

∆, Γ ` e⊕ e′ : Nat

}

�
~

Lτ

Lπ

= J∆, Γ ` e : NatKL
τ

Lπ ⊕ J∆, Γ ` e′ : NatKL
τ

Lπ

(J·KL
τ

Lπ -op)
u

w
v

(TLτ -cmp)
∆, Γ ` e : Nat
∆, Γ ` e′ : Nat

∆, Γ ` e⊗ e′ : Bool

}

�
~

Lτ

Lπ

= J∆, Γ ` e : NatKL
τ

Lπ ⊗ J∆, Γ ` e′ : NatKL
τ

Lπ

(J·KL
τ

Lπ -cmp)
u

v
(TLτ -coercion)

∆, Γ ` e : τ τ ` ◦
∆, Γ ` e : UN

}

~

Lτ

Lπ

= J∆, Γ ` e : τKL
τ

Lπ (J·KL
τ

Lπ -Coerce)

Statements

t
(TLτ -skip)

C,∆, Γ ` skip

|Lτ

Lπ

= skip (J·KL
τ

Lπ -Skip)

u

w
v

(TLτ -new)
C,∆, Γ ` e : τ

C,∆, Γ; x : Ref τ ` s

C,∆, Γ ` let x = newτ e in s

}

�
~

Lτ

Lπ

=



let xo = new J∆, Γ ` e : τKL
τ

Lπ

in let x = 〈xo,0〉
in JC,∆, Γ; x : Ref τ ` sKL

τ

Lπ

if τ = UN

let x = newhide J∆, Γ ` e : τKL
τ

Lπ

in JC,∆, Γ; x : Ref τ ` sKL
τ

Lπ

else
(J·KL

τ

Lπ -New)

43

u

www
v

(TLτ -function-call)

((f ∈ dom(C.funs))
∨(f ∈ dom(C.intfs)))

∆, Γ ` e : UN

∆, Γ ` call f e

}

���
~

Lτ

Lπ

= call f J∆, Γ ` e : UNKL
τ

Lπ

(J·KL
τ

Lπ -call)
u

www
v

(TLτ -if)
∆, Γ ` e : Bool

C,∆, Γ ` st
C,∆, Γ ` se

C,∆, Γ ` if e then st else se

}

���
~

Lτ

Lπ

=

ifz J∆, Γ ` e : BoolKL
τ

Lπ

then JC,∆, Γ ` stK
Lτ

Lπ

else JC,∆, Γ ` seK
Lτ

Lπ

(J·KL
τ

Lπ -If)
u

w
v

(TLτ -sequence)
C,∆, Γ ` su
C,∆, Γ ` s

C,∆, Γ ` su; s

}

�
~

Lτ

Lπ

= JC,∆, Γ ` suK
Lτ

Lπ ; JC,∆, Γ; Γ′ ` sKL
τ

Lπ

(J·KL
τ

Lπ -Seq)
u

w
v

(TLτ -letin)
∆, Γ ` e : τ

C,∆, Γ; x : τ ` s

C,∆, Γ ` let x : τ = e in s

}

�
~

Lτ

Lπ

=
let x=J∆, Γ ` e : τKL

τ

Lπ

in JC,∆, Γ; x : τ ` sKL
τ

Lπ

(J·KL
τ

Lπ -Letin)
u

w
v

(TLτ -assign)
∆, Γ ` x : Ref τ

∆, Γ ` e : τ

C,∆, Γ ` x := e

}

�
~

Lτ

Lπ

=

let x1 = x.1

in let x2 = x.2

in x1 := J∆, Γ ` e : τKL
τ

Lπ with x2

(J·KL
τ

Lπ -Assign)
u

v
(TLτ -fork)

C,∆, Γ ` s

C,∆, Γ ` (‖ s)

}

~

Lτ

Lπ

=
(
‖ JC,∆, Γ ` sKL

τ

Lπ

)
(J·KL

τ

Lπ -Fork)
u

v
(TLτ -process)
C,∆, Γ ` s

C,∆, Γ ` (s)f

}

~

Lτ

Lπ

=

(
JC,∆, Γ ` sKL

τ

Lπ

)
JfKL

τ

Lπ

(J·KL
τ

Lπ -Proc)
u

ww
v

(TLτ -soup)
C,∆, Γ ` π
C,∆, Γ ` Π

C,∆, Γ ` π ‖ Π

}

��
~

Lτ

Lπ

= JC,∆, Γ ` πKL
τ

Lπ ‖ JC,∆, Γ ` ΠKL
τ

Lπ

(J·KL
τ

Lπ -Soup)

44

u

w
v

(TLτ -endorse)
∆, Γ ` e : UN

C,∆, Γ; (x : ϕ) ` s

C,∆, Γ ` endorse x = e as ϕ in s

}

�
~

Lτ

Lπ

=



destruct x = J∆, Γ ` e : UNKL
τ

Lπ as nat in
ifz x then

JC,∆, Γ; (x : ϕ) ` sKL
τ

Lπ

else ifz x− 1 then

JC,∆, Γ; (x : ϕ) ` sKL
τ

Lπ

else wrong
or wrong
if ϕ = Bool

destruct x = J∆, Γ ` e : UNKL
τ

Lπ as nat in

JC,∆, Γ; (x : ϕ) ` sKL
τ

Lπ

or wrong
if ϕ = Nat

destruct x = J∆, Γ ` e : UNKL
τ

Lπ as pair in

JC,∆, Γ; (x : ϕ) ` sKL
τ

Lπ

or wrong
if ϕ = UN× UN

destruct x = J∆, Γ ` e : UNKL
τ

Lπ as pair in
!x.1 with x.2;

JC,∆, Γ; (x : ϕ) ` sKL
τ

Lπ

or wrong
if ϕ = Ref UN

(J·KL
τ

Lπ -Endorse)

We write wrong as a shortcut for a failign expression like 3 + true.
The remark about optimisation for J·KL

U

LP in Section 4 is also valid for the
Rule (J·KL

τ

Lπ -Deref) case above. As expressions are executed atomically, we are
sure that albeit inefficient, dereferencing will correctly succeed.

We can add reference to superficial types and check this dynamically in the
source, as we have the heap there. But how do we check this in the target? We
only assume that reference must be passed as a pair: location- key from the
attacker. Thus the last case of Rule (J·KL

τ

Lπ -Endorse), where we check that we
can access the location, otherwise we’d get stuck.

NonAtomic Implementation of New-Hide We can also implement Rule (J·KL
τ

Lπ -
New) using non-atomic instructions are defined in Rule (J·KL

τ

Lπ -New-nonat) be-

45

low.

u

w
v

(TLτ -new)
∆, Γ ` e : τ

C,∆, Γ; x : Ref τ ` s

C,∆, Γ ` let x = newτ e in s

}

�
~

Lτ

Lπ

=



let xo = new J∆, Γ ` e : τKL
τ

Lπ

in let x = 〈xo,0〉
in JC,∆, Γ; x : Ref τ ` sKL

τ

Lπ

if τ = UN

let xt = new 0 in
let xk = hide xt in

let xc = J∆, Γ ` e : τKL
τ

Lπ in
xt := xc with xk;
let x = 〈xt,xk〉 in

JC,∆, Γ; x : Ref τ ` sKL
τ

Lπ

otherwise
(J·KL

τ

Lπ -New-nonat)

8.3 Properties of the Lτ -Lπ Compiler

Theorem 6 (Compiler J·KL
τ

Lπ is CC). ` J·KL
τ

Lπ : CC

Theorem 7 (Compiler J·KL
τ

Lπ is RSC). ` J·KL
τ

Lπ : RSC

8.4 Cross-language Relation ∼∼∼β
We define a more lenient relation on states ∼∼∼β analogous to ≈β (Rule Related
states – Whole) but that ensures that all target locations that are related to
secure source ones only vary accordingly: i.e., the attacker cannot change them.

Ω∼∼∼β Ω

(Lτ -Secure heap)

H′ = {` 7→ v : τ | ` 7→ v : τ ∈ H and τ 0 ◦}
` secure(H) = H′

(Lπ-Low Location)

@` ∈ secure(H) `≈β 〈n,_〉 n ∈ dom(H)

H,H ` low-loc(n)
(Lπ-High Location)

` ∈ secure(H) `≈β 〈n,k〉 n 7→ _ : k ∈ H

H,H ` high-loc(n) = `,k
(Lπ-High Capability)

` ∈ secure(H). `≈β 〈n,k〉 n 7→ _ : k ∈ H

H,H ` high-cap(k)

46

(Related states – Secure)

Ω = ∆; F,F′; I; H . Π Ω = H0; F,
q

F′
yLτ

Lπ ; I; H .Π ∆ `β H0

∀k,n, `. if H,H ` high-loc(n) = `,k then
(1) ∀π ∈ Π if C ` π : attacker then k /∈ fv(π)

(2) ∀n′ 7→ v : η ∈ H,
(2a) if η = k then n = n′ and `≈β 〈n,k〉 and ` 7→ v : τ ∈ H and v≈β v

(2b) if η 6= k then H,H ` low-loc(n′) and ∀k′.H,H ` high-cap(k′),v 6= k′

Ω∼∼∼β Ω

There is no secure(·) function for the target because they would be all locations
that are related to a source location that itself is secure in the source. An
alternative is to define secure(·) as all locations protected by a key k but the
point of secure(·) is to setup the invariant to ensure the proof hold, so this
alternative would be misleading.

Rule Lπ-Low Location tells when a target location is not secure. That is,
when there is no secure source location that is related to it. This can be because
the source location is not secure or because the relation does not exist, as in
order for it to exist the triple must be added to β and we only add the triple
for secure locations.

The intuition behind Rule Related states – Secure is that two states are
related if the set of locations they monitor is related and then: for any target
location n that is high (i.e., it has a related source counterpart ` whose type is
secure and that is protected with a capability k that we call a high capability),
then we have: (1) the capability k used to lock it is not in in any attacker code;
(2) for any target level location n′: (2a) either it is locked with a high capability
k (i.e., a capability used to hide a high location) thus n′ is also high, in which
case it is related to a source location ` and the values v, v they point to are
related; or (2b) it is not locked with a high capability, so we can derive that n′

is a low location and its content v is not any high capability k′.

♠

Lemma 5 (A target location is either high or low).

∀
if H≈β H

n 7→ v : η ∈ H

then either H,H ` low-loc(n)

or ∃` ∈ dom(H).

H,H ` high-loc(n) = `, η

Proof. Trivial, as Rule Lπ-Low Location and Rule Lπ-High Location are duals.

47

9 RSC : Third Instance with Target Memory Iso-
lation

Both compilers presented so far used a capability-based target language. To
avoid giving the false impression that RSC is only useful for this kind of a target,
we show here how to attain RSC when the protection mechanism in the target
is completely different. We consider a new target language, LI , which does not
have capabilities, but instead offers coarse-grained memory isolation based on
enclaves. This mechanism is supported (in hardware) in mainstream x86-64 and
ARM CPUs (Intel calls this SGX [11]; ARM calls it TrustZone [17]). This is also
straightforward to implement purely in software using any physical, VM-based,
process-based, or in-process isolation technique. This section provides a high-
level discussion on how to devise compiler J·KL

τ

LI from our source language Lτ

to LI and why it attains RSC . Full formal details are presented in subsequent
sections.

9.1 LI , a Target Language with Memory Isolation
Language LI replaces Lπ’s capabilities with a simple security abstraction called
an enclave. An enclave is a collection of code and memory locations, with
the properties that: (a) only code within the enclave can access the memory
locations of the enclave, and (b) Code from outside can transfer control only to
designated entry points in the enclave’s code. For simplicity, LI supports only
one enclave. Generalizing this to many enclaves is straightforward.

To model the enclave, a LI program has an additional component E , the
list of functions that reside in the enclave. A component thus has the form C ::=
H0 ; F ; I ; E . Only functions that are listed in E can create (let x = newiso e in s),
read (!e) and write (x := e) locations in the enclave. Locations in LI are integers
(not natural numbers). By convention, non-negative locations are outside the
enclave (accessible from any function), while negative locations are inside the
enclave (accessible only from functions in E). The semantics are almost those of
Lπ, but the expression semantics change to C; H; f . e ↪→→ v, recording which
function f is currently executing. The operational rule for any memory oper-
ation checks that either the access is to a location outside the enclave or that
f ∈ E (formalized by C ` f : prog). Monitors of LI are the same as those of
Lπ.

9.2 Compiler from Lτ to LI

The high-level structure of the compiler J·KL
τ

LI is similar to that of J·KL
τ

Lπ . J·KL
τ

LI

ensures that all the (and only the) functions of the (trusted) component we write
are part of the enclave, i.e., constitute E (first rule below). Additionally, the
compiler populates the safety-relevant heap H0 based on the information in ∆
(captured by the judgement ∆ ` H0 , whose details we elide here). Importantly,
J·KL

τ

LI also ensures that trusted locations are stored in the enclave. As before,

48

the compiler relies on typing information for this. Locations whose types are
shareable (subtypes of UN) are placed outside the enclave while those that
trusted (not subtypes of UN) are placed inside.

As mentioned, J·KL
τ

LI also attains RSC . The intuition is simple: all trusted
locations (including safety-relevant locations) are in the enclave and adversarial
code cannot tamper with them. The proof follows the proof of the previous
compiler: We build a cross-language relation, which we show to be an invariant
on executions of source and corresponding compiled programs. The only change
is that every location in the trusted target heap is isolated in the enclave.

10 The Second Target Language: LI

For clarity, we use a pink , italics font for LI .

10.1 Syntax

Whole Programs P ::= H0 ; F ; I ; E

Components C ::= H0 ; F ; I ; E

Contexts A ::= F [·]
Interfaces I ::= f

Enclave functions E ::= f

Functions F ::= f (x) 7→ s; return;

Operations ⊕ ::= + | −
Comparison ⊗ ::= == | < | >

Values v ::= n ∈ Z | 〈v , v〉 | k
Expressions e ::= x | v | e ⊕ e | e ⊗ e | 〈e, e〉 | e.1 | e.2 | !e
Statements s ::= skip | s; s | let x = e in s | ifz e then s else s | call f e

| | (‖ s) | destruct x = e as B in s or s

| x := e | let x = new e in s | let x = newiso e in s

Patterns B ::= nat | pair

Eval . Ctxs. E ::= [·] | e ⊕ E | E ⊕ n | e ⊗ E | E ⊗ n | !E
| 〈e,E 〉 | 〈E , v〉 | E .1 | E .2

Heaps H ::= ∅ | H ; n 7→ v

Monitors M ::= ({σ} , , σ0 ,H0 , σc)

Mon. States σ ∈ S
Mon. Reds. ::= ∅ | ; (s,H , s)

Substitutions ρ ::= ∅ | ρ[v / x]

Single Process π ::= (s)f

Processes Π ::= ∅ | Π ‖ π

49

Prog . States Ω ::= C ,H .Π

Labels λ ::= ε | α
Actions α ::= call f v H ? | call f v H ! | ret H ! | ret H ?

Traces α ::= ∅ | α · α

10.2 Operational Semantics of LI

Helpers

(LI -Jump-Internal)

((f ′ ∈ I ∧ f ∈ I)∨
(f ′ /∈ I ∧ f /∈ I))

I ` f , f ′ : internal

(LI -Jump-IN)

f ∈ I ∧ f ′ /∈ I

I ` f , f ′ : in

(LI -Jump-OUT)

f /∈ I ∧ f ′ ∈ I

I ` f , f ′ : out

(LI -prog-execs)

C = H0 ; F ; I ; E f ∈ E

C ` f : prog
(LI -Plug)

A ≡ F [·] C ≡ H0 ; F ′; I ; E
` C ,F : whole main(x) 7→ s; return; ∈ F

A [C] = H0 ; F ; F ′; I ; E
(LI -Whole)

C ≡ H0 ; F ′; I ; E
names(F) ∩ names(F ′) = ∅ names(I) ⊆ names(F) ∀n 7→ v ∈ H0 ,n < 0

` C ,F : whole
(LI -Initial State)

P ≡ H0 ; F ; I ; E main(x) 7→ s; return; ∈ F

Ω0 (P) = P ; H0 . (s[0 / x])main

10.2.1 Component Semantics

C ; H ; f . e ↪→→ e ′ Expression e reduces to e ′.

C ,H .Π
ε−−→ C ′,H ′ .Π ′ Processes Π reduce to Π ′ and evolve the rest accordingly.

emitting label λ.

Ω
α

==⇒ Ω ′ Program state Ω steps to Ω ′ emitting trace α.

C ; H ; f . e ↪→→ e ′

50

(ELI -val)

C ; H ; f . v ↪→→ v

(ELI -p1)

C ; H ; f . 〈v , v ′〉 .1 ↪→→ v

(ELI -p2)

C ; H ; f . 〈v , v ′〉 .1 ↪→→ v ′

(ELI -op)

n⊕ n′ = n′′

C ; H ; f . n ⊕ n ′ ↪→→ n ′′

(ELI -comp)

if n⊗ n′ = true then n ′′ = 0 else n ′′ = 1

C ; H ; f . n ⊗ n ′ ↪→→ n ′′

(ELI -deref)
n 7→ v ∈ H n ≥ 0

C ; H ; f .!n ↪→→ v

(ELI -deref-iso)
n 7→ v ∈ H n < 0 C ` f : prog

C ; H ; f ; f .!n ↪→→ v

(ELI -ctx)

C ; H ; f . e ↪→→ e ′

C ; H ; f . E [e] ↪→→ E [e ′]

C ; H . s
λ−−→ C ′; H ′ . s ′

We elide the suffix with the stack of functions when obvious.

(ELI -sequence)

C ,H . skip; s
ε−−→ C ,H . s

(ELI -step)

C ,H . s
λ−−→ C ,H . s ′

C ,H . s; s ′′
λ−−→ C ,H . s ′; s

(ELI -if-true)

C ; H ; f . e ↪→→ 0

C ,H . ifz e then s else s ′
ε−−→ C ,H . s

(ELI -if-false)

C ; H ; f . e ↪→→ n n 6≡ 0

C ,H . ifz e then s else s ′
ε−−→ C ,H . s ′

(ELI -letin)

C ; H ; f . e ↪→→ v

C ,H . let x = e in s
ε−−→ C ,H . s[v / x]

(ELI -new)

H = H1 ; n 7→ _ C ; H ; f . e ↪→→ v

C ,H . let x = new e in s
ε−−→ C ,H ; n + 1 7→ v . s[n + 1 / x]

(ELI -isolate)

H = n 7→ _; H1 C ; H ; f . e ↪→→ v
f = f ′ · f C ` f : prog

C ,H . (let x = newiso e in s)f
ε−−→ C ,n − 1 7→ v ; H . (s[n − 1 / x])f

(ELI -assign)

C ; H ; f . e ↪→→ v
H = H1 ; n 7→ _; H2 H ′ = H1 ; n 7→ v ; H2 n ≥ 0

C ,H . n := e
ε−−→ C ,H ′ . skip

51

(ELI -assign-iso)

C ; H ; f . e ↪→→ v f = f ′ · f C ` f : prog
H = H1 ; n 7→ _; H2 H ′ = H1 ; n 7→ v ; H2 n < 0

C ,H . (n := e)f
ε−−→ C ,H ′ . (skip)f

(ELI -call-internal)

C .intfs ` f , f ′ : internal f ′ = f ′′; f ′

f (x) 7→ s; return; ∈ C .funs C ; H ; f . e ↪→→ v

C ,H . (call f e)f ′
ε−−→ C ,H . (s; return;[v / x])f ′;f

(ELI -callback)

f ′ = f ′′; f ′ f (x) 7→ s; return; ∈ F
C .intfs ` f ′, f : out C ; H ; f . e ↪→→ v

C ,H . (call f e)f ′
call f v H !−−−−−−−−−→ C ,H . (s; return;[v / x])f ′;f

(ELI -call)

f ′ = f ′′; f ′ f (x) 7→ s; return; ∈ C .funs
C .intfs ` f ′, f : in C ; H ; f . e ↪→→ v

C ,H . (call f e)f ′
call f v H?−−−−−−−−−→ C ,H . (s; return;[v / x])f ′;f

(ELI -reo-internal)

C .intfs ` f , f ′ : internal f ′ = f ′′; f ′

C ,H . (return;)f ′;f

ε−−→ C ,H . (skip)f ′

(ELI -retback)

C .intfs ` f , f ′ : in f ′ = f ′′; f ′

C ,H . (return;)f ′;f

ret H?−−−−−−→ C ,H . (skip)f ′

(ELI -return)

C .intfs ` f , f ′ : out f ′ = f ′′; f ′

C ,H . (return;)f ′;f

ret H !−−−−−→ C ,H . (skip)f ′

(ELI -destruct-nat)

C ; H ; f . e ↪→→ n

C ,H . destruct x = e as nat in s or s ′
ε−−→ C ,H . s[n / x]

(ELI -destruct-pair)

C ; H ; f . e ↪→→ 〈v , v ′〉
C ,H . destruct x = e as pair in s or s ′

ε−−→ C ,H . s[〈v , v ′〉 / x]
(ELI -destruct-not)

otherwise
C ,H . destruct x = e as B in s or s ′

ε−−→ C ,H . s ′

C ,H .Π ↪→→ C ′,H ′ .Π ′

52

(ELI -par)

Π = Π1 ‖ (s)f ‖ Π2

Π ′ = Π1 ‖ (s ′)f ′ ‖ Π2

C ,H . (s)f ↪→→ C ′,H ′ . (s ′)f ′

C ,H .Π ↪→→ C ′,H ′ .Π ′

(ELI -fork)

Π = Π1 ‖ ((‖ s))f ;f ‖ Π2

Π ′ = Π1 ‖ (0)f ;f ‖ Π2 ‖ (s)f

C ,H .Π ↪→→ C ,H .Π ′

Ω
α

==⇒ Ω ′

(ELI -single)

Ω
α−−→ Ω ′

Ω
α

==⇒ Ω ′

(ELI -silent)

Ω
ε−−→ Ω ′

Ω =⇒ Ω ′

(ELI -trans)

Ω
α

==⇒ Ω ′′

Ω ′′
α′

===⇒ Ω ′

Ω
α·α′

====⇒ Ω ′

10.3 Monitor Semantics

mon-care(·)

(LI -Monitor-related heap)

H ′ = {n 7→ v : η | n ∈ dom(H0) and n 7→ v : η ∈ H }
mon-care(H ,H0) = H ′

M ; H M ′

(LI -Monitor Step)

M = ({σ} , , σ0 ,H0 , σc) M ′ = ({σ} , , σ0 ,H0 , σf)
(sc , mon-care(H ,H0), sf) ∈

M ; H M ′

(LI -Monitor Step Trace Base)

M ;∅ M

(LI -Monitor Step Trace)

M ; H M ′′ M ′′; H M ′

M ; H ·H M ′

(LI -valid trace)

M ; H M ′

M ` mon H

10.4 Monitor Agreement for LI

Definition 22 (LI : M _C).

({σ} , , σ0 ,H0 , σc)_(H0 ; F ; I ; E)

A monitor and a component agree if they focus on the same set of locations
H0 .

53

10.5 Properties of LI

Definition 23 (LI Attacker).

C `att A
def
= C = H0 ; F ; I ; E ,A = F ′, names(F) ∩ names(F ′) = ∅

C `att π
def
= π = (s)f ;f and f ∈ C .itfs

C `att Π −→ Π ′
def
= Π = Π1 ‖ π ‖ Π2 and Π ′ = Π1 ‖ π′ ‖ Π2

and C `att π and C `att π′

11 Second Compiler from Lτ to LI

For this compiler we need a different partial bijection, which we indicate with
ϕ and its type is `× n. It has the same properties of β listed in Section 3.3.

The cross-language relation ≈ is unchanged but for the relation of locations,
as they are no longer compiled as pairs:

• `≈ϕ n if (`,n) ∈ ϕ

Actions relation is unchanged from Rule Call relation etc.
Heaps relation is unchanged (modulo the elision of capabilities) from Rule Heap

relation.
Process relation is unchanged from Rule Single process relation etc.
State relation is unchanged from Rule Related states – Whole.
The monitor relation M≈M is defined as in Rule Monitor relation .
Some auxiliary functions are changed:

∆ `ϕ H0 ∆,H ` v : τ

(Initial-heap)
∆ ` H ∆,H ` v : τ

`≈ϕ n

∆, ` : τ `ϕ H ; n 7→ v
(Initial-value)

(τ ≡ Bool ∧ v ≡ 0) ∨ (τ ≡ Nat ∧ v ≡ 0) ∨
(τ ≡ Ref τ ∧ v ≡ n ′ ∧ n ′ 7→ v ′ ∈ H ∧ `′≈ϕ n ′ ∧ ` : τ ∈ ∆,∆,H ` v ′: τ) ∨

(τ ≡ τ1 × τ2 ∧ v ≡ 〈v1 , v2 〉 ∧∆,H ` v1 : τ1 ∧∆,H ` v2 : τ2)

∆,H `ϕ v : τ

Definition 24 (Compiler Lτ to LI). J·KL
τ

LI : C→ C

54

Given that C = ∆; F; I if ` C : UN then JCKL
τ

LI is defined as follows:

u

wwwww
v

(TLτ -component)

C ≡ ∆; F; I
C ` F : UN

names(F) ∩ names(I) = ∅
∆ ` ok
` C : UN

}

�����
~

Lτ

LI

= H0 ;
q

F
yLτ

LI ;
q

I
yLτ

LI ; dom(F) if ∆ `ϕ0 H0

(J·KL
τ

LI -Component)
u

wwwww
v

(TLτ -function)

F ≡ f(x : UN) 7→ s; return;
C,∆; x : UN ` s

∀f ∈ fn(s), f ∈ dom(C.funs)
∨f ∈ dom(C.intfs)

C ` F : UN

}

�����
~

Lτ

LI

= f (x) 7→ JC; ∆; x : UN ` sKL
τ

LI ; return;

(J·KL
τ

LI -Function)

JfKL
τ

LI = f (J·KL
τ

LI -Interfaces)

Expressions

u

v
(TLτ -true)
∆, Γ ` �

∆, Γ ` true : Bool

}

~

Lτ

LI

= 0 (J·KL
τ

LI -True)

u

v
(TLτ -false)
∆, Γ ` �

∆, Γ ` false : Bool

}

~

Lτ

LI

= 1 (J·KL
τ

LI -False)

u

v
(TLτ -nat)
∆, Γ ` �

∆, Γ ` n : Nat

}

~

Lτ

LI

= n (J·KL
τ

LI -Nat)

t
(TLτ -var)
x : τ ∈ Γ

∆, Γ ` x : τ

|Lτ

LI

= x (J·KL
τ

LI -Var)

t
(TLτ -loc)
` : τ ∈ ∆

∆, Γ ` ` : τ

|Lτ

LI

= n (J·KL
τ

LI -Loc)

u

ww
v

(TLτ -pair)
∆, Γ ` e1 : τ
∆, Γ ` e2 : τ ′

∆, Γ ` 〈e1, e2〉 : τ × τ ′

}

��
~

Lτ

LI

=
〈
J∆, Γ ` e1 : τKL

τ

LI , J∆, Γ ` e2 : τ ′KL
τ

LI

〉
(J·KL

τ

LI -Pair)

55

u

v
(TLτ -proj-1)

∆, Γ ` e : τ × τ ′
∆, Γ ` e.1 : τ

}

~

Lτ

LI

= J∆, Γ ` e : τ × τ ′KL
τ

LI .1 (J·KL
τ

LI -P1)

u

v
(TLτ -proj-2)

∆, Γ ` e : τ × τ ′

∆, Γ ` e.2 : τ ′

}

~

Lτ

LI

= J∆, Γ ` e : τ × τ ′KL
τ

LI .2 (J·KL
τ

LI -P2)

u

v
(TLτ -dereference)

∆, Γ ` e : Ref τ

∆, Γ ` !e : τ

}

~

Lτ

LI

= !J∆, Γ ` e : Ref τKL
τ

LI .1 (J·KL
τ

LI -Deref)

u

w
v

(TLτ -op)
∆, Γ ` e : Nat
∆, Γ ` e′ : Nat

∆, Γ ` e⊕ e′ : Nat

}

�
~

Lτ

LI

= J∆, Γ ` e : NatKL
τ

LI ⊕ J∆, Γ ` e′ : NatKL
τ

LI

(J·KL
τ

LI -op)
u

w
v

(TLτ -cmp)
∆, Γ ` e : Nat
∆, Γ ` e′ : Nat

∆, Γ ` e⊗ e′ : Bool

}

�
~

Lτ

LI

= J∆, Γ ` e : NatKL
τ

LI ⊗ J∆, Γ ` e′ : NatKL
τ

LI

(J·KL
τ

LI -cmp)
u

v
(TLτ -coercion)

∆, Γ ` e : τ τ ` ◦
∆, Γ ` e : UN

}

~

Lτ

LI

= J∆, Γ ` e : τKL
τ

LI (J·KL
τ

LI -Coerce)

Statements

t
(TLτ -skip)

C,∆, Γ ` skip

|Lτ

LI

= skip (J·KL
τ

LI -Skip)

u

w
v

(TLτ -new)
C,∆, Γ ` e : τ

C,∆, Γ; x : Ref τ ` s

C,∆, Γ ` let x = newτ e in s

}

�
~

Lτ

LI

=



let x = new J∆, Γ ` e : τKL
τ

LI

in JC,∆, Γ; x : Ref τ ` sKL
τ

LI

if τ = UN

let x = newiso J∆, Γ ` e : τKL
τ

LI

in JC,∆, Γ; x : Ref τ ` sKL
τ

LI

else
(J·KL

τ

LI -New)

56

u

www
v

(TLτ -function-call)

((f ∈ dom(C.funs))
∨(f ∈ dom(C.intfs)))

∆, Γ ` e : UN

∆, Γ ` call f e

}

���
~

Lτ

LI

= call f J∆, Γ ` e : UNKL
τ

LI

(J·KL
τ

LI -call)
u

www
v

(TLτ -if)
∆, Γ ` e : Bool

C,∆, Γ ` st
C,∆, Γ ` se

C,∆, Γ ` if e then st else se

}

���
~

Lτ

LI

=

ifz J∆, Γ ` e : BoolKL
τ

LI

then JC,∆, Γ ` stK
Lτ

LI

else JC,∆, Γ ` seK
Lτ

LI

(J·KL
τ

LI -If)
u

w
v

(TLτ -sequence)
C,∆, Γ ` su
C,∆, Γ ` s

C,∆, Γ ` su; s

}

�
~

Lτ

LI

= JC,∆, Γ ` suK
Lτ

LI ; JC,∆, Γ; Γ′ ` sKL
τ

LI

(J·KL
τ

LI -Seq)
u

w
v

(TLτ -letin)
∆, Γ ` e : τ

C,∆, Γ; x : τ ` s

C,∆, Γ ` let x : τ = e in s

}

�
~

Lτ

LI

=
let x=J∆, Γ ` e : τKL

τ

LI

in JC,∆, Γ; x : τ ` sKL
τ

LI

(J·KL
τ

LI -Letin)
u

w
v

(TLτ -assign)
∆, Γ ` x : Ref τ

∆, Γ ` e : τ

C,∆, Γ ` x := e

}

�
~

Lτ

LI

= J∆, Γ ` x : Ref τKL
τ

LI := J∆, Γ ` e : τKL
τ

LI

(J·KL
τ

LI -Assign)
u

v
(TLτ -fork)

C,∆, Γ ` s

C,∆, Γ ` (‖ s)

}

~

Lτ

LI

=
(
‖ JC,∆, Γ ` sKL

τ

LI

)
(J·KL

τ

LI -Fork)
u

v
(TLτ -process)
C,∆, Γ ` s

C,∆, Γ ` (s)f

}

~

Lτ

LI

=

(
JC,∆, Γ ` sKL

τ

LI

)
JfKL

τ

LI

(J·KL
τ

LI -Proc)
u

ww
v

(TLτ -soup)
C,∆, Γ ` π
C,∆, Γ ` Π

C,∆, Γ ` π ‖ Π

}

��
~

Lτ

LI

= JC,∆, Γ ` πKL
τ

LI ‖ JC,∆, Γ ` ΠKL
τ

LI

(J·KL
τ

LI -Soup)

57

u

w
v

(TLτ -endorse)
∆, Γ ` e : UN

C,∆, Γ; (x : ϕ) ` s

C,∆, Γ ` endorse x = e as ϕ in s

}

�
~

Lτ

LI

=



destruct x = J∆, Γ ` e : UNKL
τ

LI as nat in
ifz x then

JC,∆, Γ; (x : ϕ) ` sKL
τ

LI

else ifz x − 1 then

JC,∆, Γ; (x : ϕ) ` sKL
τ

LI

else wrong
or wrong
if ϕ = Bool

destruct x = J∆, Γ ` e : UNKL
τ

LI as nat in

JC,∆, Γ; (x : ϕ) ` sKL
τ

LI

or wrong
if ϕ = Nat

destruct x = J∆, Γ ` e : UNKL
τ

LI as pair in

JC,∆, Γ; (x : ϕ) ` sKL
τ

LI

or wrong
if ϕ = UN× UN

destruct x = J∆, Γ ` e : UNKL
τ

LI as nat in
!x ;

JC,∆, Γ; (x : ϕ) ` sKL
τ

LI

or wrong
if ϕ = Ref UN

(J·KL
τ

LI -Endorse)

We use wrong as before for wrong.

11.1 Properties of the Lτ -LI Compiler

Theorem 8 (Compiler J·KL
τ

LI is CC). ` J·KL
τ

LI : CC

Theorem 9 (Compiler J·KL
τ

LI is RSC). ` J·KL
τ

LI : RSC

11.2 Cross-language Relation ∼∼∼ϕ
As before, we define a more lenient relation on states ∼∼∼ϕ

Ω∼∼∼ϕ Ω

(LI -Low Location)

@` ∈ secure(H) `≈ϕ n n ≥ 0

H,H ` low-loc(n)
(LI -High Location)

` ∈ secure(H) `≈ϕ n n < 0

H,H ` high-loc(n) = `

58

(Related states – Secure)

Ω = ∆; F,F′; I; H . Π Ω = H0 ; F ,
q

F′
yLτ

Lπ ; I ; E ; H .Π ∆ `ϕ H0

∀n, `. if H,H ` high-loc(n) = ` then
n 7→ v ∈ H and ` 7→ v : τ ∈ H and v≈ϕ v

Ω∼∼∼ϕ Ω

We change the definition of a “high location” to be one that is in the enclave,
i.e., whose address is less than 0.

The intuition behind Rule Related states – Secure is that high locations
only need to be in sync, nothing is enforced on low locations. Compared to
Rule Related states – Secure, we have less conditions because we don’t have to
track fine-grained capabilities but just if an address is part of the enclave or not.

♠

Lemma 6 (A LI target location is either high or low).

∀
if H≈ϕ H

n 7→ v ∈ H

then either H,H ` low-loc(n)

or ∃` ∈ dom(H).

H,H ` high-loc(n) = `

Proof. Trivial, as Rule LI -Low Location and Rule LI -High Location are duals.

59

12 Proofs

12.1 Proof of Theorem 1 (PF -RSC and RSC are equiva-
lent)

Proof. ⇒ HP

if ∀A, α. JCKST ` A : attacker

` A
[
JCKST

]
: whole Ω0

(
JCKST

)
α

==⇒ Ω

then ∃A, αC ` A : attacker

` A [C] : whole Ω0 (A [C])
α

==⇒ Ω

heaps(α)≈β heaps(α)

TH

if M≈β M

∀A, α. ` A [C] : whole if Ω0 (C)
α

==⇒ Ω

then M ` α

then ∀A, α. ` A
[
JCKST

]
: whole if Ω0

(
JC,MKST

)
α

==⇒ Ω

then M ` α

We proceed by contradiction and assume that M 0 α while C ` α.
By the relatedness of the traces, by Rules Call relation to Returnback
relation we have H≈β H for all heaps in the traces.

But if the heaps are related and the source steps (by unfolding M ` α),
then by point 3.b in Definition 8 (MRM) we have that the target monitor
also steps, so M ` α.
We have reached a contradiction, so this case holds.

⇐ Switch HP and TH from the point above.

Analgously, we proceed by contradiction:

• ∀A, α. ` A [C] : whole and Ω0 (A [C])
α

==⇒ Ω and heaps(α) 6 ≈β heaps(α)

By the same reasoning as above, with the HP we have we obtain M ` α
and M ` α.
Again by 3.b in Definition 8 (MRM) we know that the heaps of all actions
in the traces are related.

Therefore, heaps(α)≈β heaps(α), which gives us a contradiction.

60

12.2 Proof of Theorem 2 (Compiler J·KL
U

LP is CC)
Proof. The proof proceeds for β0 = (`,0,kroot) and then, given that the lan-
guages are deterministic, by Lemma 8 (Generalised compiler correctness for
J·KL

U

LP) as initial states are related by definition.

♠

Lemma 7 (Expressions compiled with J·KL
U

LP are related).

∀
if H≈β H

H . eρ ↪→→ v

then H . JeKL
U

LPJρKL
U

LP ↪→→ JvKL
U

LP

Proof. This proof proceeds by structural induction on e.

Base case: Values

true By Rule (J·KL
U

LP-True), JtrueKL
U

LP = 0.
As true≈β 0, this case holds.

false Analogous to the first case by Rule (J·KL
U

LP-False).

n∈ N Analogous to the first case by Rule (J·KL
U

LP-nat).

x Analogous to the first case, by Rule (J·KL
U

LP -Var) and by the relatedness
of the substitutions.

` Analogous to the first case by Rule (J·KL
U

LP -Loc).

〈v, v〉 By induction on v by Rule (J·KL
U

LP -Pair) and then it is analogous to
the first case.

Inductive case: Expressions

e⊕ e′ By Rule (J·KL
U

LP -op) we have that

Je⊕ e′KL
U

LP = JeKL
U

LP ⊕ Je′KL
U

LP

By HP we have that H . eρ ↪→→ n and H . e′ρ ↪→→ n′.
By Rule ELU-op we have that H . n⊕ n′ ↪→→ n′′.

By IH we have that H . JeKL
U

LPJρKL
U

LP ↪→→ JnKL
U

LP and H . Je′KL
U

LPJρKL
U

LP ↪→→ Jn′KL
U

LP .

By Rule ELP-op we have that H . JnKL
U

LP ⊕ Jn′KL
U

LP ↪→→ Jn′′KL
U

LP .
So this case holds.

e⊗ e′ Analogous to the case above by IH, Rule (J·KL
U

LP -cmp), Rule ELU-
comp and Rules ELP-op and ELP-if-true.

61

!e Analogous to the case above by IH twice, Rule (J·KL
U

LP-Deref), Rule ELU-
dereference and Rules ELP-p1, ELP-p2 and ELP-letin and a case
analysis by Rules ELP-deref-top and ELP-deref-k.

〈e, e〉 Analogous to the case above by IH and Rule (J·KL
U

LP -Pair).

e.1 By Rule (J·KL
U

LP-P1) Je.1KL
U

LP = JeKL
U

LP .1.
By HP H . e.1ρ ↪→→ 〈v1, v2〉 ↪→→ v1.

By IH we have that H . JeKL
U

LP .1JρKL
U

LP ↪→→ J〈v1, v2〉KL
U

LP .1.

By Rule (J·KL
U

LP -Pair) we have that J〈v1, v2〉KL
U

LP .1 =
〈
Jv1K

LU

LP , Jv2K
LU

LP

〉
.1.

Now H .
〈
Jv1K

LU

LP , Jv2K
LU

LP

〉
.1 ↪→→ Jv1K

LU

LP .

So this case holds.
e.2 Analogous to the case above by Rule (J·KL

U

LP -P2), Rule ELU-p2 and
Rule ELP-p2.

♠

Lemma 8 (Generalised compiler correctness for J·KL
U

LP).

Proof.

∀...∃β′

if ` C : whole

C = ∆; F; I

JCKL
τ

Lπ = kroot; F; I = C

C,H . s≈β C,H . JsKL
τ

Lπ

C,H . sρ
λ−−→ C′,H′ . s′ρ′

then C,H . JsKL
τ

LπJρKL
U

LP

λ−−→ C′,H′ . Js′KL
τ

LπJρ′K
LU

LP

C′ = kroot; F; I

C,H . s′ρ′≈β′ C,H . Js′KL
τ

LπJρ′K
LU

LP

β ⊆ β′

The proof proceeds by induction on C and the on the reduction steps.

Base case

skip By Rule (J·KL
U

LP-Skip) this case follows trivially.

Inductive

62

let x = new e in s

By Rule (J·KL
U

LP-New) Jlet x = new e in sKL
U

LP =

let xloc = new JeKL
U

LP in

let xcap = hide xloc in

let x = 〈xloc,xcap〉 in JsKL
U

LP

By HP H . eρ ↪→→ v

So by Lemma 7 we have HPE: H . JeKL
U

LPJρKL
U

LP ↪→→ JvKL
U

LP and HPV
v≈β JvKL

U

LP .
By Rule ELU-alloc: C; H . let x = new e in s

ε−−→ C; H; ` 7→ v . s[` / x].
So by HPE:

C; H.let xloc = new JeKL
U

LP in

let xcap = hide xloc in

let x = 〈xloc,xcap〉 in JsKL
U

LPρ

Rule ELP-new
ε−−→ C; H; n 7→ JvKL

U

LP : ⊥. let xcap = hide xloc in

let x = 〈xloc,xcap〉 in JsKL
U

LPJρKL
U

LP [n / xloc]

≡ C; H; n 7→ JvKL
U

LP : ⊥. let xcap = hide n in

let x = 〈n,xcap〉 in JsKL
U

LPJρKL
U

LP

Rule ELP-hide
ε−−→ C; H; n 7→ JvKL

U

LP : k; k. let x = 〈n,xcap〉 in JsKL
U

LPJρKL
U

LP [k / xcap]

≡ C; H; n 7→ JvKL
U

LP : k; k. let x = 〈n,k〉 in JsKL
U

LPρ

Rule ELP-letin
ε−−→ C; H; n 7→ JvKL

U

LP : k; k. JsKL
U

LPJρKL
U

LP [〈n,k〉 / x]

Let β′ = β ∪ (`,n,k).
By definition of ≈β′ and by β′ we get HPL `≈β′ 〈n,k〉.
By a simple weakening lemma for β for substitutions and values ap-
plied to HP and HPV we can get HPVB v≈β′ JvKL

U

LP .
As H≈β H by HP, by a simple weakening lemma get that H≈β′ H too
and by Rule Heap relation with HPL and HPVB we get H′≈β′ H′.

We have that ρ′ = ρ[` / x] and ρ′ = JρKL
U

LP [〈n,k〉 / x].
So by HPL we get that ρ′≈β′ ρ′.

63

s; s′ Analogous to the case above by IH, Rule (J·KL
U

LP -Seq) and a case
analysis on what s reduces to, either with Rule ELU-sequence and
Rule ELP-sequence or with Rule ELU-step and Rule ELP-step.

let x = e in s Analogous to the case above by IH, Rule (J·KL
U

LP -Letin), Rule ELU-
letin and Rule ELP-letin.

x := e′ Analogous to the case above by Rule (J·KL
U

LP -Assign), Rule ELU-
update and Rule ELP-letin (twice), Rules ELP-p1 and ELP-p2 and
then a case analysis by Rules ELP-assign-top and ELP-assign-k.

if e then s else s′ Analogous to the case above by IH, Rule (J·KL
U

LP-If) and
then either Rule ELU-if-true and Rule ELP-if-true or Rule ELU-if-
false and Rule ELP-if-false.

call f e By Rule (J·KL
U

LP-call) Jcall f eKL
U

LP = call f JeKL
U

LP

By HP H . eρ ↪→→ v

So by Lemma 7 we have HPE: H . JeKL
U

LPρ ↪→→ JvKL
U

LP and HPR v≈β JvKL
U

LP .
So as C is whole, we apply Rule ELU-call-internal

C,H . (call f eρ)f′
ε−−→

C,H . (s; return;ρ[v / x])f′;f

By Rule ELP-call-internal

C,H .
(
call f JeKL

U

LPJρKL
U

LP

)
f ′

ε−−→

C,H .
(
s; return;JρKL

U

LP

[
JvKL

U

LP

/
x
])

f ′;f

By the first induction on C we get
IH1 C,H . (s; return;ρ′)f′;f ≈β C,H . (s; return;ρ′)f ′;f

We instantiate ρ′ with ρ[v / x] and ρ′ with JρKL
U

LP

[
JvKL

U

LP

/
x
]
.

So by HP and HPR we have that ρ[v / x]≈β JρKL
U

LP

[
JvKL

U

LP

/
x
]

We we can use IH1 to conclude
C,H . (s; return;ρ[v / x])f′;f ≈β C,H .

(
s; return;JρKL

U

LP

[
JvKL

U

LP

/
x
])

f ′;f

As β′ = β, this case holds.

♠

64

12.3 Proof of Theorem 3 (Compiler J·KL
U

LP is RSC)
Proof. HPM: M≈β M

HP1: M ` C : rs
TH1: M ` JCKL

U

LP : rs
We can state it in contrapositive form as:
HP2: M 0 JCKL

U

LP : rs
TH2: M 0 C : rs
By expanding the definition of rs in HP2 and TH2, we get
HP21 ∃A, α.M ` A : attacker and either 0 A

[
JCKL

U

LP

]
: whole or

HPRT1 (Ω0

(
A
[
JCKL

U

LP

])
α

==⇒ _ and HPRMT1 M 0 α)

TH21 ∃A, α.M ` A : attacker and either 0 A [C] : whole or TH2 (Ω0 (A [C])
α

==⇒ _
and TH4 M 0 α)

We consider the case of a whole A, the other is trivial.
We can apply Theorem 4 (〈〈·〉〉L

P

LU is correct) with HPRT1 and instantiate A
with a A from 〈〈A〉〉 and we get the following unfolded HPs

HPRS Ω0 (A [C])
α

==⇒ Ω

HPRel α≈β α.
So TH3 holds by HPRS.
We need to show TH4
Assume by contradiction HPBOT: the monitor in the source does not fail:

M ` α)
By Rule LU-valid trace we know that forall α ∈ α such that heaps(α) = H,

this holds: HPHR M; H M′.
We can expand HPHR by Rule LU-Monitor Step and get:
HPMR: (σc,H

′
h, σf) ∈

for a heap H′h ⊆ Hh

By HPM M≈β M for initial states.
By Definition 9 (M≈M) and the second clause of Definition 8 (MRM) with

HPMR we know that M≈β M for the current states.
By the first clause of Definition 8 (MRM) we know that
HPMRBI: (σc,H,_) ∈ ⇐⇒ (σc,H,_) ∈
By HPMRBI with HPMR we know that
HPMRTC: (σc,H

′
h, σf) ∈

However, by HPRMT1 and Rule LP-valid trace we know that
HPNR: M; H 6
so we get
HPCON: @(σc,H

′
h, σf) ∈

By HPCON and HPMRTC we get the contradiction, so the proof holds.

♠

65

12.4 Proof of Lemma 1 (Compiled code steps imply exis-
tence of source steps)

Proof. The proof proceeds by induction on α!
===⇒ .

Base case: α!
===⇒

By Rule ELP-single we need to prove the silent steps and the α! action.

ε

The proof proceeds by analysis of the target reductions.

Rule ELP-sequence In this case we do not need to pick and the
thesis holds by Rule ELU-sequence.

Rule ELP-step In this case we do not need to pick and the thesis
holds by Rule ELU-step.

Rule ELP-if-true We have: H . JeKL
U

LPρ ↪→→ 0
We apply Lemma 9 (Compiled code expression steps implies ex-
istence of source expression steps) and obtain a v≈β 0
By definition we have 0≈β 0 and true≈β 0, we pick the second.
So we have H . eρ ↪→→ true
We can now apply Rule ELU-if-true and this case follows.

Rule ELP-if-false This is analogous to the case above.
Rule ELP-assign-top Analogous to the case above.
Rule ELP-assign-k This is analogous to the case above but for

v = `≈β 〈n,k〉.
Rule ELP-letin This follows by Lemma 9 and by Rule ELU-letin.
Rule ELP-new This follows by Lemma 9 and by Rule ELU-alloc.
Rule ELP-hide By analisis of compiled code we know this only

happens after a new is executed.
In this case we do not need to perform a step in the source and
the thesis holds.

Rule ELP-call-internal This follows by Lemma 9 and by Rule ELU-
call-internal.

Rule ELP-ret-internal In this case we do not need to pick and the
thesis holds by Rule ELU-ret-internal.

α!

The proof proceeds by case analysis on α!

call f v H! This follows by Lemma 9 (Compiled code expression
steps implies existence of source expression steps) and by Rule ELU-
callback.

ret H! In this case we do not need to pick and the thesis holds by
Rule ELU-return.

66

Inductive case: This follows from IH and the same reasoning as for the single
action above.

♠

Lemma 9 (Compiled code expression steps implies existence of source expres-
sion steps).

∀

if H . JeKL
U

LPρ ↪→→ v

and if {ρ} = {ρ | ρ≈β ρ}
v≈β v

H≈β H

then ∃ρj ∈ {ρ} .H . eρj ↪→→ v

Proof. This proceeds by structural induction on e.

Base case: true This follows from Rule (J·KL
U

LP -True).

false This follows from Rule (J·KL
U

LP-False).

n ∈ N This follows from Rule (J·KL
U

LP -nat).
x This follows from the relation of the substitutions and the totality of

≈β and Rule (J·KL
U

LP -Var).
〈v, v′〉 This follows from induction on v and v′.

Inductive case: e⊕ e′ By definition of ≈β we know that v and v′ could be
either natural numbers or booleans.
We apply the IH with:
IHV1 n≈β n

IHV2 n′≈β n′

By IH we get

IHTE1 H . JeKL
U

LPρ ↪→→ n

IHTE2 H . Je′KL
U

LPρ ↪→→ n′

IHSE1 H . eρj ↪→→ n

IHSE2 H . e′ρj ↪→→ n′

By Rule (J·KL
U

LP-op) we have that Je⊕ e′KL
U

LP=JeKL
U

LP ⊕ Je′KL
U

LP .

By Rule ELP-op with IHTE1 and IHTE2 we have that H . JeKL
U

LP ⊕ Je′KL
U

LP ↪→→ n′′

where IHVT n′′ = n⊕ n′
By Rule ELU-op with IHSE1 and IHSE2 we have that H . e⊕ e′ ↪→→ n′′

if n′′ = n⊕ n′
This follows from IHVT and IHV1 and IHV2.

67

e⊗ e′ As above, this follows from IH and Rule (J·KL
U

LP -cmp) and Rule ELU-
comp.

〈e, e′〉 As above, this follows from IH and Rule (J·KL
U

LP-Pair).

e.1 As above, this follows from IH and Rule (J·KL
U

LP-P1) and Rule ELU-p1.

e.2 Analogous to the case above.

!e As above, this follows from IH and Rule (J·KL
U

LP -Deref) and Rule ELU-
dereference but with the hypothesis that e evaluates to a v related to
a 〈n,v〉.

♠

12.5 Proof of Theorem 4 (〈〈·〉〉L
P

LU is correct)

Proof. HP1 Ω0

(
A
[
JCKL

U

LP

])
α

==⇒ Ω

HPF Ω
ε

==⇒ Ω′

HPN I = names(A)
HPT α ≡ α′ · α?
HPL `i; `glob /∈ β
THE ∃A ∈ 〈〈I, α〉〉L

P

LU

TH1 Ω0 (A [C])
α

==⇒ Ω

THA α≈β α
THS Ω≈β Ω
THC Ω.H.`i = ||α||+ 1
The proof proceeds by induction on α′.

Base case: We perform a case analysis on α?

call f v H?

Given
HP1 Ω0

(
A
[
JCKL

U

LP

])
call f v H?

=========⇒ Ω

We need to show that
THE ∃A ∈ 〈〈I, α〉〉L

P

LU

TH1 Ω0 (A [C])
α

==⇒ Ω

THA call f v H?≈β call f v H?

THS Ω≈β Ω

THC Ω.H.`i = ||α||+ 1

68

By Rule (〈〈·〉〉L
P

LU -call) the back-translated context executes this code
inside main:
if !`i == n then

incrementCounter()

let x1 = new v1 in register(〈x1, n1〉)
· · ·
let xj = new vj in register(〈xj, nj〉)
call f v

else skip

As Hpre is ∅, no updates are added.

Given that `i is initialised to 1 in Rule (〈〈·〉〉L
P

LU -skel), this code is exe-
cuted and it generates action call f v H? where H=`1 7→ v1; · · · ; `n 7→ vn
for all ni ∈ dom(H) such that `i≈β 〈ni,_〉 and:
HPHR H≈β H

By HPHR, Lemma 11 (Backtranslated values are related) and Lemma 1 (Com-
piled code steps imply existence of source steps) with HPF we get
THA, THE and TH1.
By Rule Related states – Secure, THS holds too.
Execution of incrementCounter() satisfies THC.

ret H? This cannot happen as by Rule ELP-retback there needs to be
a running process with a non-empty stack and by Rule LP-Initial
State the stack of initial states is empty and the only way to add to
the stack is performing a call via Rule ELP-call, which would be a
different label.

Inductive case:

We know that (eliding conditions HP that are trivially satisfied):

IHP1 Ω0

(
A
[
JCKL

U

LP

])
α

==⇒ Ω′
α!

===⇒ Ω′′
α?

===⇒ Ω

And we need to prove:

ITH1 Ω0

(
〈〈I, α〉〉L

P

LU [C]
)

α
==⇒ Ω′

α!
===⇒ Ω′′

α?
===⇒ Ω

ITHA αα!α?≈β αα!α?

ITHS Ω≈β Ω

And the inductive HP is (for ∅ ⊆ β′):

IH-HP1 Ω0

(
A
[
JCKL

U

LP

])
α

==⇒ Ω′

IH-TH1 Ω0

(
〈〈I, α〉〉L

P

LU [C]
)

α
==⇒ Ω′

69

IH-THA α≈β′ α

IH-THS Ω′≈β′ Ω′

By IHP1 and HPF we can apply Lemma 1 (Compiled code steps imply
existence of source steps) and so we can apply the IH to get IH-TH1,
IH-THA and IH-THS.
We perform a case analysis on α!, and show that the back-translated code
performs α!.

By IH we have that the existing code is generated by Rule (〈〈·〉〉L
P

LU -listact-

i):
〈〈
α, n,Hpre,ak, f

〉〉LP

LU .
The next action α! produces code according to:

HPF
〈〈
α!, n,Hpre,ak, f

〉〉LP

LU .

By Rule (〈〈·〉〉L
P

LU -join), code of this action is the first if statement executed.

call f v H! By Rule (〈〈·〉〉L
P

LU -callback-loc) this code is placed at function
f so it is executed when compiled code jumps there
if !`i == n then

incrementCounter()

let l1 = e1 in register(〈l1, n1〉)
· · ·
let lj = ej in register(〈lj, nj〉)

else skip
By IH we have that `i 7→ n, so we get
IHL `i 7→ n + 1

By Definition 15 (Reachable) we have for i ∈ 1..j that a reachable
location ni ∈ dom(H) has a related counterpart in `i ∈ dom(H) such
that H . ei ↪→→ `i.
By Lemma 10 (Lτ attacker always has access to all capabilities) we
know all capabilities to access any ni are in ak.
We use ak to get the right increment of the reach.

ret H! In this case from IHF we know that f = f ′f ′.
This code is placed at f ′, so we identify the last called function and
the code is placed there. Source code returns to f ′ so this code is
executed Rule (〈〈·〉〉L

P

LU -ret-loc)
if !`i == n then

incrementCounter()

let l1 = e1 in register(〈l1, n1〉)
· · ·
let lj = ej in register(〈lj, nj〉)

else skip

70

This case now follows the same reasoning as the one above.

So we get (for β′ ⊆ β′′):
HP-AC! α!≈β′′ α!

By IH-THS and Rule Related states – Whole and HP-AC! we get HP-
OM2:

HP-OM2: Ω′′≈β′′ Ω′′

The next action α? produces code according to:

IHF1
〈〈
α?, n+ 1,H′pre,ak′, f ′

〉〉LP

LU .

We perform a case analysis on α? and show that the back-translated code
performs α?:

ret H? By Rule (〈〈·〉〉L
P

LU -retback), after n actions, we have from IHF1 that
f ′ = f ′f ′′ and inside function f ′ there is this code:
if !`i == n then

let x1 = new v1 in register(〈x1, n1〉)
· · ·
let xj = new vj in register(〈xj, nj〉)
update(m1, u1)

· · ·
update(ml, ul)

else skip

By IHL, `i 7→ n + 1, so the if gets executed.
By definition, forall n ∈ dom(H) we have that n ∈ Hn or n ∈ Hc

(from the case definition).
By Lemma 10 (Lτ attacker always has access to all capabilities) we
know all capabilities to access any n are in ak.
We induce on the size of H; the base case is trivial and the inductive
case follows from IH and the following:

Hn: and n is newly allocated.
In this case when we execute
C; H′ . let x1 = new v1 in register(〈x1, n1〉)

ε−−→ C; H′; `′′ 7→ 〈〈v1〉〉L
P

LU . register(〈`′′, n1〉)
and we create β′′ by adding `′′,n, η′ to β′.
By Lemma 2 (register(`, n) does not add duplicates for n) we have
that:
C; H′; `′′ 7→ 〈〈v1〉〉L

P

LU . register(〈`′′, n1〉)
ε−−→ C; H′; `′′ 7→ 〈〈v1〉〉L

P

LU . skip
and we can lookup `′′ via n.

Hc: and n is already allocated.
In this case
C; H′ . update(m1, u1)

ε−−→ C; H′′ . skip

71

By Lemma 3 (update(n, v) never gets stuck) we know that H′′ =
H′[`′′ 7→ _ / `′′ 7→ u1]
and `′′ such that (`′′,m1, η

′′) ∈ β′.
By Lemma 11 (Backtranslated values are related) on the values stored
on the heap, let the heap after these reduction steps be H, we can
conclude
HPRH H≈β′′ H.
As no other if inside f is executed, eventually we hit its return state-
ment, which by Rule (〈〈·〉〉L

P

LU -join) and Rule (〈〈·〉〉L
P

LU -fun) is incrementCounter(); return;.
Execution of incrementCounter() satisfies THC.

So we have Ω′′
ret H?

======⇒ Ω (by Lemma 11) and with HPRH.

call f v H? Similar to the base case, only with update bits, which follow
the same reasoning above.

So we get (for β′′ ⊆ β):
HP-AC? α?≈β α?

By IH-THA and HP-AC! and HP-AC? we get ITHA.

Now by Rule Related states – Whole again and HP-AC? we get ITHS and
ITH1, so the theorem holds.

♠

Lemma 10 (Lτ attacker always has access to all capabilities).

∀

if
〈〈
α, n,H,ak, f

〉〉LP

LU =
{

s,ak′,H′, f ′, f
}

k.n 7→ v : k ∈ H

then n ∈ reach(ak′.loc,ak′.cap,H)

Proof. Trivial case analyisis on Rules (〈〈·〉〉L
P

LU -ret-loc) to (〈〈·〉〉L
P

LU -callback-loc).

♠

Lemma 11 (Backtranslated values are related).

∀v, β.

〈〈v〉〉L
P

LU ≈β v

72

Proof. Trivial analysis of Section 4.2.1.

♠

12.6 Proof of Theorem 5 (Typability Implies Robust Safety
in Lτ)

Proof. HP1 ` C : UN
HP2 C_M
TH M ` C : rs
We expand TH: ∀A, α.M ` A : attacker and ` A [C] : whole if HPR Ω0 (A [C])

α
==⇒ _

then THM M ` α
By definition of heaps(α) and by Rule Lτ -valid trace we get a H to induce

on.
The base case holds by Rule Lτ -Monitor Step Trace Base.
In the inductive case we are considering H · H and the IH covers the first

part of the trace.
By Lemma 12 (Lτ -α reductions respect heap typing), given that the state

generating the action is C,H . Π we know that, HPH ` mon-care(H,∆) : ∆
By Rule Lτ -valid trace and by Rule Lτ -Monitor Step we need to show that

` H : ∆.
This follows by HPH.
We thus need to prove that the initial steps are related heaps are secure.
By Rule Lτ -Plug we need to show that the heaps consituting the initial heap

– both H and H0 – are well typed.
The latter, ` H0 : ∆, holds by Rule Lτ -Plug.
The former holds by definition of the attacker: Rules TULτ -base and TULτ -

loc.

♠

12.6.1 Proof of Lemma 4 (Semantics and typed attackers coincide)

Proof. This is proven by trivial induction on the syntax of A.
By the rules of Section 5.1.3, points 1 and 3 follow, point 2 follows from the

HP Rule Lτ -Plug.

♠

73

Lemma 12 (Lτ -α reductions respect heap typing).

if C ≡ ∆; · · ·
` mon-care(H,∆) : ∆

C,H . Πρ
α

==⇒ C′,H′ . Π′ρ′

then ` mon-care(H′,∆) : ∆

Proof. The proof proceeds by induction on α.

Base case This trivially holds by HP.

Inductive case This holds by IH plus a case analysis on the last action:

call f v? This holds by Lemma 17 (Lτ -? actions respect heap typing).

call f v! This holds by Lemma 18 (Lτ -! actions respect heap typing)

ret ! This holds by Lemma 18 (Lτ -! actions respect heap typing)

ret ? This holds by Lemma 17 (Lτ -? actions respect heap typing)

♠

Lemma 13 (Lτ An attacker only reaches UN locations).

∀
if ` 7→ v : UN ∈ H

then @e

H . e ↪→→ `′

`′ 7→ v : τ ∈ H

τ 6= UN

Proof. This proof proceeds by contradiction.
Suppose e exists, there are two cases for `′

• `′ was allocated by the attacker:

This contradicts the judgements of Section 5.1.3.

• `′ was allocated by the compiled code:

The only way this was possible was an assignment of `′ to `, but Rule TLτ -
assign prevents it.

74

♠

Lemma 14 (Lτ attacker reduction respects heap typing).

if C ≡ ∆; · · ·
C `att Π −→ Π′

C,H . Πρ
λ−−→ C,H′ . Πρ′

then mon-care(H,∆) = mon-care(H′,∆)

Proof. Trivial induction on the derivation of Π, which is typed with `UN and by
Lemma 13 (Lτ An attacker only reaches UN locations) has no access to locations
in ∆ or with a type τ ` ◦.

♠

Lemma 15 (Lτ typed reduction respects heap typing).

if C ≡ ∆; · · ·
C, Γ ` s

C, Γ ` s′

` mon-care(H,∆) : ∆

C,H . sρ
λ−−→ C′,H′ . s′ρ′

then ` mon-care(H′,∆) : ∆

Proof. This is done by induction on the derivation of the reducing statement.
There, the only non-trivial cases are:

Rule TLτ -new By IH we have that
H . eρ ↪→→ v

So
C; H . let x = newτ e in s

ε−−→ C; H` 7→ v : τ . s[` / x]

By IH we need to prove that ` mon-care(` 7→ v : τ ,∆) : ∆

As ` /∈ dom(∆), by Rule Lτ -Heap-ok-i this case holds.

Rule TLτ -assign By IH we have (HPH) H . e ↪→→ v

such that ` : Ref τ and v : τ .
So
C; H . x := eρ

ε−−→ C; H′ . skip

where [x / `] ∈ ρ and
H = H1; ` 7→ v′ : τ ; H2

H′ = H1; ` 7→ v : τ ; H2

There are two cases

75

` ∈ dom(∆) By Rule Lτ -Heap-ok-i we need to prove that ` : Ref τ ∈ ∆.
This holds by HPH and Rule Lτ -Initial State, as the initial state
ensures that location ` in the heap has the same type as in ∆ .

` /∈ dom(∆) This case is trivial as for allocation.

Rule TLτ -coercion We have that C, Γ ` e : τ and HPT τ ` ◦.
By IH H . e ↪→→ v such that ` mon-care(H′,∆) : ∆.

By HPT we get that mon-care(H) = mon-care(H′) as by Rule Lτ -Secure
heap function mon-care(·) only considers locations whose type is τ 0 ◦,
so none affected by e.

So this case by IH.

Rule TLτ -endorse By Rule ELτ -endorse we have that H . e ↪→→ v and that
C,H . endorse x = e as ϕ in s ↪→→ C,H . s[v / x].

So this holds by IH.

♠

Lemma 16 (Lτ any non-cross reduction respects heap typing).

if C ≡ ∆; · · ·
` mon-care(H,∆) : ∆

C,H . Πρ
λ−−→ C′,H′ . Π′ρ′

then ` mon-care(H′,∆) : ∆

Proof. By induction on the reductions and by application of Rule ELτ -par. The
base case follows by the assumptions directly. In the inductive case we have the
following:

C,H . Πρ
λ−−→ C′′,H′′ . Π′′ρ′′

λ−−→ C′,H′ . Π′ρ′

This has 2 sub-cases, if the reduction is in an attacker function or not.

C `att Π′′ −→ Π: this follows by induction on Π′′ and from IH and Lemma 14 (Lτ
attacker reduction respects heap typing).

C 6`att Π′′ −→ Π: In this case we induce on Π′′.

The base case is trivial.

The inductive case is (s)f ‖ Π, which follows from IH and Lemma 15 (Lτ
typed reduction respects heap typing).

76

♠

Lemma 17 (Lτ -? actions respect heap typing).

if C ≡ ∆; · · ·

C,H . Πρ
α?

===⇒ C,H′ . v′

then mon-care(H,∆) = mon-care(H′,∆)

Proof. By Lemma 16 (Lτ any non-cross reduction respects heap typing), and a
simple case analysis on α? (which does not modify the heap).

♠

Lemma 18 (Lτ -! actions respect heap typing).

if C ≡ ∆; · · ·

C,H . Πρ
α!

===⇒ C′,H′ . v′

` mon-care(H,∆) : ∆

then ` mon-care(H′,∆) : ∆

Proof. By Lemma 16 (Lτ any non-cross reduction respects heap typing) and a
simple case analyis on α! (which does not modify the heap).

♠

12.7 Proof of Theorem 6 (Compiler J·KL
τ

Lπ is CC)
Proof. By definition initial states have related components, related heaps and
well-typed, related starting processes, for β0 = (dom(∆), dom(H0),H0.η) so we
have:

HRS Ω0 (C)≈β0
Ω0

(
JCKL

τ

Lπ

)
.

As the languages have no notion of internal nondeterminism we can apply
Lemma 20 (Generalised compiler correctness for J·KL

τ

Lπ) with HRS to conclude.

♠

77

Lemma 19 (Expressions compiled with J·KL
τ

Lπ are related).

∀
if H≈β H

H . eρ ↪→→ v

then H . JeKL
τ

LπJρKL
τ

Lπ ↪→→ JvKL
τ

Lπ

Proof. The proof is analogous to that of Lemma 7 (Expressions compiled with
J·KL

U

LP are related) as the compilers perform the same steps and expression re-
ductions are atomic.

♠

Lemma 20 (Generalised compiler correctness for J·KL
τ

Lπ).

∀...∃β′

if C; Γ ` Π,

` C : whole

C = ∆; F; I

JCKL
τ

Lπ = H0; F; I = C

C,H . Π≈β C,H . JC; Γ ` ΠKL
τ

Lπ

C,H . Πρ =⇒ C,H′ . Π′ρ′

then C,H . JC; Γ ` ΠKL
τ

LπJρKL
τ

Lπ =⇒ C,H′ . JC; Γ ` Π′KL
τ

LπJρ′K
Lτ

Lπ

C,H . Π′ρ′≈β′ C,H . JC; Γ ` Π′KL
τ

LπJρ′K
Lτ

Lπ

β ⊆ β′

Proof. This proof proceeds by induction on the typing of Π and then of π.

Base Case skip Trivial by Rule (J·KL
τ

Lπ -Skip).

Inductive Case

In this case we proceed by induction on the typing of s

Inductive Cases Rule TLτ -new There are 2 cases, they are analogous.
τ = UN By HP

Γ ` e : τ
H . e ↪→→ v
C,H . let x = newτ e in sρ

ε−−→ C,H; ` 7→ v : τ . s[` / x]ρ
By Lemma 19 we have:
IHR1 H . JΓ ` e : τKL

τ

LπJρKL
τ

Lπ ↪→→ JΓ ` v : τKL
τ

Lπ

78

By Rule (J·KL
τ

Lπ -New) we get
let xo = new JΓ ` e : τKL

τ

Lπ

in let x = 〈xo,0〉

in JC, Γ; x : Ref τ ` sKL
τ

Lπ

So:

C,H . let xo = new JΓ ` e : τKL
τ

Lπ

in let x = 〈xo,0〉

in JC, Γ; x : Ref τ ` sKL
τ

Lπ

ε−−→ C,H; n 7→ JΓ ` v : τKL
τ

Lπ : ⊥ . let x = 〈n,0〉

in JC, Γ; x : Ref τ ` sKL
τ

Lπ

ε−−→ C,H; n 7→ JΓ ` v : τKL
τ

Lπ : ⊥ . JC, Γ; x : Ref τ ` sKL
τ

Lπ [〈n,0〉 / x]

For β′ = β ∪ (`,n,⊥), this case holds.
else The other case holds follows the same reasoning but

for β′ = β∪(`,n,k) and for H′=H; n 7→ JC, Γ ` v : τKL
τ

Lπ : k; k.
Rule TLτ -sequence By HP

Γ ` s; Γ ` s′

C,H . sρ =⇒ C′,H′ . s′′ρ′′

There are two cases
s′′=skip Rule ELU-sequence

C′,H′ . skipρ′′; s′ρ
ε−−→ C′,H′ . s′ρ

By IH
C,H . JΓ ` sKL

τ

LπJρKL
τ

Lπ =⇒ C′,H′ . JΓ ` skipKL
τ

LπJρ′′KL
τ

Lπ

By Rule (J·KL
τ

Lπ -Seq)
JC, Γ ` sKL

τ

Lπ ; JC, Γ ` s′KL
τ

Lπ

So

C,H . JC, Γ ` sKL
τ

LπJρKL
τ

Lπ ; JC, Γ ` s′KL
τ

LπJρKL
τ

Lπ

=⇒ C′,H′ . JΓ ` skipKL
τ

LπJρ′′K
Lτ

Lπ ; JC, Γ ` s′KL
τ

LπJρKL
τ

Lπ

ε−−→ C′,H′ . JC, Γ ` s′KL
τ

LπJρKL
τ

Lπ

At this stage we apply IH and the case holds.
else By Rule ELU-step we have

C,H . s; s′ =⇒ C′,H′ . s′′; s′

This case follows by IH and HPs.
Rule TLτ -function-call Analogous to the cases above.
Rule TLτ -letin Analogous to the cases above.
Rule TLτ -assign Analogous to the cases above.
Rule TLτ -if Analogous to the cases above.

79

Rule TLτ -fork Analogous to the cases above.
Rule TLτ -coercion By Rule (J·KL

τ

Lπ -Coerce), this follows from IH
directly.

Rule TLτ -endorse This has a number of trivial cases based on
Rule (J·KL

τ

Lπ -Endorse) that are analogous to the ones above.

♠

12.8 Proof of Theorem 7 (Compiler J·KL
τ

Lπ is RSC)
Proof. Given:

HP1: M ` C : rs
HPM: M≈β M
We need to prove:
TP1: M ` JCKST : rs
We unfold the definitions of rs and obtain:
∀A.M ` A : attacker,` A [C] : whole

HPE1: if Ω0 (A [C])
α

==⇒ _ then M ` heaps(α)

∀A.M ` A : attacker,` A
[
JCKL

τ

Lπ

]
: whole

THE1: if HPRT Ω0

(
A
[
JCKL

τ

Lπ

])
α

==⇒ _ then THE1 M ` heaps(α)

By definition of the compiler we have that
HPISR: Ω0 (A [C])∼∼∼β Ω0

(
A
[
JCKL

τ

Lπ

])
for β = dom(∆),H0 such that M = ({σ} , , σ0,∆, σc) and M = ({σ} , , σ0,H0, σc)
By heaps(α) and Rule Lπ-valid trace we get a H to induce on.

Base case: this holds by Rule Lπ-Monitor Step Trace Base.

Inductive case: By Rule Lπ-Monitor Step Trace, M; H M′′ holds by IH,
we need to prove M′′; H M′.
By Rule Lπ-Monitor Step e need to prove that THMR: ∃σ′.(σ, mon-care(H,H0), σ′) ∈
 .
By HPISR and with applications of Lemmas 22 and 23 we know that
states are always related with ∼∼∼β during reduction.
So by Lemma 21 (∼∼∼β implies relatedness of the high heaps) we know that
HPHH mon-care(H,∆)≈β mon-care(H,H0), for H, H being the last heaps
in the reduction.
By HPM and Rule Monitor relation we have β0,∆ `M.
By this and Rule OkMon we have that HPHR ∀mon-care(H,∆)≈β mon-care(H,H0).
if ` H : ∆ then ∃σ′.(σ, mon-care(H,H0), σ′) ∈ so by HPHH we can
instantiate this with H and H.

80

By Theorem 5 (Typability Implies Robust Safety in Lτ) applied to HPE1,
as J·KL

τ

Lπ operates on well-typed components, we know that HPMR: M `
heaps(α) for all α.

So by Rule Lτ -Monitor Step with HPMT we get HPHD ` H : ∆ for the H
above.

By HPHD with HPHR we get THMR ∃σ′.(σ, mon-care(H,H0), σ′) ∈ ,
so this case holds.

♠

Lemma 21 (∼∼∼β implies relatedness of the high heaps).

if Ω = ∆; F,F′; I; H . Π

Ω = H0; F,
q

F′
yLτ

Lπ ; I; H .Π

Ω∼∼∼β Ω

then mon-care(H,∆)≈β mon-care(H,H0)

Proof. By point 2a in Rule Related states – Secure.

♠

Lemma 22 (Lτ -compiled actions preserve ∼∼∼β).

∀...

if C,H . Πρ
λ−−→ C,H′ . Π′ρ′

C,H . JC; Γ ` ΠKL
τ

LπJρKL
τ

Lπ

λ
==⇒ C,H′ . JC; Γ ` Π′KL

τ

LπJρ′K
Lτ

Lπ

C,H . Πρ∼∼∼β C,H . JC; Γ ` ΠKL
τ

Lπρ

C; Γ ` Π

then C,H′ . Π′ρ′∼∼∼β C,H′ . JC; Γ ` Π′KL
τ

LπJρ′K
Lτ

Lπ

Proof. Trivial induction on the derivation of Π, analogous to Lemma 20 (Gen-
eralised compiler correctness for J·KL

τ

Lπ).

Rule TLτ -new There are 2 cases, they are analogous.

81

τ = UN By HP
Γ ` e : τ

H . e ↪→→ v

C,H . let x = newτ e in sρ
ε−−→ C,H; ` 7→ v : τ . s[` / x]ρ

By Lemma 19 (Expressions compiled with J·KL
τ

Lπ are related) we have:

IHR1 H . JΓ ` e : τKL
τ

LπJρKL
τ

Lπ ↪→→ JΓ ` v : τKL
τ

Lπ

By Rule (J·KL
τ

Lπ -New) we get

let xo = new JΓ ` e : τKL
τ

Lπ

in let x = 〈xo,0〉

in JC, Γ; x : Ref τ ` sKL
τ

Lπ

So:

C,H . let xo = new JΓ ` e : τKL
τ

Lπ

in let x = 〈xo,0〉

in JC, Γ; x : Ref τ ` sKL
τ

Lπ

ε−−→ C,H; n 7→ JΓ ` v : τKL
τ

Lπ : ⊥ . let x = 〈n,0〉

in JC, Γ; x : Ref τ ` sKL
τ

Lπ

ε−−→ C,H; n 7→ JΓ ` v : τKL
τ

Lπ : ⊥ . JC, Γ; x : Ref τ ` sKL
τ

Lπ [〈n,0〉 / x]

For β′ = β, this case holds.
else The other case holds follows the same reasoning but

for β′ = β ∪ (`,n,k) and for H′=H; n 7→ JC, Γ ` v : τKL
τ

Lπ : k; k.
We need to show that this preserves Rule Related states – Secure,
specifically it preserves point (2a): `≈β 〈n,k〉 and ` 7→ v : τ ∈ H and v≈β v

These follow all from the observation above and by Lemma 19 (Ex-
pressions compiled with J·KL

τ

Lπ are related).

♠

Lemma 23 (LP Attacker actions preserve ∼∼∼).

∀...

if C,H . Πρ
λ−−→ C,H′ . Π′ρ′

C,H .Πρ
λ−−→ C,H′ .Π′ρ′

C,H . Πρ∼∼∼β C,H .Πρ

C `att Πρ
λ−−→ Π′ρ′

82

C `att Πρ
λ−−→ Π′ρ′

then C,H′ . Π′ρ′∼∼∼β C,H′ .Π′ρ′

Proof. For the source reductions we can use Lemma 16 (Lτ any non-cross reduc-
tion respects heap typing) to know that mon-care(H) = mon-care(H′), so they
don’t change the interested bits of the ∼∼∼β .

Suppose this does not hold by contradiction, there can be three clauses that
do not hold based on Rule Related states – Secure:

• violation of (1): ∃π ∈ Π.C ` π : attacker and k ∈ fv(π).

By HP5 this is a contradiction.

• violation of (2a): n 7→ v : k ∈ H and `≈β 〈n,k〉 and ` 7→ v : τ ∈ H and ¬(v≈β v)

To change this value the attacker needs k which contradicts points (1) and
(2b).

• violation of (2b): either of these:

– H,H 0 low-loc(n′)

Since Rule Lπ-High Location does not hold, by Lemma 5 this is a
contradiction.

– v = k′ for H,H ` high-cap(k′)

This can follow from another two cases

∗ forgery of k;: an ispection of the semantics rules contradicts this
∗ update of a location to k′: however k′ is not in the code (con-

tradicts point (1)) and by induction on the heap H we have that
k′ is stored in no other location, so this is also a contradiction.

♠

12.9 Proofs for the Non-Atomic Variant of Lτ (Section 8.2)
The only proof that needs changing is that for Lemma 22: there is this new
case.

For this we weaken ∼∼∼β and define ∼β as follows:

Ω∼β Ω

83

(Non Atomic State Relation)
Ω∼∼∼β Ω

Ω∼β Ω
(Non Atomic State Relation -stuck)

Ω = C,H . Π C = ∆,F, I Ω = C,H .Π
∃π ∈ Π.C 0 π : attacker

π = (hide n; s)f ;f C,H . π× ∃f ∈ dom(F). f ≈β f

∀`. ` ∈ dom(` secure(H)) n 7→ v; k ∈ H ` 6∼β 〈n,k〉 `∼β 〈n,0〉
Ω∼β Ω

Two states are now related if:

• either they are related by ∼∼∼β

• or the red process is stuck on a hide n where n 7→ v; k but ` ∼ 〈n,k〉
does not hold for a ` that is secure, and we have that ` ∼ 〈n,0〉 (as this
was after the new). And the hide on which the process is stuck is not in
attacker code.

Having this in proofs would not cause problems because now all proofs have an
initial case analysis whether the state is stuck or not, but because it steps it’s
not stuck.

This relation only changes the second case of the proof of Lemma 22 for
Rule (J·KL

τ

Lπ -New-nonat) as follows:

Proof. new· · is implemented as defined in Rule (J·KL
τ

Lπ -New-nonat).

τ 6= UN By HP

Γ ` e : τ

H . e ↪→→ v

C,H . let x = newτ e in sρ
ε−−→ C,H; ` 7→ v : τ . s[` / x]ρ

By Lemma 19 we have:

IHR1 H . JΓ ` e : τKL
τ

LπJρKL
τ

Lπ ↪→→ JΓ ` v : τKL
τ

Lπ

By Rule (J·KL
τ

Lπ -New-nonat) we get

let x = new 0 in

let xk = hide x in

let xc = J∆, Γ ` e : τKL
τ

Lπ in

x := xc with xk;

JC,∆, Γ ` sKL
τ

Lπ

84

So:

C,H . let x = new 0 in

let xk = hide x in

let xc = J∆, Γ ` e : τKL
τ

Lπ in

x := xc with xk;

JC,∆, Γ ` sKL
τ

Lπ

ε−−→ C,H,n 7→ 0 : ⊥ . let xk = hide n in

let xc = J∆, Γ ` e : τKL
τ

Lπ in

x := xc with xk;

JC,∆, Γ ` sKL
τ

Lπ

And β′ = β ∪ (`,n,0).

Now there are two cases:

• A concurrent attacker reduction performs hide n, so the state changes.

C,H,n 7→ 0 : k; k . let xk = hide n in

let xc = JC, Γ ` e : τKL
τ

Lπ in

x := xc with xk;

JC,∆, Γ ` sKL
τ

Lπ

At this stage the state is stuck: Rule ELP-hide does not apply.
Also, we have that this holds by the new β′: (`∼β′ 〈n,0〉)
And so this does not hold: (`∼β′ 〈n,k〉)
As the stuck statement is not in attacker code, we can use Rule Non
Atomic State Relation -stuck to conclude.

• The attacker does not. In this case the proof continues as in Lemma 22.

♠

12.10 Proof of Theorem 8 (Compiler J·KL
τ

LI is CC)
Proof. Analogous to that of Section 12.7.

85

12.11 Proof of Theorem 9 (Compiler J·KL
τ

LI is RSC)
Proof. Given:

HP1: M ` C : rs
HPM: M≈ϕ M
We need to prove:
TP1: M ` JCKL

τ

LI : rs
We unfold the definitions of rs and obtain:
∀A.M ` A : attacker,` A [C] : whole

HPE1: if Ω0 (A [C])
α

==⇒ _ then M ` heaps(α)

∀A.M ` A : attacker ,` A
[
JCKL

τ

Lπ

]
: whole

THE1: if HPRT Ω0

(
A
[
JCKL

τ

Lπ

])
α

==⇒ _ then THE1 M ` heaps(α)

By definition of the compiler we have that
HPISR: Ω0 (A [C])∼∼∼ϕ Ω0

(
A
[
JCKL

τ

Lπ

])
for ϕ = dom(∆),H0 such that M = ({σ} , , σ0,∆, σc) and M = ({σ} , , σ0 ,H0 , σc)
By heaps(α) and Rule LI -valid trace we get a H to induce on.

Base case: this holds by Rule LI -Monitor Step Trace Base.

Inductive case: By Rule LI -Monitor Step Trace, M ; H M ′′ holds by IH,
we need to prove M ′′; H M ′.

By Rule LI -Monitor Step e need to prove that THMR: ∃σ′.(σ, mon-care(H ,H0), σ′) ∈
 .

By HPISR and with applications of Lemmas 25 and 26 we know that
states are always related with ∼∼∼ϕ during reduction.

So by Lemma 24 (∼∼∼ϕ implies relatedness of the high heaps) we know that
HPHH mon-care(H,∆)≈ϕ mon-care(H ,H0), for H, H being the last heaps
in the reduction.

By HPM and Rule Monitor relation (adjusted for LI) we have ϕ0,∆ ` M .

By this and Rule Ok Mon (adjusted for LI) we have that

HPHR ∀mon-care(H,∆)≈ϕ mon-care(H ,H0). if ` H : ∆ then

∃σ′.(σ, mon-care(H ,H0), σ′) ∈ so by HPHH we can instantiate this
with H and H .

By Theorem 5 (Typability Implies Robust Safety in Lτ) applied to HPE1,
as J·KL

τ

Lπ operates on well-typed components, we know that HPMR: M `
heaps(α) for all α.

So by Rule Lτ -Monitor Step with HPMT we get HPHD ` H : ∆ for the H
above.

By HPHD with HPHR we get THMR ∃σ′.(σ, mon-care(H ,H0), σ′) ∈ ,
so this case holds.

86

♠

Lemma 24 (∼∼∼ϕ implies relatedness of the high heaps).

if Ω = ∆; F,F′; I; H . Π

Ω = H0 ; F ,
q

F′
yLτ

LI ; I ; E ; H .Π

Ω∼∼∼ϕ Ω

then mon-care(H,∆)≈ϕ mon-care(H ,H0)

Proof. By Rule Related states – Secure.

♠

Lemma 25 (Lτ -compiled actions preserve ∼∼∼ϕ).

∀...

if C,H . Πρ
λ−−→ C,H′ . Π′ρ′

C ,H . JC; Γ ` ΠKL
τ

LI JρKL
τ

LI

λ
==⇒ C ,H ′ . JC; Γ ` Π′KL

τ

LI Jρ′K
Lτ

LI

C,H . Πρ∼∼∼ϕ C ,H . JC; Γ ` ΠKL
τ

LI ρ

C; Γ ` Π

then C,H′ . Π′ρ′∼∼∼ϕ C ,H ′ . JC; Γ ` Π′KL
τ

LI Jρ′K
Lτ

LI

Proof. Trivial induction on the derivation of Π, analogous to Lemma 20 (Gen-
eralised compiler correctness for J·KL

τ

Lπ) and Lemma 22 (Lτ -compiled actions
preserve ∼∼∼β).

♠

Lemma 26 (LP Attacker actions preserve ∼∼∼).

∀...

if C,H . Πρ
λ−−→ C,H′ . Π′ρ′

C ,H .Π ρ
λ−−→ C ,H ′ .Π ′ρ′

C,H . Πρ∼∼∼ϕ C ,H .Π ρ

C `att Πρ
λ−−→ Π′ρ′

C `att Π ρ
λ−−→ Π ′ρ′

then C,H′ . Π′ρ′∼∼∼ϕ C ,H ′ .Π ′ρ′

87

Proof. For the source reductions we can use Lemma 16 (Lτ any non-cross reduc-
tion respects heap typing) to know that mon-care(H) = mon-care(H′), so they
don’t change the interested bits of the ∼∼∼ϕ.

Suppose this does not hold by contradiction, there can be one clause that
does not hold based on Rule Related states – Secure:

• two related high-locations ` and n point to unrelated values.

Two cases arise: creation and update of a location to an unrelated value.

Both cases are impossible because Rule ELI -assign-iso and Rule ELI -
isolate check C ` f : prog and Rule LI -Whole ensures that the attacker
defines different names from the program, so the attacker can never exe-
cute them.

88

13 FAC and Inefficient Compiled Code
We illustrate various ways in which FAC forces inefficiencies in compiled code
via a running example. Consider a password manager written in an object-
oriented language that is compiled to an assembly-like language. We elide most
code details and focus only on the relevant aspects.

1 private db: Database;
2

3 public testPwd(user: Char[8], pwd: BitString): Bool{
4 if(db.contains(user)){ return db.get(user).getPassword() == pwd; }
5 }
6 ...
7 private class Database{ ... }

The source program exports the function testPwd to check whether a user’s
stored password matches a given password pwd. The stored password is in a
local database, which is represented by a piece of local state in the variable db.
The details of db are not important here, but the database is marked private, so
it is not directly accessible to the context of this program in the source language.

Example 1 (Extensive checks). A fully-abstract compiler for the program
above must generate code that checks that the arguments passed to testPwd
by the context are of the right type [2, 6, 10, 14, 16]. In fact, the code expects
an array of characters of length 8, any other parameter (e.g., an array of objects)
cannot be passed in the source, so it must also be prevented to be passed in
the target. More precisely, a fully abstract compiler will generate code similar
to the following for testPwd (we assume that arrays are passed as pointers into
the heap).

1 label testpwd
2 for i = 0; i< 8; i++ // 8 is the legth of the user field in the previous snippet
3 add r0 i
4 load the memory word stored at address r0 into r1
5 test that r1 is a valid char encoding
6 ...

Basically, this code dynamically checks that the first argument is a character
array. Such a check can be very inefficient. �

The problem here is that FAC forces these checks on all arguments, even
those that have no security relevance. In contrast, RSC does not need these
checks. Indeed, neither of our earlier compiler, J·KL

U

LP nor J·KL
τ

Lπ , insert them.
Note that any robustly safe source program will have programmer-inserted
checks for all parameters that are relevant to the safety property of interest,
and these checks will be compiled to the target. For other parameters, the
checks are irrelevant, both in the source and the target, so there is no need to
insert them.

Example 2 (Component size in memory). Let us now consider two different
ways to implement the Database class: as a List and as a RedBlackTree. As

89

the class is private, its internal behaviour and representation of the database is
invisible to the outside. Let Clist be the program with the List implementation
and Ctree be the program with the RedBlackTree implementation; in the source
language, these are equivalent.

However, a subtlety arises when considering the assembly-level, compiled
counterparts of Clist and Ctree: the code of a RedBlackTree implementation con-
sumes more memory than the code of a List implementation. Thus, a target-
level context can distinguish Clist from Ctree by just inspecting the sizes of the
code segments. So, in order for J·KST to be fully abstract, it must produce code
of a fixed size [2, 14]. This wastes memory and makes it impossible to compile
some components. An alternative would be to spread the components in an
overly-large memory at random places i.e., use address-space layout randomiza-
tion or ASLR, so that detecting different code sizes has a negligible chance of
success [1, 7]. However, ASLR is now known to be broken [3, 8]. �

Again, we see that FAC introduces an inefficiency in compiled code (pointless
code memory consumption) even though this has no security implication here.
In contrast, RSC does not require this unless the safety property(ies) of interest
care about the size of the code (which is very unlikely in a security context,
since security by code obscurity is a strongly discouraged security practice). In
particular, the monitors considered in this paper cannot depend on code size.

Example 3 (Wrappers for heap resources). Assume that the Database class is
implemented as a List. Shown below are two implementations of the newList
method inside List which we call Cone and Ctwo. The only difference between
Cone and Ctwo is that Ctwo allocates two lists internally; one of these (shadow) is
used for internal purposes only.

1 public newList(): List{
2

3 ell = new List();
4 return ell;
5 }

1 public newList(): List{
2 shadow = new List();
3 ell = new List();
4 return ell;
5 }

Again, Cone and Ctwo are equivalent in a source language that does not allow
pointer comparison. To attain FAC when the target allows pointer comparisons,
the pointers returned by newList in the two implementations must be the same,
but this is very difficult to ensure since the second implementation does more
allocations. A simple solution to this problem is to wrap ell in a proxy object
and return the proxy [2, 12, 14, 16]. Compiled code needs to maintain a lookup
table mapping the proxy to the original object. Proxies must have allocation-
independent addresses. Proxies work but they are inefficient due to the need to
look up the table on every object access.

Another way to attain FAC is to weaken the source language, introducing
an operation to distinguish object identities in the source [13]. However, this
is a widely discouraged practice, as it changes the source language from what
it really is and the implication of such a change may be difficult to fathom for
programmers and verifiers. �

90

In this example, FAC forces all privately allocated locations to be wrapped
in proxies, however RSC does not require this. Our target languages LP and
Lπ support address comparison (addresses are natural numbers in their heaps)
but J·KL

U

LP and J·KL
τ

Lπ just use capabilities to attain security efficiently. On the
other hand, for attaining FAC , capabilities alone would be insufficient since they
do not hide addresses; proxies would still be required (this point is concretely
demonstrated in Section 14).

Example 4 (Strict termination vs divergence). Consider a source language that
is strictly terminating while a target language that is not. Below is an extension
of the password manager to allow database encryption via an externally-defined
function. As the database is not directly accessible from external code, the two
implementations below Cenc (which does the encryption) and Cskip which skips
the encryption are equivalent in the source.

1 public encryptDB(func : Database
→Bitstring) : void {

2 func(this.db);
3 return;
4 }

1 public encryptDB(func : Database
→Bitstring) : void {

2

3 return;
4 }

If we compile Cenc and Cskip to an assembly language, the compiled coun-
terparts cannot be equivalent, since the target-level context can detect which
function is compiled by passing a func that diverges. Calling the compilation
of Cenc with such a func will cause divergence, while calling the compilation of
Cskip will immediately return. �

This case presents a situation where FAC is outright impossible. The only
way to get FAC is to make the source language artificially non-terminating,
see the work of Devriese et al. (author?) [5] for more details of this particular
problem. On the other hand, RSC can be easily attained even in such settings
since it is completely independent of termination in the languages (note that
program termination and nontermination are both different from the monitor
getting stuck on an action, which is what RSC cares about). Indeed, if our
source languages LU and Lτ were restricted to terminating programs only, the
same compilers and the same proofs of RSC would still work.

Remark It is worth noting that many of the inefficiencies above could be
resolved by just replacing contextual equivalence with a different equivalence
in the statement of FAC . However, it is not known how to do this generally
for arbitrary sources of inefficiency and, further, it is unclear what the security
consequences of such instantiations of FAC would be. On the other hand, RSC
is uniform and it does address all these inefficiencies.

An issue that can normally not be addressed just by tweaking equivalences
is side-channel leaks, as they are, by definition, not expressible in the language.
Neither FAC nor RSC deals with side channels, but recent results describe how
to account for side channels in secure compilers [4].

91

14 Towards a Fully Abstract Compiler from LU

to LP

This section sketches a fully abstract compiler from LU to LP.

14.1 Language Extensions to LU and LP

This section lists the language extensions required by the compiler. It is not
possible to motivate all of them before explaining the details of the compiler, so
some of the justification is postponed to Section 14.2.

A first concern for full abstraction is that a target context can always de-
termine the memory consumption of two compiled components, analogously to
Example 2. To ensure that this does not break full abstraction, we add a source
expression size that returns the amount of locations ` allocated in the current
heap H.

In the target language LP, we need to know whether an expression is a pair,
whether it is a location, and we need to be able to compare two capabilities.
For this, we add the expression constructs isloc(e), ispair(e) and eqcap(e, e),
respectively.

Finally, compiled code needs private functions for its runtime checks that
must not be visible to the context. LP does not have this functionality: all
functions defined by a component can be called by the context. Now we modify
LP so that all functions F defined in a component are by default private to
it. Additionally, each component must explicitly define the list of functions it
exports (typically a subset of F), so that those are the only ones that can be
called by the context and the rest are private to the component.

14.2 The *·+LULP Compiler

*·+LU

LP is similar to J·KL
U

LP but with critical differences. We know that fully abstract
compilation preserves all source abstractions in the target language. Here, the
only abstraction that distinguishes LP from LU is that locations are abstract in
LP, but concrete natural numbers in LU. Thus, locations allocated by compiled
code must not be passed directly to the context as this would reveal the alloca-
tion order (as seen in Example 3). Instead of passing the location 〈n,k〉 to the
context, the compiler arranges for an opaque handle 〈n′,kcom〉 (that cannot be
used to access any location directly) to be passed. Such an opaque handle is
often called a mask or seal in the literature.

To ensure that masking is done properly, *·+LU

LP inserts code at entry points
and at exit points to compiled code, wrapping the compiled code in a way that
enforces masking. This notion of wrapping is standard in literature on fully
abstract compilation [6, 16]. The wrapper keeps a list L of component-allocated
locations that are shared with the context in order to know their masks. When
a component-allocated location is shared, it is added to the list L. The mask of
a location is its index in this list. If the same location is shared again it is not

92

added again but its previous index is used. So if 〈n,k〉 is the 4th element of L,
its mask is 〈4,kcom〉. To implement lookup in L we must compare capabilities
too, so we rely on eqcap. To ensure capabilities do not leak to the context,
the second field of the pair is a constant capability kcom whose location the
compiled code does not use otherwise. Technically speaking, this is exactly how
existing fully abstract compilers operate (e.g., [14]).

As should be clear, this kind of masking is very inefficient at runtime. How-
ever, even this masking is not sufficient for full abstraction. Next, we explain
additional things the compiler must do.

Determining when a Location is Passed to the Context. A component-
allocated location can be passed to the context not just as a function argument
but on the heap. So before passing control to the context the compiled code
needs to scan the whole heap where a location can be passed and mask all found
component-allocated locations. Dually, when receiving control the compiled
code must scan the heap to unmask it. The problem now is determining what
parts of the heap to scan and how. Specifically, the compiled code needs to
keep track of all the locations (and related capabilities) that are shared, i.e., (i)
passed from the context to the component and (ii) passed from the component
to the context. These are the locations on which possible communication of
locations can happen. Compiled code keeps track of these shared locations in
a list S. Intuitively, on the first function call from the context to the compiled
component, assuming the parameter is a location, the compiled code will register
that location and all other locations reachable from it in S. On subsequent ?
(incoming) actions, the compiled code will register all new locations available as
parameters or reachable from S. Then, on any ! (outgoing) action, the compiled
code must scan whatever locations (that the compiled code has created) are
now reachable from S and add them to S. We need the new instructions isloc
and ispair in LP to compute these reachable locations. Of course, this kind of
scanning of locations reachable from S at every call/return between components
can be extremely costly.

Enforcing the Masking of Locations The functions mask and unmask
are added by the compiler to the compiled code. The first function takes a
location (which intuitively contains a value v) and replaces (in v) any pair
〈n,k〉 of a location protected with a component-created capability k with its
index in the masking list L. The second function replaces any pair 〈n,kcom〉
with the nth element of the masking list L. These functions should not be
directly accessible to the context (else it can unmask any mask’d location and
break full abstraction). This is why LP needs private functions.

Letting the Context use Masked Locations Masked locations cannot be
used directly by the context to be read and written. Thus, compiled code must
provide a read and a write function (both of which are public) that implement
reading and writing to masked locations.

93

As should be clear, code compiled through *·+LU

LP has a lot of runtime over-
head in calculating the heap reachable from S and in masking and unmasking
locations. Additionally, it also has code memory overhead: the functions read,
write, mask, unmask and list manipulation code must be included. Finally,
there is data overhead in maintaining S, L and other supporting data struc-
tures to implement the runtime checks described above. In contrast, the code
compiled through J·KL

U

LP (which is just robustly safe and not fully abstract) has
none of these overheads.

14.3 Proving that *·+LULP is a Fully Abstract Compiler

Using *·+LU

LP as a concrete example, we now discuss why proving FAC is harder
than proving RSC . Consider the hard part of FAC , the forward implica-
tion, C1'ctx C2 ⇒ JC1K

S
T'ctx JC2K

S
T. The contrapositive of this statement is

JC1K
S
T 6'ctx JC2K

S
T ⇒ C1 6'ctx C2. By unfolding the definition of 6'ctx we see that,

given a target context C that distinguishes JC1K
S
T from JC2K

S
T, it is necessary to

show that there exists a source context C that distinguishes C1 from C2. That
source context C must be built (backtranslated) starting from the already given
target context C that differentiates JC1K

S
T from JC2K

S
T.

A backtranslation directed by the syntax of the target context C is hopeless
here since the target expressions iscap and isloc cannot be directly backtrans-
lated to valid source expressions. Hence, we resort to another well-known tech-
nique [2, 16]. First, we define a fully abstract (labeled) trace semantics for the
target language. A trace semantics is fully abstract when its notion of equiva-
lence coincides with contextual equivalence, and thus can be used in place of the
latter. Specifically, this means that two components are contextually inequiv-
alent iff their trace semantics differ in at least one trace. We write TR(C) to
denote the traces of the component C in this fully abstract semantics. Given
this trace semantics, the statement of the forward implication of full abstraction
reduces to:

TR(*C1+L
U

LP) 6= TR(*C2+L
U

LP)⇒ C1 6'ctx C2.

The advantage of this formulation over the original one is that now we can
construct a distinguishing source context for C1 and C2 using the trace on which
TR(*C1+L

U

LP) and TR(*C2+L
U

LP) disagree. While this proof strategy of constructing
a source context from a trace is similar to our proof of RSC , it is fundamentally
much harder and much more involved. There are two reasons for this.

First, fully abstract trace semantics are much more complex than our simple
trace semantics of LP from earlier sections. The reason is that our earlier trace
semantics include the entire heap in every action, but this breaks full abstrac-
tion of the trace semantics: such trace semantics also distinguish contextually
equivalent components that differ in their internal private state. In a fully ab-
stract trace semantics, the trace actions must record only those heap locations
that are shared between the component and the context. Consequently, the

94

definition of the trace semantics must inductively track what has been shared
in the past. In particular, the definition must account for locations reachable
indirectly from explicitly shared locations. This complicates both the definition
of traces and the proofs that build on the definition.

Second, the source context that the backtranslation constructs from a target
trace must simulate the shared part of the heap at every context switch. Since
locations in the target may be masked, the source context must maintain a map
with the source locations corresponding to the target masked ones, which com-
plicates it substantially. We call this map B. Now, this affects two patterns of
target traces that need to be handled in a special way: call read v H? · ret H′!
and call write v H? · ret H′!. Normally, these patterns would be translated
in source-level calls to the same functions (read and write), but this is not possi-
ble. In fact, the source code has no read nor write function, and the target-level
calls to those functions need to be backtranslated to the corresponding source
constructs (! and :=, respectively). The locations used by these constructs must
be looked up from B as these are reads and writes to masked locations. More-
over, calls and returns to read can be simply ignored since the effects of reads
are already captured by later actions in traces. Calls and returns to write can-
not be ignored as they set up a component location (albeit masked) in a certain
way and that affects the behaviour of the component. We show in Example 5
how to backtranslate calls and returns to write.

Example 5 (Backtranslation of traces). Consider the trace below and its back-
translation.

(1) call f 0 1 7→ 4?
(2) ret 1 7→ 〈1,kcom〉 !

(3)

[
call write 〈〈1,kcom〉 ,5〉 1 7→ 〈1,kcom〉 ?
ret 1 7→ 〈1,kcom〉 !

main(x) 7→
let x = new 4 in L :: 〈x, 1〉
call f 0

]
(1)

let x =!L(1) in B :: 〈x, 1〉] (2)
!B(1) := 5

]
(3)

The first action, where the context registers the first location in the list L, is
as before. Then in the second action the compiled component passes to the
context (in location 1) a masked location with index 1 and, later, the context
writes 5 to it. The backtranslated code must recognise this pattern and store
the location that, in the source, corresponds to the mask 1 in the list B (action
2). In action 3, when it is time to write 5 to that location, the code looks up
the location to write to from B. �

It should be clear that this proof of FAC is substantially harder than our
corresponding proof of RSC , which needed neither fully abstract traces, nor
tracking any mapping in the backtranslated source contexts.

15 A Fully Abstract Compiler from LU to LP

We perform the aforementioned changes to languages.

95

15.1 The Source Language LU

In LU we need to add a functionality to get the size of a heap, as that is an
observable that exists in the target. In fact, in the target if one allocates some-
thing, that reveals how much it’s been allocated entirely.

Components C ::= F; I; E

Exports E ::= f

Expressions e ::= · · · | size

(LU-Size)

||H|| = n

H . size ↪→ n

Helpers

(LU-Jump-Internal)

((f ′ ∈ I ∧ f ∈ I)∨
(f ′ ∈ E ∧ f ∈ E))

I,E ` f, f ′ : internal

(LU-Jump-IN)

f ∈ I ∧ f ′ /∈ E

I,E ` f, f ′ : in

(LU-Jump-OUT)

f ∈ E ∧ f ′ ∈ I

I,E ` f, f ′ : out

(LU-Plug)

A ≡ H; F [·] C ≡ F′; I; E ` C,F : whole main ∈ names(F)
∀f ∈ E, f /∈ fn(F) ∀f ∈ fn(F′), f ∈ I ∨ f ∈ F′

A [C] = H; F; F′; I; E
(LU-Whole)

C ≡ F′; I; E
names(F) ∩ names(F′) = ∅

names(I) ⊆ names(F) ∪ names(F′)
fv(F) ∪ fv(F′) = ∅
` C,F : whole

(LU-Initial State)

P ≡ H; F; I; E
C ≡ F; I; E

Ω0 (P) = C; H . call main 0

The semantics is unchanged, it only relies on the new helper functions above.

15.2 The Target Language LP

15.2.1 Syntax Changes

Components C ::= F; I; E; kroot,kcom

Exports E ::= f

Expressions e ::= · · · | isloc(e) | ispair(e) | eqcap(e, e)

Trace states Θ ::= (C; H; n . (t)f)

Trace bodies t ::= s | unk

Trace labels δ ::= ε | β

96

Trace actions β ::= call f v H? | call f v H! | ret H! | ret H? | ↓ | ↑ | write(v,n)

Traces β ::= ∅ | β · β

We assume programs are given two capabilities they own: kroot and kcom and
that the attacker does not have. The former is used to create a part of the
heap for component-managed datastructures. The latter does not even hide a
location, we need it as a placeholder.

Traces in this case have the same syntactic structure as before, but they
do not carry the whole heap. So we use a different symbol (β), to visually
distinguish between the two traces and the kind of information carried by them.

We need a write label write(v,n) that tells that masked location n has been
updated to value v. This captures the usage of compiler-inserted functions to
read and write masked locations (concepts that will be clear once the compiler
is defined). The read label is not needed because its effect are captured anyway
by call/return.

Trace states are either operational semantics states or an unknown state,
mimicking the execution in a context. The former has an addtional element n,
the list of locations shared with the context. The latter carries the information
about the component and the heap comprising the one private to the component
and the one shared with the context. It also carries the stack of function calls,
where we add symbol unk to indicate when the called function was in the
context.

Helper functions are as above.

15.2.2 Semantics Changes

In LP we need functionality to tell if a pair is a location or not and to traverse
values in order to extract such locations.

(LP-isloc)

(H . e ↪→ 〈n,v〉 n 7→ _; η ∈ H η = v or η = ⊥)⇒ b = true
otherwise b = false
H . isloc(e) ↪→ b

(LP-ispair)

H . e ↪→ 〈v,v〉 ⇒ b = true
otherwise b = false
H . ispair(e) ↪→ b

These are used to traverse the value stored at a location and extract all sublo-
cations stored in there. There may be pairs containing pairs etc, and thus when
we need to know if something is a pair before projecting out. Also, we need
to know if a pair is a location or not, in order to know whether or not we can
dereference it.

Additionally, we need a functionality to tell if two capabilities are the same.
Now, this could be problematic because it could reveal capability allocation
order and thus introduce observations that we do not want. However, the com-
piler will ensure that the context only receives kcom as a capability and never

97

a newly-allocated capability. So the context will not be able to test equality of
capabilities generated by the compiled component as it will effectively see only
one.

(LP-eqcap-true)

H . e ↪→ k H . e′ ↪→ k
H . eqcap(e, e′) ↪→ true

(LP-eqcap-false)

H . e ↪→ k H . e′ ↪→ k′ k 6= k′

H . eqcap(e, e′) ↪→ false

15.2.3 A Fully Abstract Trace Semantics for LP

Θ
β−−→→ Θ′ State Θ emits visible action β becoming Θ′.

Θ
β

==⇒⇒ Θ′ State Θ emits trace β becoming Θ′.

Helper functions

(Reachable)

n ∈ reach(nst,kst,H) nst 7→ _ : _ ∈ H′

kst ∈ kroot ∪H′ n 7→ v : η ∈ H

H ` reachable(n,H′)

(Valid value)

∀k ∈ H. k /∈ v
` valid(v,H)

(Valid heap)

H = Hpriv ∪Hsha H′ = Hpriv ∪H′sha ∪Hnew

H′′ = H′sha ∪Hnew dom(H) = n dom(H′′) = n′

k ∈ Hsha ⇐⇒ k ∈ H′sha
∀k′ ∈ Hnew. k′ /∈ Hpriv ∪Hsha

∀n 7→ v; η ∈ Hsha. n 7→ v′′; η ∈ H′sha∧ ` valid(v′′,H)
∀n′ 7→ v′ : η′ ∈ Hnew. ` valid(v′,Hpriv ∪H′sha)∧

H′′ ` reachable(v′,Hpriv ∪H′sha)

` validHeap(H,H′,H′′,n,n′)

Θ
β−−→→ Θ′

(LP-Traces-Silent)

(C; H; n . (s)f)
ε−−→ (C; H′; n . (s′)f ′)

(C; H; n . (s)f)
ε−−→→ (C; H′; n . (s′)f ′)

(LP-Traces-Call)

C = F; I; E f ∈ E f(x) 7→ s; return; ∈ F
f ′ = f · f H ` valid(v)
` validHeap(H,H′′,H′,n,n′)

(C; H; n . (unk)f)
call f v H′?−−−−−−−−−−→→ (C; H′′; n′ . (s; return;)f ′)

98

(LP-Traces-Returnback)

f = f ′ · f
` validHeap(H,H′′,H′,n,n′)

(C; H; n . (unk)f)
ret ?H′

−−−−−−→→ (C; H′′; n′ . (skip)f ′)

(LP-Traces-Callback)
s = call f e H . e ↪→ v

C = F; I; E f ′ = f · f f ∈ I
n ⊆ n′ = {n | H ` reachable(n,H)} H′ = H|n′

(C; H; n . (s)f)
call f v H′!−−−−−−−−−→→ (C; H; n′ . (unk)f ′)

(LP-Traces-Return)

C = F; I; E f = f ′ · f f ∈ E
n ⊆ n′ = {n | H ` reachable(n,H)} H′ = H|n′

(C; H; n . (return;)f)
ret !H′

−−−−−−→→ (C; H; n′ . (unk)f ′)

(LP-Traces-Terminate)

(C; H; n . (s)f) 6
ε−−→ _

(C; H; n . (s)f)
↓−−→→ (C; H; n . (s)f)

(LP-Traces-Diverge)

∀n. (C; H; n . (s)f)
ε−−→n (C; H′; n′ . (s′)f ′)

(C; H; n . (s)f)
↑−−→→ (C; H; n . (s)f)

(LP-Traces-Write)

C = F; I; E write ∈ E write(x) 7→ s; return; ∈ F

C; H . s[n / x]; return; −→ ∗C; H′ . return;

(C; H; n . (unk)f)
write(v,n)−−−−−−−−→→ (C; H′; n . (unk)f)

(LP-Traces-Read)

C = F; I; E read ∈ E read(x) 7→ s; return; ∈ F

C; H . s; return; −→ ∗C; H′ . return;

(C; H; n . (unk)f)
ε−−→→ (C; H′; n . (unk)f)

Θ
β

==⇒⇒ Θ′

(ELP-single)

Ω =⇒ Ω′′ Ω′′
β−−→ Ω′

Ω
β

==⇒ Ω′

(ELP-silent)

Ω
ε−−→ Ω′

Ω =⇒ Ω′

(ELP-trans)

Ω
β

==⇒ Ω′′ Ω′′
β′

===⇒ Ω′

Ω
β·β′

====⇒ Ω′

99

(LP-Traces-Initial)

n ∈ n ⇐⇒ n 7→ v; η ∈ H main /∈ dom(F) C = F; I; E

Θ0 (C) = (C; H; n . (unk)main)

TR(C) =

{
β

∣∣∣∣ Θ0 (C)
β

==⇒⇒ _
}

15.2.4 Results about the Trace Semantics

The following results hold for C1 = *C1+L
U

LP and C2 = *C2+L
U

LP .

Property 1 (Heap locations). AS mentioned, the trace semantics carries the
whole shared heap: locations created by the compiled component and then
passed to the context and locations created by the context and passed to the
compiled component. We can really partition the heap as follows then:

location \creator *C+L
U

LP C
private (1) to *C+L

U

LP (2) to C
shared (3) with C (4) with *C+L

U

LP

Now, for compiled components there never are locations of kind 3. That is
because those locations are masked and never passed, never made accessible to
the context. So really, the trace semantics only collects locations of kind 4 on
the traces.

Lemma 27 (Correctness).

if C1'ctx C2

then TR(C1) = TR(C2)

Proof Sketch. By contraposition:

if TR(C1) 6= TR(C2)

then ∃A. A [C1]
⇓ ∧A [C2]⇑(wlog)

We are thus given β1 = β · β1 and β2 = β · β2 and β1 6= β2.
We can construct a context A that replicates the behaviour of β and then

performs the differentiation.
This is a tedious procedure that is analogous to existing results [9, 15] and

analogous to the backtranslation of Section 4.2.
The actions only share the heap that is reachable from both sides, the heap

that is private to the component is never touched, so reconstructing the heap is
possible. The reachability conditions on the heap also ensure this.

The differentiation is based on differences on the actions which are visible
and reachable, so that is also possible. 2

100

Lemma 28 (Completeness).

if TR(C1) = TR(C2)

then C1'ctx C2

Proof Sketch. By contradiction let us assume that

∃A. A [C1] ⇓ ∧A [C2]⇑(wlog)

Contexts are deterministic, so they cannot behave differently based on the
values of locations that are never shared with C1 or C2.

The semantics forbids guessing, so a context will never have access to the
locations that C1 or C2 do not share.

Thus a context can exhibit a difference in behaviour by relying on something
that C1 modified unlike C2 and that can be:

• a parameter passed in a call.

This contradicts the hypothesis that the trace semantics is the same as
that parameter is captured in the call f v H! label.

• the value of a shared location.

This contradicts the hypothesis that the trace semantics is the same as all
locations that are reachable both by the context and by C1 and C2 are
captured on the labels

Having reached a contradiction, this case holds. 2

Lemma 29 (Full abstraction of the trace semantics for compiled components).

TR(*C1+L
U

LP) = TR(*C2+L
U

LP) ⇐⇒ *C1+L
U

LP 'ctx *C2+L
U

LP

Proof. By Lemmas 27 and 28.

15.3 The Compiler *·+LULP

*F; I; E+L
U

LP = *F+L
U

LP , read(x) 7→ sread,write(x) 7→ swrite,

mask(x) 7→ smask,unmask(x) 7→ sunmask, · · · ;

*I+L
U

LP ;

*E+L
U

LP , read,write;

kroot,kcom

(*·+LU

LP -Comp)

101

*f(x) 7→ s; return;+L
U

LP = f(x) 7→ sadd(x);

spre;

JsKL
U

LP ;

spost;

return;

(*·+LU

LP -Function)

*f+L
U

LP = f (*·+LU

LP-Interfaces)

*f+L
U

LP = f (*·+LU

LP-Exports)

Expression translation unmodified:*e+L
U

LP = JeKL
U

LP

Statement translation unmodified except for

*let x = new e in s+L
U

LP = let xloc = new *e+L
U

LP in

let xcap = hide xloc in

sregister(xloc,xcap);

let x = 〈xloc,xcap〉 in *s+L
U

LP

(*·+LU

LP-New)

*call f e+L
U

LP = let x = *e+L
U

LP in sadd(x); spost; call f x; spre

(*·+LU

LP-Call)

So the compiler is mostly unchanged.
The compiled code will maintain the following invariant:

• no locations (even though protected by capabilities) are ever made acces-
sible “in clear” to the context;

• “made accessible” means either passed as a parameter or through a shared
location;

• instead, before passing control to the context, all component-created lo-
cations that are shared with the context are masked, i.e., their represen-
tation 〈n,k〉 is replaced with 〈n′,kcom〉, where n′ is their index in the list
of shared locations that the compiled component keeps.

• when receiving control from the context, the compiled component ensures
that all component-created locations that are shared are unmasked, i.e.,
upon regaining control the component replaces all values 〈n′,kcom〉 that
are sub-values of reachable locations with 〈n,k〉, which is the n′th pair in
the list of component-allocated locations;

• what is a “component-shared” location? A shared location is a pair 〈n,k〉
where (i) k is a capability created by the compiled component and (ii) the
pair is stored in the heap at a location that the context can dereference
(perhaps not directly).

• In order to define what is a shared location, the compiled component keeps
a list of all the locations that have been passed to it and that the context

102

created. These locations can only be in 〈n,_〉 form, where _ is either a
capability or not depending whether the context hid the location. These
locations can only be pairs since we know that a compiled component will
only use pairs as locations, mimicking the source semantics.
We normally do not know what locations will be accessed, but given a
parameter that is a location, we can scan its contents to understand what
new locations are passed.

• The compiled component thus can keep a list of “shared” locations: those
whose contents are accessible both by the context and by itself. These lo-
cations created by the context are acquired as parameters or as locations
reachable by a parameter. These locations created by the component are
tracked as those hidden with a component-created capability and reach-
able from a shared location.

• The only concern that can arise is if we create location n and then add it
to the list of shared locations at index n′. That location 〈n,k〉 would be
masked as 〈n′,kcom〉, which grants the context direct access to it. This
is where we need to use kcom as leaking different capabilities would lead
to differentiation between components. Fortunately, the context starts
execution and, in order to call the compiled component, it must allocate
at least one location, so this problem cannot arise.

15.3.1 Syntactic Sugar

The languages we have do not let us return directly a value. In the following
however, for readability, we write

let x = func v in s

to intend: call function func with parameter v and store its returned value in
x for use in s.

We indicate how that statement can be expressed in our language with the
following desugaring:

let y = new 0 in let z = 〈v,y〉 in call func z; let x =!z.2 with 0 in s

15.3.2 Support Data Structures

The compiler relies on a number of data structures it keeps starting from location
0, which is accessible via kroot.

These data structures are:

• a list of capabilities, which we denote with K. These capabilities are those
that the compiled component has allocated.

• a list of component-allocated locations, which we denote with L. These
are locations 〈n,k〉 that are created by the compiled component and whose
k are elements of K

103

• a list of shared locations, which we denote with S. These are either (i)
locations that are created by the context and passed to the compiled com-
ponent or (ii) locations that are created by the compiled component and
passed to the context.

Given a list L of elements e, we use these helper functions:

• indexof(L, e) returns n, the index of e in L, or 0 if e is not in L;

• L(n) returns the nth element e of L or 0 if the list length is shorter than
n;

• L :: e if e is not in L, it adds element e to the list, increasing its length by
1;

• rem(L, e) removes element e from L;

• e ∈ L returns true or false depending on whether e is in L or not.

We keep this abstract syntax for handling lists and do not write the necessary
recursive functions as they would only be tedious and hardly readable. Realis-
tically, we would also need a temporary list for accumulating results etc, again,
this is omitted for simplicity and readability.

15.3.3 Support Functions

Read

sread = let xn=x.1.1 in

let xk=x.1.2 in

let xreal=L(xn) in

let xdest=x.2.1 in

let xdcap=x.2.2 in

let xval=!xreal with xk in

xdest := xval with xdcap

In order to read a location 〈n,k〉, we receive that as the first projection of
parameter x. Because we do not explicitly return values, we need the second
projection of x to contain the destination where to target receives the result of
the read.

We split the pair in the masking index xn and in the capability to access
the location xk. Then we lookup the location in the list of component-created
locations and return its value. We do not need to mask its contents as we know
that they have already been masked when this location was shared with the
context (line 5 of the postamble). We do not need to add its contents to the list
of shared locations as that is already done in lines 2 and 3 of the postamble.

104

Write

swrite = let xn=x.1.1 in

let xk=x.1.2 in

let xreal=L(xn) in

xreal := x.2 with xk;

In order to write value v a location 〈n,k〉 we receive a parameter structured
as follows: x ≡ 〈n,k〉 ,v. Then we unfold the elements of the parameter and
lookup element n in the list of component-defined locations. We use this looked-
up element to write the value v there.

We do not need to mask v because it cannot point to locations that are
created by the compiled component.

At this stage, v may contain new locations created by the context and that
are now shared. We do not add them now to the list of shared locations be-
cause we know that upon giving control again to the compiled component, the
preamble will do this.

Mask

smask = ∀〈n,k〉 ∈ x. isloc(〈n,k〉)
if k ∈ K

replace 〈n,k〉 with
〈
indexof(L,n),kcom

〉
We use the abstract construct replace... to indicate the following. We want to
keep the value passed as parameter x unchanged but replace its subvalues that
are pairs and, more specifically, component-created locations, with a pair with
its location masked to be the index in the list of component-allocated locations.

This can be implemented by checking the sub-values of a value via the ispair
and isloc expressions, we omit its details for simplicity. To ensure ∈ K is
implementable, we use the eqcap expression.

Masked locations cannot mention their capability or they would leak this
information and generate different traces for equivalent compiled programs.

Unmask

sunmask = ∀〈n,k〉 ∈ x

if k == kcom

replace 〈n,k〉 with L(n)

In the case of unmasking, we receive a value through parameter x and we know
that there may be subvalues of it of the form 〈n,k〉 where n is an index in the
component-created shared locations. So we lookup the element from that list
and replace it in x.

105

15.3.4 Inlined Additional Statements (Preamble, Postamble, etc)

Adding

sadd(x) = if isloc(x) then

S :: x;

if x.2 ∈ K then L :: x else skip

This common part ensures that the parameter x is added to the list of shared
locations (line 1) and then, if the capability is locally-created, it is also added
to the list of locally-shared locations (line 2).

The second line is for when this code is called before a *call f+L
U

LP .

Registration

sregister(xloc,xcap) = K :: xcap;

This statement registers capability xcap in the list of component-created capa-
bilities.

Preamble The preamble is responsible of adding all context-created locations
to the list of shared locations and to ensure that all contents of shared locations
are unmasked, as the compiled code will operate on them.

spre = ∀〈n,k〉 ∈ reach(S). isloc(〈n,k〉)
if 〈n,k〉 /∈ S then S :: 〈n,k〉 ; else skip

∀〈n,k〉 ∈ S. isloc(〈n,k〉)
let x = unmask(!n with k) in n := x with k

First any location that is reachable from the shared locations (line 1) and that
is not a shared location already is added to the list of shared locations (line
2). By where this code is placed we know that these new locations can only be
context-created.

Then, for all shared locations (line 3), we unmask their contents using the
unmask function (line 4).

Postamble The postamble is responsible of adding all component-created lo-
cations to the list of shared locations and of component-created shared locations
and to ensure that all shared locations are masked as the context will operate
on them.

spost(x) = ∀〈n,k〉 ∈ reach(S). isloc(〈n,k〉)
if 〈n,k〉 /∈ S then S :: 〈n,k〉 ; L :: 〈n,k〉 ; else skip

∀〈n,k〉 ∈ S. isloc(〈n,k〉)
let x = mask(!n with k) in n := x with k

106

Then for all locations that are reachable from a shared location (line 1), and
that are not already there (line 2), we add those locations to the list of shared
locations and to the list of component-created shared locations (line 2). Then
for all shared locations (line 3), we mask their contents using the mask function
(line 4).

15.4 The Trace-based Backtranslation: 〈〈 · 〉〉L
P

LU

Value backtranslation is the same, so
〈〈

v
〉〉LP

LU = 〈〈v〉〉L
P

LU .

15.4.1 The Skeleton

The skeleton is almost as before (Section 4.2.2), with the only addition of another
list B explained below.

The only additions are two functions terminate and diverge, which do what
their name suggests:

terminate(x) 7→ fail

diverge(x) 7→ call diverge 0

15.4.2 The Common Prefix

call f v H? As in Rule (〈〈·〉〉L
P

LU -call), we keep a list of the context-allocated
locations and we update them. Also, we extend that list.

ret ?H As above.

call f v H! This is analogous to Rule (〈〈·〉〉L
P

LU -callback-loc) but with a major
complication.

Now this is complex because in the target we don’t receive locations 〈n,k〉
from the compiled component, but masked indices 〈i,kcom〉. (using i as a
metavariable for natural numbers outputted by the masking function) We
need to extract them based on where they are located in memory, knowing
that the same syntactic structure is maintained in the source. So what
before was relying on the relation on values `≈β 〈n,k〉 now is no longer
true because we have `≈β 〈i,kcom〉 which cannot hold. We need to keep
a this relation as a runtime argument in the backtrnanslation and base it
solely on the syntactic occurrencies of 〈i,kcom〉. So this runtime relation
maps target masking indices to source locations.

So this relation is really a list B where each entry has the form
〈〈〈

i
〉〉LP

LU
, `

〉
.

Intuitively, consider heap H from the action. For all of its content n 7→ v : η,
we do a structural analysis of v. This happens at the meta-level, in the
backtranslation algorithm. v may contain subvalues of the form 〈i,kcom〉,
and accessing this subvalue we know is a matter of ·.1 etc. So we produce

107

an expression e with the same instructions (·.1 etc) in the source in order
to scan at runtime the heap H we receive after the callback is done. (so
after the action here is executed and where backtranslation code executes)
Given that expression e evaluate to location `, we now need to add to B

the pair 〈i, `〉 (also given that i=
〈〈

i
〉〉LP

LU
).

ret !H As above.

write(v, i) In this case we need to make use of the runtime-kept relation B. We
need to know what source location ` corresponds to i so we can produce
the correct code: ` :=

〈〈
v
〉〉LP

LU .

` is looked up as B(
〈〈

i
〉〉LP

LU
).

15.4.3 The Differentiator

The differentiator needs to put the right code at the right place. The backtrans-
lation already carries all necessary information to know what the right place is,
this is as in previous work: the index of the action i (at the meta level) stored
in location `i (at runtime) and the call stack f

We now go over the various cases of trace difference and see that the differ-
entiation code exists. We consider α1 to be the last action in the trace of JC1K

S
T

while α2 is the last one of JC2K
S
T, both made after a common prefix.

α1 = call f v H! and α2 = call g v H! Code if !`i == i then call terminate 0 else skip
is placed in the body of f while the code if !`i == i then call diverge 0 else skip
is placed in the body of g.

α1 = call f v H! and α2 = call f w H! Code

if !` == i then

if x ==
〈〈

v
〉〉LP

LU then call terminate 0 else call diverge 0 else skip

is placed in f.

α1 = call f v H! and α2 = call f v H′! Here few cases can arise, consider
H = H1,n 7→ v : η,H2 and H′ = H1,n

′ 7→ v′ : η′,H′2:

v 6= v′ We use shortcut Lglob(n) to indicate the location bound to name n
in the list of shared locations (same as in Section 4.2.3).
Code

if !`i == i then

let x=Lglob(
〈〈

n
〉〉LP

LU) in

if x ==
〈〈

v
〉〉LP

LU then call terminate 0 else call diverge 0

else skip

108

is placed in the body of f.

n 6= n′ In this case one of the two addresses must be bigger than the other.
Wlog, let’s consider n = n′ + 1.
So H1= H′1,n

′ 7→ v′; η′ and H′2=∅ (otherwise we’d have a binding
for n there).
The code in this case must access the location related to n, it will
get stuck in one case and succeed in the other:

if !`i == i then let x = update(
〈〈

n
〉〉LP

LU , 0) in call diverge 0 else skip

η 6= η′ Two cases arise:

• the location is context-created: in this case the tag must be the
same, so we have a contradiction;

• the location is component-created, but in this case we know that
no such location is ever passed to the context (see Property 1),
so we have a contradiction.

α1 = ret H! and α2 = ret ! As above.

α1 = call f v H! and α2 = ret ! Code if !`i == i then call terminate 0 else skip
is placed at f while if !`i == i then call diverge 0 else skip is placed at the
top of f.

α1 = call f v H! and α2 = ↓ Code if !`i == i then call diverge 0 else skip is placed
at f.

α1 = call f v H! and α2 = ↑ Code if !`i == i then call terminate 0 else skip is
placed at f.

α1 = ret H! and α2 = ↓ Code if !`i == i then call diverge 0 else skip is placed
at the top of f.

α1 = ret H! and α2 = ↑ Code if !`i == i then call terminate 0 else skip is placed
at the top of f.

α1 = ↓ and α2 = ↑ Nothing to do, the compiled component performs the dif-
ferentiation on its own.

109

References
[1] Martín Abadi and Gordon D. Plotkin. On protection by layout randomiza-

tion. ACM Transactions on Information and System Security, 15:8:1–8:29,
July 2012.

[2] Pieter Agten, Raoul Strackx, Bart Jacobs, and Frank Piessens. Secure
compilation to modern processors. In 2012 IEEE 25th Computer Security
Foundations Symposium, CSF 2012, pages 171–185. IEEE, 2012.

[3] Antonio Barresi, Kaveh Razavi, Mathias Payer, and Thomas R. Gross.
CAIN: Silently breaking ASLR in the cloud. In 9th USENIX Workshop
on Offensive Technologies (WOOT 15), Washington, D.C., 2015. USENIX
Association.

[4] G. Barthe, B. Grégoire, and V. Laporte. Secure compilation of side-channel
countermeasures: The case of cryptographic “constant-time”. In 2018 IEEE
31st Computer Security Foundations Symposium (CSF), pages 328–343,
2018.

[5] Dominique Devriese, Marco Patrignani, and Frank Piessens. Parametricity
versus the universal type. Proc. ACM Program. Lang., 2(POPL), December
2017.

[6] Cedric Fournet, Nikhil Swamy, Juan Chen, Pierre-Evariste Dagand, Pierre-
Yves Strub, and Benjamin Livshits. Fully abstract compilation to
JavaScript. In Proceedings of the 40th annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’13, pages
371–384, New York, NY, USA, 2013. ACM.

[7] Radha Jagadeesan, Corin Pitcher, Julian Rathke, and James Riely. Lo-
cal memory via layout randomization. In Proceedings of the 2011 IEEE
24th Computer Security Foundations Symposium, CSF ’11, pages 161–174,
Washington, DC, USA, 2011. IEEE Computer Society.

[8] Yeongjin Jang, Sangho Lee, and Taesoo Kim. Breaking kernel address
space layout randomization with intel tsx. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’16,
pages 380–392, New York, NY, USA, 2016. ACM.

[9] Alan Jeffrey and Julian Rathke. Java Jr.: Fully abstract trace semantics for
a core Java language. In ESOP’05, volume 3444 of LNCS, pages 423–438.
Springer, 2005.

[10] Yannis Juglaret, Cătălin Hriţcu, Arthur Azevedo de Amorim, and Ben-
jamin C. Pierce. Beyond good and evil: Formalizing the security guarantees
of compartmentalizing compilation. In 29th IEEE Symposium on Computer
Security Foundations (CSF). IEEE Computer Society Press, July 2016. To
appear.

110

[11] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas,
Hisham Shafi, Vedvyas Shanbhogue, and Uday R. Savagaonkar. Innova-
tive instructions and software model for isolated execution. In HASP ’13,
pages 10:1–10:1. ACM, 2013.

[12] James H. Morris, Jr. Protection in programming languages. Commun.
ACM, 16:15–21, 1973.

[13] Joachim Parrow. General conditions for full abstraction. Mathematical
Structures in Computer Science, 26(4):655–657, 2016.

[14] Marco Patrignani, Pieter Agten, Raoul Strackx, Bart Jacobs, Dave Clarke,
and Frank Piessens. Secure Compilation to Protected Module Architec-
tures. ACM Trans. Program. Lang. Syst., 37:6:1–6:50, April 2015.

[15] Marco Patrignani and Dave Clarke. Fully abstract trace semantics for pro-
tected module architectures. Computer Languages, Systems & Structures,
42(0):22 – 45, 2015.

[16] Marco Patrignani, Dominique Devriese, and Frank Piessens. On Modular
and Fully Abstract Compilation. In Proceedings of the 29th IEEE Computer
Security Foundations Symposium, CSF 2016, 2016.

[17] ARM. ARMSecurity Technology. Building a secure system using trustzone
technology. arm technical white paper, 2009.

111

	The Untyped Source Language: RoyalBlueLU
	Syntax
	Dynamic Semantics
	Component Semantics

	Monitor Semantics

	The Target Language: RedOrangeLP
	Syntax
	Operational Semantics of RedOrangeLP
	Component Semantics

	Monitor Semantics

	Language and Compiler Properties
	Safety, Attackers and Robust Safety
	Monitor Agreement and Attacker for RedOrangeLP and RoyalBlueLU
	Cross-language Relations
	Correct and Robustly-safe Compilation
	Alternative definition for RSC
	Compiling Monitors

	Compiler from RoyalBlueLU to RedOrangeLP
	Properties of the blackRoyalBlue RoyalBlueLURedOrangeLP Compiler
	Back-translation from RedOrangeLP to RoyalBlueLU
	Values Backtranslation
	Skeleton
	Single Action Translation
	The Back-translation Algorithm black RedOrangeLPRoyalBlueLU
	Correctness of the Back-translation
	Remark on the Backtranslation

	The Source Language: RoyalBlueL
	Static Semantics of RoyalBlueL
	Auxiliary Functions
	Typing Rules
	RoyalBlueUN Typing

	Dynamic Semantics of RoyalBlueL
	Component Semantics

	RedOrangeL: Extending RedOrangeLP with Concurrency and Informed Monitors
	Syntax
	Dynamic Semantics
	Component Semantics

	Extended Language Properties and Necessities
	Monitor Agreement for RoyalBlueL and RedOrangeL
	Properties of RoyalBlueL
	Properties of RedOrangeL

	Compiler from RoyalBlueL to RedOrangeL
	Assumed Relation between RoyalBlueL and RedOrangeL Elements
	Compiler Definition
	Properties of the RoyalBlueL-RedOrangeL Compiler
	Cross-language Relation `39`42`"613A``45`47`"603Ablack--.35ex-.35ex

	RSC: Third Instance with Target Memory Isolation
	CarnationPinkLI, a Target Language with Memory Isolation
	Compiler from RoyalBlueL to CarnationPinkLI

	The Second Target Language: CarnationPinkLI
	Syntax
	Operational Semantics of CarnationPinkLI
	Component Semantics

	Monitor Semantics
	Monitor Agreement for CarnationPinkLI
	Properties of CarnationPinkLI

	Second Compiler from RoyalBlueL to CarnationPinkLI
	Properties of the RoyalBlueL-CarnationPinkLI Compiler
	Cross-language Relation `39`42`"613A``45`47`"603Ablack--.35ex-.35ex

	Proofs
	Proof of thm:rsc-prf-eq (PF-RSC and RSC are equivalent)
	Proof of thm:comp-up-cc (Compiler blackRoyalBlue RoyalBlueLURedOrangeLP is CC)
	Proof of thm:comp-up-rsc (Compiler blackRoyalBlue RoyalBlueLURedOrangeLP is RSC)
	Proof of thm:action-det (Compiled code steps imply existence of source steps)
	Proof of thm:backtr-corr (black RedOrangeLPRoyalBlueLU is correct)
	Proof of thm:src-ty-impl-safe (Typability Implies Robust Safety in RoyalBlueL)
	Proof of thm:atk-src-coincide (Semantics and typed attackers coincide)

	Proof of thm:comp-ap-cc (Compiler blackRoyalBlue RoyalBlueLRedOrangeL is CC)
	Proof of thm:comp-ap-rsc (Compiler blackRoyalBlue RoyalBlueLRedOrangeL is RSC)
	Proofs for the Non-Atomic Variant of RoyalBlueL (sec:nonatom-new-hide)
	Proof of thm:comp-ai-cc (Compiler blackRoyalBlue RoyalBlueLCarnationPinkLI is CC)
	Proof of thm:comp-ai-rsc (Compiler blackRoyalBlue RoyalBlueLCarnationPinkLI is RSC)

	FAC and Inefficient Compiled Code
	Towards a Fully Abstract Compiler from RoyalBlueLU to RedOrangeLP
	Language Extensions to RoyalBlueLU and RedOrangeLP
	The blackRoyalBlueRoyalBlue RoyalBlueLURedOrangeLP Compiler
	Proving that blackRoyalBlueRoyalBlue RoyalBlueLURedOrangeLP is a Fully Abstract Compiler

	A Fully Abstract Compiler from RoyalBlueLU to RedOrangeLP
	The Source Language RoyalBlueLU
	The Target Language RedOrangeLP
	Syntax Changes
	Semantics Changes
	A Fully Abstract Trace Semantics for RedOrangeLP
	Results about the Trace Semantics

	The Compiler blackRoyalBlueRoyalBlue RoyalBlueLURedOrangeLP
	Syntactic Sugar
	Support Data Structures
	Support Functions
	Inlined Additional Statements (Preamble, Postamble, etc)

	The Trace-based Backtranslation: blackRedOrangeRedOrangeubbheight-0.5 -widthheightdepths- widthheightdepthheightsection RedOrangeLPRoyalBlueLU
	The Skeleton
	The Common Prefix
	The Differentiator

