
Labeled Goal-directed Search
in Access Control Logic

Valerio Genovese1,2, Deepak Garg3, and Daniele Rispoli2

1 University of Luxembourg, Luxembourg
2 University of Torino, Torino, Italy

3 MPI-SWS, Kaiserslautern and Saarbrücken, Germany

Abstract. We describe a sound, complete, and terminating procedure
for goal-directed proof search in BLG

sf, an expressive fragment of a re-
cently presented access control logic, BLsf. BLG

sf is more expressive than
many other Datalog-based access control logics that also have very effi-
cient decision procedures, and it finds proofs of authorization quickly in
practice. We also extend BLG

sf’s proof search procedure to find missing
credentials when a requested authorization does not hold and discuss
an implementation of our techniques in an extension of the Unix file
synchronization program rsync.

1 Introduction

Many access control systems rely on representation of authorization policies as
logical theories [4–6, 13, 17, 22]. Such representation not only formalizes high-
level policy intent through the logic’s semantics, but also allows for direct enforce-
ment of policies through architectures like proof-carrying authorization [5, 6, 13],
as well as formal proofs of policy meta properties like non-interference [8, 12].
In fact, a number of special modal logics, called access control logics or autho-
rization logics, have been proposed specifically for representing, enforcing and
reasoning about access policies [3, 9, 12–14, 21]. Policy representation in logic
and enforcement are related as follows: A requested access, represented as the
logical formula ϕ, is authorized by a policy represented as the logical theory Γ
iff Γ entails ϕ. Consequently, to enforce policies represented in logic through a
computer system, it is important to have a method to efficiently check entail-
ment in the logic or, equivalently, to have an efficient theorem prover for the
logic. It is also useful, but not necessary, to know that the prover terminates
in all cases without losing completeness (implying that the logic is decidable),
so the theorem prover can be invoked in a reference monitor without having to
worry about non-termination. There is a tradeoff between designing an access
control logic with many useful logical connectives and one with an efficiently
implementable decision procedure.

In recent work, Genovese, Garg and Rispoli (called GGR in the sequel) [15]
prove that an expressive access control logic, BLsf, is decidable and use its deci-
sion procedure as a foundation to solve three other practical problems in access

control (in addition to theorem proving): justifying denied access (countermodel
construction), finding all consequences of a policy (saturation), and determining
what additional credentials will allow a denied access (policy abduction). Al-
though a nice theoretical result, experimental evaluation of the GGR decision
procedure (explained in Section 2) indicates that it has at least exponential com-
plexity even on very simple access policies. While this is not surprising given the
wide applicability of the decision procedure, the question we ask is whether or
not that complexity can be reduced in practice, perhaps at the cost of sacrificing
some of its applications.

Precisely, we argue, through theoretical and experimental results, that it
is pragmatic to consider a restriction of BLsf to what is called a Hereditary-
Harrop (HH) fragment [18] and to use goal-directed theorem proving on it. The
HH fragment of logic, first considered in λ-Prolog, is a generalization of the
Horn fragment of first-order logic on which Prolog is based (and, in our case,
further generalized to include access control-specific connectives of BLsf). Goal-
directed proof search, also called SLD resolution or top-down search in logic
programming, is an efficient technique for theorem proving that prunes search
very rapidly by selecting only those rules from the theory that can directly prove
the goal at hand. Completeness of this pruning relies heavily on restriction to
the Horn or HH fragment.

We first define the HH fragment of BLsf, called BLG
sf (the G in the superscript

stands for goal-directed). We argue by examples that although only a fragment
of BLsf, BLG

sf is very expressive and can represent policies that cannot be rep-
resented in other restrictions considered in literature to attain efficient proof
search, e.g., the Datalog fragment. Second, we describe a goal-directed proof
search procedure for BLG

sf and prove that it is sound and complete. Following
GGR, our procedure is based in labeled sequent calculi [19, 23], which directly
use the semantic definitions of the logic’s connectives in proof rules. Although
our completeness proof follows a standard template, it is a non-trivial generaliza-
tion of existing proofs to account for the labeled style and also to accommodate
two access control-specific constructs of BLsf — A says ϕ and A sf B (the lat-
ter means that principal A speaks for principal B). We then show by a careful
counting of steps in our completeness proof that the termination condition of
GGR translates into a uniform bound on the depth of search required in BLG

sf,
thus implying that our goal-directed search procedure is a decision procedure.
Although the worst-case bound of this procedure is not good in theory, we ex-
plain why goal-directed search works very efficiently in practice and confirm this
explanation experimentally.

Next, we show how our goal-directed search procedure can be adapted to
also find missing credentials when the policy does not allow an access. This
adaptation, called an abduction procedure, mirrors a similar procedure in GGR.1

1 The other two applications of BLsf’s decision procedure in GGR, namely counter-
model construction and saturation, are fundamentally incompatible with pruning
employed by goal-directed proof search. Consequently, these two applications are
not considered in this paper.

2

Finally, we discuss a practical application of our work: We design and implement
an extension of the rsync software for remote file synchronization, allowing rich
file access policies written in BLG

sf and relying on our abduction procedure for
automatically obtaining credentials from online servers when access is denied.

Besides describing and justifying the use of goal-directed proof search for
BLsf, we make two minor technical contributions to goal-directed search in
general: (1) To the best of our knowledge, we present the first goal-directed
labaled calculi for the HH fragment of a multimodal intuitionistic logic and
(2) Our counting argument to establish termination bounds on goal-directed
search through the completeness proof is novel and somewhat surprising in goal-
directed literature.

The paper is organized as follows. In Section 2, we recall the logic BLsf from
GGR, the method of labeled sequent calculi and GGR’s decision procedure, and
explain by experimental evaluation the exponential behavior of the GGR search
procedure even on simple access policies. In Section 3, we present BLG

sf together
with its goal-directed search procedure. In Section 4, we present our theoretical
results, showing that goal-directed search is sound and complete and deriving a
depth bound on it. Section 5 presents the extension of goal-directed search to
perform abduction and its implementation. Section 6 presents the extension of
rsync with BLG

sf for representing policies and abduction for finding authorization
credentials on-the-fly. Section 7 discusses related work and Section 8 concludes
the paper. Due to space constraints, we relegate proofs and other technical details
to a technical report [1].

2 Recap of BLsf: Semantics and Proof-theory

In this section we briefly describe the logic BLsf as presented in GGR [15]. BLsf

is a propositional intuitionistic logic enriched with two well-known connectives
in access control logics: A says ϕ (principal A supports formula ϕ) and A sf B
(principal A speaks for principal B). The former is used to represent assertions
of principals and the latter is used to represent trust relationships between prin-
cipals (A sf B represents that B trusts A). The syntax of BLsf formulas is shown
below. p denotes an atomic formula, drawn from a countable set of symbols, and
A, B denote principals drawn from a different, finite set I. The connectives >
(true), ⊥ (false), ∧ (and), ∨ (or) and→ (implication) have usual meanings from
intuitionistic logic.

Formulas ϕ,ψ ::= p | > | ⊥ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 |ϕ1 → ϕ2 | A says ϕ | A sf B

Syntactically, the logic BLsf is characterized by the following axioms

(All intuitionistic propositional tautologies)
` ϕ

` A says ϕ (nec)
` (A says (ϕ→ ψ))→ ((A says ϕ)→ (A says ψ)) (K)
` (A says ϕ)→ (B says A says ϕ) (I)
` (A sf B)→ ((A says ϕ)→ (B says ϕ)) (speaksfor)

3

` A sf A
` (A sf B)→ ((B sf C)→ (A sf C))

Rule (nec) and axiom (K) are standard in modal logic. Axiom (I) is neeeded to
accurately model delegation in the logic [2], whereas (speaksfor) characterizes
the formula A sf B: If A sf B, then any statement ϕ that A makes is echoed
by B, so the formula A sf B means that A has authority to speak on behalf of
B [3].

Kripke Semantics The semantics of BLsf are presented in the standard, Kripke
style for modal logics. A model of the logic contains several points called worlds,
which represent possible states of knowledge. Modalities are interpreted using
binary accessibility relations on worlds, with one relation SA for every modal-
ity (A says ·). Intuitively, if wSAw

′ then principal A believes that world w′

is a potential (knowledge) successor of the world w. Intuitionistic implication
is modeled using a binary preorder, ≤. GGR treat the formula A sf B as an
atom in the Kripke semantics and validate axioms related to it, e.g., (speaksfor),
through conditions on Kripke frames. This interpretation is very distinct from
earlier interpretations of A sf B, e.g., [3, 11], that define A sf B in terms of
relations between accessibility relations SA and SB , but this choice simplifies
the decision procedure.

Definition 1 (Kripke model) A Kripke model or, simply, model, M is a tu-
ple (W,≤, {SA}A∈I , h, sf) where: W is a set. Its elements are called worlds. ≤
is a preorder on W . For each principal A, SA is a binary relation on W , called
the accessibility relation of principal A. h, called the truth assignment or assign-
ment, is a map from the set of atoms to P(W). For any atom p, h(p) is the set
of worlds where p holds. sf is a map from pairs of principals to P(W). For any
two principals A and B, sf(A,B) is the set of worlds where A sf B holds.

Let S∗ =
⋃
A∈I SA. For BLsf, the class of models is further restricted to those

that satisfy the following frame conditions.

- ∀x.(x ≤ x) (refl)
- ∀x, y, z.(((x ≤ y) ∧ (y ≤ z))→ (x ≤ z)) (trans)
- ∀x, y, z.(((x ≤ y) ∧ (ySAz))→ (xSAz)) (mon-S)
- ∀x, y, z.(((xSBy) ∧ (ySAz))→ (xSAz)) (I)
- If w ∈ sf(A,B), then for all w′, wSBw

′ implies wSAw
′. (basic-sf)

- For all A and w, w ∈ sf(A,A). (refl-sf)
- If w ∈ sf(A,B) ∩ sf(B,C), then w ∈ sf(A,C). (trans-sf)
- If x ∈ h(p) and x ≤ y, then y ∈ h(p). (mon)
- If x(≤ ∪ S∗)∗y and x ∈ sf(A,B), then y ∈ sf(A,B). (mon-sf)

Properties (refl) and (trans) make ≤ a preorder. Property (mon-S) validates
axiom (K). Property (I) corresponds to axiom (I). Property (basic-sf) corre-
sponds to axiom (speaksfor). Properties (refl-sf) and (trans-sf) make A sf B re-
flexive and transitive, respectively. Property (mon) is standard in Kripke models
of intuitionistic logics and forces monotonicity of satisfaction. Property (mon-sf)
implies that if A sf B holds in a world, then it also holds in all future worlds.

4

Definition 2 (Satisfaction) Given a model M = (W,≤, {SA}A∈I , h, sf) and
a world w ∈W , the satisfaction relation M |= w : α, read “the world w satisfies
formula α in modelM”, is defined by induction on α as follows (standard clauses
for >,∧ and ∨ are omitted):

- M |= w : p iff w ∈ h(p)
- M |= w : α→ β iff for every w′ such that w ≤ w′ and M |= w′ : α, we have
M |= w′ : β.

- M |= w : A says α iff for every w′ such that wSAw
′, we have M |= w′ : α.

- M |= w : A sf B iff w ∈ sf(A,B).

M 6|= w : α if it is not the case that M |= w : α.

A formula α is true in a model M, written M |= α, if for every world w ∈ M,
M |= w : α. A formula α is valid in BLG

sf, written |= α, if M |= α for every
model M.

Labeled sequent calculus The central technical idea in GGR, on which the en-
tire technical development of GGR including BLsf’s decision procedure rests, is a
labeled sequent calculus for BLsf. Our goal-directed search procedure is a restric-
tion of GGR’s sequent calculus, so we discuss the sequent calculus is some detail
here. Following standard presentations of labeled sequent calculi (also called pre-
fixed calculi), GGR’s calculus, SeqC, manipulates two types of labeled formulas:
world formulas, written w : ϕ, where x is a symbolic world and ϕ is a formula of
the logic (intuitively meaning that ϕ holds in world x), and relation formulas,
representing semantic relations of the form x ≤ y and xSAy between symbolic
worlds.

A sequent of SeqC has the form Σ;M;Γ ⇒ ∆ where Σ is a list of world
symbols, M is a multiset of relation formulas and Γ and ∆ are multisets of
world formulas. Semantically, the sequentΣ;M;Γ ⇒ ∆means that “every model
which satisfies all labeled formulas of Γ ∪M satisfies at least one labeled formula
in ∆”; this is made precise in the following definition.

Definition 3 (Sequent satisfaction and validity) A model M and a map-
ping ρ from elements of Σ to worlds of M satisfy a (possibly non-provable)
sequent Σ;M;Γ ⇒ ∆, written M, ρ |= (Σ;M;Γ ⇒ ∆), if one of the following
holds:

- There is an xRy ∈M with R ∈ {≤}∪ {SA | A ∈ I} such that ρ(x) R ρ(y) 6∈
M.

- There is an x : α ∈ Γ such that M 6|= ρ(x) : α.
- There is an x : α ∈ ∆ such that M |= ρ(x) : α.

A model M satisfies a sequent Σ;M;Γ ⇒ ∆, written M |= (Σ;M;Γ ⇒ ∆),
if for every mapping ρ, we have M, ρ |= (Σ;M;Γ ⇒ ∆). Finally, a sequent
Σ;M;Γ ⇒ ∆ is valid, written |= (Σ;M;Γ ⇒ ∆) if for every model M, we have
M |= (Σ;M;Γ ⇒ ∆).

5

Selected rules of SeqC are reproduced from GGR in Figure 1. The first key
point to observe about the calculus is that the rules of each connective (e.g., rule
→R for implication) mimic directly the semantic definition of satisfaction for the
connective (Definition 2). Second, the frame rules enforce all conditions (refl)–
(mon-sf) on models listed in Definition 1, except the condition (mon) which is
implicit in the inference rule (init). We write ` (Σ;M;Γ ⇒ ∆) to mean that
Σ;M;Γ ⇒ ∆ has a proof. SeqC is sound and complete with respect to the
Kripke semantics.

Theorem 4 (Soundness and Completeness [15]). ` (Σ;M;Γ ⇒ ∆) has a
proof if and only if |= (Σ;M;Γ ⇒ ∆)

Axiom Rules

Σ;M, x ≤ y;Γ, x : p⇒ y : p,∆
init

Σ;M;Γ, x : A sf B ⇒ x : A sf B,∆
sf

Logical Rules

Σ;M;Γ ⇒ x : α, x : α ∧ β,∆ Σ;M;Γ ⇒ x : β, x : α ∧ β,∆
Σ;M;Γ ⇒ x : α ∧ β,∆

∧R

Σ, y;M, x ≤ y;Γ, y : α⇒ y : β, x : α→ β,∆

Σ;M;Γ ⇒ x : α→ β,∆
→R

Σ;M, x ≤ y;Γ, x : α→ β ⇒ y : α,∆ Σ;M, x ≤ y;Γ, x : α→ β, y : β ⇒ ∆

Σ;M, x ≤ y;Γ, x : α→ β ⇒ ∆
→L

Σ, y;M, xSAy;Γ ⇒ y : α, x : A says α,∆

Σ;M;Γ ⇒ x : A says α,∆
saysR

Σ;M, xSAy;Γ, x : A says α, y : α⇒ ∆

Σ;M, xSAy;Γ, x : A says α⇒ ∆
saysL

Frame Rules

Σ;M, x ≤ y, y ≤ z, x ≤ z;Γ ⇒ ∆

Σ;M, x ≤ y, y ≤ z;Γ ⇒ ∆
trans

Σ;M, x ≤ y, ySAz, xSAz;Γ ⇒ ∆

Σ;M, x ≤ y, ySAz;Γ ⇒ ∆
mon-S

Σ;M, xSBy, ySAz, xSAz;Γ ⇒ ∆

Σ;M, xSBy, ySAz;Γ ⇒ ∆
I

Σ;M, xSBy, xSAy;Γ, x : A sf B ⇒ ∆

Σ;M, xSBy;Γ, x : A sf B ⇒ ∆
basic-sf

Fig. 1. SeqC: GGR’s labeled sequent calculus for BLsf, selected rules

Decision procedure Backwards proof search in SeqC may not terminate due to
potentially infinite creation of new worlds through the rules (→R) and (saysR).
Hence, SeqC is not a decision procedure in itself. The key insight in GGR is that
despite this fact, suitable (and complex) termination conditions can be imposed
on backwards search to make it terminate without losing completeness, thus
yielding a decision procedure for BLsf. (Further, GGR describes how counter-
models can be extracted when search fails.) The specific termination conditions

6

of the decision procedure are not important for this paper. However, the follow-
ing two facts about the decision procedure are relevant.

First, by an analysis of GGR’s termination proof we can show that for any
sequent that we wish to prove, we can compute a number n such that backwards
search in SeqC can be pruned at depth n without losing completeness. GGR do
not observe this fact, but it is not difficult to prove by a careful analysis of their
termination proof. We use this observation to derive a similar completeness-
preserving bound (3n + 1 to be exact) for our goal-directed search procedure,
thus implying that our procedure can also be converted to a decision procedure.

Second, the number n is large – it is doubly exponential in the size of the
sequent. Hence, the worst-case complexity of both our GGR’s decision procedure
for BLsf and ours for BLG

sf is also doubly exponential. The difference, and this is
the key point, is that on practical policies, GGR’s decision procedure attains at
least exponential complexity, whereas our decision procedure remains polynomial
(quadratic in many cases). This is a well-known fact from literature on goal-
directed search and is, e.g., the reason that Prolog works efficiently in practice;
here, we merely exploit this known fact for access control.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10 20 30 40 50

re
sp

on
se

 ti
m

e
(m

s)

implications (#n)

Fig. 2. Scalability of decision procedures based on SeqC and SeqG. The solid line is
SeqC and the dotted line is SeqG.

To illustrate the second point, we compare the time taken by an implemen-
tation of our decision procedure to that taken by GGR’s decision procedure on
a simple, common policy: Γn = {p1 → sf ∧ p2 → p1 ∧ . . . ∧ pn → pn−1}. Here,
p1, . . . , pn and sf are atoms. The goal is to test the unprovable fact Γn ⇒ sf .
This example is representative how real access policies work, e.g., sf may be a

7

proposition representing a permission, p1 may be condition needed for the per-
mission, which may in turn be contingent upon p2 and so on. The time taken by
GGR’s procedure and our goal-directed procedures for this example are shown
in Figure 2. The upper solid line, corresponding to GGR, is exponential in n;
the lower dotted line, corresponding to our goal-directed search, is quadratic
in n. The reason for the difference is straightforward: GGR’s procedure works
by blindly decomposing every implication in the policy using the rule (→L) in
every branch, which, takes time exponential in n because the rule (→L) has two
premises. As explained in the next section, goal-directed search tries to prove
the antecedents of only those implications that can help prove the goal. Thus it
first tries to prove p1, then p2, etc. This results in an almost linear search space
(the actual curve is quadratic because at each point in this search space, the pro-
cedure must try all n policy assumptions; however, all but one are immediately
pruned). This simple but realistic example illustrates that goal-directed search
can indeed be a pragmatic choice for theorem proving with access policies and
motivates our technical work.

3 BLG
sf: Goal-directed Access Control Logic

Our main technical contribution is the development of the Hereditary-Harrop or
HH fragment of BLsf, which we call BLG

sf, and the development of a goal-directed
proof search procedure for it, along with associated soundness, completeness and
termination proofs. The HH fragment of first-order logic [18] is a generalization
of the Horn fragment on which Prolog works, but still admits Prolog’s top-down
proof search. Our work generalizes this fragment to also include the connectives
A says ϕ and A sf B and our proof search marries the formalism of backchaining
search in Prolog with labeled calculi, which we believe to be a novel contribution.
The syntax of formulas in the fragment BLG

sf is stratified into three categories.

Goals G ::= p | A says G | G1 ∧G2 | G1 ∨G2 | N → G | > | ⊥
Clauses D ::= p | G→ D | D1 ∧D2 | > | ⊥ | A says D
Chunks N ::= D | N1 ∨N2 | N1 ∧N2 | A sf B

In our goal-directed sequent calculus goals can only appear on the right side in
sequents, whereas clauses and chunks appear only on the left side in separate
contexts. In logic programming notation, one may think of goals as the allowed
queries, clauses as rules that constitute logic programs and chunks as additional
constructs that combine logic programs (note that the leaf of any chunk is either
a clause or A sf B). Not every connective is allowed in every category of syntax;
this is necessary to guarantee completeness of goal-directed search. We do not
go into the details of why this is the case as it is a standard but technically deep
result in proof theory. The new interesting innovation here is deciding where to
allow and disallow the new connectives A says ϕ and A sf B. (Interested readers
are refered to existing work for details of the restriction, specifically [18].)

Even though BLG
sf is less expressive than BLsf it is still much more expressive

than Datalog-based access control languages like SecPAL[7] or DKAL[16], which

8

also have efficient decision procedures. The main difference between a Datalog-
based language and BLsf is that the former will disallow disjunction altogether
and also disallow implication in goals but both connectives can be useful in
some cases (our next example illustrates this point). In return, Datalog-based
languages have worst-case polynomial time decision procedures, which we forego,
settling for a bad worse-case execution time but efficient execution on policies
of interest.

Example 1 (BLG
sf Expressiveness). Suppose that Alice wants to share a picture

pic1 with the following policy (where C represents the finite domain of contacts):
“Members of the group family can access pic1 if none of them is a friend of a
colleague of mine”. Such policy can be expressed in BLG

sf as follows:

Alice says
(∧
x∈C

(family of(x,Alice)→
∧
y∈C

(colleague of(y,Alice)→ ¬friend of(y, x))
)

→
(∧
x∈C

(family of(x,Alice)→ can access x pic1)
)

This example cannot be expressed in any Datalog-based access control logic.

Because BLG
sf is defined as a syntactic restriction of BLsf the meaning of BLG

sf

connectives is formally defined as in Section 2. From the proof-theoretic point
of view, an important difference between BLG

sf and BLsf is that BLG
sf enjoys

the disjunction property which is pivotal in order to be able to develop a goal-
directed proof theory. In what follows we prove that, if we constrain the language
of BLsf as illustrated above, the calculus SeqC as reported in Figure 1 enjoys
the disjunction property.

Definition 5 Given a sequent Σ;M;Γ ⇒ ∆ and a world w ∈ Σ we define the
restriction of contexts to ancestors of w as Σw;Mw;Γw ⇒ ∆w as follows

Σw = {x ∈ Σ | ∃x1, . . . , xn s.t. x ◦ x1 ◦ . . . ◦ xn ◦ w} with ◦ ∈ {S∗,≤}
Mw = {x ◦ y ∈M | x, y ∈ Σw} with ◦ ∈ {S∗,≤}
Γw = {x : ϕ ∈ Γ | x ∈ Σw}

Theorem 6 (Height-preserving Disjunction Property) If disjunction does
not appear in negative positions and if Σ;M;Γ ⇒ ∆ is derivable with a proof
of height h, then there is some w : ϕ ∈ ∆ such that Σw;Mw;Γw ⇒ w : ϕ is
derivable with a proof of at most height h.

3.1 SeqG: Goal-directed proof theory for BLG
sf

We now describe a goal-directed proof calculus, SeqG, for BLG
sf. Following stan-

dard literature, the calculus uses more that one type of sequent; we describe
each of them. A key difference from SeqC is that we allow only one formula in
the right side of a sequent. This is complete because we are working in an intu-
itionistic logic, which has a disjunction property. Roughly, Σ;M;Γ ⇒ ∆ implies
that there is some labeled formula x : ϕ ∈ ∆ such that Σ;M;Γ ⇒ x : ϕ. (See
Theorem 6).

9

It is simplest to think of the inference rules of SeqG as describing a proof
search method, obtained by reading the rules bottom-up. Proof search starts in
an R-sequent, which has the form Σ;M;Γ Z⇒ x : G. Here Γ is a multiset of
labeled clauses of the form w : D (no chunks are allowed in Γ in SeqG). More
importantly, the rules for infering a given R-sequent are deterministic: For each
possible value of G, there is one rule that decomposes G into its subformulas
in the premises, following the corresponding right rule in SeqC (see Figure 3).
This forced decomposition of goal formulas justifies the adjective “goal-directed”
for our calculus. The only exception to goal-directed decomposition is that after
decomposing a goal of the form N → G′, we push the chunk N into a special
context denoted Ξ on the left and transition into what we call an L-sequent,
where N is immediately decomposed with left rules (described below). After N
has been decomposed completely, we return to work on G′. Eventually, in each
branch, G must decompose to > (which succeeds immediately), ⊥ (which fails
immediately) or an atom p. In the last case, we backchain (through N-sequents),
as in Prolog, by picking a suitable clause in Γ to prove p.

An L-sequent has the form Σ;M;Γ ;Ξ ⇐ x : G, where Ξ is a set of labeled
chunks of the form w : N . The inference rules for an L-sequent (Figure 3)
decompose the formulas in Ξ with left rules from SeqC. The results are of the
form w : D, which are pushed into Γ (rule (pr)). Once Ξ is empty, search
transitions to an R-sequent (rule (L2R)).

When a goal is reduced to an atom, search transitions from an R-sequent
to an N-sequent of the form Σ;M;Γ ⇔ w : p (rule (atom)). There is only one
rule to prove an N-sequent. This rule, called (choice), is the site of backchaining:
It non-deterministically picks a clause x : D from Γ (first premise), uses an
F-sequent to determine what additional subgoals w1 : G1, . . . , wn : Gn, when
proved, will cause x : D to imply w : p (second premise) and then tries to prove
the subgoals (third premise).

F-sequents have the form Σ;M;x : D � w : p | Gl. The meaning of the
sequent is that if all (labeled) subgoals in Gl hold, then x : D entails w :
p. In an implementation, Gl is an output. Rules for proving F-sequents are
mostly deterministic and work by decomposing D. The only exception to this
determinism is the choice of rules (∧L1) and (∧L2) when D = D1 ∧ D2. Note
that if there is no head in D that matches p, there is no way to establish Σ;M;x :
D � w : p | Gl for any Gl.

There are two key points to observe about the calculus SeqG. First, unlike
SeqC, there are no frame rules. Instead, the effect of all frame rules is collected
into the operator Σ;M;Γ in the premise of the rule (atom). This operator infor-
mally means “apply frame rules of SeqC to Σ;M;Γ to the extent possible”. (For
a formal definition, see Definition 7) Second, SeqG is largely a deterministic cal-
culus. The only real source of non-determinism is in picking a clause in the first
premise of the rule (choice) and in choosing between rules (∧L1) and (∧L2) in
an F-sequent. It is because of this highly deterministic nature that proof search
in SeqG works very efficiently in practice.

10

This choice of picking the clause is the only point of non-determinism in
backwards search in SeqG, which is why proof search in it works very efficiently
in practice.

Definition 7 (Saturation with respect to Frame Rules) The Σ;M;Γ in
rule (atom) represents the saturation w.r.t. the semantic conditions reported in
Definition 1 and it is defined as the fixed-point of what follows:

1. Σ, x;M;Γ = Σ, x;M;Γ, x : A sf A
2. Σ;M, xSBy;Γ, x : A sf B = Σ;M, xSBy, xSAy;Γ, x : A sf B
3. Σ;M;Γ, x : A sf B, x : B sf C = Σ;M;Γ, x : A sf B, x : B sf C, x : A sf C
4. Σ;M, xSCy;Γ, x : A sf B = Σ;M, xSCy;Γ, x : A sf B, y : A sf B
5. Σ;M, x ≤ y;Γ, x : A sf B = Σ;M, x ≤ y;Γ, x : A sf B, y : A sf B
6. Σ;M, x ≤ y, ySAz, z ≤ w;Γ = Σ;M, x ≤ y, ySAz, z ≤ w, xSAw;Γ
7. Σ, x;M;Γ = Σ, x;M, x ≤ x;Γ
8. Σ;M, x ≤ y, y ≤ z;Γ = Σ;M, x ≤ y, y ≤ z, x ≤ z;Γ
9. Σ;M, xSBy, ySAw;Γ = Σ;M, xSBy, ySAw, xSAw;Γ

4 BLG
sf: Soundness, Completeness and Termination

In Section, we present our theoretical resutls, showing that goal-directed search
is sound and complete and deriving a depth bound on it.

Lemma 8 (Soundness of F-sequents) Suppose the following hold.

(a) Σ;M;x : D � w : p | w1 : g1 . . . wn : gn
(b) Σ;M;Γ, x : D ⇒ wi : gi, for all 1 ≤ i ≤ n

Then, Σ;M;Γ, x : D ⇒ w : p

Proof. By induction on the height of the proof of hypothesis (a). See Appendix
A, Lemma 17 for details.

Theorem 9 (Soundness) The following hold

A. If Σ;M;Γ Z⇒ x : ϕ then Σ;M;Γ ⇒ x : ϕ
B. If Σ;M;Γ ;Ξ ⇐ w : G then Σ;M;Γ,Ξ ⇒ w : G
C. If Σ;M;Γ ⇔ w : p then Σ;M;Γ ⇒ w : p

Proof. By simultaneous induction on given derivations and case analysis of the
last rule in them. See Appendix A, Lemma 18 for details.

Theorem 10 (Completeness) The following hold.

A. Σ;M;Γ ⇒ x : G implies Σ;M;Γ Z⇒ x : G
B. Σ;M;Γ,Ξ ⇒ x : G implies Σ;M;Γ ;Ξ ⇐ x : G

Proof. By simultaneous lexicographic induction, first on the depths of the given
derivations, and then on the order (B) > (A). For (B) we also subinduct on
size(Ξ). More precisely, the following uses of the i.h. are legitimate:

11

– We are proving (B) and the i.h. is invoked for (A) or (B) with a derivation
of smaller depth.

– We are proving (A) and the i.h. is invoked for (A) or (B) with a derivation
of smaller depth.

– We are proving (B) and the i.h. is invoked for (A) with a derivation of equal
depth.

– We are proving (B) and the i.h. is invoked for (B) with a derivation of equal
depth and Ξ of smaller size.

See Appendix A, Theorem 31 for details.

Due that BLG
sf is s syntactic restriction of BLsf, it comes with no surprise that

BLG
sf is decidable. However, decidability of BLG

sf is not sufficient to establish
that proof search in SeqG always terminated. The fact that SeqG is sound and
complete w.r.t. SeqC does not necessarily mean that it is a decision procedure.
However, by the countermodel producing decision procedure presented in [15], we
know that there exists an upper bound k2 to the depth of proof trees generated
by backward application of SeqC rules.

Lemma 11 If Σ;M;Γ ⇒ z : ϕ is provable with a derivation of at most depth k
then Σ;M;Γ Z⇒ z : ϕ is provable with a derivation of at most depth 3k + 1.

Proof. The proof is by induction on the height of the derivation of Σ;M;Γ ⇒
and case analysis on the last applied rule. We present only two interesting cases
Case.

Σ;M, x ≤ y;Γ, x : p⇒ y : p
init

Here k = 1, to show that Σ;M, x ≤ y;Γ, x : p Z⇒ y : p is provable with a depth
at most of 4

1. Σ;M, x ≤ y;x : q � y : p | ·, provable with depth 1 (Rule init)
2. Σ;M, x ≤ y;Γ, x : p⇔ y : p, provable with depth 2 (Rule (choice) on 1)
3. Σ;M, x ≤ y;Γ, x : p⇒ y : p, provable with depth 3 (Rule (atom) on 2)

Case.
Σ;M;Γ ⇒ w : α,w : β

Σ;M;Γ ⇒ w : α ∨ β
∨R

By inductive hypothesis and by Theorem 16 we have that either Σ;M;Γ Z⇒ w : α
or Σ;M;Γ Z⇒ w : β are provable with a derivation of at most height 3(k−1)+1.
Without loss of generality, suppose that Σ;M;Γ Z⇒ w : α. Hence, with an
application of Rule (∨R1) we obtain a proof of Σ;M;Γ Z⇒ w : α ∨ β with a
derivation of at most height 3k + 1.

Lemma 12 For every sequent Σ;M;Γ ⇒ x : ϕ a number n can be computed
such that if Σ;M;Γ ⇒ x : ϕ has a proof in SeqC, then it has a proof of depth
less than n.

2 Notice that, in order to argue for the decidability of SeqG it is not necessary to
exactly compute k.

12

Proof. The proof follows directly from [15] where it is presented a decision pro-
cedure for BLsf.

Theorem 13 Let ϕ a BLG
sf formula and let k be the upperbound induced by

the countermodel producing decision procedure in [15], then Σ;M;Γ ⇒ z : ϕ is
provable with a derivation of at most depth k if and only if Σ;M;Γ Z⇒ z : ϕ is
provable with a derivation of at most depth 3k + 1.

Proof. The left to right direction follows from Theorem 9 while the opposite is
given by Lemma 11.

Corollary 14 (Termination) The rules of SeqG can be used as a decision
procedure for BLG

sf by pruning search in each branch at depth 3n+ 1 where n is
the number from Lemma 12 for the starting sequent.

5 SeqGAB: Policy Abduction in BLG
sf

In this Section we describe a sequent calculus based on SeqG that emits ab-
ducibles from unprovable sequents. The abduction procedure is presented as a
calculus SeqGAB in Figure 4. The calculus is an extension of the calculus SeqG
of Figure 3 with sequents of the form Σ;M;Γ Z⇒ z : ϕ ↘m Θ where Θ is a
formula called abducible which represents the missing credentials (if any) that
together with Σ;M;Γ logically imply z : ϕ. Reading the rules backwards, the
calculus is an algorithm with inputs Σ;M;Γ and z : ϕ and output Θ. To assure
termination, we adopt an heuristic that bounds the depth of the proof trees
generated by the SeqGAB to an integer m.

We observe that although BLG
sf is decidable3, the calculus SeqG does not

always terminates. As a simple example consider the proof tree generated by
SeqG with root sequent x;x ≤ x;x : p → p Z⇒ x : p, such tree has an infinite
depth which is given by the rule (choice) rule which generates an infinite list of
subgoals x : p. A main difference w.r.t. SeqG is the rule (AB) which, in case no
other rule is applicable or the sequent has reached its maximum depth, outputs
an abducible AB(Σ;M;Γ ;∆), which is defined below. Here, root(M) is the root
of the underlying tree of M.

AB(Σ;M;Γ ;w : p) =
(
∨
{p | (root(M)) ≤ w ∈M})∨

(
∨
{A says p | (root(M))SAw ∈M})

Intuitively, for a give goal w : p, we look at the path between the root of the
underlying tree of M and y. Because the Σ,M and Γ are closed under backward
application of rules (I), (mon-S) and (trans) (thanks to the rule atom), either
(root(M)) ≤ y ∈ M or (root(M))SAy ∈ M for some A ∈ I. In the former case,
it suffices to add the credential p to complete the proof and in the latter case it

3 In fact, in [15] it is proved that BLsf has the finite model property and, hence, it is
decidable.

13

suffices to add the credential A says p to complete the proof. If both sets in the
definition of AB(Σ;M;Γ ;w : p) are empty, then AB(Σ;M;Γ ;w : p) = ⊥.

An abducible Θ is satisfied by extending the current policy Γ with a set
F ⊆ {p,A says p | A ∈ I}. Given such a set, we define the satisfaction relation
F |= Θ in the obvious way:

- F |= > (always)
- F |= p iff p ∈ F
- F |= A says p iff (A says p) ∈ F
- F |= Θ1 ∧ Θ2 iff F |= Θ1 and F |= Θ2

- F |= Θ1 ∨ Θ2 iff F |= Θ1 or F |= Θ2

The following theorem states that our abduction procedure is sound in the
sense that if the abducible of a sequent is satisfied by F , then extending the
hypotheses with F results in a provable sequent.

Theorem 15 (Soundness). The following hold:

A. Let Σ;M;Γ ⇔ w : p ↘m Θ and F |= Θ, then Σ;M;Γ ∪ root(M) : F Z⇒
w : p
B. Let Σ;M;Γ ;Ξ ⇐ w : G ↘m Θ and F |= Θ, then Σ;M;Γ,Ξ ∪ root(M) :
F Z⇒ w : G
C. Let Σ;M;Γ Z⇒ w : G ↘m Θ and F |= Θ, then Σ;M;Γ ∪ root(M) : F Z⇒
w : G

Proof. By simultaneous lexicographic induction, first on the depths of the deriva-
tions and then on the order A < B < C. We show the two most interesting cases:

Case.
No other rule applicable or (m-1 = 0)

Σ;M;Γ ⇔ w : p↘m AB(Σ;M;Γ ;w : p)
AB

We are given that F |= AB(Σ;M;Γ ;w : p), so one of the following must be true:

1. (root(M)) ≤ w ∈ M and p ∈ F : Then, it is sufficient to complete a proof of
Σ;M;Γ, root(M) : F ⇔ w : p by applying the rule (init) on Σ;M; root(M) :
p� w : p.

2. (root(M))SAw ∈ M and (Ap says) ∈ F : Then, it is sufficient to complete a
proof of Σ;M;Γ, root(M) : F ⇔ w : p by:

(a). Σ;M; root(M) : A says p� w : p (rule choice on root(M) : A says p)
(b). Σ;M;w : p� w : p (rule says L)
(c). Σ;M;w : p� w : p | • (rule init)

5.1 A Prolog Implementation of SeqGAB

The prover for SeqGAB has been implemented in Prolog and tested with two
of its major interpreters: SWI and GNU. The main part of the program is a
set of clauses, each one representing a sequent rule or axiom that, when queried
with a formula expressed in BLG

sf and together with Prolog’s depth-first search
mechanism, either proves the formula if it is indeed provable or gives a set of

14

abducibles that explain to the user what went wrong and what additional data
to submit for a successful evaluation.

The top level predicates are either prove(Formula) if a boolean answer is all
that is needed or prove(Formula, Abducibles) if a set of abducible is necessary.
If the second predicate is chosen and the given formula is provable then the
resultant set of abducibles will be empty and will be represented as [].

The invocation of one of the prove instances starts the proving mechanism. In
particular, the proof search starts with a predicate called r sequents whose signa-
ture is r sequents(Formula,(Σ,M,Γ,Γ S,Ξ,∆ S),Max Depth,Used,Abducibles) and
whose parameters mean (respectively): the input formula, a tuple that forms
the context for the formula, its elements are the set of labels (initially just the
starting point “u”), the set of relations (initially just “u ≤ u”) and both sides of
the context with the S counterpart used to keep track of the history of applied
rules. The Prolog proof search than proceeds by trying to recursively apply the
clauses of the calculus in the following order: (>R), (says R), (∧R), (∨R), (→ R)
and (atom). The first one whose conditions are satisfied guides the subsequent
steps of the proof.

As the implementation mirrors the rules in 4 the only clauses that do not
recurse are those representing (atom) and (→ R) whose execution leads to the
predicates, respectively, n sequents and expand l sequents.

The set of predicates under the name of expand l sequents and their auxiliary
procedures l sequents behave similarly to r sequents with the search procedure
trying in turn to satisfy the predicates that correspond to the following rules:
(>L), (⊥L), (∧L), (∨L), (pr), (L2R).

As explained above, once the conditions for (atom) are satisfied the control
goes to the predicate n sequents but, right before this important call, the pred-
icate expand sat sequents and its auxiliary procedures sat sequents are used to
saturate the contexts mimicking the rules: (mon-S), (relf), (trans), (I), (sf-refl),
(sf), (sf-trans), (sf-unit), (sf-mon) in this precise order. Once this step is com-
plete the n sequents predicate sets up the stage for the one that implements the
(choice) rule: nd choice.

This predicate, along with the set formed by the f sequents predicates repre-
senting (init), (sf), (∧ L), (→ L), (says L), is the core of the abducibles extraction
procedure.

6 Smart-rsync: Distributed File Syncronization with
SeqGAB

In this Section we present an extension of the well-known rsync Unix program
which includes a reference monitor able to reason about SeqGAB policies. With
Smart-rsync is possible to associate a BLG

sf policy to resources and, therefore,
to condition the synchronization of one or more files to the existence of a proof
in SeqGAB which implies that the corresponding sync request is compliant with
the specified policy. In case the request of sync is not compliant with the policy
associated to the resource, Smart-rsync is able to output the missing credentials

15

that are requested in order to grant access (i.e., the abducibles). The Smart-rsync
architecture is based on the following main components:

– P-SeqGAB: Is the reference monitor (written in Prolog) that implements the
calculus reported in Figure 4, details of the implementation together with
an analysis of its efficiency are reported in Section 5.1.

– rsyncd: This is the standard rsync daemon which has to be active and
properly configured on the machine that the user is trying to request a sync
from.

– srsyncd: This is a server (written in C++) that receives principals’ requests
(together with a possibly empty set of credentials) and queries P-SeqGAB to
check whether the request can be granted or not.

– srsync: This is the client that performs the query against the server, the
eventual process of requesting missing credentials and the final rsync call,
in case permission is granted. The initial request to sync can result in two
scenarios: the simplest one is when the credentials that the user already
possess are enough to be granted the permission to sync, in this case the
srsync call gets performed and the requested resources should be properly
synced to the users’ machine.
On the other hand, if P-SeqGAB is not able to close the proof tree it outputs
a set of abducibles that are forwarded via srsyncd to the principal that issued
the request. In this latter case, rsync tries to automatically obtain from other
principals the necessary credentials to get the corresponding request autho-
rized. In particular, it contacts all the corresponding principals appearing as
indexes of says in the abducibles until a satisfactory response is obtained.
If it is able to acquire these missing credentials then the original request is
re-submitted together with the newly acquired credentials, otherwise it fails.

– cred serv: This second kind of server is configured to handle only one policy
at a time and is the one that responds to the queries in the abduction stage of
the interaction. Every entity participating in the system can run an instance
of this server in the background that will be queried by the other actors
when they need to obtain some credentials from each other.

Finally, it is important to note that every message exchanged between princi-
pals via srsyncd and cred-serv is cryptographically signed in order to preserve
authenticity.

6.1 Illustration of a Running Example

We now provide a detailed example to illustrate the workflow of the Smart-rsync
architecture. The example is based on the scenario reported in Figure 5 in which
there is a principal b that performs a request to a Smart-rsync server in order to
synchronize with file1. The Smart-rsync server has a policy to check whether a
principal is authorized to synchronize with file1 which is composed by two BLG

sf

formulae4:

4 The propositional variable sf1 reads as “synchronize with file1”.

16

1. a says sf1→ sf1
2. a says trusted b→ (a says (b says sf1→ sf1))

The first policy can be read as: “If principal a requests to synchronize with file1
then it is authorized”; while the second policy can be read as: “If principal a
issues a credential which says that principal b is trusted then principal a says
that b is authorized to synchronize with file1”. The Smart-rsync server runs a
standard rsync deamon of which we report the portion of its configuration file
(i.e., rsyncd.conf) related to the sync of file1:

...

[sf1]

path = /path/to/some/folder

comment = Comment here

read only = yes

list = yes

auth users = b, a

secrets file = /path/to/rsyncd.secrets

...

where sf1 is the alias for the resource pointed by the variable path. The file
rsyncd.secrets contains the appropriate username, password association and,
in particular, it contains the association between principal b and the password
used to sync with file1:

...

b:password

...

Once that all the config files are ready we can finally launch the rsync daemon
with the following command5:

rsync --daemon --config=/path/to/rsyncd.conf

The following command, instead, launches the application srsyncd:

$ srsyncd --daemon --prikey keys/server private.pem

--pubkeys keys/ --policies policies/

--port-number 3333 --log-level 2

which points the server to (respectively) its private key (previously generated
by the openssl genrsa utility), the public keys of the principals authorized to
interact with, the directory containing all the policies of the shared resources,
the port number on which to listen in order to serve requests and the verbosity
level of the logs. In particular, the policy regarding the sync with file1 is stored
in policies/sf1.pl as follows:

policy(a controls sf1).

policy(a says trusted b -> a trusts b on sf1).

5 from a root shell

17

where “a controls sf1” is a shortcut for “a says sf1 -> sf1” and “a trusts b

on sf1” stands for “a says(b says sf1 -> sf1)”.
The remote principal a runs an instance of cred serv which has been launched

with the following command

$ cred serv --daemon --prikey keys/a private.pem

--pubkeys keys/ --policy remote examples/policy a.pl

--port-number 3334 --log-level 2

the options are very much like the ones described before for srsyncd and the
relevant policy file, policy a.pl contains:

policy(b says a says trusted b -> a says trusted b).

The above policy can be intuitively read as follows: “if principal b requests a
credential form principal a supporting that b is trusted then principal a is autho-
rized to send such credential”. Concerning principal b, the request to synchronize
with file1 is issued by srsync program by running the following command on
the principal’s machine:

$ srsync --whoami b --prikey keys/b private.pem

--pubkeys keys/

--credentials remote examples/credentials

--request remote examples/request

--addresses remote examples/addresses

which specifies the principal that is issuing the request (option --whoami), its
associated private key (option --prikey), the credentials that are submitted to-
gether with the request (options --credentials and --request) and a list map-
ping names of principals with IP addresses and ports numbers. The execution
of srsync will trigger the following sequence of events (reported in Figure 5):

1. Principal b sends, via srsync, to Smart-rsync server a request to synchronize
with file1 by submitting sf1 signed with its private key which encodes the
formula b says sf1.

2. The srsyncd deamon forwards the request from principal b to P-SeqGAB to
check whether from the policy associated with sf1.pl together with b says
sf1 it can be proved that sf1 holds true.

3. The prover P-SeqGAB fails to prove sf1 and returns sf1 ∨ a says trusted b
as abducibles.

4. The srsyncd deamon sends to principal b the abducibles in the following
form {sf1;a says trusted b} where the ; stands for logical disjunction ∨.

5. The srsync client associated to principal b selects from the set of abducibles
those that are credentials (i.e., of the form c says ·) which, in this example,
is {a says trusted b}. Then, the client looks for the IP address associated
with principal a in the file remote examples/addresses and sends to principal
a the request to receive the necessary credential b says(a says trusted b).

6. The server cred serv of principal a queries P-SeqGAB to check whether from
the policy specified in policy a.pl and the request b says(a says trusted b)

it is possible to derive a says trusted b. In this example, it is sufficient for b

18

to ask for the necessary credential in order to get it and, therefore, P-SeqGAB

succeeds in deriving a says trusted b. Hence, cred serv sends the message
trusted b signed with the private key of principal a.

7. Once that srsync receives the requested credential a says trusted b it con-
tacts again the Smart-rsync server by submitting the request to sync with
file1 (i.e., b says sf1) together with the newly acquired credential. This
time the prover P-SeqGAB of the Smart-sync server succeeds in inferring
sf1 and, therefore, principal b can successfully execute the command rsync

-a b@RSYNCD IP::sf1 sf1 to sync with file1.

7 Related Work

Although BLG
sf is a fragment of BLsf, its goal-directed proof theory is intrinsically

different from the one presented by GGR for BLsf [15]. Whereas the proof theory
of BLsf, SeqC, is a standard labeled sequent calculus, the proof theory of BLG

sf,
SeqG, is a marriage of labeled sequent calculi with backchaining search, which
we believe to be a novel contribution. SeqG works much faster in practice than
SeqC, but some applications of SeqC presented by GGR, such as saturation
and countermodel generation, are incompatible with goal-directed search and it
seems difficult to adapt SeqG to cover those applications.

There has also been prior work on goal-directed search in a related logic BL,
presented in Garg’s thesis [10, Chapter 6], but that work is based in an unlabeled
sequent calculus. It does not consider the formula A sf B, but it does consider
general first-order quantifiers. Without the use of labels, it is necessary to limit
the nesting depth of A says ϕ in policies to 1 in the Hereditary Harrop fragment,
so a policy like A says B says ϕ cannot be expressed in the goal-directed fragment
of Garg’s thesis (but can be expressed in BLG

sf). Our proof of completeness of
goal-directed search uses the same structure as that of Garg.

Besides BLsf and BL, there is also a significant amount of work on goal-
directed search in Datalog-based authorization languages. For example, the trust
management language Soutei [20] is an extension of Datalog with domains that
are similar to the connective A says ϕ and its implementation uses distributed
backchaining search. The authorization policy language SecPAL [7], based on
Datalog with constraints, uses tabled backchaining search, which modifies backchain-
ing search to decide Datalog in polynomial time. However, as discussed in Sec-
tion 3, Datalog is much less expressive than BLG

sf.

8 Conclusions

We have presented BLG
sf, a goal-directed fragment of BLsf [15], and developed

SeqG, a sound, complete and terminating goal-directed proof search based on it.
We have explained through examples and simple experiments that although of
the same worst-case complexity as BLsf, BLG

sf works much faster on realistic au-
thorization policies. We have also modified SeqG to obtain an abduction calculus
that produces missing credentials when an authorization fails and implemented

19

it for performing automatic discovery of missing credentials in an extension of
the Unix file synchronization program rsync.

20

R sequents

Σ;M;Γ ⇔ x : p

Σ;M;Γ Z⇒ x : p
atom

Σ, y;M, xSAy;Γ Z⇒ y : G

Σ;M;Γ Z⇒ x : A says G
saysR

Σ;M;Γ Z⇒ x : Gi

Σ;M;Γ Z⇒ x : G1 ∨G2

∨Ri

Σ;M;Γ Z⇒ x : >
>R

Σ;M;Γ Z⇒ x : G1 Σ;M;Γ Z⇒ x : G2

Σ;M;Γ Z⇒ x : G1 ∧ G2

∧R

Σ, y;M, x ≤ y;Γ ; y : N ⇐ y : G

Σ;M;Γ Z⇒ x : N → G
→R

L sequents

Σ;M;Γ Z⇒ w : G

Σ;M;Γ ; · ⇐ w : G
L2R

Σ;M;Γ, x : D;Ξ ⇐ w : G

Σ;M;Γ ;Ξ, x : D ⇐ w : G
pr

Σ;M;Γ ;Ξ ⇐ w : G

Σ;M;Γ ;Ξ, x : > ⇐ w : G
>L

Σ;M;Γ ;Ξ, x : N1, x : N2 ⇐ w : G

Σ;M;Γ ;Ξ, x : N1 ∧N2 ⇐ w : G
∧L

Σ;M;Γ ;Ξ, x : ⊥ ⇐ w : G
⊥L

Σ;M;Γ ;Ξ, x : N1 ⇐ w : G Σ;M;Γ ;Ξ, x : N2 ⇐ w : G

Σ;M;Γ ;Ξ, x : N1 ∨N2 ⇐ w : G
∨L

N sequents

x : D ∈ Γ Σ;M; x : D � w : p | w1 : G1 . . . wn : Gn (Σ;M;Γ ⇒ wi : Gi)
n
i=1

Σ;M;Γ ⇔ w : p
choice

F sequents

Σ;M, x ≤ w; x : q � w : p | •
init

Σ;M; x : A sf B � x : A sf B | •
sf

Σ;M; x : Di � w : p | Gl
Σ;M; x : D1 ∧D2 � w : p | Gl

∧Li
x ≤ y ∈ M Σ;M; y : D � w : p | Gl
Σ;M; x : G→ D � w : p | y : G,Gl

→L

xSAy ∈ M Σ;M; y : D � w : p | Gl
Σ;M; x : A says D � w : p | Gl

saysL

Fig. 3. SeqG: A goal-directed calculus for BLG
sf

21

R sequents

Σ;M;Γ ⇔ x : p ↘m−1 Θ

Σ;M;Γ Z⇒ x : p ↘m Θ
atom

Σ, y;M, xSAy;Γ Z⇒ y : G ↘m−1 Θ

Σ;M;Γ Z⇒ x : A says G ↘m Θ
says R

Σ;M;Γ Z⇒ x : G1 ↘m−1 Θ1 Σ;M;Γ Z⇒ x : G2 ↘m−1 Θ2

Σ;M;Γ Z⇒ x : G1 ∨ G2 ↘m Θ1 ∨ Θ2

∨R
Σ;M;Γ Z⇒ x : > ↘m >

>R

Σ;M;Γ Z⇒ x : G1 ↘m−1 Θ1 Σ;M;Γ Z⇒ x : G2 ↘m−1 Θ2

Σ;M;Γ Z⇒ x : G1 ∧ G2 ↘m Θ1 ∧ Θ2

∧ R

Σ, y;M, x ≤ y;Γ ; y : N ⇐ y : G ↘m−1 Θ

Σ;M;Γ Z⇒ x : N → G ↘m Θ
→ R

L sequents

Σ;M;Γ Z⇒ w : G ↘m−1 Θ

Σ;M;Γ ; · ⇐ w : G ↘m Θ
L2R

Σ;M;Γ, x : D;Ξ ⇐ w : G ↘m−1 Θ

Σ;M;Γ ;Ξ, x : D ⇐ w : G ↘m Θ
pr

Σ;M;Γ ;Ξ ⇐ w : G ↘m−1 Θ

Σ;M;Γ ;Ξ, x : > ⇐ w : G ↘m Θ
>L

Σ;M;Γ ;Ξ, x : N1, x : N2 ⇐ w : G ↘m−1 ϕ

Σ;M;Γ ;Ξ, x : N1 ∧ N2 ⇐ w : G ↘m ϕ
∧L

Σ;M;Γ ;Ξ, x : ⊥ ⇐ w : G ↘m >
⊥L

Σ;M;Γ ;Ξ, x : N1 ⇐ w : G ↘m−1 Θ1 Σ;M;Γ ;Ξ, x : N2 ⇐ w : G ↘m−1 Θ2

Σ;M;Γ ;Ξ, x : N1 ∨ N2 ⇐ w : G ↘m Θ1 ∧ Θ2

∨L

N sequents

T =
∨

x:D∈Γ
{(Θ1 ∧ . . . ∧ Θn) | Σ;M, x : D � w : p | Gl and (Gl = g1, . . . , gn) and (Σ;M;Γ Z⇒ gi ↘m−1 Θi)}

Σ;M;Γ ⇔ w : p ↘m T ∨ AB(Σ;M;Γ ;w : p)
choice

No other rule applicable or (m-1 = 0)

Σ;M;Γ ⇔ w : p ↘m AB(Σ;M;Γ ;w : p)
AB

F sequents

Σ;M, x ≤ w; x : q � w : p | •
init

Σ;M; x : A sf B � x : A sf B | •
sf

Σ;M; x : Di � w : p | Gl

Σ;M; x : D1 ∧D2 � w : p | Gl
∧Li

x ≤ y ∈ M Σ;M; y : D � w : p | Gl

Σ;M; x : G → D � w : p | y : G,Gl
→ L

xSAy ∈ M Σ;M; y : D � w : p | Gl

Σ;M; x : A says D � w : p | Gl
says L

Fig. 4. SeqGAB: Abducibles extraction for BLG
sf

22

Principal bPrincipal a

cred_serv

Smart-rsync
Server

srsyncd
P-SeqGAB

1
2
3

4
5

6

7

8
sf1.pl

rsyncd
rsyncd.conf

cred_serv

srsyncsrsync

rsyncd.secrets

P-SeqGAB

policy_b.pl

P-SeqGAB

policy_a.pl

Fig. 5. The Smart-rsync Architecture

23

Bibliography

[1] This paper’s technical report. Anonymously available at http://dl.

dropbox.com/u/18441484/tech_report_STM12_anonymized.pdf

[2] Abadi, M.: Logic in access control. In: Procs. of LICS. pp. 228–233 (2003)
[3] Abadi, M., Burrows, M., Lampson, B., Plotkin, G.: A calculus for access

control in distributed systems. ACM TPLS 15(4), 706–734 (1993)
[4] Avijit, K., Datta, A., Harper, R.: Distributed programming with distributed

authorization. In: Procs. of TLDI. pp. 27–38 (2010)
[5] Bauer, L.: Access Control for the Web via Proof-Carrying Authorization.

Ph.D. thesis, Princeton University (2003)
[6] Bauer, L., Garriss, S., McCune, J.M., Reiter, M.K., Rouse, J., Rutenbar,

P.: Device-enabled authorization in the Grey system. In: Procs. of ISC. pp.
431–445 (2005)

[7] Becker, M.Y., Fournet, C., Gordon, A.D.: SecPAL: Design and semantics
of a decentralized authorization language. Journ. of Computer Sec. 18(4),
619–665 (2010)

[8] Becker, M.Y., Russo, A., Sultana, N.: Foundation of logic-based trust man-
agement. In: Procs. of IEEE Symposium on Security and Privacy (2012),
to appear

[9] DeTreville, J.: Binder, a logic-based security language. In: Procs. of IEEE
Symposium on Security and Privacy. pp. 105–113 (2002)

[10] Garg, D.: Proof Theory for Authorization Logic and Its Application to a
Practical File System. Ph.D. thesis, Carnegie Mellon University (2009)

[11] Garg, D., Abadi, M.: A modal deconstruction of access control logics. In:
Procs. of FoSSaCS. pp. 216–230 (2008)

[12] Garg, D., Pfenning, F.: Non-interference in constructive authorization logic.
In: Procs. of CSF. pp. 283–293 (2006)

[13] Garg, D., Pfenning, F.: A proof-carrying file system. In: Procs. of IEEE
Symposium on Security and Privacy. pp. 349–364 (2010)

[14] Genovese, V., Rispoli, D., Gabbay, D.M., van der Torre, L.: Modal ac-
cess control logic: Axiomatization, semantics and FOL theorem proving. In:
Procs. of STAIRS. IOS Press (2010)

[15] Genovese, V., Garg, D., Rispoli, D.: Labeled sequent calculi for access con-
trol logics: Countermodels, saturation and abduction. In: Procs. of CSF
(2012), to appear. Available online at http://www.mpi-sws.org/~dg/

[16] Gurevich, Y., Neeman, I.: Logic of infons: The propositional case. ACM
TOCL 12(2) (2011)

[17] Jia, L., Vaughan, J.A., Mazurak, K., Zhao, J., Zarko, L., Schorr, J.,
Zdancewic, S.: Aura: A programming language for authorization and au-
dit. In: Procs. of ICFP. pp. 27–38 (2008)

[18] Miller, D., Nadathur, G., Pfenning, F., Scedrov, A.: Uniform proofs as a
foundation for logic programming. Annals of Pure and Applied Logic 51,
125–157 (1991)

http://dl.dropbox.com/u/18441484/tech_report_STM12_anonymized.pdf
http://dl.dropbox.com/u/18441484/tech_report_STM12_anonymized.pdf
http://www.mpi-sws.org/~dg/

[19] Negri, S.: Proof analysis in modal logic. Journal of Philosophical Logic 34,
507–544 (2005)

[20] Pimlott, A., Kiselyov, O.: Soutei, a logic-based trust-management system.
In: Procs. of FLOPS. pp. 130–145 (2006)

[21] Schneider, F.B., Walsh, K., Sirer, E.G.: Nexus Authorization Logic (NAL):
Design rationale and applications. ACM TISSEC 14(1), 1–28 (2011)

[22] Swamy, N., Chen, J., Fournet, C., Strub, P.Y., Bhargavan, K., Yang, J.:
Secure distributed programming with value-dependent types. In: Procs. of
the 16th ACM SIGPLAN ICFP. pp. 266–278 (2011)

[23] Viganò, L.: A framework for non-classical logics. Ph.D. thesis, Universität
des Saarlandes (1997), also available as the book Labelled non-classical log-
ics, Springer 2000.

A Proofs from Section

Theorem 16 (Height-preserving Disjunction Property) If disjunction does
not appear in negative positions and if Σ;M;Γ ⇒ ∆ is derivable with a proof
of height h, then there is some w : ϕ ∈ ∆ such that Σw;Mw;Γw ⇒ w : ϕ is
derivable with a proof of at most height h.

Proof. By induction on the given derivation of Σ;M;Γ ⇒ ∆ and case analysis
of its last rule. We show only the interesting cases.

Case 1.
Σ;M, x ≤ y;Γ, x : p⇒ y : p,∆

init

Consider y : p, it is obvious that Σy; (M, x ≤ y)y; (Γ, x : p)y ⇒ y : p is provable.

Case 2.
Σ;M;Γ, x : A sf B ⇒ x : A sf B,∆

sf

Consider x : A sf B, it is obvious that Σx;Mx; (Γ, x : A sf B)x ⇒ x : A sf B is
provable.

Case 3.
Σ;M;Γ ⇒ x : >, ∆

>R

Clearly, (Σ)x; (M)x; (Γ)x ⇒ x : > is provable.

Case 4.
Σ;M;Γ, x : ⊥ ⇒ ∆

⊥L

Clearly, for any y : ϕ ∈ ∆, (Σ)x; (M)x; (Γ)x, x⊥ ⇒ y : ϕ is provable.

25

Case 5.
Σ;M;Γ ⇒ x : α, x : α ∧ β,∆ Σ;M;Γ ⇒ x : β, x : α ∧ β,∆

Σ;M;Γ ⇒ x : α ∧ β,∆
∧ R

By induction hypothesis, if there exists a w : ϕ ∈ ∆, with w 6= x such that
Σw;Mw;Γw ⇒ w : ϕ we are done. On the other hand if we can prove both
Σx;Mx;Γx ⇒ x : α and Σx;Mx;Γx ⇒ x : β then we obtain, by applying for-
ward (∧R), Σx;Mx;Γx ⇒ x : α ∧ β.

Case 6.
Σ;M;Γ ⇒ x : α, x : β, x : α ∨ β,∆

Σ;M;Γ ⇒ x : α ∨ β,∆
∨ R

By induction hypothesis, we have that there exists a w : ϕ ∈ (x : α, x : β,∆)
such that Σw;Mw;Γw ⇒ w : ϕ ∈ ∆. If w : ϕ ∈ ∆ then we are done. If
Σx;Mx;Γw ⇒ x : α then, by weakening, we have Σx;Mx;Γx ⇒ x : α, x : β and,
by an application of ∨R, we finally get Σx;Mx;Γx ⇒ x : α ∨ β.

Case 7.
Σ, y;M, x ≤ y;Γ, y : α⇒ y : β,∆

Σ;M;Γ ⇒ x : α→ β,∆
→ R

By induction hypothesis we have that there exists a w : ϕ ∈ (y : β,∆) such that
(Σ, y)w; (M, x ≤ y)w; (Γ, y : α)w ⇒ w : ϕ, we then have two sub-cases:

1. w : ϕ ∈ ∆ then, due that y is fresh, we have that (Σ, y)w = Σw, (M, x ≤ y)w = Mw

and (Γ, y : α)w = Γw. Hence,

Σw;Mw;Γw ⇒ w : α

is provable.
2. w : ϕ = y : β then, de that y is fresh, we have that (Σ, y)y = (Σy, y),

(M, x ≤ y)y = (My, x ≤ y) and (Γ, y : α)y = (Γy, y : α). Hence we
have that the following sequent is provable

Σy, y;My, x ≤ y;Γy, y : α⇒ y : β

Now, by applying forward→ R and because y is fresh, we have Σx;Mx;Γx ⇒
x : α→ β

Case 8.
(3)Σ;M, x ≤ y;Γ, x : α→ β ⇒ y : α,∆ (2)Σ;M, x ≤ y;Γ, x : α→ β, y : β ⇒ ∆

Σ;M, x ≤ y;Γ, x : α→ β ⇒ ∆
By induction hypothesis on (2) there must be a labelled formula w : ϕ ∈ ∆ such
that Σw; (M, x ≤ y)w; (∆,x : α→ β, y : β)w ⇒ w : ϕ we have several cases

1. If w is not ancestor of y (i.e., w 6∈ Σy) then we have y : β 6∈ (Γ, x : α→ β, y :
β)w and then we have that the following sequent is provable

Σw; (M, x ≤ y)w; (Γ, x : α→ β)w ⇒ w : α

2. If w is an ancestor of y then we can have two sub-cases

26

– w is an ancestor of some z 6= y such that z ≤ y (this includes that case
in which z = x) then we have y : β 6∈ (Γ, x : α→ β, y : β)w and then we
conclude as in point 1.

– w = y in this case, by induction hypothesis, we have that the following
sequent is provable

(4)Σy;My, x ≤ y;Γy, x : α→ β, y : β ⇒ y : ϕ

we then have to apply the inductive hypothesis on sequent (2)
• If there exists some w : ϕ1 ∈ ∆ such that

Σw; (M, x ≤ y)w; (Γ, x : α→ β)w ⇒ w : ϕ1

then we have proved the thesis.
• If the following sequent is provable

Σy;My, x ≤ y;Γy, x : α→ β ⇒ y : α

then, by weakening, also the following sequent is provable

(5)Σy;My, x ≤ y;Γy, x : α→ β ⇒ y : α, y : ϕ

Now, by applying forward → L on (4) and (5) we get

Σy;My, x ≤ y;Γy, x : α→ β ⇒ y : ϕ

Case 9.
Σ, y;M, xSAy;Γ ⇒ y : α,∆

Σ;M;Γ ⇒ x : A says α,∆
says R

Now by induction hypothesis we have that there exists a w : ϕ ∈ (y : α,∆)
such that the following sequent is provable

(Σ, y)w; (M, xSAy)w;Γw ⇒ w : ϕ

We distinguish two cases

1. w : ϕ ∈ ∆, this case is trivial due that y is a fresh variable hence we have
that sequent Σw;Mw;Γw ⇒ w : ϕ is provable.

2. In case w : ϕ = y : α we have that (Σy, y) = Σx, y, (M, xSAy)y = Mx, xSAy
and (Γ, y : α)y = Γx, y : α which implies that the following sequent is
derivable

Σx, y;Mx, xSAy;Γx, y : α

Now, with an application (looking forward) of says R we infer

Σx;Mx;Γx ⇒ x : A says α

Lemma 17 (Soundness of F-sequents) Suppose the following hold.

(a) Σ;M;x : D � w : p | w1 : g1 . . . wn : gn
(b) Σ;M;Γ, x : D ⇒ wi : gi, for all 1 ≤ i ≤ n

27

Then, Σ;M;Γ, x : D ⇒ w : p

Proof. By induction on the height of the proof of hypothesis (a). We case ana-
lyze the last rule in the derivation.

Case.
Σ;M, x ≤ w;x : q � w : p | ·

init

Trivially, from rule (init) Σ;M, x ≤ w;Γ, x : p⇒ w : p is provable.

Case.
Σ;M;x : A sf B � x : A sf B | •

sf

Trivially, from rule (sf) Σ;M;Γ, x : A sf B ⇒ x : AB is provable.

Case.
Σ;M;x : D1 � w : p | w1 : g1 . . . wn : gn

Σ;M;x : D1 ∧D2 � w : p | w1 : g1 . . . wn : gn
∧L1

To show Σ;M;Γ, x : D1 ∧D2 ⇒ w : p

1. Σ;M;Γ, x : D1 ⇒ w : p (inductive hypothesis)
2. Σ;M;Γ, x : D1, x : D2 ⇒ w : p (By Weakening on 1)
3. Σ;M;Γ, x : D1 ∧D2 ⇒ w : p (Rule (∧L) on 2)

Case.
Σ;M;x : D2 � w : p | w1 : g1 . . . wn : gn

Σ;M;x : D1 ∧D2 � w : p | w1 : g1 . . . wn : gn
∧L2

Similar to the previous case.

Case.
Σ;M, x ≤ y; y : D � w : p | w1 : g1 . . . wn : gn

Σ;M, x ≤ y;x : G→ D � w : p | y : G,w1 : g1 . . . wn : gn
→ L

To show Σ;M, x ≤ y;Γ, x : G→ D ⇒ w : p

1. Σ;M, x ≤ y;Γ, x : G→ D ⇒ y : G (hypothesis (b))
2. (Σ;M, x ≤ y;Γ, x : G→ D ⇒ wi : gi)i∈{1...n} (hypothesis (b))
3. Σ;M, x ≤ y;Γ, y : D ⇒D w : p (inductive hypothesis)
4. Σ;M, x ≤ y;Γ, x : G→ D, y : D ⇒ w : p (be Weakening on 3)
5. Σ;M, x ≤ y;Γ, x : G→ D ⇒ w : p (by applying (→ L) on 4 and 1)

Case.
Σ;M, xSAy; y : D � w : p | w1 : g1 . . . wn : gn

Σ;M, xSAy;x : A says D � w : p | w1 : g1 . . . wn : gn
says L

To show Σ;M, xSAy;Γ, x : A says D ⇒ w : p

1. Σ;M, xSAy;Γ, y : D ⇒ w : p (inductive hypothesis on (b))
2. Σ;M, xSAy;Γ, x : A says D, y : D ⇒ w : p (by Weakening on 1)
3. Σ;M, xSAy;Γ, x : A says D ⇒ w : p (by applying (says L) on 2)

Theorem 18 (Soundness) The following hold

A. If Σ;M;Γ Z⇒ x : ϕ then Σ;M;Γ ⇒ x : ϕ
B. If Σ;M;Γ ;Ξ ⇐ w : G then Σ;M;Γ,Ξ ⇒ w : G
C. If Σ;M;Γ ⇔ w : p then Σ;M;Γ ⇒ w : p

28

Proof. By simultaneous induction on given derivations and case analysis of the
last rule in them. We illustrate below some representative cases.

Case.
Σ, y;M, xSAy;Γ Z⇒ y : G

Σ;M;Γ Z⇒ x : AG says
says R

To show Σ;M;Γ ⇒ x : A says G

1. Σ;M, xSAy;Γ ⇒ y : G (inductive hypothesis on premise)
2. Σ;M;Γ ⇒ x : A says G (Rule (saysR) on 1)

Case.
Σ;M;Γ Z⇒ x : G1 Σ;M;Γ Z⇒ x : G2

Σ;M;Γ Z⇒ x : G1 ∧G2

∧R

To show Σ;M;Γ ⇒ x : G1 ∧G2

1. Σ;M;Γ ⇒ x : G1 (inductive hypothesis on premise)
2. Σ;M;Γ ⇒ x : G2 (inductive hypothesis on premise)
3. Σ;M;Γ ⇒ x : G1 ∧G2 (Rule (∧ L) on 1 and 2)

Case.
Σ;M;Γ ;Ξ, x : N1, x : N2 ⇐ w : G

Σ;M;Γ ;Ξ, x : N1 ∧N2 ⇐ w : G
∧L

To show Σ;M;Γ,Ξ, x : N1 ∧N2 ⇒ w : G

1. Σ;M;Γ,Ξ, x : N1, x : N2 ⇒ w : G (by inductive hypothesis on premise)
2. Σ;M;Γ,Ξ, x : N1 ∧N2 ⇒ w : G (by Rule (∧ L))

Case.
x : D ∈ Γ Σ;M;x : D � w : p | w1 : g1 . . . wn : gn (Σ;M;Γ ; · Z⇒ wi : gi)

n
i=1

Σ;M;Γ ⇔ w : p
choice

To show Σ;M;Γ ⇒ w : p

1. (Σ;M;Γ ⇒ wi : gi)
n
i=1 (by i.h. on 3rd premise)

2. Σ;M;Γ, x : D ⇒ w : p (Lemma 8 on 2nd premise and point 1)
3. Σ;M;Γ ⇒ w : p (Contraction Theorem on 2. using 1st premise)

Lemma 19 (Admissibility of (→ L)) Σ;M, x ≤ y;Γ, x : G → D Z⇒ y : G
provable with a derivation of height h and

A. Σ;M, x ≤ y;Γ, x : G → D, y : D Z⇒ z : G′ provable with a derivation
of height k implies Σ;M, x ≤ y;Γ, x : G → D Z⇒ z : G′ provable with a
derivation of height at most max(h, k)
B. Σ;M, x ≤ y;Γ, x : G → D, y : D;Ξ ⇐ z : G′ provable with a derivation
of height k implies Σ;M, x ≤ y;Γ, x : G → D;Ξ ⇐ z : G′ provable with a
derivation of height at most max(h, k)
C. Σ;M, x ≤ y;Γ, x : G → D, y : D ⇔ z : p provable with a derivation of
height k implies Σ;M, x ≤ y;Γ, x : G→ D ⇔ z : p provable with a derivation
of height at most max(h, k).

Proof. By simultaneous induction on the depths of the derivations given in (A)-
(C) and case analysis of the last rule in them.

29

Lemma 20 (Admissibility of says L) A. Σ;M, xSAy;Γ, x : A says D, y :
D Z⇒ z : G provable with a derivation of height h implies Σ;M, xSAy;Γ, x :
A says D Z⇒ z : G provable with a derivation of height at most h.

B. Σ;M, xSAy;Γ, x : A says D, y : D;Ξ ⇐ z : G provable with a derivation
of height h implies Σ;M, xSAy;Γ, x : A says D;Ξ ⇐ z : G provable with a
derivation of height at most h.

C. Σ;M, xSAy;Γ, x : A says D, y : D ⇔ z : p provable with a derivation of
height h implies Σ;M, xSAy;Γ, x : A says D ⇔ z : p provable with a deriva-
tion of height at most h.

Proof. By simultaneous induction on the depths of derivation given in (A)-(C)
and case analysis of their last rules.

Lemma 21 (Admissibility of ∧L) A. Σ;M;Γ, x : D1, x : D2 Z⇒ z : G prov-
able with a derivation of height h implies Σ;M;Γ, x : D1 ∧ D2 Z⇒ z : G
provable with a derivation of at most height h.

B. Σ;M;Γ, x : D1, x : D2;Ξ ⇐ z : G provable with a derivation of height h
implies implies Σ;M;Γ, x : D1 ∧ D2;Ξ ⇐ z : G provable with a derivation
of at most height h.

C. Σ;M;Γ, x : D1, x : D2 ⇔ z : p provable with a derivation of height h implies
implies Σ;M;Γ, x : D1 ∧ D2 ⇔ z : p provable with a derivation of at most
height h.

Proof. By simultaneous induction on the depths of derivation given in (A)-(C)
and case analysis of their last rules.

Lemma 22 (Admissibility of mon-S) A. Σ;M, x ≤ y, ySAz, z ≤ w, xSAw;Γ Z⇒
z : G provable with a derivation of height h implies Σ;M, x ≤ y, ySAz, z ≤
w;Γ Z⇒ z : G provable with a derivation of at most height h.

B. Σ;M, x ≤ y, ySAz, z ≤ w, xSAw;Γ ;Ξ ⇐ z : G provable with a derivation
of height h implies Σ;M, x ≤ y, ySAz, z ≤ w;Γ ;Ξ ⇐ z : G provable with a
derivation of at most height h.

Proof. By simultaneous induction on the depths of derivations given in (A)-(B)
and case analysis of their last rules. There is only one interesting case, that is
shown below.

Case 10.
(Σ;M, x ≤ y, ySAz, z ≤ w, xSAw);Γ ⇔ u : p

Σ;M, x ≤ y, ySAz, z ≤ w;Γ Z⇒ u : p
atom

To show Σ;M, x ≤ y, ySAz, z ≤ w;Γ Z⇒ u : p

1. (Σ;M, x ≤ y, ySAz, z ≤ w, xSAw;Γ) = (Σ;M, x ≤ y, ySAz, z ≤ w) (Defn.)
2. (Σ;M, x ≤ y, ySAz, z ≤ w);Γ ⇔ u : p, with height h− 1 (1st premise and 1)
3. Σ;M, x ≤ y, ySAz, z ≤ w;Γ Z⇒ u : p, with height h (Rule (atom) on 2)

Lemma 23 (Admissibility of refl) A. Σ, x;M, x ≤ x;Γ Z⇒ z : G provable
with a derivation of height h implies Σ, x;M;Γ Z⇒ z : G provable with a
derivation of at most height h.

30

B. Σ, x;M, x ≤ x;Γ ;Ξ ⇐ z : G provable with a derivation of height h implies
Σ, x;M;Γ ;Ξ ⇐ z : G provable with a derivation of at most height h.

Lemma 24 (Admissibility of trans) A. Σ;M, x ≤ y, y ≤ z, x ≤ z;Γ Z⇒ w :
G provable with a derivation of height h implies Σ;M, x ≤ y, y ≤ z;Γ Z⇒ w :
G provable with a derivation of at most height h.

B. Σ;M, x ≤ y, y ≤ z, x ≤ z;Γ ;Ξ ⇐ w : G provable with a derivation of height
h. implies Σ;M, x ≤ y, y ≤ z;Γ ;Ξ ⇐ w : G provable with a derivation of at
most height h.

Lemma 25 (Admissibility of I) A. Σ;M, xSBy, ySAz, xSAz;Γ Z⇒ w : G prov-
able with a derivation of height h implies Σ;M, xSBy, ySAz;Γ Z⇒ w : G
provable with a derivation of at most height h.

B. Σ;M, xSBy, ySAz, xSAz;Γ ;Ξ ⇐ w : G provable with a derivation of height
h implies
Σ;M, xSBy, ySAz;Γ ;Ξ ⇐ w : G provable with a derivation of at most height
h.

Lemma 26 (Admissibility of refl-sf) A. Σ, x;M;Γ, x : A sf A Z⇒ z : G
provable with a derivation of height h implies Σ, x;M;Γ Z⇒ z : G provable
with a derivation of at most height h.

B. Σ, x;M;Γ, x : A sf A;Ξ ⇐ z : G provable with a derivation of height h
implies Σ, x;M;Γ ;Ξ ⇐ z : G provable with a derivation of at most height
h.

Proof. By simultaneous induction on the depths of derivations given in (A)-(B)
and case analysis of their last rules. There is only one interesting case, that is
shown below.

Case 11.
(Σ, x;M;Γ, x : A sf A)⇔ u : p

Σ, x;M;Γ Z⇒ u : p
refl-sf

To show Σ, x;M;Γ Z⇒ u : p

1. (Σ;M;Γ, x : A sf A) = (Σ, x;M;Γ) (Defn.)
2. (Σ, x;M;Γ)⇔ u : p, with height h− 1 (1st premise and 1)
3. Σ, x;M;Γ Z⇒ u : p, with height h (Rule (refl-sf) on 2)

Lemma 27 (Admissibility of basic-sf) A. Σ;M, xSBy, xSAy;Γ, x : A sf B Z⇒
z : G provable with a derivation of height h implies Σ;M, xSBy;Γ, x : A sf
B Z⇒ z : G provable with a derivation of height at most h.

B. Σ;M, xSBy, xSAy;Γ, x : A sf B;Ξ ⇐ z : G provable with a derivation of
height h implies Σ;M, xSBy;Γ, x : A sf B;Ξ ⇐ z : G provable with a
derivation of at most height h.

Lemma 28 (Admissibilty of trans-sf) A. Σ;M;Γ, x : A sf B, x : B sf
C, x : A sf C Z⇒ z : G provable with derivation of height h implies Σ;M;Γ, x :
A sf B, x : B sf C Z⇒ z : G provable with a derivation of at most height h.

31

B. Σ;M;Γ, x : A sf B, x : B sf C, x : A sf C;Ξ ⇐ z : G provable with a
derivation of height h implies Σ;M;Γ, x : A sf B, x : B sf C;Ξ ⇐ z : G
provable with a derivation of at most height h.

Lemma 29 (Admissibilty of mon1-sf) A. Σ;M, x ≤ y;Γ, x : A sf B, y :
A sf B Z⇒ z : G provable with derivation of height h implies Σ;M, x ≤
y;Γ, x : A sf B Z⇒ z : G provable with a derivation of at most height h.

B. Σ;M, x ≤ y;Γ, x : A sf B, y : A sf B;Ξ ⇐ z : G provable with derivation
of height h implies Σ;M, x ≤ y;Γ, x : A sf B;Ξ ⇐ z : G provable with a
derivation of at most height h.

Lemma 30 (Admissibilty of mon2-sf) A. Σ;M, xSCy;Γ, x : A sf B, y :
A sf B Z⇒ z : G provable with a derivation of height h implies Σ;M, xSCy;Γ, x :
A sf B Z⇒ z : G provable with a derivation of at most height h.

B. Σ;M, xSCy;Γ, x : A sf B, y : A sf B;Ξ ⇐ z : G provable with a derivation
of height h implies Σ;M, xSCy;Γ, x : A sf B;Ξ ⇐ z : G provable with a
derivation of at most height h.

Theorem 31 (Completeness) The following hold.

A. Σ;M;Γ ⇒ x : G implies Σ;M;Γ Z⇒ x : G
B. Σ;M;Γ,Ξ ⇒ x : G implies Σ;M;Γ ;Ξ ⇐ x : G

Proof. By simultaneous lexicographic induction, first on the depths of the given
derivations, and then on the order (B) > (A). For (B) we also subinduct on
size(Ξ). More precisely, the following uses of the i.h. are legitimate:

– We are proving (B) and the i.h. is invoked for (A) or (B) with a derivation
of smaller depth.

– We are proving (A) and the i.h. is invoked for (A) or (B) with a derivation
of smaller depth.

– We are proving (B) and the i.h. is invoked for (A) with a derivation of equal
depth.

– We are proving (B) and the i.h. is invoked for (B) with a derivation of equal
depth and Ξ of smaller size.

To prove(A), we case analyze the last rule in the given derivation of Σ;M;Γ ⇒D

x : ϕ. For right rules we apply the i.h. to premises and then apply the corre-
sponding rule from R-sequents. For left rules, semantical rules and access control
rules, we apply the i.h. to the premises, and use one of Lemmas 19–30. Some
representative cases are shown below.

Case.
Σ;M, x ≤ y;Γ, x : p⇒ y : p

init

To show Σ;M, x ≤ y;Γ, x : p Z⇒ y : p.

1. Σ;M, x ≤ y;x : q � y : p | · (Rule init)
2. Σ;M, x ≤ y;Γ, x : p⇔ y : p (Rule (choice) on 1)

32

3. Σ;M, x ≤ y;Γ, x : p Z⇒ y : p (Rule (atom) on 2)

Case.
Σ;M, x ≤ y;Γ, x : G→ D ⇒ y : G, z : G′ Σ;M, x ≤ y;Γ, x : G→ D, y : D ⇒ z : G′

Σ;M, x ≤ y;Γ, x : G→ D ⇒ z : G′
→ L

To show Σ;M, x ≤ y;Γ, x : G→ D Z⇒ z : G′, by Theorem 16 we have to consider
two subcases
Subcase Σ;M, x ≤ y;Γ, x : G→ D ⇒ z : G′

1. Σ;M, x ≤ y;Γ, x : G→ D Z⇒ z : G′ (inductive hypothesis on subcase)

Subcase Σ;M, x ≤ y;Γ, x : G→ D ⇒ y : G

1. Σ;M, x ≤ y;Γ, x : G→ D Z⇒ y : G (i.h. (A) on 1st premise)
2. Σ;M, x ≤ y;Γ, x : G→ D, y : D Z⇒ z : G′ (i.h. (A) on 2nd premise)
3. Σ;M, x ≤ y;Γ, x : G→ D Z⇒ z : G′ (Lemma 19 on 1 and 2)

Case.
Σ;M, xSAy;Γ, x : A says D, y : D ⇒ z : G

Σ;M, xSAy;Γ, x : A says D ⇒ z : G
says L

To show: Σ;M, xSAy;Γ, x : A says D Z⇒ z : G.

1. Σ;M, xSAy;Γ, x : A says D, y : D Z⇒ z : G (i.h. (A) on premise)
2. Σ;M, xSAy;Γ, x : A says D Z⇒ z : G (Lemma 20 on 1)

Case.
Σ;M;Γ, x : D1, x : D2 ⇒ z : G

Σ;M;Γ, x : D1 ∧ D2 ⇒ z : G
∧L

To show Σ;M;Γ, x : D1 ∧ D2 Z⇒ z : G

1. Σ;M;Γ, x : D1, x : D2 Z⇒ z : G (i.h. (A) on premise)
2. Σ;M;Γ, x : D1 ∧D2 Z⇒ z : G (Lemma 21 on 1)

Case.
Σ;M;Γ ⇒ x : G1, x : G2

Σ;M;Γ ⇒ x : G1 ∨G2

∨L

By Theorem 16 we have to consider two subcases
Subcase Σ;M;Γ ⇒ x : G1

1. Σ;M;Γ Z⇒ x : G1 (i.h. on subcase)
2. Σ;M;Γ Z⇒ x : G1 ∨G2 (Rule ∨R1 on 1)

The subcase Σ;M;Γ ⇒ x : G2 is similar and left to the reader

33

	Labeled Goal-directed Searchin Access Control Logic

