
A Proof-Carrying File System with Revocable
and Use-Once Certificates

Jamie Morgenstern, Deepak Garg, and Frank Pfenning

Carnegie Mellon University
{jamiemmt,dg,fp}@cs.cmu.edu

Abstract. We present the design and implementation of a file system
which allows authorizations dependent on revocable and use-once pol-
icy certificates. Authorizations require explicit proof objects, combining
ideas from previous authorization logics and Girard’s linear logic. Use-
once certificates and revocations lists are maintained in a database that
is consulted during file access. Experimental results demonstrate that
the overhead of using the database is not significant in practice.

1 Introduction

In the past decade, proof-carrying authorization (PCA) [4,6,7,15] has emerged as
a promising, open-ended architecture for rigorous enforcement of authorization
policies. In PCA, policy rules and other policy-relevant credentials are abstractly
represented as formulas of a formal logic (as opposed to a possible low-level rep-
resentation in system databases or access control lists), and published in signed
certificates that are distributed to authorized principals. Access to a protected
resource is allowed by a reference monitor if and only if the principal request-
ing access produces enough certificates to authorize the access and a formal
logical proof which explains how the certificates combine to justify the access.
Through this combination of public-key cryptography and logic, PCA rigorously
enforces authorization policies at a high-level of abstraction. PCA-based autho-
rization has been deployed and tested in a variety of systems, including a web
server [6], physical devices like office doors in the Grey system [7], and a file
system, PCFS [15].

A significant shortcoming of prior work on PCA is the lack of a satisfactory
treatment of use-once certificates, i.e., certificates that can be used only once for
authorization. For instance, if an individual buys a movie from a pay-per-view
website, the certificate authorizing her to stream the movie should be usable
only once. Incorporating use-once certificates in proof-carrying authorization is
challenging because it not only requires the reference monitor to track consump-
tion of such certificates (which adds extra work, and potentially slows down the
reference monitor), but also requires a change to the logic itself to track uses
of each use-once certificate in a proof. As its main contribution, the present
paper fills this gap — we discuss the design, implementation, and evaluation
of a PCA-based file system, LPCFS, that allows authorizations to depend on
use-once certificates in addition to the usual persistent certificates.

LPCFS extends our prior PCA-based file system, PCFS [15], which does not
allow use-once certificates. First, we extend the logic BL used for representing
policies in PCFS with ideas from Girard’s linear logic [16] that allows precise
counting of use of resources in proofs. We call the resulting logic BLL (the su-
perscript L stands for linear). Second, we extend proof construction and proof
verification tools of PCFS to deal with linearity. Third, we extend the implemen-
tation of PCFS with a database for storing and tracking use-once certificates.
All such certificates are added to the database by their creators (this is in con-
trast to persistent certificates that are given directly to beneficiaries), and the
reference monitor marks them consumed when it successfully authorizes access
based on them. An important concern in the use of the database is atomicity
— all certificates present in the justification of an access must be checked and
marked consumed in a single atomic step. To ensure this property, we use ex-
clusive transactions on the database. Because marking consumption requires an
update to the database, authorizations with use-once certificates incur perfor-
mance overhead in the reference monitor, but we show through experimental
evaluation that, given the scarcity of use-once certificates in practice, this over-
head is reasonable.

A second contribution of this paper is to extend PCFS with support for revo-
cation of both use-once and persistent certificates by their issuers. To this end,
we include a table of revoked certificates in the database; policy creators add
revoked certificates to this table, and the reference monitor checks that each
certificate in a submitted request is absent from this table. Since the reference
monitor does not update this table when checking the revocation of certificates,
it incurs very little overhead by allowing revocation, as we confirm in our ex-
perimental evaluation. An additional design consideration is that the check for
certificate revocation must be made atomically with the check for use-once cer-
tificates described above.

The rest of this paper is organized as follows. We start by discussing related
work and comparing LPCFS to it. In Section 2, we motivate use-once certificates,
revocation, and the syntax of our logic BLL through an example. Section 3
presents the proof theory of the logic BLL briefly. Section 4 describes the design
and implementation of our file system, LPCFS, that enforces policies written in
BLL. Section 5 presents experimental measurements of the overhead of tracking
both use-once certificates and certificate revocations. Section 6 concludes the
paper. The source code of LPCFS is available under a liberal license from the
authors’ webpages. A detailed description of the logic BLL and proofs of its
metatheorems are available in the second author’s thesis [12, Chapter 9].

Related Work We briefly discuss some closely related work. The idea of using
logic for authorization goes back to the work of Lampson et al. [17] and has been
adopted in several subsequent proposals. For a general description of the area,
we refer the reader to two surveys [2,3].

Proof-carrying authorization (PCA), or the use of formal proofs for autho-
rization, was first proposed by Appel and Felten [4] and evolved in two im-
plemented systems [6,7], before two of the present authors applied it to a file

system, PCFS [15], which the present paper extends with support for use-once
and revocable certificates. To avoid the overhead of checking a proof and its cer-
tificates in the reference monitor at each access (as in PCA), PCFS offlines the
work of proof and certificate verification to a trusted verifier that issues a signed
capability in return, which is then used to authorize access at the file system’s
reference monitor. The same architecture is inherited by our file system LPCFS,
except that we use the signed capability to also carry lists of both use-once and
persistent certificates used in a proof to the reference monitor, where the lists
are checked against the database (see Section 4 for details).

Our use of a centralized database for tracking use-once (and also revoked)
certificates contrasts from a fully distributed implementation, as in the work of
Bowers et al. [8]. In that work, Bowers et al. assume that each use-once certificate
is tracked by a remote trusted party called a ratifier, and use a contract signing
protocol between ratifiers to ensure that all use-once certificates in a proof are
marked consumed atomically. However, this is slow in practice, and unnecessary
for applications that are centralized, as is the case for our file system.

Linear logic was first proposed by Girard [16]. The use of linear logic for rep-
resenting use-once certificates was first proposed by two of the authors [13] and
independently by Cederquist et al. [9]. Our policy logic BLL is an amalgamation
of the logic BL used in PCFS and linearity from the work of the authors [13].
Barth and Mitchell [5] have used a fragment of linear logic to study monotonicity
properties of algorithms for enforcement of digital rights (as in DRM applica-
tions).

Some systems, e.g., Nexus [20], support use-once credentials by tracking their
use in the reference monitor, but do not distinguish them from persistent cre-
dentials in the policy logic. This approach has the disadvantage that proof con-
struction and verification tools become oblivious to credential consumption and
seemingly correct proofs of authorization may be rejected by the reference mon-
itor because they utilize a use-once credential more than once.

2 Motivating Example

In this section, we motivate the need for use-once certificates through the exam-
ple of a fictitious online movie rental service’s authorization policy. We also give
a brief overview of the syntax of our logic BLL, describe a formalization of the
example policy in the logic, and motivate the need for certificate revocation.

Example: A Movie Rental Service. Consider the following policy for Web-
Film, a hypothetical online movie rental service. If principal K is a member of
the service, then she has access to view movie listings. If K is a member, and
K purchases a movie ticket, then K has the ticket which can be traded for the
right to download a movie M. If K exchanges a ticket in order to watch Ferris
Bueller’s Day Off, then K no longer has the ticket but can read Ferris Bueller’s
Day Off from the server for the next 30 days. Different principals are responsible
for different kinds of facts about the system: MovieServer controls access to

movies, UserDB keeps track of the user database, and TicketHolder keeps a list
of tickets held by members and records of payment. Alice is a user of the rental
service.

In order to formalize this policy within a logic, we need the notion of state-
ments made by principals, consumable resources (such as money and tickets),
and time-sensitive permissions (a principal can download a movie for 30 days
after purchasing it with a ticket), all of which our logic BLL supports.

A Brief Introduction to the Logic BLL. BLL is a logic for distributed access
control, different principals making statements about access rights, together with
the notion of consumable facts or resources which are consumed in deriving other
facts. As in its precursor BL [15], facts may be time-sensitive: the proposition
A @ [u1, u2] means that proposition A holds between time points u1 and u2.

Statements made by principals in the system together form an access policy,
or a list of hypotheses from which inferences about access to resources can be
made. Because statements can be either persistent, in that they may be used ar-
bitrarily many times through the course of reasoning, or linear, in that they may
be used at most once, it is necessary to have two different connectives to repre-
sent statements. K once A means that the principal K asserts the proposition A
as a consumable resource, which can be used only once in a proof of authoriza-
tion. This contrasts from K says A, which means that principal K asserts the
persistent fact A. For example, Bank once (HasMoney K) is a proposition which
represents the bank stating that K has money; this fact may be exchanged for
some other fact (e.g, that K owns a Ferrari), but it cannot be used more than
once.

Two other connectives, implication and conjunction, have linear counterparts
with meanings different from conventional logic. Linear implication, written A(
B, describes an implication which consumes the (linear) fact A and produces the
linear fact B. The proposition A ⊗ B means that both A and B are true. Finally
!A represents that the proposition A may be used arbitrarily many times (i.e.,
A is persistent).

Example Formalized. Next, we formalize the authorization policies of Web-
Film in BLL. We start by describing the predicates needed for the formalization.
The atomic proposition (may K F R) represents the authorization of permission
R on file F to principal K, e.g., (may Alice FBDO read) gives Alice permission to
read FBDO (Ferris Bueller’s Day Off). Another atom used in the formalization
is Member K, representing the assertion that K is a member of the service; in our
example, the user database will state this persistent fact. HasTicketK represents
that K has a ticket, which will be stated by the TicketHolder as a linear (use-
once) fact. GetMovie M , the assertion of desire for a movie M , will be asserted
by users of the system with the wish to purchase the movie M . Purchased K M
represents the record of K having bought the movie M , which will be asserted
by the TicketHolder as a persistent fact. HasMoneyForTicket K, that K has
the money to purchase a ticket, will be asserted by K’s bank as a linear fact

that can be used to purchase movie tickets. Finally, BuyTicket is asserted as a
linear fact by users wanting to purchase movie tickets.

Using these atoms, the policy of WebFilm described earlier can be represented
in BLL as the following propositions. As a convention, any variables in uppercase
letters are implicitly assumed to be universally quantified inside the outermost
assertion K says •.

γ1 = MovieServer says ((UserDB says (member K)) (! (may K movieList read))
@ [−∞,∞]

γ2 = MovieServer says (((UserDB says (member K))
⊗ (TicketHolder once (HasTicket K))
⊗ (K once (GetMovie M))) (
! ((may K M read) @ [T, T + 30])
⊗ (TicketHolder says (Purchased K M))) @ [T, T]

γ3 = TicketHolder says (((UserDB says (member K))
⊗ (Bank once (HasMoneyForTicket K))
⊗ (K once BuyTicket))
((HasTicket K)) @ [−∞,∞]

γ4 = UserDB says (member Alice) @ [−∞,∞]

The first rule above means that the MovieServer states that if the UserDB
states that K is a member, then K can read the movieList any number of
times. This rule (like all others above) is persistent because it contains the says
connective at the top level. The permission granted by the rule is also persistent
because it contains a ! connective in front of it. The suffix @ [−∞,∞] at the end
of the rule means that the rule is valid in all time intervals.

As another example, the second rule above means that if at time T , prin-
cipal UserDB states that K is a member, K holds a ticket (TicketHolder once
(HasTicket K)), and K wants to buy the movie M (K once (GetMovie M)),
then K may read movie M any number of times in the interval [T, T + 30] and
we record the fact that K has purchased the movie M . Note that the ticket and
K’s desire to purchase the movie (K once (GetMovie M)) are consumed as part
of the rule, thus preventing the rule from firing again, unless K produces another
ticket and another certificate expressing the desire to purchase the movie.

In addition to these policy rules, we need several linear (use-once) proposi-
tions to draw meaningful conclusions. For instance, the following use-once cre-
dentials state respectively that at time T0, Alice has enough money to buy a
ticket, that she wants to buy a ticket, and that she wants to obtain the movie
FBDO.

δ1 = Bank once (HasMoneyForTicket Alice) @ [T0, T0]
δ2 = Alice once (BuyTicket) @ [T0, T0]
δ3 = Alice once (GetMovie FBDO) @ [T0, T0]

Intuitively, we may expect that from the policy rules Γ = {γ1, γ2, γ3, γ4} and
the use-once assumptions ∆ = {δ1, δ2, δ3}, we can construct a proof that Alice
can read the file FBDO in the interval [T0, T0 + 30]. The proof would consume

the use-once assumptions ∆. We now explain informally how this deduction is
done in BLL.

First, by modus ponens on the rule γ3 and the premises γ4, δ1, and δ2, we
obtain the linear fact δ4 = TicketHolder once (HasTicket Alice) @ [T0, T0].
Note that due to the use of the connective (in γ3, this deduction consumes
the linear assumptions δ1 and δ2, leaving only Γ , δ3, and the new fact δ4.
Next, by modus ponens on the rule γ2 with the premises γ4, δ4, and δ3, we
deduce that (!(may Alice FBDO read) @ [T0, T0 + 30]) ⊗ (TicketHolder says
(Purchased Alice FBDO)) @ [T0, T0]. The first component of this tensor (⊗)
gives Alice the permission to read FBDO any number of times in the interval
[T0, T0 + 30], as expected. Also note that the second deduction step consumes
both remaining linear facts δ3 and δ4.

Linear Proof-Carrying Authorization. How is deduction in BLL related to
policy enforcement in LPCFS? Consider a state of the system with persistent
policy facts Γ and linear policy facts ∆. Suppose that a principal K constructs
a proof M of authorization ϕ using a subset ∆′ of the linear facts ∆ and any
subset of the persistent credentials Γ . When an access based on M is allowed,
the reference monitor marks the subset ∆′ consumed (in its central database),
leaving only the linear facts ∆ − ∆′ for use in future authorizations. All of Γ
persists and can be used again.

Revocation. Revocation is a mechanism for canceling a previously issued cer-
tificate. For instance, assuming that WebFilm watermarks all its movies with
identities of users who download them, the service may want to cancel Alice’s
membership if it discovers that Alice is illegally sharing movies downloaded from
WebFilm. In our example and LPCFS, WebFilm can do this by telling the ref-
erence monitor that the certificate γ4 that authorizes Alice’s membership to the
service has been revoked. The reference monitor stores this revocation in its
database, thus rejecting any further authorizations that use γ4.

It is important to note the distinction between use of a linear certificate, the
revocation of a (persistent or linear) certificate, and time-based expiration of a
certificate. A linear certificate is used when a proof based on it is successfully
used to authorize access. Revocation takes place when a principal decides that a
part P of her policy is flawed. She then adds the name of P to the revoked table in
the reference monitor, so that no proof which relies on P will check successfully.
A time-based expiration means that the certificate A @ [u1, u2] cannot be used
to deduce an authorization valid in an interval other than [u1, u2], unless the
policy explicitly allows this. Unlike linearity and time-based expiration, both of
which have explicit representation in the logic, revocation has no representation
in the logic and is an artifact of the enforcement architecture only.

3 The Policy Logic BLL

This section describes the syntax and, briefly, the proof theory of BLL. To keep
the presentation simple, we omit a description of some standard connectives of
linear logic, including 1, ⊕ and &. We also do not describe BLL’s treatment of
stateful atoms and constraints, which are inherited from its predecessor BL [14].
Formulas (propositions) A,B have the following syntax. P denotes an atomic
formula, which is a predicate applied to a list of terms, and σ denotes a type
(sort) of terms.

Formulas A,B ::= P | A ⊗ B | A(B | !A | ∀x:σ.A | ∃x:σ.A |
K says A | K once A | A @ [u1, u2]

The intuitive meanings of the connectives were explained and illustrated in Sec-
tion 2. Deduction is formally defined over judgments, which are assertions with
formulas as subjects [11,19], and which may be established through proofs. We
need four judgments to describe the constructs of BLL: (1) A ◦ [u1, u2]: Formula
A holds throughout the interval [u1, u2], and this fact can be used any number of
times (2) A ? [u1, u2]: Formula A holds throughout the interval [u1, u2], and this
fact must be used once, (3) K claims A ◦ [u1, u2]: Principal K asserts throughout
the interval [u1, u2] that formula A holds, and this fact may be used any num-
ber of times, and (4) K claims A ? [u1, u2]: Principal K asserts throughout the
interval [u1, u2] that formula A holds, and this fact must be used exactly once. Al-
though inference is performed over judgments, the latter can also be represented
equivalently (internalized) in the syntax of formulas.A ? [u1, u2] is internalized as
A @ [u1, u2]; A ◦ [u1, u2] is internalized as !(A @ [u1, u2]); K claims A ? [u1, u2]
is internalized as (K once A) @ [u1, u2]; K claims A ◦ [u1, u2] is internalized as
(K says A) @ [u1, u2].

Deduction is formalized with inference rules, which establish hypothetical
judgments or sequents: Σ;Γ ;∆

ν−→ A ? [u1, u2], where

- Σ is a list of variables occurring free in the rest of the sequent, together with
their types (sorts)

- Γ is a list of persistent assumptions of the form A ◦ [u1, u2] and K claims
A ◦ [u1, u2]

- ∆ is a list of use-once assumptions of the form A ? [u1, u2] and K claims A ?
[u1, u2]

- ν = K ′, u′1, u
′
2, a triple containing a principal K ′ and a time interval [u′1, u

′
2],

is called the view of the sequent

The meaning of the entire sequent is: “Parametrically in the variables in Σ,
the judgment A ? [u1, u2] can be derived using the persistent assumptions Γ
any number of times, and each of the use-once assumptions ∆ exactly once.
Further, this derivation is relative to the assumption that all statements made
by principal K about the interval [u′1, u

′
2] are true.” In the following we describe

some of the inference rules of the logic’s proof system.

Axiom. The logic BLL has one axiom that allows us to conclude that an atom
P holds during an interval from the linear assumption that P holds on a larger
interval. Further, to properly account for the use of resources,∆must not contain
any other assumption.

Σ;Γ |= u′
1 ≤ u1 Σ;Γ |= u2 ≤ u′

2

Σ;Γ ;P ? [u′
1, u

′
2]

ν−→ P ? [u1, u2]
init

Copy. The following rule allows copying of a persistent assumption into the linear
context ∆, where it can be analyzed by rules presented later. The persistent
assumption is retained in the premise to allow it to be used again.

Σ;Γ,A ◦ [u1, u2];∆,A ? [u1, u2]
ν−→ B ? [u′

1, u
′
2]

Σ;Γ,A ◦ [u1, u2];∆
ν−→ B ? [u′

1, u
′
2]

copy

Connective ⊗. The so-called linear multiplicative conjunction, ⊗, is defined by
the following two inference rules:

Σ;Γ ;∆1
ν−→ A1 ? [u1, u2] Σ;Γ ;∆2

ν−→ A2 ? [u1, u2]

Σ;Γ ;∆1,∆2
ν−→ A1 ⊗ A2 ? [u1, u2]

⊗R

Σ;Γ ;∆,A1 ? [u1, u2], A2 ? [u1, u2]
ν−→ B ? [u′

1, u
′
2]

Σ;Γ ;∆,A1 ⊗ A2 ? [u1, u2]
ν−→ B ? [u′

1, u
′
2]

⊗L

The first rule says that to establish A1 ⊗ A2 (in some interval), we must split
the linear resources into ∆1 and ∆2, using the first set to prove A1 and the other
to prove A2 (both in the same interval). Dually, the second rule means that the
assumption A1 ⊗ A2 is equivalent to having both A1 and A2. Note that the
principal linear judgment A1 ⊗ A2 ? [u1, u2] is not included in the premise of
the second rule, to prevent it from being used again.

Connective (. Intuitively, the judgment A1 (A2 ? [u1, u2] means that there is
a method to consume a proof of A1 on any subset of [u1, u2] and produce a proof
of A2 on the same subset. This is captured in the following rules of inference.

Σ, x1:time, x2:time;Γ, u1 ≤ x1, x2 ≤ u2;∆,A1 ? [x1, x2]
ν−→ A2 ? [x1, x2]

Σ;Γ ;∆
ν−→ A1 (A2 ? [u1, u2]

(R

Σ;Γ ;∆1
ν−→ A1 ? [u′

1, u
′
2]

Σ;Γ ;∆2, A2 ? [u′
1, u

′
2]

ν−→ B ? [u′′
1 , u

′′
2] Σ;Γ |= u1 ≤ u′

1 Σ;Γ |= u′
2 ≤ u2

Σ;Γ ;∆1,∆2, A1 (A2 ? [u1, u2]
ν−→ B ? [u′′

1 , u
′′
2]

(L

Connective once. A proof of K once A ? [u1, u2] is a proof of A ? [u1, u2] in the
view K,u1, u2 (rule onceR) using only assumptions of the forms K ′ claims A′ ◦
[u′1, u

′
2] in Γ (notation Γ |) and K ′ claims A′ ? [u′1, u

′
2] in ∆ (notation ∆|). Note

that to ensure that no linear resources are lost in moving from the conclusion of

the rule to the premise, the linear assumptions in the conclusion are exactly ∆|.
Dually, the assumption K once A ? [u1, u2] can be used to deduce A ? [u1, u2] if
the view ν = K,ub, ue satisfies [ub, ue] ⊆ [u1, u2] (rules onceL and lclaims).

Σ;Γ |;∆| K,u1,u2−−−−−→ A ? [u1, u2]

Σ;Γ ;∆| ν−→ K once A ? [u1, u2]
onceR

Σ;Γ ;∆,K claims A ? [u1, u2]
ν−→ B ? [u′

1, u
′
2]

Σ;Γ ;∆,K once A ? [u1, u2]
ν−→ B ? [u′

1, u
′
2]

onceL

Σ;Γ ;∆,A ? [u1, u2]
ν−→ B ? [u′

1, u
′
2]

ν = K,ub, ue Σ;Γ |= u1 ≤ ub Σ;Γ |= ue ≤ u2

Σ;Γ ;∆,K claims A ? [u1, u2]
ν−→ B ? [u′

1, u
′
2]

lclaims

Connective says. The connective says behaves similarly to once, except that
in the rule saysR, we require the linear context to be empty. This is because
K says A is a persistent fact, which may be used multiple times, so it cannot
depend on any linear assumptions. Dually, in the rule (claims), we retain the
principal formula in the premise to allow it to be used multiple times.

Σ;Γ |; · K,u1,u2−−−−−→ A ? [u1, u2]

Σ;Γ ; · ν−→ K says A ? [u1, u2]
saysR

Σ;Γ,K claims A ◦ [u1, u2];∆
ν−→ B ? [u′

1, u
′
2]

Σ;Γ ;∆,K says A ? [u1, u2]
ν−→ B ? [u′

1, u
′
2]

saysL

Σ;Γ,K claims A ◦ [u1, u2];∆,A ? [u1, u2]
ν−→ B ? [u′

1, u
′
2]

ν = K,ub, ue Σ;Γ |= u1 ≤ ub Σ;Γ |= ue ≤ u2

Σ;Γ,K claims A ◦ [u1, u2];∆
ν−→ B ? [u′

1, u
′
2]

claims

Metatheory. We have verified standard metatheoretic properties of the proof
system of BLL. For instance, we prove that the rules of cut and identity (which
generalizes the init rule from atoms P to arbitrary formulas A) are both admis-
sible in the logic.

Theorem 1 (Admissibility of cut). Σ;Γ ;∆1
ν−→ A ? [u1, u2] and Σ;Γ ;∆2, A ?

[u1, u2]
ν−→ B ? [u′1, u

′
2] imply Σ;Γ ;∆1, ∆2

ν−→ B ? [u′1, u
′
2].

Proof. By nested induction, first on the structure of the formula A and then on
the heights of the two given derivations, as in prior work [15,18].

Theorem 2 (Identity). Σ;Γ ;A ? [u1, u2]
ν−→ A ? [u1, u2] for every formula A.

Proof. By induction on A.

4 The File System LPCFS

Like its predecessor PCFS, our file system LPCFS is implemented for the Linux
operating system. Technically, both file systems are virtual, since they only add
a layer of authorization checks to an existing file system, which is used for all
disk I/O. The existing file system in all experiments reported in this paper is
ext3. Both PCFS and LPCFS are implemented using the Fuse kernel module [1].

The general workflow in both file systems is the following. Users create poli-
cies, which are given to others in the form of certificates (in LPCFS, linear
certificates are stored in a central database which can be read by all users). The
certificates are used as assumptions to create proofs of authorization in a logic
(BL for PCFS and BLL for LPCFS). The proofs are verified by a trusted verifier
(an independent program), and exchanged for signed capabilities called procaps,
which are stored in an indexed store on the disk. During file system calls, the
reference monitor looks up this store for appropriate procaps and checks them
to authorize access and, in LPCFS, marks linear certificates as consumed. We
explain each of these steps in more detail below but, briefly, policy enforcement
in both PCFS and LPCFS follows the path:

Policy→ Proof→ Procap→ File access

Policy Creation. A policy is a set of logical formulas governing access rights
to files. The policy consists of certificates, which contain formulas of BLL signed
with creators’ (owners’) private keys. Certificates may be persistent or linear
(use-once).

A persistent certificate is stored in a file and given to others at the owner’s
discretion. Persistent certificates are created using the PCFS tool pcfs-cert
that checks their syntax. There is no restriction on copying persistent certificates.
New to LPCFS are linear certificates that are stored in a central SQLite database
that is accessible to both users and the reference monitor. LPCFS provides a
new tool pcfs-parse-insert to manage this database. The tool allows anyone
to insert a well-formed, signed linear certificate into the database, and anyone to
read certificates in the database, but only allows the reference monitor to mark
a linear certificate consumed. To ensure the latter, the database file is accessible
only to the superuser, and both the tool pcfs-parse-insert and the reference
monitor run as superuser.

Revoked certificates are stored in a separate table in the same database that
stores the linear certificates. This table can be manipulated using the LPCFS
command-line tool pcfs-view-remove that allows listing of revoked certificates,
and also allows the owner of a certificate to create an entry for revoking it.

Proof Construction. To authorize herself to access a file, a user must first
construct a formal proof which shows that she has access. As discussed in Sec-
tions 2 and 3, this proof uses certificates as assumptions (the contexts Γ and
∆). Although users are free to construct proofs by any means they choose in-
cluding heuristics and hard-coding, PCFS provides a tool called pcfs-search

that uses backchaining to construct proofs automatically. In LPCFS, we have
modified this tool to make it linearity-aware, i.e., it correctly ensures that linear
certificates are used exactly once in the proof. This raises new challenges; for in-
stance, when applying the ⊗R rule (Section 3), we need to choose a split for the
linear assumptions from an exponential number of choices. We avoid this prob-
lem by using an approach to backchaining proof construction due to Cervesato
et al. [10], which keeps track of unused resources in a branch and avoids this
exponential choice during proof search.

Proof Verification. Once the user has constructed a proof M , this proof,
together with the certificates used to construct it, is given to a proof verifier,
invoked using another command line program, pcfs-verify. The verifier is a
simple piece of code and must be trusted. In PCFS, the verifier checks that the
logical structure of the proof M is correct, and that the digital signatures of all
certificates used in the proof are correct. LPCFS adds two new checks: (1) that
none of the certificates used in the proof have been revoked by their authors, and
(2) that all linear certificates exist within the database and are unused. If all these
checks succeed, the verifier gives back the user a procap, which is a capability
that mentions the user, file, and permission (read, write, etc.) authorized. The
procap also contains conditions related to time and system state under which
the proof is valid (we have not discussed system state in this paper, but LPCFS
inherits it from PCFS). In LPCFS, lists of unique identifiers of all persistent
certificates (P) and linear certificates (L) on which the proof depends are also
added to the procap. Finally, the procap is signed using a shared symmetric key
that is known only to the verifier and the file system reference monitor. The
signature is necessary to prevent users from forging capabilities. After receiving
a procap, the user calls another command line tool which puts the procap in an
indexed store on the disk.

File System Call and Access. LPCFS, like PCFS, respects the standard
POSIX interface for file systems. During a file system call (read, write, open, etc.)
the PCFS/LPCFS file system looks up the indexed procap store to authorize
the operation. The number of procaps needed varies from 1 to 3 depending on
the operation; these are unchanged from the prior work on PCFS. If all relevant
procaps are found, they are checked. In PCFS, this check covers the procap’s
time and system state conditions; in LPCFS, the procap’s certificate lists (P
and L) are also checked as follows:

– An exclusive transaction with the database containing the linear certificates
and the revoked certificates is started

– The revoked certificates table is queried to ensure it contains no elements in
the persistent list, P

– The linear certificates table is queried to ensure it contains all elements of the
linear list, L, and that none of them have been marked as “used” previously

– All the elements of L are marked as “used” in the database

– The transaction is committed
– File access is granted

The order of these operations is imperative. All other conditions in a procap
must be checked before checking the certificate lists in it, as we do not want to
unnecessarily mark linear certificates as used when access may not be granted.
Also for that reason, we must check both the linear and the revoked certificates
before consuming the linear certificates. It is also necessary that the linear cer-
tificates be marked as used prior to giving file access; if not, we risk a system
failure preventing us from marking the certificates used despite an access having
been made. Of course, this allows the possibility that a system failure after the
certificates are marked but prior to access incorrectly causes the certificates to be
marked. However, we maintain access logs and time of use within the database,
so certificates marked consumed this way can be unmarked by an administrator
during system recovery.

Summary of the Implementation. Our implementation of the LPCFS front
end tools (proof search, proof verification, and certificate management) com-
prises approximately 9,000 lines of SML code. The original PCFS implementa-
tion of these tools was nearly 7,000 lines of code; our modifications and additions
are spread throughout that code. Because the front end tools are used less fre-
quently than the reference monitor, their efficiency is also less of a concern. The
bottleneck for performance is the LPCFS reference monitor, which comprises ap-
proximately 11,000 lines of C++ code (the PCFS reference monitor was 10,000
lines long). We evaluate performance of the reference monitor in Section 5.

5 Experimental Results

In this section, we present the results of several experiments that measure the
efficiency of the reference monitor (back end) of LPCFS. We are specifically inter-
ested in the costs of checking and consuming certificates when performing basic
operations such as stat-ing a file (to which we address our microbenchmarks),
and during a typical build cycle (to which we address our macrobenchmarks).
All experiments reported here were performed on a 2.8 GHz 8-core machine with
3.8 GB RAM with a 500GB 7200 RPM hard drive running Linux kernel ver-
sion 2.6.35-27-generic. We used the GNU C++ compiler (g++) to compile the
reference monitor.

5.1 Macrobenchmarks

We performed two typical build-cycle benchmarks: (1) Untar-ing, compiling,
and deleting the source code of the fuse kernel module 5 times (Fuse × 5), and
(2) Untar-ing, configuring, compiling, and deleting the Poco C++ Base Library
(Poco/Base). In running LPCFS, we gave read, write, execute permissions on
the parent directory in which the tests were being run, first dependent upon

no certificates, and then with each permission dependent upon one persistent
certificate (which, of course, had not been revoked). No linear certificates were
used in these benchmarks: we would not expect linear rights to be used in a build
environment and so their effect is not a concern. The results of the benchmarks
are shown below. All times are measured in seconds. Fuse/Null is a virtual file
system with an architecture similar to that of LPCFS, except that it makes no
access checks. This file system is our baseline for comparison.

Benchmark LPCFS(0 certs) LPCFS (1 cert/perm) PCFS Fuse/Null Ext3
Poco/Base 614 638 614 611 538
Fuse × 5 97.55 98.64 96.41 91.18 85.48

In the absence of revocation checks (column 0 certs in the table), LPCFS over-
head over Fuse/Null is 0.4% for Poco, and 7% for Fuse. These are similar to
those of PCFS, which is to be expected, because in these cases the LPCFS and
PCFS implementations behave similarly. The additional overhead of checking
one certificate revocation per access (column 1 cert/perm in the table) is less
than 1% for Fuse and less than 5% for Poco, which is not much. Interestingly,
this overhead does not change with the size of the revoked certificate table, which
is also supported by our microbenchmarks below.

5.2 Microbenchmarks

The purpose of microbenchmarking was to assess the cost of checking for ex-
istence of certificate revocations and linear certificates (and marking the linear
certificates as used) in the database. In the first microbenchmark, we measured
the amount of time taken to stat a file1, when the permission to stat the file de-
pended on N = {0, 1, 2, 10, 20, . . . , 100} linear certificates. Precisely, we created
10,000 files of size 1 byte each and procaps authorizing the execute permission to
each of them (execute is the only permission needed to stat a file) with N linear
certificates in each procap. The average time to stat a file for different values of N
is shown in both tabular and graphical form in Figure 1. Note that stat-ing a file
whose execute permission depends on N linear certificates requires N updates
to the database (one update to mark each of the N certificates consumed).

With 0 certificates, the time taken by LPCFS per file (2.6ms) is similar to that
taken by Fuse/Null (2.4ms) and PCFS (2.6ms). However, with even one linear
certificate per procap, the time for access increases to 156ms. This is unsurprising
because dependence on linear certificates implies that the database must be
written to consume the linear certificates, which is an expensive operation. Note,
however, that a linear certificate can be used only once after it is issued, so the
total initial overhead due to linear certificates (156ms) across all system calls
cannot exceed the number of such certificates issued. In practice, we may expect
that not many linear certificates will be issued, so the overall cost should be
manageable. As the chart in Figure 1 shows, after this initial overhead the time
increases almost linearly with the number of linear certificates in each procap,

1 The stat file system call reads a file’s metadata, e.g., its length and owner.

Certs 0 1 2 10 20 30 40 50 60 70 80 90 100 PCFS Fuse/Null

Time (ms) 2.6 156 155 157 190 205 228 231 235 243 250 261 279 2.6 2.4

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0  20  40  60  80  100  120 

Ti
m
e 
to
 s
ta
te
 1
 fi
le
 (s
) 

Number of linear cer6ficates in procap 

Time to stat 1 file vs. number of 
linear cer6ficates in procap 

Fig. 1. Time to stat one file varying the number of linear certificates per procap

and is approximately 1ms per certificate. Practical authorizations are unlikely
to use more than one or two linear certificates each, so the incremental overhead
(1ms/certificate) is unlikely to add up to a significant number for any access.

Our second microbenchmark measures the cost of checking for certificate re-
vocations. This experiment is similar to the previous one, except that instead of
linear certificates, we use persistent certificates in procaps, for which only revo-
cations are checked. Again we varied the number of certificates in each procap
in the set N = {0, 1, 2, 10, 20, . . . , 100}. However, in addition, we also varied the
number of certificates in the revocation table in the set {1000, 2000, . . . , 10000}
to observe the impact, if any, of changing the size of this table. Our observations
are shown in Figure 2. First, as is evident from the data, there is no sudden
increase in access time when moving from 0 to 1 revocation checks per procap,
as was the case for linear certificates. This is because a revocation check does
not require writing the database and is, therefore, relatively inexpensive. Sec-
ond, there is a uniform growth in the overhead with increase in the number of
revocation checks per procap. The slope of this growth is approximately 0.02ms
per certificate. Finally, the effect of changing the number of revoked certificates
in the database is negligible. This is because the reference monitor reads the
revocation table in accordance with the table’s index.

5.3 Summary of Experimental Results

Our experiments show that increasing the size of the database does not signifi-
cantly affect the cost of checking certificates at the time of file access. Increasing
the number of certificates (linear or persistent) upon which permissions rely has
a roughly linear correlation with the time required to gain a permission to a
file. Linear certificates incur a significant, but constant, overhead because mark-
ing them consumed requires writing the database. Our macrobenchmarks show
that there is not a significant overhead in maintaining a revocation list within a
database and checking certificates against this list for a typical build cycle.

Certs\DB Load 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6
1 3.2 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1
2 3.3 3.3 3.2 3.2 3.2 3.2 3.2 3.3 3.2 3.2
10 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.5
20 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6
30 3.7 3.7 3.7 3.8 3.8 3.8 3.8 3.8 3.8 3.8
40 3.9 3.9 3.9 4.0 4.0 4.0 4.0 4.0 4.0 4.0
50 3.9 4 0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
60 4.2 4.2 4.1 4.2 4.2 4.2 4.2 4.2 4.3 4.3
70 4.2 4.2 4.2 4.2 4.1 4.2 4.2 4.3 4.2 4.4
80 4.4 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.6
90 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.7 4.7 4.7
100 4.8 4.8 4.8 4.8 4.9 5.2 5.6 5.4 5.5 5.5

Fig. 2. Time to stat one file varying the number of required persistent certificates per
procap (rows) and the size of the revocation list (columns). All times are reported in
ms.

6 Conclusion

LPCFS extends previous work on the file system PCFS to support revocable
and linear certificates within a proof-carrying authorization framework. Both
extensions are implemented using a centralized database which maintains a list
of revoked certificates and a table of linear certificates. Our experiments suggest
that the cost of making additional checks to support these features is manage-
able.

An interesting future direction for this work is to consider linear and re-
vocable certificates in a distributed setting: rather than requiring a centralized
database, the certificates and revocation list could be kept at multiple nodes.

Further, we would like to study policy authoring and analysis. Owing to the
complexity of the logic, policies may have unintended consequences if care is not
taken in constructing them. It would be useful to develop tools for exploring
possible consequences of a policy, or to aid in the proof of certain metatheorems
about a particular policy. For example, for the policy in Section 2, it might be
useful to prove that no statement made by Alice could affect the permissions
available to Bob. Notions such as this are useful guidelines, both for individuals
authoring the policy and for developers constructing policy verification tools.

Acknowledgments Jamie Morgenstern and Frank Pfenning were partially sup-
ported by NSF grant number 0716469. Jamie Morgenstern was also supported by
a Graduate Research Fellowship from the National Science Foundation. Deepak
Garg was supported by the U.S. ARO contract “Perpetually Available and Se-
cure Information Systems” (DAAD19-02-1-0389) to Carnegie Mellon’s CyLab
and the AFOSR MURI “Collaborative Policies and Assured Information Shar-
ing”.

References

1. FUSE: Filesystem in Userspace, available from http://fuse.sourceforge.net/

2. Abadi, M.: Logic in access control. In: 18th Annual Symposium on Logic in Com-
puter Science (LICS’03). pp. 228–233 (Jun 2003)

3. Abadi, M.: Logic in access control (tutorial notes). In: 9th International School on
Foundations of Security Analysis and Design (FOSAD). pp. 145–165 (2009)

4. Appel, A.W., Felten, E.W.: Proof-carrying authentication. In: 6th ACM Confer-
ence on Computer and Communications Security (CCS). pp. 52–62 (1999)

5. Barth, A., Mitchell, J.C.: Managing digital rights using linear logic. In: 21st Annual
IEEE Symposium on Logic in Computer Science (LICS). pp. 127–136 (2006)

6. Bauer, L.: Access Control for the Web via Proof-Carrying Authorization. Ph.D.
thesis, Princeton University (2003)

7. Bauer, L., Garriss, S., McCune, J.M., Reiter, M.K., Rouse, J., Rutenbar, P.: Device-
enabled authorization in the Grey system. In: 8th Information Security Conference
(ISC). pp. 431–445 (2005)

8. Bowers, K.D., Bauer, L., Garg, D., Pfenning, F., Reiter, M.K.: Consumable creden-
tials in logic-based access-control systems. In: Electronic Proceedings of the 14th
Annual Network and Distributed System Security Symposium (NDSS’07) (2007)

9. Cederquist, J.G., Corin, R., Dekker, M.A.C., Etalle, S., den Hartog, J.I., Lenzini,
G.: Audit-based compliance control. International Journal of Information Security
6(2), 133–151 (2007)

10. Cervesato, I., Hodas, J.S., Pfenning, F.: Efficient resource management for linear
logic proof search. Theoretical Computer Science 232, 133–163 (2000)

11. Chang, B.Y.E., Chaudhuri, K., Pfenning, F.: A judgmental analysis of linear logic.
Tech. Rep. CMU-CS-03-131R, Carnegie Mellon University (2003)

12. Garg, D.: Proof Theory for Authorization Logic and Its Application to a Prac-
tical File System. Ph.D. thesis, Carnegie Mellon University (2009), available as
Technical Report CMU-CS-09-168

13. Garg, D., Bauer, L., Bowers, K., Pfenning, F., Reiter, M.: A linear logic of affir-
mation and knowledge. In: 11th European Symposium on Research in Computer
Security (ESORICS ’06). pp. 297–312 (2006)

14. Garg, D., Pfenning, F.: Non-interference in constructive authorization logic. In:
19th Computer Security Foundations Workshop (CSFW). pp. 283–293 (2006)

15. Garg, D., Pfenning, F.: A proof-carrying file system. In: 31st IEEE Symposium on
Security and Privacy (Oakland). pp. 349–364 (2010)

16. Girard, J.Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)
17. Lampson, B., Abadi, M., Burrows, M., Wobber, E.: Authentication in distributed

systems: Theory and practice. ACM Transactions on Computer Systems 10(4),
265–310 (1992)

18. Pfenning, F.: Structural cut elimination I. Intuitionistic and classical logic. Infor-
mation and Computation 157(1/2), 84–141 (2000)

19. Pfenning, F., Davies, R.: A judgmental reconstruction of modal logic. Mathemat-
ical Structures in Computer Science 11, 511–540 (2001)

20. Schneider, F.B., Walsh, K., Sirer, E.G.: Nexus Authorization Logic (NAL): De-
sign rationale and applications. Tech. rep., Cornell University (2009), http:

//ecommons.library.cornell.edu/handle/1813/13679

http://fuse.sourceforge.net/
http://ecommons.library.cornell.edu/handle/1813/13679
http://ecommons.library.cornell.edu/handle/1813/13679

	A Proof-Carrying File System with Revocable and Use-Once Certificates

