Relational Cost Analysis (Technical Appendix)

Ezgi Çiçek
MPI-SWS, Germany

Marco Gaboardi
SUNY Buffalo, USA

Gilles Barthe
IMDEA Software Institute, Spain
Deepak Garg
MPI-SWS, Germany

Jan Hoffmann
Carnegie Mellon University, USA

1 Structure of the Appendix

This appendix considers the following additions to the main paper.

- Two additional types: trees and the constrained type $C \supset \tau$. The latter is eliminated with the $e . c$ construct.
- We generalize the unrelated type $U A$ to $U\left(A_{1}, A_{2}\right)$, allowing us to relate two expressions of two different unary types A_{1} and A_{2}, respectively. As a result of this change, switch rule, \rightarrow exec subtyping rule, and some of the asynchronous rules are also generalized. The advantage of this generalization is useful for the 2Dcount example, explained in depth in Section 2.

We first present RelCost's syntax, typing and subtyping rules and semantic model. The remaining sections describe the necessary definitions, lemmas and theorems for proving the soundness of the RelCost's unary and binary (relational) typing with respect to the abstract cost semantics. Finally, we present three additional examples

We use some abbreviations throughout. STS stands for "suffices to show", TS stands for "to show", and RTS stands for "remains to show".

List of Figures

1 Syntax of types and contexts 3
2 Syntax of values and terms 3
3 Well-formedness of relational types 4
4 Well-formedness of types 5
5 Constraint well-formedness 5
6 Refinement removal operation 6
7 Sorting rules 6
8 Typing rules (Part 1) 7
9 Typing rules (Part 2) 8
10 Typing rules (Part 3) 9
11 Typing rules (Part 4) 10
12 Typing rules (Part 6) 12
13 Evaluation costs 13
14 Subtyping rules (part 1) 14
15 Subtyping rules (Part 2) 15
16 Unary subtyping rules 16
17 Evaluation semantics 17
18 Relational interpretation of types 18
19 Non-relational interpretation of types 19
List of Theorems and Lemmas
1 Lemma (Value evaluation) 20
2 Lemma (Value interpretation containment) 20
3 Lemma (Value Projection) 20
4 Lemma (Downward Closure) 21
5 Lemma (Subtyping Soundness) 21
6 Lemma (Sort Substitution) 29
$7 \quad$ Assumption (Constraint Well-formedness) 29
8 Lemma (Well-formedness) 29
9 Lemma (Refinement Removal Well-formedness) 29
10 Lemma (Subtyping well-formedness) 29
11 Assumption (Soundness of primitive functions (relational)) 29
12 Assumption (Soundness of primitive functions (non-relational)) 30
13 Assumption (Constraint conditions) 30
14 Theorem (Fundamental theorem) 30

Figure 1: Syntax of types and contexts

$$
\begin{aligned}
& \text { Terms } e::=x|\mathrm{n}| \text { fix } f(x) . e\left|e_{1} e_{2}\right| \zeta e\left|\left\langle e_{1}, e_{2}\right\rangle\right| \pi_{1}(e)\left|\pi_{2}(e)\right| \\
& \operatorname{inl} e|\operatorname{inr} e| \operatorname{case}\left(e, x . e_{1}, y . e_{2}\right)|\operatorname{nil}| \operatorname{cons}\left(e_{1}, e_{2}\right) \mid \\
& \text { case } e \text { of nil } \rightarrow e_{1}\left|h:: t l \rightarrow e_{2}\right| \text { leaf }\left|\operatorname{node}\left(e_{l}, e, e_{r}\right)\right| \\
& \text { case } e \text { of leaf } \rightarrow e_{1} \mid \text { node }(l, x, r) \rightarrow e_{2}|\Lambda e| e[] \mid \\
& \text { pack } e \mid \text { unpack } e_{1} \text { as } x \text { in } e_{2} \mid \text { let } x=e_{1} \text { in } e_{2}|()| \\
& \text { clet } e_{1} \text { as } x \text { in } e_{2} \mid{ }_{. c} e \\
& \text { Values } \quad v::=\mathrm{n} \mid \text { fix } f(x) \cdot v\left|\left\langle v_{1}, v_{2}\right\rangle\right| \operatorname{inl} v|\operatorname{inr} v| \text { nil }\left|\operatorname{cons}\left(v_{1}, v_{2}\right)\right| \text { leaf } \mid \\
& \operatorname{node}\left(v_{l}, v, v_{r}\right)|\Lambda e| \operatorname{pack} v \mid()
\end{aligned}
$$

Figure 2: Syntax of values and terms

| $\Delta ; \Phi \vdash \tau \mathrm{wf}$ | Binary type τ is well-formed. |
| :---: | :---: | :---: | :---: | :---: |
| $\Delta ; \Phi \vdash^{\mathrm{A}} A \mathrm{wf}$ | Unary type A is well-formed. |

$$
\begin{aligned}
& \overline{\Delta ; \Phi \vdash \text { unit }_{r} \text { wf }} \text { wf-unit } \quad \overline{\Delta ; \Phi \vdash \text { int }_{r} \text { wf }} \text { wf-int } \\
& \frac{\Delta ; \Phi \vdash \tau_{1} \mathrm{wf} \quad \Delta ; \Phi \vdash \tau_{2} \mathrm{wf}}{\Delta ; \Phi \vdash \tau_{1} \times \tau_{2} \mathrm{wf}} \text { wf-prod } \quad \frac{\Delta ; \Phi \vdash \tau_{1} \mathrm{wf} \quad \Delta ; \Phi \vdash \tau_{2} \mathrm{wf}}{\Delta ; \Phi \vdash \tau_{1}+\tau_{2} \mathrm{wf}} \text { wf-sum } \\
& \frac{\Delta ; \Phi \vdash \tau_{1} \mathrm{wf} \quad \Delta ; \Phi \vdash \tau_{2} \mathrm{wf} \quad \Delta ; \Phi \vdash t:: \mathbb{R}}{\Delta ; \Phi \vdash \tau_{1} \xrightarrow{\text { diff }(t)} \tau_{2} \mathrm{wf}} \text { wf-fun } \\
& \frac{\Delta ; \Phi \vdash n:: \mathbb{N} \quad \Delta ; \Phi \vdash \alpha:: \mathbb{N} \quad \Delta ; \Phi \vdash \tau \text { wf }}{\Delta ; \Phi \vdash \operatorname{list}[n]^{\alpha} \tau \text { wf }} \text { wf-list } \\
& \frac{\Delta ; \Phi \vdash n:: \mathbb{N} \quad \Delta ; \Phi \vdash \alpha:: \mathbb{N} \quad \Delta ; \Phi \vdash \tau \text { wf }}{\Delta ; \Phi \vdash \operatorname{tree}[n]^{\alpha} \tau \mathrm{wf}} \text { wf-tree } \\
& \frac{i:: S, \Delta ; \Phi \vdash \tau \mathrm{wf} \quad i:: S, \Delta ; \Phi \vdash t:: \mathbb{R}}{\Delta ; \Phi \vdash \forall i i^{\text {diff(t) }} S . \tau \mathrm{wf}} \mathrm{wf}-\forall \quad \frac{i:: S, \Delta ; \Phi \vdash \tau \mathrm{wf}}{\Delta ; \Phi \vdash \exists i:: S . \tau \mathrm{wf}} \text { wf- } \exists \\
& \frac{\Delta ; \Phi \vdash^{\mathrm{A}} A_{1} \mathrm{wf} \quad \Delta ; \Phi \vdash^{\mathrm{A}} A_{2} \mathrm{wf}}{\Delta ; \Phi \vdash U\left(A_{1}, A_{2}\right) \mathrm{wf}} \text { wf-U } \quad \frac{\Delta ; \Phi \vdash \tau \mathrm{wf}}{\Delta ; \Phi \vdash \square \tau \mathrm{wf}} \text { wf-box } \\
& \frac{\Delta ; \Phi \vdash C \mathrm{wf} \quad \Delta ; C \wedge \Phi \vdash \tau \mathrm{wf}}{\Delta ; \Phi \vdash C \supset \tau \mathrm{wf}} \mathrm{wf-C} \mathrm{\supset} \quad \frac{\Delta ; \Phi \vdash C \mathrm{wf} \quad \Delta ; C \wedge \Phi \vdash \tau \mathrm{wf}}{\Delta ; \Phi \vdash C \& \tau \mathrm{wf}} \mathrm{wf-C} \mathrm{\&}
\end{aligned}
$$

Figure 3: Well-formedness of relational types

$$
\begin{aligned}
& \overline{\Delta ; \Phi \vdash^{\mathrm{A}} \text { unit wf }} \text { wf-u-unit } \quad \overline{\Delta ; \Phi \vdash^{\mathrm{A}} \text { int wf }} \text { wf-u-int } \\
& \frac{\Delta ; \Phi \vdash^{\mathrm{A}} A_{1} \mathrm{wf} \quad \Delta ; \Phi \vdash^{\mathrm{A}} A_{2} \mathrm{wf}}{\Delta ; \Phi \vdash^{\mathrm{A}} A_{1} \times A_{2} \mathrm{wf}} \text { wf-u-prod } \\
& \frac{\Delta ; \Phi \vdash^{\mathrm{A}} A_{1} \mathrm{wf} \quad \Delta ; \Phi \vdash^{\mathrm{A}} A_{2} \mathrm{wf}}{\Delta ; \Phi \vdash^{\mathrm{A}} A_{1}+A_{2} \mathrm{wf}} \text { wf-u-sum } \\
& \frac{\Delta ; \Phi \vdash^{\mathrm{A}} A_{1} \mathrm{wf} \quad \Delta ; \Phi \vdash^{\mathrm{A}} A_{2} \mathrm{wf} \quad \Delta ; \Phi \vdash k:: \mathbb{R} \quad \Delta ; \Phi \vdash t:: \mathbb{R}}{\Delta ; \Phi \vdash^{\mathrm{A}} A_{1} \xrightarrow{\operatorname{exec}(k, t)} A_{2} \mathrm{wf}} \text { wf-u-fun } \\
& \frac{\Delta ; \Phi \vdash n:: \mathbb{N} \quad \Delta ; \Phi \vdash^{\mathrm{A}} A \mathrm{wf}}{\Delta ; \Phi \vdash^{\mathrm{A}} \operatorname{list}[n] A \mathrm{wf}} \text { wf-u-list } \quad \frac{\Delta ; \Phi \vdash n:: \mathbb{N} \quad \Delta ; \Phi \vdash^{\mathrm{A}} A \mathrm{wf}}{\Delta ; \Phi \vdash^{\mathrm{A}} \operatorname{tree}[n] A \mathrm{wf}} \text { wf-u-tree } \\
& \frac{i:: S, \Delta ; \Phi \vdash^{\mathrm{A}} A \mathrm{wf} \quad i:: S, \Delta ; \Phi \vdash k:: \mathbb{R} \quad i:: S, \Delta ; \Phi \vdash t:: \mathbb{R}}{\Delta ; \Phi \vdash^{\mathrm{A}} \forall i \stackrel{\operatorname{exec}(k, t)}{:} \mathrm{f} \text {. } A \text { wf }} \text { wf-u- } \forall \\
& \frac{i:: S, \Delta ; \Phi \vdash^{\mathrm{A}} A \mathrm{wf}}{\Delta ; \Phi \vdash^{\mathrm{A}} \exists i:: S . A \mathrm{wf}} \text { wf-u- } \exists \quad \frac{\Delta ; \Phi \vdash C \mathrm{wf} \quad \Delta ; C \wedge \Phi \vdash^{\mathrm{A}} A \mathrm{wf}}{\Delta ; \Phi \vdash^{\mathrm{A}} C \supset A \text { wf }} \text { wf-u-C } \supset \\
& \frac{\Delta ; \Phi \vdash C \mathrm{wf} \quad \Delta ; C \wedge \Phi \vdash^{\mathrm{A}} A \mathrm{wf}}{\Delta ; \Phi \vdash^{\mathrm{A}} C \& A \mathrm{wf}} \text { wf-u-C\& }
\end{aligned}
$$

Figure 4: Well-formedness of types
$\Delta \vdash C \mathrm{wf}$

$$
\begin{array}{ll}
\Delta \vdash I_{1}:: S \quad \Delta \vdash I_{2}:: S & \Delta \vdash I_{1}:: S \quad \Delta \vdash I_{2}:: S \\
S \in\{\mathbb{N}, \mathbb{R}\} \\
\hline \Delta \vdash I_{1}<I_{2} \mathrm{wf} & \text { wf-cs }< \\
& \frac{\Delta \vdash C \mathbb{N}, \mathbb{R}\}}{\Delta \vdash I_{1} \doteq I_{2} \mathrm{wf}} \text { wf-cs } \doteq \\
& \frac{\Delta \vdash C \mathrm{wf}}{\Delta \vdash \neg C \mathrm{wf}} \text { wf-cs } ᄀ
\end{array}
$$

Figure 5: Constraint well-formedness

$$
\begin{aligned}
& |\cdot|_{i \in\{1,2\}} \quad: \quad \text { Binary type } \rightarrow \text { Unary type } \\
& \mid \text { unit }\left._{r}\right|_{i}=\text { unit } \\
& \mid \text { int }\left._{r}\right|_{i}=\text { int } \\
& \left|\tau_{1} \times \tau_{2}\right|_{i}=\left|\tau_{1}\right|_{i} \times\left|\tau_{2}\right|_{i} \\
& \left|\tau_{1}+\tau_{2}\right|_{i}=\left|\tau_{1}\right|_{i}+\left|\tau_{2}\right|_{i} \\
& \left|\tau_{1} \xrightarrow{\text { diff }(t)} \tau_{2}\right|_{i}=\left|\tau_{1}\right|_{i} \xrightarrow{\operatorname{exec}(0, \infty)}\left|\tau_{2}\right|_{i} \\
& \mid \text { list }\left.[n]^{\alpha} \tau\right|_{i}=\operatorname{list}[n]|\tau|_{i} \\
& \mid \text { tree }\left.[n]^{\alpha} \tau\right|_{i}=\operatorname{tree}[n]|\tau|_{i} \\
& \mid \forall j \stackrel{\operatorname{diff}(t)}{:} \text { (t) } S .\left.\tau\right|_{i}=\forall i=j \stackrel{\operatorname{exec}(0, \infty)}{::} \text {. }|\tau|_{i} \\
& |\exists j:: S . \tau|_{i} \quad=\exists j:: S .|\tau|_{i} \\
& |C \supset \tau|_{i} \quad=C \supset|\tau|_{i} \\
& |C \& \tau|_{i}=C \&|\tau|_{i} \\
& \left|U\left(A_{1}, A_{2}\right)\right|_{i}=A_{i} \\
& |\square \tau|_{i} \quad=|\tau|_{i} \\
& |\emptyset|_{i} \quad=\emptyset \\
& |\Gamma, x: \tau|_{i}=|\Gamma|_{i}, x:|\tau|_{i}
\end{aligned}
$$

Figure 6: Refinement removal operation

$$
\begin{aligned}
& \Delta \vdash I:: S \\
& \frac{\Delta(i)=S}{\Delta \vdash i:: S} \text { inVar } \quad \overline{\Delta \vdash 0:: \mathbb{N}} \text { zero } \quad \overline{\Delta \vdash \infty:: \mathbb{R}} \text { infinity } \quad \frac{\Delta \vdash I:: \mathbb{N}}{\Delta \vdash(I+1):: \mathbb{N}} \text { plus } \\
& \frac{\Delta \vdash I_{1}:: \mathbb{N} \quad \Delta \vdash I_{2}:: \mathbb{N} \quad \diamond \in\{\min , \max ,+,-, *, \div,\}}{\Delta \vdash\left(I_{1} \diamond I_{2}\right):: \mathbb{N}} \text { op-bin-N } \\
& \frac{\Delta \vdash I:: \mathbb{R} \quad \circ \in\{\lfloor \rfloor,\lceil \rceil\}}{\Delta \vdash(\circ S):: \mathbb{N}} \text { op-un-N } \\
& \frac{\Delta \vdash t_{1}:: \mathbb{R} \quad \Delta \vdash t_{2}:: \mathbb{R} \quad \star \in\{\min , \max ,+,-, *, /,\}}{\Delta \vdash\left(t_{1} \star t_{2}\right):: \mathbb{R}} \text { op-bin-R } \frac{\Delta \vdash t:: \mathbb{R}}{\Delta \vdash \log _{2}(t):: \mathbb{R}} \text { op-log } \\
& \frac{\Delta \vdash I_{1}:: \mathbb{N} \quad \Delta \vdash I_{n}:: \mathbb{N} \quad \Delta, i:: \mathbb{N} \vdash I:: S \quad S \in\{\mathbb{N}, \mathbb{R}\}}{\Delta \vdash \sum_{n}^{I_{n}} I:: S} \text { isum } \quad \frac{\Delta \vdash I:: \mathbb{N}}{\Delta \vdash I:: \mathbb{R}} \mathbf{i} \sqsubseteq
\end{aligned}
$$

Figure 7: Sorting rules

General rules

$$
\begin{gathered}
\frac{\Delta ; \Phi ;|\Gamma|_{1} \vdash_{k_{1}}^{t_{1}} e_{1}: A_{1} \quad \Delta ; \Phi ;|\Gamma|_{2} \vdash_{k_{2}}^{t_{2}} e_{2}: A_{2}}{\Delta ; \Phi ; \Gamma \vdash e_{1} \ominus e_{2} \lesssim t_{1}-k_{2}: U\left(A_{1}, A_{2}\right)} \text { switch } \\
\Delta ; \Phi ; \Gamma \vdash e \ominus e \lesssim t: \tau \\
\frac{\forall x \in \operatorname{dom}(\Gamma) . \Delta ; \Phi \models \Gamma(x) \sqsubseteq \square \Gamma(x)}{\Delta ; \Phi ; \Gamma, \Gamma^{\prime} ; \Omega \vdash e \ominus e \lesssim 0: \square \tau} \text { nochange }
\end{gathered}
$$

Constant integers and unit

$$
\frac{\overline{\Delta ; \Phi ; \Omega \vdash_{0}^{0} \mathrm{n}: \text { int }} \text { const }}{\overline{\Delta ; \Phi ; \Omega \vdash_{0}^{0}(): \text { unit }} \text { unit }}
$$

$$
\overline{\Delta ; \Phi ; \Gamma \vdash \mathrm{n} \ominus \mathrm{n} \lesssim 0: \mathrm{int}_{r}} \text { r-const }
$$

$$
\overline{\Delta ; \Phi ; \Gamma \vdash() \ominus() \lesssim 0: \text { unit }_{r}}{ }^{\text {r-unit }}
$$

Variables x

$$
\frac{\Omega(x)=A}{\Delta ; \Phi ; \Omega \vdash_{0}^{0} x: A} \text { var } \quad \frac{\Gamma(x)=\tau}{\Delta ; \Phi ; \Gamma \vdash x \ominus x \lesssim 0: \tau} \mathrm{r} \text {-var }
$$

inl e
$\frac{\Delta ; \Phi ; \Omega \vdash_{k}^{t} e: A_{1} \quad \Delta ; \Phi \vdash^{\mathrm{A}} A_{2} \mathrm{wf}}{\Delta ; \Phi ; \Omega \vdash_{k}^{t} \mathrm{inl} e: A_{1}+A_{2}}$ inl $\quad \frac{\Delta ; \Phi ; \Gamma \vdash e \ominus e^{\prime} \lesssim t: \tau_{1} \quad \Delta ; \Phi \vdash \tau_{2} \mathrm{wf}}{\Delta ; \Phi ; \Gamma \vdash \operatorname{inl} e \ominus \operatorname{inl} e^{\prime} \lesssim t: \tau_{1}+\tau_{2}} \mathrm{r}$-inl

inr e

$\frac{\Delta ; \Phi ; \Omega \vdash_{k}^{t} e: A_{2} \quad \Delta ; \Phi \vdash^{\mathrm{A}} A_{1} \mathrm{wf}}{\Delta ; \Phi ; \Omega \vdash_{k}^{t} \operatorname{inr} e: A_{1}+A_{2}} \operatorname{inr} \quad \frac{\Delta ; \Phi ; \Gamma \vdash e \ominus e^{\prime} \lesssim t: \tau_{2} \quad \Delta ; \Phi \vdash \tau_{1} \mathrm{wf}}{\Delta ; \Phi ; \Gamma \vdash \operatorname{inr} e \ominus \operatorname{inr} e^{\prime} \lesssim t: \tau_{1}+\tau_{2}} \mathrm{r}-\mathrm{inr}$
case $\left(e, x . e_{1}, y . e_{2}\right)$

$$
\begin{gathered}
\frac{\Delta ; \Phi ; \Omega \vdash_{k}^{t} e: A_{1}+A_{2} \quad \Delta ; \Phi ; x: A_{1}, \Omega \vdash_{k^{\prime}}^{t^{\prime}} e_{1}: A \quad \Delta ; \Phi ; y: A_{2}, \Omega \vdash_{k^{\prime}}^{t^{\prime}} e_{2}: A}{\Delta ; \Phi ; \Omega \vdash_{k+k^{\prime}+c_{\text {case }}}^{t+t^{\prime}+c_{\text {case }}} \text { case }\left(e, x \cdot e_{1}, y . e_{2}\right): A} \text { case } \\
\Delta ; \Phi ; \Gamma \vdash e \ominus e^{\prime} \lesssim t: \tau_{1}+\tau_{2} \\
\frac{\Delta ; \Phi ; x: \tau_{1}, \Gamma \vdash e_{1} \ominus e_{1}^{\prime} \lesssim t^{\prime}: \tau \quad \Delta ; \Phi ; y: \tau_{2}, \Gamma \vdash e_{2} \ominus e_{2}^{\prime} \lesssim t^{\prime}: \tau}{\Delta ; \Phi ; \Gamma \vdash \operatorname{case}\left(e, x . e_{1}, y \cdot e_{2}\right) \ominus \operatorname{case}\left(e^{\prime}, x . e_{1}^{\prime}, y . e_{2}^{\prime}\right) \lesssim t+t^{\prime}: \tau} \text { r-case }
\end{gathered}
$$

Figure 8: Typing rules (Part 1)
fix $f(x) . e$

$$
\begin{aligned}
& \xrightarrow{\Delta ; \Phi \vdash^{\mathrm{A}} A_{1} \xrightarrow{\operatorname{exec}(k, t)} A_{2} \mathrm{wf} \quad \Delta ; \Phi ; x: A_{1}, f: A_{1} \xrightarrow{\operatorname{exec}(k, t)} A_{2}, \Omega \vdash_{k}^{t} e: A_{2}} \text { fix } \\
& \xrightarrow[{\Delta ; \Phi \vdash \tau_{1} \xrightarrow{\operatorname{diff}(t)} \tau_{2} \text { wf } \quad \Delta ; \Phi ; x: \tau_{1}, f: \tau_{1} \xrightarrow{\text { diff }(t)} \tau_{2}, \Gamma \vdash e_{1} \ominus e_{2} \lesssim t: \tau_{2}}]{\Delta ; \Phi ; \Gamma \vdash \text { fix } f(x) . e_{1} \ominus \operatorname{fix} f(x) . e_{2} \lesssim 0: \tau_{1} \xrightarrow{\operatorname{diff}(t)} \tau_{2}} \text { r-fix } \\
& \Delta ; \Phi \vdash \tau_{1} \xrightarrow{\operatorname{diff}(t)} \tau_{2} \mathrm{wf} \quad \Delta ; \Phi ; x: \tau_{1}, f: \square\left(\tau_{1} \xrightarrow{\operatorname{diff}(t)} \tau_{2}\right), \Gamma \vdash e \ominus e \lesssim t: \tau_{2} \\
& \forall x \in \operatorname{dom}(\Gamma) . \Delta ; \Phi \models \Gamma(x) \sqsubseteq \square \Gamma(x) \\
& \Delta ; \Phi ; \Gamma \vdash \operatorname{fix} f(x) . e \ominus \text { fix } f(x) . e \lesssim 0: \square\left(\tau_{1} \xrightarrow{\text { diff }(t)} \tau_{2}\right)
\end{aligned}
$$

$$
\begin{gathered}
\frac{\Delta ; \Phi ; \Omega \vdash_{k_{1}}^{t_{1}} e_{1}: A_{1} \xrightarrow{\operatorname{exec}(k, t)} A_{2} \quad \Delta ; \Phi ; \Omega \vdash_{k_{2}}^{t_{2}} e_{2}: A_{1}}{\Delta ; \Phi ; \Omega \vdash_{k_{1}+k_{2}+k+c_{a p p}}^{t_{1}+t_{2}+t+c_{a p p}} e_{1} e_{2}: A_{2}} \text { app } \\
\Delta ; \Phi ; \Gamma \vdash e_{1} \ominus e_{1}^{\prime} \lesssim t_{1}: \tau_{1} \xrightarrow{\operatorname{diff}(t)} \tau_{2} \\
\frac{\Delta ; \Phi ; \Gamma \vdash e_{2} \ominus e_{2}^{\prime} \lesssim t_{2}: \tau_{1}}{\Delta ; \Phi ; \Gamma \vdash e_{1} e_{2} \ominus e_{1}^{\prime} e_{2}^{\prime} \lesssim t_{1}+t_{2}+t: \tau_{2}} \text { r-app }
\end{gathered}
$$

$\left\langle e_{1}, e_{2}\right\rangle$

$$
\begin{gathered}
\frac{\Delta ; \Phi ; \Omega \vdash_{k_{1}}^{t_{1}} e_{1}: A_{1} \quad \Delta ; \Phi ; \Omega \vdash_{k_{2}}^{t_{2}} e_{2}: A_{2}}{\Delta ; \Phi ; \Omega \vdash_{k_{1}+k_{2}}^{t_{1}+t_{2}}\left\langle e_{1}, e_{2}\right\rangle: A_{1} \times A_{2}} \text { prod } \\
\frac{\Delta ; \Phi ; \Gamma \vdash e_{1} \ominus e_{1}^{\prime} \lesssim t_{1}: \tau_{1} \quad \Delta ; \Phi ; \Gamma \vdash e_{2} \ominus e_{2}^{\prime} \lesssim t_{2}: \tau_{2}}{\Delta ; \Phi ; \Gamma \vdash\left\langle e_{1}, e_{2}\right\rangle \ominus\left\langle e_{1}^{\prime}, e_{2}^{\prime}\right\rangle \lesssim t_{1}+t_{2}: \tau_{1} \times \tau_{2}} \text { r-prod }
\end{gathered}
$$

$\pi_{1}(e)$

$$
\frac{\Delta ; \Phi ; \Omega \vdash_{k}^{t} e: A_{1} \times A_{2}}{\Delta ; \Phi ; \Omega \vdash_{k+c_{\text {proj }}}^{t+c_{\text {proj }}} \pi_{1}(e): A_{1}} \text { proj11 } \quad \frac{\Delta ; \Phi ; \Gamma \vdash e \ominus e^{\prime} \lesssim t: \tau_{1} \times \tau_{2}}{\Delta ; \Phi ; \Gamma \vdash \pi_{1}(e) \ominus \pi_{1}\left(e^{\prime}\right) \lesssim t: \tau_{1}} \text { r-proj1 }
$$

$\pi_{2}(e)$

Symmetric rules.

Figure 9: Typing rules (Part 2)
nil

$$
\frac{\Delta ; \Phi \vdash^{\mathrm{A}} A \text { wf }}{\Delta ; \Phi ; \Omega \vdash_{0}^{0} \text { nil }: \operatorname{list}[0] A} \text { nil } \frac{\Delta ; \Phi \vdash \tau \text { wf }}{\Delta ; \Phi ; \Gamma \vdash \text { nil } \ominus \text { nil } \lesssim 0: \operatorname{list}[0]^{\alpha} \tau} \text { r-nil }
$$

$\operatorname{cons}\left(e_{1}, e_{2}\right)$

$$
\begin{gathered}
\frac{\Delta ; \Phi ; \Omega \vdash_{k_{1}}^{t_{1}} e_{1}: A \quad \Delta ; \Phi ; \Omega \vdash_{k_{2}}^{t_{2}} e_{2}: \operatorname{list}[n] A}{\Delta ; \Phi ; \Omega \vdash_{k_{1}+t_{2}}^{t_{2}} \operatorname{cons}\left(e_{1}, e_{2}\right): \operatorname{list}[n+1] A} \operatorname{cons} \\
\frac{\Delta ; \Phi ; \Gamma \vdash e_{1} \ominus e_{1}^{\prime} \lesssim t_{1}: \tau \quad \Delta ; \Phi ; \Gamma \vdash e_{2} \ominus e_{2}^{\prime} \lesssim t_{2}: \operatorname{list}[n]^{\alpha} \tau}{\Delta ; \Phi ; \Gamma \vdash \operatorname{cons}\left(e_{1}, e_{2}\right) \ominus \operatorname{cons}\left(e_{1}^{\prime}, e_{2}^{\prime}\right) \lesssim t_{1}+t_{2}: \operatorname{list}[n+1]^{\alpha+1} \tau} \mathrm{r}-\text { cons1 } \\
\frac{\Delta ; \Phi ; \Gamma \vdash e_{1} \ominus e_{1}^{\prime} \lesssim t_{1}: \square \tau \quad \Delta ; \Phi ; \Gamma \vdash e_{2} \ominus e_{2}^{\prime} \lesssim t_{2}: \operatorname{list}[n]^{\alpha} \tau}{\Delta ; \Phi ; \Gamma \vdash \operatorname{cons}\left(e_{1}, e_{2}\right) \ominus \operatorname{cons}\left(e_{1}^{\prime}, e_{2}^{\prime}\right) \lesssim t_{1}+t_{2}: \operatorname{list}[n+1]^{\alpha} \tau} \mathrm{r}-\operatorname{cons2}
\end{gathered}
$$

$$
\text { case } e \text { of nil } \rightarrow e_{1} \mid h:: t l \rightarrow e_{2}
$$

$$
\Delta ; \Phi ; \Gamma \vdash e \ominus e^{\prime} \lesssim t: \operatorname{list}[n]^{\alpha} \tau \quad \Delta ; \Phi \wedge n=0 ; \Gamma \vdash e_{1} \ominus e_{1}^{\prime} \lesssim t^{\prime}: \tau^{\prime}
$$

$$
i, \Delta ; \Phi \wedge n=i+1 ; h: \square \tau, t l: \text { list }[i]^{\alpha} \tau, \Gamma \vdash e_{2} \ominus e_{2}^{\prime} \lesssim t^{\prime}: \tau^{\prime}
$$

$$
i, \beta, \Delta ; \Phi \wedge n=i+1 \wedge \alpha=\beta+1 ; h: \tau, t l: \text { list }[i]^{\beta} \tau, \Gamma \vdash e_{2} \ominus e_{2}^{\prime} \lesssim t^{\prime}: \tau^{\prime}
$$

$\overline{\Delta ; \Phi ; \Gamma \vdash \text { case } e \text { of nil } \rightarrow e_{1} \mid h:: t l \rightarrow e_{2} \ominus \text { case } e^{\prime} \text { of nil } \rightarrow e_{1}^{\prime} \mid h:: t l \rightarrow e_{2}^{\prime} \lesssim t+t^{\prime}: \tau^{\prime}} \mathbf{r}$-caseL

$$
\frac{\Delta ; \Phi \vdash^{\mathrm{A}} A \text { wf }}{\Delta ; \Phi ; \Omega \vdash_{0}^{0} \text { leaf }: \text { tree }[0] A} \text { leaf }
$$

$$
\frac{\Delta ; \Phi \vdash \tau \text { wf }}{\Delta ; \Phi ; \Gamma \vdash \operatorname{leaf} \ominus \text { leaf } \lesssim 0: \operatorname{tree}[0]^{\alpha} \tau} \text { r-leaf }
$$

$\operatorname{node}\left(e_{l}, e, e_{r}\right)$

$$
\begin{gathered}
\Delta ; \Phi ; \Omega \vdash_{k}^{t} e: A \quad \Delta ; \Phi ; \Omega \vdash_{k_{1}}^{t_{1}} e_{l}: \operatorname{tree}[i] A \quad \Delta ; \Phi ; \Omega \vdash_{k_{2}}^{t_{2}} e_{r}: \operatorname{tree}[j] A \\
\Delta ; \Phi ; \Omega \vdash_{k+k_{1}+k_{2}}^{t+t_{1}+t_{2}} \operatorname{node}\left(e_{l}, e, e_{r}\right): \operatorname{tree}[i+j+1] A \\
\Delta ; \Phi ; \Gamma \vdash e \ominus e^{\prime} \lesssim t: \tau \\
\frac{\Delta ; \Phi ; \Gamma \vdash e_{l} \ominus e_{l}^{\prime} \lesssim t_{1}: \operatorname{tree}[i]^{\alpha} \tau \quad \Delta ; \Phi ; \Gamma \vdash e_{r} \ominus e_{r}^{\prime} \lesssim t_{2}: \operatorname{tree}[j]^{\beta} \tau}{\Delta ; \Phi ; \Gamma \vdash \operatorname{node}\left(e_{l}, e, e_{r}\right) \ominus \operatorname{node}\left(e_{l}^{\prime}, e^{\prime}, e_{r}^{\prime}\right) \lesssim t+t_{1}+t_{2}: \operatorname{tree}[i+j+1]^{\alpha+\beta+1} \tau} \text { r-node1 } \\
\Delta ; \Phi ; \Gamma \vdash e \ominus e^{\prime} \lesssim t: \square \tau \\
\frac{\Delta ; \Phi ; \Gamma \vdash e_{l} \ominus e_{l}^{\prime} \lesssim t_{1}: \operatorname{tree}[i]^{\alpha} \tau \quad \Delta ; \Phi ; \Gamma \vdash e_{r} \ominus e_{r}^{\prime} \lesssim t_{2}: \operatorname{tree}[j]^{\beta} \tau}{\Delta ; \Phi ; \Gamma \vdash \operatorname{node}\left(e_{l}, e, e_{r}\right) \ominus \operatorname{node}\left(e_{l}^{\prime}, e^{\prime}, e_{r}^{\prime}\right) \lesssim t+t_{1}+t_{2}: \operatorname{tree}[i+j+1]^{\alpha+\beta} \tau} \text { r-node2 }
\end{gathered}
$$

Figure 10: Typing rules (Part 3)

$$
\begin{aligned}
& \Delta ; \Phi ; \Omega \vdash_{k}^{t} e: \operatorname{list}[n] A \\
& \frac{\Delta ; \Phi \wedge n=0 ; \Omega \vdash_{k^{\prime}}^{t^{\prime}} e_{1}: A^{\prime} \quad i, \Delta ; \Phi \wedge n=i+1 ; h: A, t l: \operatorname{list}[i] A, \Omega \vdash_{k^{\prime}}^{t^{\prime}} e_{2}: A^{\prime}}{\Delta ; \Phi ; \Omega \vdash_{k+k^{\prime}+c_{\text {case }}}^{t+t^{\prime}+c_{\text {case }}} \text { case } e \text { of nil } \rightarrow e_{1} \mid h:: t l \rightarrow e_{2}: A^{\prime}} \text { caseL }
\end{aligned}
$$

case e of leaf $\rightarrow e_{1} \mid \operatorname{node}(l, x, r) \rightarrow e_{2}$

$$
\begin{aligned}
& \Delta ; \Phi ; \Omega \vdash_{k}^{t} e: \operatorname{tree}[n] A \quad \Delta ; \Phi \wedge n=0 ; \Omega \vdash_{k^{\prime}}^{t^{\prime}} e_{1}: A^{\prime} \\
& \frac{i, j, \Delta ; \Phi \wedge n=i+j+1 ; x: A, l: \operatorname{tree}[i] A, r: \operatorname{tree}[j] A, \Omega \vdash_{k^{\prime}}^{t^{\prime}} e_{2}: A^{\prime}}{\Delta ; \Phi ; \Omega \vdash_{k+k^{\prime}+c_{\text {case }} T}^{t+t^{\prime}+c_{\text {case }}} \text { case } e \text { of leaf } \rightarrow e_{1} \mid \operatorname{node}(l, x, r) \rightarrow e_{2}: A^{\prime}} \text { caseT } \\
& \Delta ; \Phi ; \Gamma \vdash e \ominus e^{\prime} \lesssim t: \operatorname{tree}[n]^{\alpha} \tau \quad \Delta ; \Phi \wedge n=0 \wedge ; \Gamma \vdash e_{1} \ominus e_{1}^{\prime} \lesssim t^{\prime}: \tau^{\prime} \\
& i, j, \beta, \theta, \Delta ; \Phi \wedge n=i+j+1 \wedge \alpha=\beta+\theta ; x: \square \tau, l: \operatorname{tree}[i]^{\beta} \tau, r: \operatorname{tree}[j]^{\theta} \tau, \Gamma \vdash e_{2} \ominus e_{2}^{\prime} \lesssim t^{\prime}: \tau^{\prime} \\
& i, j, \beta, \theta, \Delta ; \Phi \wedge n=i+j+1 \wedge \alpha=\beta+\theta+1 ; x: \tau, l: \operatorname{tree}[i]^{\beta} \tau, r: \operatorname{tree}[j]^{\theta} \tau, \Gamma \vdash e_{2} \ominus e_{2}^{\prime} \lesssim t^{\prime}: \tau^{\prime} \\
& \overline{\Delta ; \Phi ; \Gamma \vdash \text { case } e \text { of leaf } \rightarrow e_{1} \mid \operatorname{node}(l, x, r) \rightarrow e_{2} \ominus \text { case } e^{\prime} \text { of leaf } \rightarrow e_{1}^{\prime} \mid \operatorname{node}(l, x, r) \rightarrow \lesssim t+t^{\prime}: e_{2}^{\prime} \tau^{\prime}} \text { r-cas }
\end{aligned}
$$

Λe

$$
\begin{gathered}
\frac{i:: S, \Delta ; \Phi ; \Omega \vdash_{k}^{t} e: A \quad i \notin \operatorname{FIV}(\Phi ; \Omega)}{\Delta ; \Phi ; \Omega \vdash_{0}^{0} \Lambda e: \forall i i^{\operatorname{excec}(k, t)} S . A} \text { iLam } \\
\frac{i:: S, \Delta ; \Phi ; \Gamma \vdash e \ominus e^{\prime} \lesssim t: \tau \quad i \notin \operatorname{FIV}(\Phi ; \Gamma)}{\Delta ; \Phi ; \Gamma \vdash \Lambda e \ominus \Lambda e^{\prime} \lesssim 0: \forall i{ }^{\text {diff(t) }}:=} \text { r-iLam }
\end{gathered}
$$

$e[]$

$$
\begin{aligned}
& \frac{\Delta ; \Phi ; \Omega \vdash_{k}^{t} e: \forall i \stackrel{\operatorname{exec}\left(k^{\prime}, t^{\prime}\right)}{\left(t^{\prime}\right)} S . A \quad \Delta \vdash I: S}{\Delta ; \Phi ; \Omega \vdash_{k+k^{\prime}[1 / i]}^{t+t^{\prime}[/ / i]} e[]: A\{I / i\}} \mathbf{i A p p} \\
& \frac{\Delta ; \Phi ; \Gamma \vdash e \ominus e^{\prime} \lesssim t: \forall i \stackrel{\operatorname{diff}\left(t^{\prime}\right)}{:} \text {. } S . \tau \quad \Delta \vdash I: S}{\Delta ; \Phi ; \Gamma \vdash e[] \ominus e^{\prime}[] \lesssim t+t^{\prime}[I / i]: \tau\{I / i\}} \text { r-iApp }
\end{aligned}
$$

pack e

$$
\begin{gathered}
\frac{\Delta ; \Phi ; \Omega \vdash_{k}^{t} e: A\{I / i\} \quad \Delta \vdash I:: S}{\Delta ; \Phi ; \Omega \vdash_{k}^{t} \text { pack } e: \exists i:: S . A} \text { pack } \\
\frac{\Delta ; \Phi ; \Gamma \vdash e \ominus e^{\prime} \lesssim t: \tau\{I / i\} \quad \Delta \vdash I:: S}{\Delta ; \Phi ; \Gamma \vdash \text { pack } e \ominus \text { pack } e^{\prime} \lesssim t: \exists i:: S . \tau} \text { r-pack }
\end{gathered}
$$

unpack e as x in e^{\prime}

$$
\begin{gathered}
\Delta ; \Phi ; \Omega \vdash_{k_{1}}^{t_{1}} e_{1}: \exists i:: S . A_{1} \\
\frac{i:: S, \Delta ; \Phi ; x: A_{1}, \Omega \vdash_{k_{2}}^{t_{2}} e_{2}: A_{2} \quad i \notin F V\left(\Phi ; \Gamma, A_{2}, k_{2}, t_{2}\right)}{\Delta ; \Phi ; \Omega \vdash_{k_{1}+t_{2}}^{t_{1}} \text { unpack } e_{1} \text { as } x \text { in } e_{2}: A_{2}} \text { unpack } \\
\Delta ; \Phi ; \Gamma \vdash e_{1} \ominus e_{1}^{\prime} \lesssim t_{1}: \exists i:: S . \tau_{1} \\
\frac{i:: S, \Delta ; \Phi ; x: \tau_{1}, \Gamma \vdash e_{2} \ominus e_{2}^{\prime} \lesssim t_{2}: \tau_{2} \quad i \notin F V\left(\Phi ; \Gamma, \tau_{2}, t_{2}\right)}{\Delta ; \Phi ; \Gamma \vdash \text { unpack } e_{1} \text { as } x \text { in } e_{2} \ominus \text { unpack } e_{1}^{\prime} \text { as } x \text { in } e_{2}^{\prime} \lesssim t_{1}+t_{2}: \tau_{2}} \text { r-unpack1 }
\end{gathered}
$$

Figure 11: Typing rules (Part 4)

Primitive application

$$
\begin{gathered}
\xrightarrow[{\Upsilon(\zeta)=A_{1} \xrightarrow{\operatorname{exec}(k, t)} A_{2} \quad \Delta ; \Phi ; \Omega \vdash_{k^{\prime}}^{t^{\prime}} e: A_{1}}]{\Delta ; \Phi ; \Omega \vdash_{k+k^{\prime}+c_{a p p}}^{t+t^{\prime}+c_{a p p}} \zeta e: A_{2}} \text { primapp } \\
\frac{\Upsilon(\zeta)=\tau_{1} \xrightarrow{\operatorname{diff}(t)} \tau_{2} \quad \Delta ; \Phi ; \Gamma \vdash e \ominus e^{\prime} \lesssim t^{\prime}: \tau_{1}}{\Delta ; \Phi ; \Gamma \vdash \zeta e \ominus \zeta e^{\prime} \lesssim t+t^{\prime}: \tau_{2}} \text { r-primapp }
\end{gathered}
$$

$C \& \tau$ intro. rules

$$
\begin{gathered}
\frac{\Delta ; \Phi \models C \quad \Delta ; \Phi \wedge C ; \Omega \vdash_{k}^{t} e: A}{\Delta ; \Phi ; \Omega \vdash_{k}^{t} e: C \& A} \text { c-andI } \\
\frac{\Delta ; \Phi \models C \quad \Delta ; \Phi \wedge C ; \Gamma \vdash e \ominus e^{\prime} \lesssim t: \tau}{\Delta ; \Phi ; \Gamma \vdash e \ominus e^{\prime} \lesssim t: C \& \tau} \mathbf{c - a n d I}
\end{gathered}
$$

$C \& \tau$ elim. rules

$$
\frac{\Delta ; \Phi ; \Omega \vdash_{k_{1}}^{t_{1}} e_{1}: C \& A_{1} \quad \Delta ; \Phi \wedge C ; x: A_{1}, \Omega \vdash_{k_{2}}^{t_{2}} e_{2}: A_{2}}{\Delta ; \Phi ; \Omega \vdash_{k_{1}+k_{2}}^{t_{1}+t_{2}} \text { clet } e_{1} \text { as } x \text { in } e_{2}: A_{2}} \text { c-andE }
$$

$\frac{\Delta ; \Phi ; \Gamma \vdash e_{1} \ominus e_{1}^{\prime} \lesssim t_{1}: C \& \tau_{1} \quad \Delta ; \Phi \wedge C ; x: \tau_{1}, \Gamma \vdash e_{2} \ominus e_{2}^{\prime} \lesssim t_{2}: \tau_{2}}{\Delta ; \Phi ; \Gamma \vdash \operatorname{clet} e_{1} \text { as } x \text { in } e_{2} \ominus \operatorname{clet} e_{1}^{\prime} \text { as } x \text { in } e_{2}^{\prime} \lesssim t_{1}+t_{2}: \tau_{2}}$ r-c-andE
$C \supset \tau$ intro. rules

$$
\frac{\Delta ; \Phi \wedge C ; \Omega \vdash_{k}^{t} e: A}{\Delta ; \Phi ; \Omega \vdash_{k}^{t} e: C \supset A} \mathbf{c - i m p I} \quad \frac{\Delta ; \Phi \wedge C ; \Gamma \vdash e \ominus e^{\prime} \lesssim t: \tau}{\Delta ; \Phi ; \Gamma \vdash e \ominus e^{\prime} \lesssim t: C \supset \tau} \mathbf{r}-\mathbf{c - i m p I}
$$

$C \supset \tau$ elim. rules

$$
\begin{gathered}
\frac{\Delta ; \Phi ; \Omega \vdash_{k}^{t} e: C \supset A \quad \Delta ; \Phi \models C}{\Delta ; \Phi ; \Omega \vdash_{k}^{t} \operatorname{celim} e: A} \text { c-implE } \\
\frac{\Delta ; \Phi ; \Gamma \vdash e \ominus e^{\prime} \lesssim t: C \supset \tau \quad \Delta ; \Phi \models C}{\Delta ; \Phi ; \Gamma \vdash \operatorname{celim} e \ominus \operatorname{celim} e^{\prime} \lesssim t: \tau} \text { r-c-implE }
\end{gathered}
$$

let $x=e_{1}$ in e_{2}

$$
\begin{gathered}
\frac{\Delta ; \Phi ; \Omega \vdash_{k_{1}}^{t_{1}} e_{1}: A_{1} \quad \Delta ; \Phi ; x: A_{1}, \Omega \vdash_{k_{2}}^{t_{2}} e_{2}: A_{2}}{\Delta ; \Phi ; \Omega \vdash_{k_{1}+k_{2}+c_{l e t}}^{t_{1}+c_{2}+c_{l e t}} \text { let } x=e_{1} \text { in } e_{2}: A_{2}} \text { let } \\
\frac{\Delta ; \Phi ; \Gamma \vdash e_{1} \ominus e_{1}^{\prime} \lesssim t_{1}: \tau_{1} \quad \Delta ; \Phi ; x: \tau_{1}, \Gamma \vdash e_{2} \ominus e_{2}^{\prime} \lesssim t_{2}: \tau_{2}}{\Delta ; \Phi ; \Gamma \vdash \operatorname{let} x=e_{1} \text { in } e_{2} \ominus \operatorname{let} x=e_{1}^{\prime} \text { in } e_{2}^{\prime} \lesssim t_{1}+t_{2}: \tau_{2}} \text { r-let1 }
\end{gathered}
$$

Subtyping

$$
\begin{gathered}
\frac{\Delta ; \Phi ; \Omega \vdash_{k}^{t} e: A \quad \Delta ; \Phi \models A \sqsubseteq A^{\prime} \quad \Delta ; \Phi \models k^{\prime} \leq k \quad \Delta ; \Phi \models t \leq t^{\prime}}{\Delta ; \Phi ; \Omega \vdash_{k^{\prime}}^{t^{\prime}} e: A^{\prime}} \sqsubseteq \text { exec } \\
\frac{\Delta ; \Phi ; \Gamma \vdash e \ominus e^{\prime} \lesssim t: \tau \quad \Delta ; \Phi \models \tau \sqsubseteq \tau^{\prime} \quad \Delta ; \Phi \models t \leq t^{\prime}}{\Delta ; \Phi ; \Gamma \vdash e \ominus e^{\prime} \lesssim t^{\prime}: \tau^{\prime}} \mathbf{r} \sqsubseteq
\end{gathered}
$$

Constraint dependent typing

$$
\begin{gathered}
\frac{\Delta ; \Phi \wedge C ; \Gamma \vdash_{k}^{t} e: A \quad \Delta ; \Phi \wedge \neg C ; \Gamma \vdash_{k}^{t} e: A}{\Delta ; \Phi ; \Gamma \vdash_{k}^{t} e: A} \text { split } \\
\frac{\Delta ; \Phi \wedge C ; \Gamma \vdash e_{1} \ominus e_{2} \lesssim t: \tau \quad \Delta ; \Phi \wedge \neg C ; \Gamma \vdash e_{1} \ominus e_{2} \lesssim t: \tau}{\Delta ; \Phi ; \Gamma \vdash e_{1} \ominus e_{2} \lesssim t: \tau} \text { r-split } \\
\frac{\Delta ; \Phi \models \perp}{\Delta ; \Phi ; \Gamma \vdash_{k}^{t} e: A} \quad \Delta ; \Phi \vdash \Gamma, \Omega \mathrm{wf} \\
\frac{\Delta ; \Phi \models \perp}{} \text { contra } \frac{\Delta ; \Phi \models \perp}{\Delta ; \Phi ; \Gamma \vdash e_{1} \ominus e_{2} \lesssim t: \tau} \text { r-contra }
\end{gathered}
$$

Heuristic typing

$$
\begin{aligned}
& \frac{\Delta ; \Phi ;|\Gamma|_{1} \vdash_{k_{1}}^{t_{1}} e_{1}: A_{1} \quad \Delta ; \Phi ; x: U\left(A_{1}, A_{1}\right), \Gamma \vdash e_{2} \ominus e \lesssim t_{2}: \tau_{2}}{\Delta ; \Phi ; \Gamma \vdash \text { let } x=e_{1} \text { in } e_{2} \ominus e \lesssim t_{1}+t_{2}+c_{\text {let }}: \tau_{2}} \text { r-let-e } \\
& \frac{\Delta ; \Phi ;|\Gamma|_{2} \vdash_{k_{1}}^{t_{1}} e_{1}: A_{1} \quad \Delta ; \Phi ; x: U\left(A_{1}, A_{1}\right), \Gamma \vdash e \ominus e_{2} \lesssim t_{2}: \tau_{2}}{\Delta ; \Phi ; \Gamma \vdash e \ominus \operatorname{let} x=e_{1} \text { in } e_{2} \lesssim t_{2}-k_{1}-c_{\text {let }}: \tau_{2}} \text { r-e-let }
\end{aligned}
$$

$$
\frac{\Delta ; \Phi ;|\Gamma|_{1} \vdash_{k_{1}}^{t_{1}} e_{1}: A_{1} \xrightarrow{\operatorname{exec}(k, t)} A_{2} \quad \Delta ; \Phi ; \Gamma \vdash e_{2} \ominus e_{2}^{\prime} \lesssim t_{2}: U\left(A_{1}, A_{2}^{\prime}\right)}{\Delta ; \Phi ; \Gamma \vdash e_{1} e_{2} \ominus e_{2}^{\prime} \lesssim t_{1}+t_{2}+t+c_{a p p}: U\left(A_{2}, A_{2}^{\prime}\right)} \text { r-app-e }
$$

$$
\frac{\Delta ; \Phi ;|\Gamma|_{2} \vdash_{k_{1}}^{t_{1}} e_{1}^{\prime}: A_{1}^{\prime} \xrightarrow{\operatorname{exec}(k, t)} A_{2}^{\prime} \quad \Delta ; \Phi ; \Gamma \vdash e_{2} \ominus e_{2}^{\prime} \lesssim t_{2}: U\left(A_{2}, A_{1}^{\prime}\right)}{\Delta ; \Phi ; \Gamma \vdash e_{2} \ominus e_{1}^{\prime} e_{2}^{\prime} \lesssim t_{2}-k_{1}-k-c_{a p p}: U\left(A_{2}, A_{2}^{\prime}\right)} \text { r-e-app }
$$

$$
\Delta ; \Phi ;|\Gamma|_{1} \vdash_{-}^{t} e: A_{1}+A_{2}
$$

$\frac{\Delta ; \Phi ; x: U\left(A_{1}, A_{1}\right), \Gamma \vdash e_{1} \ominus e^{\prime} \lesssim t^{\prime}: \tau \quad \Delta ; \Phi ; y: U\left(A_{2}, A_{2}\right), \Gamma \vdash e_{2} \ominus e^{\prime} \lesssim t^{\prime}: \tau}{\Delta ; \Phi ; \Gamma \vdash \operatorname{case}\left(e, x . e_{1}, y . e_{2}\right) \ominus e^{\prime} \lesssim t^{\prime}+t+c_{\text {case }}: \tau}$ r-case-e

$$
\Delta ; \Phi ;|\Gamma|_{2} \vdash_{\bar{k}^{\prime}} e^{\prime}: A_{1}+A_{2}
$$

$\frac{\Delta ; \Phi ; x: U\left(A_{1}, A_{1}\right), \Gamma \vdash e \ominus e_{1}^{\prime} \lesssim t: \tau \quad \Delta ; \Phi ; y: U\left(A_{2}, A_{2}\right), \Gamma \vdash e \ominus e_{2}^{\prime} \lesssim t: \tau}{\Delta ; \Phi ; \Gamma \vdash e \ominus \operatorname{case}\left(e^{\prime}, x . e_{1}^{\prime}, y . e_{2}^{\prime}\right) \lesssim t-k^{\prime}-c_{\text {case }}: \tau}$ r-e-case

Figure 12: Typing rules (Part 6)

$$
\begin{array}{ll}
c_{\text {case }} & =1 \\
c_{\text {app }} & =1 \\
c_{\text {caseL }} & =1 \\
c_{\text {caseT }} & =1 \\
c_{\text {proj }} & =1 \\
c_{\text {let }} & =1
\end{array}
$$

Figure 13: Evaluation costs

$\Delta ; \Phi \models \tau_{1} \sqsubseteq \tau_{2} \quad$ Binary type τ_{1} is a subtype of relational type τ_{2}
$\Delta ; \Phi \models^{\mathrm{A}} A_{1} \sqsubseteq A_{2} \quad$ Unary type A_{1} is a subtype of type A_{2}

$$
\overline{\Delta ; \Phi \models \operatorname{int}_{r} \sqsubseteq \square \mathrm{int}_{r}} \text { int- } \square \quad \overline{\Delta ; \Phi \models \square U(\mathrm{int}, \mathrm{int}) \sqsubseteq \mathrm{int}_{r}} \square \mathbf{U} \text {-int }
$$

$$
\begin{gathered}
\stackrel{\Delta ; \Phi \models \text { unit }_{r} \sqsubseteq \square \text { unit }_{r}}{ } \text { unit } \\
\frac{\Delta ; \Phi \models \tau_{1}^{\prime} \sqsubseteq \tau_{1} \quad \Delta ; \Phi \models \tau_{2} \sqsubseteq \tau_{2}^{\prime} \quad \Delta ; \Phi \models t \leq t^{\prime}}{\Delta ; \Phi \models \tau_{1} \xrightarrow{\text { diff(t) } \tau_{2} \sqsubseteq \tau_{1}^{\prime} \xrightarrow{\operatorname{diff(tt^{\prime })}} \tau_{2}^{\prime}} \rightarrow \text { diff }} \underset{\Delta ; \Phi \models \square\left(\tau_{1} \xrightarrow{\text { diff(t) }} \tau_{2}\right) \sqsubseteq \square \tau_{1} \xrightarrow{\text { diff(0) } \square \tau_{2}}}{\Delta \square \text { diff }}
\end{gathered}
$$

$$
\overline{\Delta ; \Phi \models U\left(A_{1} \xrightarrow{\operatorname{exec}(k, t)} A_{2}, A_{1}^{\prime} \xrightarrow{\operatorname{exec}\left(k^{\prime}, t^{\prime}\right)} A_{2}^{\prime}\right) \sqsubseteq U\left(A_{1}, A_{1}^{\prime}\right) \xrightarrow{\operatorname{diff}\left(t-k^{\prime}\right)} U\left(A_{2}, A_{2}^{\prime}\right)} \rightarrow \text { execdiff }
$$

$$
\frac{i:: S, \Delta ; \Phi \models \tau \sqsubseteq \tau^{\prime} \quad i:: S, \Delta ; \Phi \models t \leq t^{\prime} \quad i \notin F V(\Phi)}{\Delta ; \Phi \models \forall i \stackrel{\text { diff(t) }}{:} \mathrm{:t} \text { S. } \tau \sqsubseteq \forall i \stackrel{\text { diff(t) }}{\left.::^{\prime}\right)} S . \tau^{\prime}} \forall \text { diff }
$$

$$
\overline{\Delta ; \Phi \models \square(\forall i \stackrel{\text { diff }(t)}{:=} S . \tau) \sqsubseteq \forall i \stackrel{\text { diff(0) }}{::} S . \square \tau} \forall
$$

$$
\overline{\Delta ; \Phi \models U\left(\forall i \stackrel{\operatorname{exec}(k, t)}{::} S . A, \forall i \stackrel{\operatorname{exec}\left(!k, t^{\prime}\right)}{::} \text {. } A^{\prime}\right) \sqsubseteq \forall i \stackrel{\operatorname{diff}\left(t-k^{\prime}\right)}{:} S . U\left(A, A^{\prime}\right)} \forall \mathbf{U}
$$

$$
\begin{aligned}
& \frac{\Delta ; \Phi \models \tau_{1} \sqsubseteq \tau_{1}^{\prime} \quad \Delta ; \Phi \models \tau_{2} \sqsubseteq \tau_{2}^{\prime}}{\Delta ; \Phi \models \tau_{1} \times \tau_{2} \sqsubseteq \tau_{1}^{\prime} \times \tau_{2}^{\prime}} \times \overline{\Delta ; \Phi \models \square \tau_{1} \times \square \tau_{2} \equiv \square\left(\tau_{1} \times \tau_{2}\right)} \times \square \\
& \overline{\Delta ; \Phi \models U\left(A_{1} \times A_{2}, A_{1}^{\prime} \times A_{2}^{\prime}\right) \sqsubseteq U\left(A_{1}, A_{1}^{\prime}\right) \times U\left(A_{2}, A_{2}^{\prime}\right)} \times \mathbf{U}
\end{aligned}
$$

$$
\frac{\Delta ; \Phi \models \tau_{1} \sqsubseteq \tau_{1}^{\prime} \quad \Delta ; \Phi \models \tau_{2} \sqsubseteq \tau_{2}^{\prime}}{\Delta ; \Phi \models \tau_{1}+\tau_{2} \sqsubseteq \tau_{1}^{\prime}+\tau_{2}^{\prime}}+\quad \frac{}{\Delta ; \Phi \models \square \tau_{1}+\square \tau_{2} \sqsubseteq \square\left(\tau_{1}+\tau_{2}\right)}+\square
$$

$$
\frac{\Delta ; \Phi \models n \doteq n^{\prime} \quad \Delta ; \Phi \models \alpha \leq \alpha^{\prime} \quad \Delta ; \Phi \models \tau \sqsubseteq \tau^{\prime}}{\Delta ; \Phi \models \operatorname{list}[n]^{\alpha} \tau \sqsubseteq \operatorname{list}\left[n^{\prime}\right]^{\alpha^{\prime}} \tau^{\prime}} \mathbf{l l}
$$

$$
\frac{\Delta ; \Phi \models \alpha \doteq 0}{\Delta ; \Phi \models \operatorname{list}[n]^{\alpha} \tau \sqsubseteq \operatorname{list}[n]^{\alpha} \square \tau} 12 \quad \frac{\Delta ; \Phi \models \operatorname{list}[n]^{\alpha} \square \tau \sqsubseteq \square\left(\operatorname{list}[n]^{\alpha} \tau\right)}{} 1 \square
$$

Figure 14: Subtyping rules (part 1)
$\Delta ; \Phi \models \tau_{1} \sqsubseteq \tau_{2} \quad$ Binary type τ_{1} is a subtype of type τ_{2}

$$
\frac{\Delta ; \Phi \models n \doteq n^{\prime} \quad \Delta ; \Phi \models \alpha \leq \alpha^{\prime} \quad \Delta ; \Phi \models \tau \sqsubseteq \tau^{\prime}}{\Delta ; \Phi \models \operatorname{tree}[n]^{\alpha} \tau \sqsubseteq \operatorname{tree}\left[n^{\prime}\right]^{\alpha^{\prime}} \tau^{\prime}} \mathbf{t} \mathbf{1}
$$

$$
\begin{array}{cc}
\frac{\Delta ; \Phi \models \alpha \doteq 0}{\Delta ; \Phi \models \operatorname{tree}[n]^{\alpha} \tau \sqsubseteq \operatorname{tree}[n]^{\alpha} \square \tau} \mathbf{t 2} & \overline{\Delta ; \Phi \models \operatorname{tree}[n]^{\alpha} \square \tau \sqsubseteq \square\left(\operatorname{tree}[n]^{\alpha} \tau\right)} \mathbf{t} \square \\
\frac{i:: S, \Delta ; \Phi \models \tau \sqsubseteq \tau^{\prime} \quad i \notin F V(\Phi)}{\Delta ; \Phi \models \exists i:: S . \tau \sqsubseteq \exists i:: S . \tau^{\prime}} \exists & \frac{\Delta ; \Phi \models \exists i:: S . \square \tau \sqsubseteq \square(\exists i:: S . \tau)}{\Delta \square} \text { ق } \square
\end{array}
$$

$$
\frac{\Delta ; \Phi \wedge C \models C^{\prime} \quad \Delta ; \Phi \models \tau \sqsubseteq \tau^{\prime}}{\Delta ; \Phi \models C \& \tau \sqsubseteq C^{\prime} \& \tau^{\prime}} \mathbf{c - a n d} \quad \frac{}{\Delta ; \Phi \models C \& \square \tau \sqsubseteq \square(C \& \tau)} \mathbf{c} \text {-and- } \square
$$

$$
\frac{\Delta ; \Phi \wedge C^{\prime} \models C \quad \Delta ; \Phi \models \tau \sqsubseteq \tau^{\prime}}{\Delta ; \Phi \models C \supset \tau \sqsubseteq C^{\prime} \supset \tau^{\prime}} \mathbf{c - i m p l}
$$

$$
\overline{\Delta ; \Phi \models \square(C \supset \tau) \sqsubseteq C \supset \square \tau} \text { c-impl- } \square
$$

$$
\begin{gathered}
\overline{\Delta ; \Phi \models \square \tau \sqsubseteq \tau} \mathbf{T} \quad \frac{\Delta ; \Phi \models \square \tau \sqsubseteq \square \square \tau}{} \mathbf{D} \quad \frac{\Delta ; \Phi \models \tau_{1} \sqsubseteq \tau_{2}}{\Delta ; \Phi \models \square \tau_{1} \sqsubseteq \square \tau_{2}} \mathbf{B - \square} \\
\frac{\Delta ; \Phi \models \tau \sqsubseteq U\left(|\tau|_{1},|\tau|_{2}\right)}{\mathbf{W}} \quad \frac{}{\Delta ; \Phi \models \tau \sqsubseteq \tau} \mathbf{r e f l} \\
\frac{\Delta ; \Phi \models \tau_{1} \sqsubseteq \tau_{2} \quad \Delta ; \Phi \models \tau_{2} \sqsubseteq \tau_{3}}{\Delta ; \Phi \models \tau_{1} \sqsubseteq \tau_{3}} \operatorname{tran}
\end{gathered}
$$

Figure 15: Subtyping rules (Part 2)

$$
\Delta ; \Phi \models^{\mathrm{A}} A_{1} \sqsubseteq A_{2} \quad \text { Unary type } A_{1} \text { is a subtype of type } A_{2}
$$

$$
\begin{aligned}
& \xrightarrow[\Delta ; \Phi \models^{\mathrm{A}} A_{1}^{\prime} \sqsubseteq A_{1} \quad \Delta ; \Phi \models^{\mathrm{A}} A_{2} \sqsubseteq A_{2}^{\prime} \quad \Delta ; \Phi \models k^{\prime} \leq k \quad \Delta ; \Phi \models t \leq t^{\prime}]{\Delta ; \Phi \models^{\mathrm{A}} A_{1} \xrightarrow{\operatorname{exec}(k, t)} A_{2} \sqsubseteq A_{1}^{\prime} \xrightarrow{\operatorname{exec}\left(k^{\prime}, t^{\prime}\right)} A_{2}^{\prime}} \rightarrow \text { exec } \\
& \frac{i:: S, \Delta ; \Phi \models^{\mathrm{A}} A \sqsubseteq A^{\prime} \quad i:: S, \Delta ; \Phi \models k^{\prime} \leq k \quad i:: S, \Delta ; \Phi \models t \leq t^{\prime} \quad i \notin F V(\Phi)}{\Delta ; \Phi \models^{\mathrm{A}} \forall i \stackrel{\operatorname{exec}(k, t)}{:} \text {. } A \sqsubseteq \forall i \stackrel{\operatorname{exec}\left(k^{\prime}, t^{\prime}\right)}{:} \text {. } A \text {. } A} \mathbf{u} \text { exec } \\
& \frac{\Delta ; \Phi \models^{\mathrm{A}} A_{1} \sqsubseteq A_{1}^{\prime} \quad \Delta ; \Phi \models^{\mathrm{A}} A_{2} \sqsubseteq A_{2}^{\prime}}{\Delta ; \Phi \models^{\mathrm{A}} A_{1} \times A_{2} \sqsubseteq A_{1}^{\prime} \times A_{2}^{\prime}} \mathbf{u}-\times \\
& \frac{\Delta ; \Phi \models^{\mathrm{A}} A_{1} \sqsubseteq A_{1}^{\prime} \quad \Delta ; \Phi \models^{\mathrm{A}} A_{2} \sqsubseteq A_{2}^{\prime}}{\Delta ; \Phi \models^{\mathrm{A}} A_{1}+A_{2} \sqsubseteq A_{1}^{\prime}+A_{2}^{\prime}} \mathbf{u}-+\quad \frac{\Delta ; \Phi \models n \doteq n^{\prime} \quad \Delta ; \Phi \models^{\mathrm{A}} A \sqsubseteq A^{\prime}}{\Delta ; \Phi \models^{\mathrm{A}} \operatorname{list}[n] A \sqsubseteq \operatorname{list}\left[n^{\prime}\right] A^{\prime}} \mathbf{u}-\mathbf{l} \\
& \frac{\Delta ; \Phi \models n \doteq n^{\prime} \quad \Delta ; \Phi \models^{\mathrm{A}} A \sqsubseteq A^{\prime}}{\Delta ; \Phi \models^{\mathrm{A}} \text { tree }[n] A \sqsubseteq \operatorname{tree}\left[n^{\prime}\right] A^{\prime}} \mathbf{u}-\mathbf{t} \quad \frac{i:: S, \Delta ; \Phi \models^{\mathrm{A}} A \sqsubseteq A^{\prime} \quad i \notin F V(\Phi)}{\Delta ; \Phi \models^{\mathrm{A}} \exists i:: S . A \sqsubseteq \exists i:: S . A^{\prime}} \mathbf{u}-\exists \\
& \frac{\Delta ; \Phi \wedge C \models C^{\prime} \quad \Delta ; \Phi \models^{\mathrm{A}} A \sqsubseteq A^{\prime}}{\Delta ; \Phi \models^{\mathrm{A}} C \& A \sqsubseteq C^{\prime} \& A^{\prime}} \mathbf{u} \text {-c-and } \\
& \frac{\Delta ; \Phi \wedge C^{\prime} \models C \quad \Delta ; \Phi \models^{\mathrm{A}} A \sqsubseteq A^{\prime}}{\Delta ; \Phi \models^{\mathrm{A}} C \supset A \sqsubseteq C^{\prime} \supset A^{\prime}} \text { u-c-impl } \quad \frac{}{\Delta ; \Phi \models^{\mathrm{A}} A \sqsubseteq A} \text { u-refl } \\
& \frac{\Delta ; \Phi \models^{\mathrm{A}} A_{1} \sqsubseteq A_{2} \quad \Delta ; \Phi \models^{\mathrm{A}} A_{2} \sqsubseteq A_{3}}{\Delta ; \Phi \models^{\mathrm{A}} A_{1} \sqsubseteq A_{3}} \mathbf{u} \text {-tran }
\end{aligned}
$$

Figure 16: Unary subtyping rules
$e \Downarrow^{c} v \quad$ Expression e evaluates to value v with cost c

$$
\begin{aligned}
& \overline{n \Downarrow^{0} n} \text { const } \\
& \frac{e \Downarrow^{c} v}{\operatorname{inl} e \Downarrow^{c} \operatorname{inl} v} \mathrm{inl} \\
& \frac{e \Downarrow^{c} v}{\operatorname{inr} e \Downarrow^{c} \operatorname{inr} v} \operatorname{inr} \\
& \frac{e \Downarrow^{c} \operatorname{inl} v \quad e_{1}[v / x] \Downarrow^{c_{r}} v_{r}}{\text { case }\left(e, x . e_{1}, y . e_{2}\right) \Downarrow^{c+c_{r}+c_{\text {case }}} v_{r}} \text { case-inl } \quad \frac{e \Downarrow^{c} \operatorname{inr} v \quad e_{2}[v / y] \Downarrow^{c_{r}} v_{r}}{\text { case }\left(e, x . e_{1}, y . e_{2}\right) \Downarrow^{c+c_{r}+c_{\text {case }}} v_{r}} \text { case-inr } \\
& \overline{\text { fix } f(x) . e \Downarrow^{0} \text { fix } f(x) \cdot e} \text { fix } \\
& \frac{e_{1} \Downarrow^{c_{1}} \text { fix } f(x) . e \quad e_{2} \Downarrow^{c_{2}} v_{2} \quad e\left[v_{2} / x,(\text { fix } f(x) . e) / f\right] \Downarrow^{c_{r}} v_{r}}{e_{1} e_{2} \Downarrow^{c_{1}+c_{2}+c_{r}+c_{a p p}} v_{r}} \mathbf{a p p} \\
& \frac{e \Downarrow^{c} v \quad \hat{\zeta}(v)=\left(c_{r}, v_{r}\right)}{\zeta e \Downarrow^{c+c_{r}+c_{a p p}} v_{r}} \text { primapp } \\
& \frac{e \Downarrow^{c} \Lambda e_{b} \quad e_{b} \Downarrow^{c_{r}} v_{r}}{e[] \Downarrow^{c+c_{r}} v_{r}} \mathbf{i A p p} \\
& \frac{e \Downarrow^{c} v}{\text { pack } e \Downarrow^{c} \text { pack } v} \text { pack } \\
& \frac{e_{1} \Downarrow^{c_{1}} \text { pack } v \quad e_{2}[v / x] \Downarrow^{c_{2}} v_{r}}{\text { unpack } e_{1} \text { as } x \text { in } e_{2} \Downarrow^{c_{1}+c_{2}} v_{r}} \text { unpack } \\
& \overline{\text { nil } \Downarrow^{0} \text { nil }} \text { nil }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{e \Downarrow^{c} \text { nil } \quad e_{1} \Downarrow^{c_{r}} v_{r}}{\text { case } e \text { of nil } \rightarrow e_{1} \mid h:: t l \rightarrow e_{2} \Downarrow^{c+c_{r}+c_{\text {caseL }}} v_{r}} \text { caseL-nil } \\
& \frac{e \Downarrow^{c} \operatorname{cons}\left(v_{1}, v_{2}\right) \quad e_{2}\left[v_{1} / h, v_{2} / t l\right] \Downarrow^{c_{r}} v_{r}}{\text { case } e \text { of nil } \rightarrow e_{1} \mid h:: t l \rightarrow e_{2} \Downarrow^{c+c_{r}+c_{\text {caseL }}} v_{r}} \text { caseL-cons } \\
& \frac{e_{l} \Downarrow^{c_{l}} v_{l} \quad e \Downarrow^{c} v \quad e_{r} \Downarrow^{c_{r}} v_{r}}{\operatorname{node}\left(e_{l}, e, e_{r}\right) \Downarrow^{c+c_{l}+c_{r}} \operatorname{node}\left(v_{l}, v, v_{r}\right)} \text { node } \\
& \frac{e \Downarrow^{c} \text { leaf } e_{1} \Downarrow^{c_{r}} v_{r}}{\text { case } e \text { of leaf } \rightarrow e_{1} \mid \operatorname{node}(l, x, r) \rightarrow e_{2} \Downarrow^{c+c_{r}+c_{\text {caseT }}} v_{r}} \text { caseT-leaf } \\
& \frac{e \Downarrow^{c} \operatorname{node}\left(v_{l}, v, v_{r}\right) \quad e_{2}\left[v_{l} / l, v / x, v_{r} / r\right] \Downarrow^{c_{r}} v_{r}}{\text { case } e \text { of nil } \rightarrow e_{1} \mid \operatorname{node}(l, x, r) \rightarrow e_{2} \Downarrow^{c+c_{r}+c_{\text {caseT }}} v_{r}} \text { caseT-node } \\
& \frac{e_{1} \Downarrow^{c_{1}} v_{1} \quad e_{2} \Downarrow^{c_{2}} v_{2}}{\left\langle e_{1}, e_{2}\right\rangle \Downarrow^{c_{1}+c_{2}}\left\langle v_{1}, v_{2}\right\rangle} \text { prod } \quad \frac{e \Downarrow^{c}\left\langle v_{1}, v_{2}\right\rangle}{\pi_{1}(e) \Downarrow^{c+c_{\text {proj }}} v_{1}} \text { proj1 } \quad \frac{e \Downarrow^{c}\left\langle v_{1}, v_{2}\right\rangle}{\pi_{2}(e) \Downarrow^{c+c_{\text {proj }}} v_{2}} \text { proj2 } \\
& \frac{e_{1} \Downarrow^{c_{1}} v_{1} \quad e_{2}\left[v_{1} / x\right] \Downarrow^{c_{r}} v_{r}}{\text { let } x=e_{1} \text { in } e_{2} \Downarrow^{c_{1}+c_{r}+c_{l e t}} v_{r}} \text { let } \quad \frac{e_{1} \Downarrow^{c_{1}} v_{1} \quad e_{2}\left[v_{1} / x\right] \Downarrow^{c_{r}} v_{r}}{\operatorname{clet} e_{1} \text { as } x \text { in } e_{2} \Downarrow^{c_{1}+c_{r}} v_{r}} \text { clet } \\
& \frac{e \Downarrow^{c} v}{\operatorname{celim} e \Downarrow^{c} v} \operatorname{celim}
\end{aligned}
$$

Figure 17: Evaluation semantics
$(\tau)_{v} \subseteq$ Step index \times Value \times Value
$(\tau)_{\varepsilon}^{t} \subseteq$ Step index \times Expression \times Expression

$$
\begin{aligned}
& (\square \tau)_{v} \quad=\left\{(m, v, v) \mid(m, v, v) \in(\tau){ }_{v}\right\} \\
& \left(U\left(A_{1}, A_{2}\right)\right)_{v}=\left\{\left(m, v_{1}, v_{2}\right) \mid \forall j .\left(j, v_{1}\right) \in \llbracket A_{1} \rrbracket_{v} \wedge\left(j, v_{2}\right) \in \llbracket A_{2} \rrbracket_{v}\right\} \\
& \left(\mathrm{int}_{r}\right)_{v} \quad=\{(m, \mathrm{n}, \mathrm{n})\} \\
& \text { (unitr})_{v}=\{(m,(),())\} \\
& \left(\tau_{1} \times \tau_{2}\right)_{v} \quad=\left\{\left(m,\left\langle v_{1}, v_{2}\right\rangle,\left\langle v_{1}^{\prime}, v_{2}^{\prime}\right\rangle\right) \mid\left(m, v_{1}, v_{1}^{\prime}\right) \in\left(\tau_{1} D_{v} \wedge\left(m, v_{2}, v_{2}^{\prime}\right) \in\left(\tau_{2}\right)_{v}\right\}\right. \\
& \left(\tau_{1}+\tau_{2}\right)_{v} \quad=\left\{\left(m, \operatorname{inl} v, \operatorname{inl} v^{\prime}\right) \mid\left(m, v, v^{\prime}\right) \in\left(\tau_{1}\right\rangle_{v}\right\} \cup\left\{\left(m, \operatorname{inr} v, \operatorname{inr} v^{\prime}\right) \mid\left(m, v, v^{\prime}\right) \in\left(\tau_{2}\right)_{v}\right\} \\
& \left(\tau_{1} \wedge \tau_{2}\right)_{v} \quad=\left\{\left(m, v, v^{\prime}\right) \mid\left(m, v, v^{\prime}\right) \in\left(\tau_{1}\right)_{v} \wedge\left(m, v, v^{\prime}\right) \in\left(\tau_{2}\right)_{v}\right\} \\
& \left(\operatorname{list}[0]^{\alpha} \tau\right)_{v}=\{(m, \text { nil , nil })\} \\
& \left(\operatorname{list}[n+1]^{\alpha} \tau\right)_{v}=\left\{\left(m, \operatorname{cons}\left(e_{1}, e_{2}\right), \operatorname{cons}\left(e_{1}^{\prime}, e_{2}^{\prime}\right)\right) \mid\left(\left(m, e_{1}, e_{1}^{\prime}\right) \in(\square \tau){ }_{v} \wedge\left(m, e_{2}, e_{2}^{\prime}\right) \in\left(\operatorname{list}[n]^{\alpha} \tau\right) v\right) \vee\right. \\
& \left.\left.\left.\left(\left(m, e_{1}, e_{1}^{\prime}\right) \in(\tau)\right)_{v} \wedge\left(m, e_{2}, e_{2}^{\prime}\right) \in\left(\operatorname{list}[n]^{\alpha-1} \tau\right)\right)_{v} \wedge \alpha>0\right)\right\} \\
& \text { (tree } \left.[0]^{\alpha} \tau\right)_{v}=\{(m, \text { leaf, leaf })\} \\
& \left(\operatorname{tree}[i+j+1]^{\alpha} \tau\right){ }_{v}=\left\{\left(m, \operatorname{node}\left(e_{l}, e, e_{r}\right), \operatorname{node}\left(e_{l}^{\prime}, e^{\prime}, e_{r}^{\prime}\right)\right) \mid\right. \\
& \left(\left(m, e_{l}, e_{l}^{\prime}\right) \in\left(\operatorname{tree}[i]^{\beta} \tau\right)_{v} \wedge\left(m, e_{r}, e_{r}^{\prime}\right) \in\left(\operatorname{tree}[j]^{\gamma} \tau\right)_{v} \wedge\left(m, e, e^{\prime}\right) \in(\square \tau)_{v} \wedge \alpha=\beta+\gamma\right) \vee \\
& \left.\left(\left(m, e_{l}, e_{l}^{\prime}\right) \in\left(\operatorname{tree}[i]^{\beta} \tau\right)_{v} \wedge\left(m, e_{r}, e_{r}^{\prime}\right) \in\left(\operatorname{tree}[j]^{\gamma} \tau\right)_{v} \wedge\left(m, e, e^{\prime}\right) \in(\tau)_{v} \wedge \alpha=\beta+\gamma+1\right)\right\} \\
& \left(\tau_{1} \xrightarrow{\operatorname{diff}(t)} \tau_{2}\right)_{v}=\left\{\left(m, \operatorname{fix} f(x) \cdot e_{1}, \text { fix } f(x) \cdot e_{2}\right) \mid\left(\forall j<m . \forall v_{1}, v_{2} \cdot\left(j, v_{1}, v_{2}\right) \in\left(\tau_{1}\right)_{v} . \Longrightarrow\right.\right. \\
& \left.\left(j, e_{1}\left[v_{1} / x, \operatorname{fix} f(x) \cdot e_{1} / f\right], e_{2}\left[v_{2} / x, \operatorname{fix} f(x) \cdot e_{2} / f\right]\right) \in\left(\tau_{2}\right)_{\varepsilon}^{t}\right) \wedge \\
& \left.\left(\forall j .\left(j, \text { fix } f(x) \cdot e_{1}\right) \in \llbracket\left|\tau_{1}\right|_{1} \xrightarrow{\operatorname{exec}(0, \infty)}\left|\tau_{2}\right|_{1} \rrbracket_{v} \wedge\left(j, \text { fix } f(x) \cdot e_{2}\right) \in \llbracket\left|\tau_{1}\right|_{2} \xrightarrow{\operatorname{exec}(0, \infty)}\left|\tau_{2}\right|_{2} \rrbracket_{v}\right)\right\} \\
& (\forall i \stackrel{\operatorname{diff}(t)}{::} S . \tau)_{v}=\left\{\left(m, \Lambda e, \Lambda e^{\prime}\right) \mid \forall I . \vdash I:: S .\left(\left(m, e, e^{\prime}\right) \in(\tau\{I / i\})_{\varepsilon}^{t[I / i]}\right) \wedge\right. \\
& \left.\left(\forall j \cdot(j, e) \in \llbracket|\tau\{I / i\}|_{1} \rrbracket_{\varepsilon}^{0, \infty} \wedge\left(j, e^{\prime}\right) \in \llbracket|\tau\{I / i\}|_{2} \rrbracket_{\varepsilon}^{0, \infty}\right)\right\} \\
& (\exists i:: S . \tau)_{v} \quad=\left\{\left(m, \text { pack } v, \text { pack } v^{\prime}\right) \mid \exists I . \vdash I:: S \wedge\left(m, v, v^{\prime}\right) \in(\tau\{I / t\})_{v}\right\} \\
& (C \supset \tau)_{v} \quad=\left\{\left(m, v_{1}, v_{2}\right) \mid \not \vDash C \vee\left(m, v_{1}, v_{2}\right) \in(\tau)_{v}\right\} \\
& (C \& \tau)_{v} \quad=\left\{\left(m, v_{1}, v_{2}\right) \mid \vDash C \wedge\left(m, v_{1}, v_{2}\right) \in(\tau)_{v}\right\} \\
& \mathcal{G}(\cdot) \quad=\{(m, \emptyset, \emptyset)\} \\
& \mathcal{G}(\Gamma, x: \tau) \quad=\left\{\left(m, \theta\left[x \mapsto v_{1}\right], \theta^{\prime}\left[x \mapsto v_{2}\right]\right) \mid\left(m, \theta, \theta^{\prime}\right) \in \mathcal{G}(\Gamma) \wedge\left(m, v_{1}, v_{2}\right) \in(\tau) v\right\} \\
& (\tau)_{\varepsilon}^{t} \quad=\left\{\left(m, e_{1}, e_{2}\right) \mid\left(e_{1} \Downarrow^{c_{1}} v_{1} \wedge e_{2} \Downarrow^{c_{2}} v_{2} \wedge c_{1}<m\right) \Longrightarrow\right. \\
& \text { 1. } c_{1}-c_{2} \leq t \\
& \text { 2. }\left(m-c_{1}, v_{1}, v_{2}\right) \in(\tau \tau) v
\end{aligned}
$$

Figure 18: Relational interpretation of types
$\llbracket A \rrbracket_{v} \subseteq$ Step index \times Value
$\llbracket A \rrbracket_{\varepsilon}^{k, t} \subseteq$ Step index \times Expression

1．$e \Downarrow^{c} v$

$$
\llbracket A \rrbracket_{\varepsilon}^{k, t} \quad=\left\{(m, e) \left\lvert\,\left(t<m \Longrightarrow \begin{array}{l}
\text { 2. } c \leq t \\
3 .(m-c, v) \quad \\
\llbracket A \rrbracket_{v}
\end{array}\right) \wedge\right.\right.
$$

1．$k \leq c$
$\left(\left(e \Downarrow^{c} m \wedge c<m\right) \Longrightarrow\right.$
2．$(m-c, v) \in\}$
$\llbracket A \rrbracket_{v}$

Figure 19：Non－relational interpretation of types

$$
\begin{aligned}
& \llbracket \mathrm{int} \rrbracket_{v} \quad=\{(m, \mathrm{n})\} \\
& \text { 【unit】 } v_{v}=\{(m,())\} \\
& \llbracket A_{1} \times A_{2} \rrbracket_{v} \quad=\left\{\left(m,\left\langle v_{1}, v_{2}\right\rangle\right) \mid\left(m, v_{1}\right) \in \llbracket A_{1} \rrbracket_{v} \wedge\left(m, v_{2}\right) \in \llbracket A_{2} \rrbracket_{v}\right\} \\
& \llbracket A_{1}+A_{2} \rrbracket_{v} \quad=\left\{(m, \operatorname{inl} v) \mid(m, v) \in \llbracket A_{1} \rrbracket_{v}\right\} \cup\left\{(m, \operatorname{inr} v) \mid(m, v) \in \llbracket A_{2} \rrbracket_{v}\right\} \\
& \llbracket A_{1} \wedge A_{2} \rrbracket_{v} \quad=\left\{(m, v) \mid(m, v) \in \llbracket A_{1} \rrbracket_{v} \wedge(m, v) \in \llbracket A_{2} \rrbracket_{v}\right\} \\
& \text { 【list }[0] A \rrbracket_{v} \quad=\{(m, \text { nil })\} \\
& \llbracket \operatorname{list}[n+1] A \rrbracket_{v}=\left\{\left(m, \operatorname{cons}\left(e_{1}, e_{2}\right)\right) \mid\left(m, e_{1}\right) \in \llbracket A \rrbracket_{v} \wedge\left(m, e_{2}\right) \in \llbracket \operatorname{list}[n] A \rrbracket_{v}\right\} \\
& \llbracket \operatorname{tree}[0] A \rrbracket_{v} \quad=\{(m, \text { leaf })\} \\
& \llbracket \operatorname{tree}[i+j+1] A \rrbracket_{v}=\left\{\left(m, \operatorname{node}\left(e_{l}, e, e_{r}\right)\right) \mid\left(m, e_{l}\right) \in \llbracket \operatorname{tree}[i] A \rrbracket_{v} \wedge\left(m, e_{r}\right) \in \llbracket \operatorname{tree}[j] A \rrbracket_{v} \wedge(m, e) \in \llbracket A \rrbracket_{v}\right\} \\
& \llbracket A_{1} \xrightarrow{\operatorname{exec}(k, t)} A_{2} \rrbracket_{v}=\left\{(m, \text { fix } f(x) . e) \mid \forall j<m . \forall v .(j, v) \in \llbracket A_{1} \rrbracket_{v} \Longrightarrow(j, e[v / x, \text { fix } f(x) . e]) \in \llbracket A_{2} \rrbracket_{\varepsilon}^{k, t}\right\} \\
& \llbracket \forall i \stackrel{\operatorname{exec}(k, t)}{::} S . A \rrbracket_{v}=\left\{(m, \Lambda e) \mid \forall I . \vdash I:: S .(m, e) \in \llbracket A\{I / i\} \rrbracket_{\varepsilon}^{k[I / i], t[I / / i]}\right\} \\
& \llbracket \exists i:: S . A \rrbracket_{v} \quad=\left\{(m, \text { pack } v) \mid \exists I . \vdash I:: S \wedge(m, v) \in \llbracket A\{I / t\} \rrbracket_{v}\right\} \\
& \llbracket C \supset A \rrbracket_{v} \quad=\left\{(m, v) \mid \not \models C \vee(m, v) \in \llbracket A \rrbracket_{v}\right\} \\
& \llbracket C \& A \rrbracket_{v} \quad=\left\{(m, v) \mid \vDash C \wedge(m, v) \in \llbracket A \rrbracket_{v}\right\} \\
& \mathcal{G} \llbracket \rrbracket \rrbracket \quad=\{(m, \emptyset)\} \\
& \mathcal{G} \llbracket \Omega, x: A \rrbracket \quad=\{(m, \gamma[x \mapsto v \rrbracket) \mid(m, \gamma) \in \mathcal{G} \llbracket \Omega \rrbracket \wedge(m, v) \in \llbracket A \rrbracket v\}
\end{aligned}
$$

Lemma 1 (Value evaluation)

$v \Downarrow^{0} v$
Proof. Proof is by induction on the value term v.

Lemma 2 (Value interpretation containment)

The following hold.

1. $\left(m, v_{1}, v_{2}\right) \in\{\tau\rangle_{v}$ then $\left(m, v_{1}, v_{2}\right) \in(\tau\rangle_{\varepsilon}^{0}$.
2. $(m, v) \in \llbracket A \rrbracket_{v}$ then $(m, v) \in \llbracket A \rrbracket_{\varepsilon}^{0, t}$.

Proof of (1). Assume that $\left(m, v_{1}, v_{2}\right) \in(\tau)_{v}(\star)$.
TS: $\left(m, v_{1}, v_{2}\right) \in(\tau)_{\varepsilon}^{0}$.
Following the definition of $(\tau))_{\varepsilon}^{0}$, and assume that $\left(v_{1} \Downarrow^{0} v_{1} \wedge 0<m\right)$ (cost and resulting value obtained by Lemma 1).
Then, we can immediately show

1. $v_{2} \Downarrow^{0} v_{2}$ by Lemma 1
2. $0-0 \leq 0$ is trivially true.
3. $\left(m-0, v_{1}, v_{2}\right) \in(\tau)_{v}$ follows from the main assumption (\star).

Proof of (2). Assume that $(m, v) \in \llbracket A \rrbracket_{v}(*)$.
TS: $(m, v) \in \llbracket A \rrbracket_{\varepsilon}^{0, t}$.
Following the definition of $\llbracket A \rrbracket_{\varepsilon}^{0, t}$, there are two parts:

- Assume that $t<m$. Then we can immediately show

1. $v \Downarrow^{0} v$ (by Lemma 1)
2. $0 \leq t$
3. $(m-0, v) \in \llbracket A \rrbracket_{v}$ which follows from the assumption (\star).

- Assume that $v \Downarrow^{0} v$ (cost and the resulting value obtained by Lemma 1) and $0<m$. Then, we can immediately show

1. $0 \leq 0$
2. $(m-0, v) \in \llbracket A \rrbracket_{v}$ which follows from the assumption (\star).

Lemma 3 (Value Projection)

The following holds.

1. If $\left.\left(m, v_{1}, v_{2}\right) \in(\tau)\right|_{v}$ then $\forall m .\left(m, v_{1}\right) \in \llbracket|\tau|_{1} \rrbracket_{v}$ and $\left(m, v_{2}\right) \in \llbracket|\tau|_{2} \rrbracket_{v}$.
2. If $\left(m, \delta_{1}, \delta_{2}\right) \in \mathcal{G}(\Gamma)$ then $\forall m .\left(m, \delta_{1}\right) \in \mathcal{G} \llbracket|\Gamma|_{1} \rrbracket$ and $\left(m, \delta_{2}\right) \in \mathcal{G} \llbracket|\Gamma|_{2} \rrbracket$.

Proof. Proof of statement (1) is by induction on $(\tau))_{v}$. Proof of statement (2) follows by proof of (1).

Lemma 4 (Downward Closure)

The following hold.

1. If $\left.\left(m, v_{1}, v_{2}\right) \in(\tau)\right)_{v}$ and $m^{\prime} \leq m$, then $\left(m^{\prime}, v_{1}, v_{2}\right) \in(\tau)_{v}$
2. If $(m, v) \in \llbracket A \rrbracket_{v}$ and $m^{\prime} \leq m$, then $\left(m^{\prime}, v\right) \in \llbracket A \rrbracket_{v}$
3. If $\left(m, e_{1}, e_{2}\right) \in(\tau)_{\varepsilon}^{t}$ and $m^{\prime} \leq m$, then $\left(m^{\prime}, e_{1}, e_{2}\right) \in(\nabla \tau)_{\varepsilon}^{t}$
4. If $(m, e) \in \llbracket A \rrbracket_{\varepsilon}^{k, t}$ and $m \leq m^{\prime}$, then $\left(m^{\prime}, e\right) \in \llbracket A \rrbracket_{\varepsilon}^{k, t}$
5. If $\left(m, \delta_{1}, \delta_{2}\right) \in \mathcal{G}(\Gamma)$ and $m^{\prime} \leq m$, then $\left(m^{\prime}, \delta_{1}, \delta_{2}\right) \in \mathcal{G}(\Gamma)$
6. If $(m, \gamma) \in \mathcal{G} \llbracket \Omega \rrbracket$ and $m^{\prime} \leq m$, then $\left(m^{\prime}, \gamma\right) \in \mathcal{G} \llbracket \Omega \rrbracket$

Proof. (1,3) and (2,4) are proved simultaneously by induction on τ. $(5,6)$ follows from $(1,2)$.

Lemma 5 (Subtyping Soundness)

The following hold.

1. If $\Delta ; \Phi \models \tau \sqsubseteq \tau^{\prime}$ and $\sigma \in \mathcal{D} \llbracket \Delta \rrbracket$ and $\left(m, v, v^{\prime}\right) \in(\sigma \tau)_{v}$, then $\left(m, v, v^{\prime}\right) \in\left(\sigma \tau^{\prime}\right){ }_{v}$.
2. If $\Delta ; \Phi \models^{\mathrm{A}} A \sqsubseteq A^{\prime}$ and $\sigma \in \mathcal{D} \llbracket \Delta \rrbracket$ and $(m, v) \in \llbracket \sigma A \rrbracket_{v}$, then $(m, v) \in \llbracket \sigma A^{\prime} \rrbracket_{v}$.
3. If $\Delta ; \Phi \models \tau \sqsubseteq \tau^{\prime}$ and $\sigma \in \mathcal{D} \llbracket \Delta \rrbracket$ and $\left(m, e, e^{\prime}\right) \in(\sigma \tau)_{\varepsilon}^{t}$ and $t \leq t^{\prime}$, then $\left(m, e, e^{\prime}\right) \in$ $\left(\sigma \tau^{\prime}\right)_{\varepsilon}^{t^{\prime}}$.
4. If $\Delta ; \Phi \models^{\mathrm{A}} A \sqsubseteq A^{\prime}$ and $\sigma \in \mathcal{D} \llbracket \Delta \rrbracket$ and $(m, e) \in \llbracket \sigma A \rrbracket_{\varepsilon}^{k, t}$ and $k^{\prime} \leq k$ and $t \leq t^{\prime}$, then $(m, e) \in \llbracket \sigma A^{\prime} \rrbracket_{\varepsilon}^{\overline{k^{\prime}}, t^{\prime}}$.

Proof. Statements (1) and (2) are by proven simultaneously by induction on the subtyping derivation. We first show the proof of statements (3) and (4).

Proof of statement (3). Assume that $\Delta ; \Phi \models \tau \sqsubseteq \tau^{\prime}$ and $\sigma \in \mathcal{D} \llbracket \Delta \rrbracket$ and $\left(m, e, e^{\prime}\right) \in(\sigma \tau)_{\varepsilon}^{t}$ and $t \leq t^{\prime}$.
$\mathrm{TS}:\left(m, e, e^{\prime}\right) \in\left(\sigma \tau^{\prime}\right)_{\varepsilon}^{t^{\prime}}$
Assume that
a) $e \Downarrow^{c} v$
b) $e^{\prime} \Downarrow^{c^{\prime}} v^{\prime}$
c) $c<m$

By unfolding the assumption $\left(m, e, e^{\prime}\right) \in(\sigma \sigma \tau)_{\varepsilon}^{t}$ using (a-c), we obtain
d) $c-c^{\prime} \leq t$
e) $\left(m-c, v, v^{\prime}\right) \in(\sigma \tau) v$

We can conclude as follows:

1. Since $c-c^{\prime} \leq t$ from d) and $t \leq t^{\prime}$ from the assumption, we get $c-c^{\prime} \leq t^{\prime}$.
2. By IH 1 on e), we get $\left(m-c, v, v^{\prime}\right) \in\left(\sigma \tau^{\prime}\right)_{v}$.

Proof of statement (4). Assume that $\Delta ; \Phi \models A \sqsubseteq A^{\prime}$ and $\sigma \in \mathcal{D} \llbracket \Delta \rrbracket$ and (m, e) $\in \llbracket \sigma A \rrbracket_{\varepsilon}^{k, t}$ and $k^{\prime} \leq k$ and $t \leq t^{\prime}$;
$\mathrm{TS}:(m, e) \in \llbracket \sigma A^{\prime} \rrbracket_{\varepsilon}^{k^{\prime}}, t^{\prime}$
There are two parts to show:

- Assume that $t^{\prime}<m$.

By unfolding the main assumption $(m, e) \in \llbracket \sigma A \rrbracket_{\varepsilon}^{k, t}$ with $t \leq t^{\prime}<m$, we get
a) $e \Downarrow^{c} v$
b) $c \leq t$
c) $(m-c, v) \in \llbracket \sigma A \rrbracket_{v}$

We can conclude as follows:

1. By a), $e \Downarrow^{c} v$
2. Since $c \leq t$ from a) and $t \leq t^{\prime}$ from the assumption, we get $c \leq t^{\prime}$.
3. By IH 2 on the main assumption using c), we get $(m-c, v) \in \llbracket \sigma A^{\prime} \rrbracket_{v}$.

- Assume that $e \Downarrow^{c} v$ and $c<m$.

By unfolding the main assumption $(m, e) \in \llbracket \sigma A \rrbracket_{\varepsilon}^{k, t}$ with $e \Downarrow^{c} v$ and $c<m$, we get
d) $k \leq c \leq t$
e) $(m-c, v) \in \llbracket \sigma A \rrbracket_{v}$

We can conclude as follows:

1. Since $k^{\prime} \leq k$ and $t \leq t^{\prime}$ (from the assumption) and $k \leq c \leq t$ (from a), we get $k^{\prime} \leq c \leq t^{\prime}$.
2. By IH 2 on the main assumption using b).

Proof of statement (1). Proof is by induction on the subtyping derivation.
Case $\frac{\Delta ; \Phi \models \tau_{1}^{\prime} \sqsubseteq \tau_{1} \quad \Delta ; \Phi \models \tau_{2} \sqsubseteq \tau_{2}^{\prime} \quad \Delta ; \Phi \models t \leq t^{\prime}}{\Delta ; \Phi \models \tau_{1} \xrightarrow{\operatorname{diff}(t)} \tau_{2} \sqsubseteq \tau_{1}^{\prime} \xrightarrow{\operatorname{diff}\left(t^{\prime}\right)} \tau_{2}^{\prime}} \rightarrow$ diff
Assume that $\sigma \in \mathcal{D} \llbracket \Delta \rrbracket$.
We have

$$
\begin{equation*}
\left(m, \text { fix } f(x) . e, \text { fix } f(x) \cdot e^{\prime}\right) \in\left(\sigma \tau_{1} \xrightarrow{\operatorname{diff}(\sigma t)} \sigma \tau_{2}\right\rangle_{v} \tag{1}
\end{equation*}
$$

TS: $\left(m\right.$, fix $f(x) . e$, fix $\left.f(x) . e^{\prime}\right) \in\left(\sigma \tau_{1}^{\prime} \xrightarrow{\text { diff }\left(\sigma t^{\prime}\right)} \sigma \tau_{2}^{\prime}\right)_{v}$.
There are two cases to show.
subcase 1: Assume that $j<m$ and $\left(j, v, v^{\prime}\right) \in\left(\sigma \tau_{1}^{\prime}\right)_{v}$.
STS: $\left(j, e[v / x,(\operatorname{fix} f(x) . e) / f], e^{\prime}\left[v^{\prime} / x,\left(\operatorname{fix} f(x) . e^{\prime}\right) / f\right]\right) \in\left(\sigma \tau_{2}^{\prime}\right)_{\varepsilon}^{\sigma t^{\prime}}$.
By IH 1 on $\left(j, v, v^{\prime}\right) \in\left(\sigma \tau_{1}^{\prime}\right)_{v}$ using the first premise, we get

$$
\begin{equation*}
\left(j, v, v^{\prime}\right) \in\left(\sigma \tau_{1}\right)_{v} \tag{2}
\end{equation*}
$$

By unrolling (1) with (2) using $j<m$, we get

$$
\begin{equation*}
\left(j, e[v / x,(\operatorname{fix} f(x) . e) / f], e^{\prime}\left[v^{\prime} / x,\left(\operatorname{fix} f(x) . e^{\prime}\right) / f\right]\right) \in\left(\sigma \tau_{2}\right)_{\varepsilon}^{\sigma t} \tag{3}
\end{equation*}
$$

By Assumption 13 on the third premise, we get $\sigma t \leq \sigma t^{\prime}$.
We conclude by applying IH 3 to (3) using the second premise and $\sigma t \leq \sigma t^{\prime}$.
subcase 2: STS: $\forall j .(j$, fix $f(x) . e) \in \llbracket\left|\sigma \tau_{1}^{\prime}\right|_{1} \xrightarrow{\operatorname{exec}(0, \infty)}\left|\sigma \tau_{2}^{\prime}\right|_{1} \rrbracket_{v} \wedge\left(j\right.$, fix $\left.f(x) . e^{\prime}\right) \in \llbracket\left|\sigma \tau_{1}^{\prime}\right|_{2} \xrightarrow{\operatorname{exec}(0, \infty)}$ $\left|\sigma \tau_{2}^{\prime}\right|_{2} \rrbracket_{v}$ These follow by unrolling the second part of (1)'s definition.

Case

Assume that $\sigma \in \mathcal{D} \llbracket \Delta \rrbracket$.
We have

$$
\begin{equation*}
\left(m, \text { fix } f(x) . e, \text { fix } f(x) . e^{\prime}\right) \in\left(U\left(\sigma A_{1} \xrightarrow{\operatorname{exec}(\sigma k, \sigma t)} \sigma A_{2}, \sigma A_{1}^{\prime} \xrightarrow{\operatorname{exec}\left(\sigma k^{\prime}, \sigma t^{\prime}\right)} \sigma A_{2}^{\prime}\right)\right)_{v} \tag{1}
\end{equation*}
$$

TS: $\left(m\right.$, fix $f(x) . e$, fix $\left.f(x) . e^{\prime}\right) \in\left(U\left(\sigma A_{1}, \sigma A_{1}^{\prime}\right) \xrightarrow{\operatorname{diff}\left(\sigma t-\sigma k^{\prime}\right)} U\left(\sigma A_{2}, \sigma A_{2}^{\prime}\right)\right)_{v}$.
There are two cases to show.
subcase 1: Assume that
a) $j<m$
b) $\left(j, v, v^{\prime}\right) \in\left(U\left(\sigma A_{1}, \sigma A_{1}^{\prime}\right)\right)_{v}$

STS: $\left(j, e[v / x,(\operatorname{fix} f(x) . e) / f], e^{\prime}\left[v^{\prime} / x,\left(\operatorname{fix} f(x) . e^{\prime}\right) / f\right]\right) \in\left(U\left(\sigma A_{2}, \sigma A_{2}^{\prime}\right)\right)_{\varepsilon}^{\sigma t-\sigma k^{\prime}}$.
Assume that
c) $e[v / x,(\operatorname{fix} f(x) . e) / f] \Downarrow^{c_{r}} v_{r}$
d) $e^{\prime}\left[v^{\prime} / x,\left(\operatorname{fix} f(x) \cdot e^{\prime}\right) / f\right] \Downarrow^{c_{r}^{\prime}} v_{r}^{\prime}$
e) $c_{r}<j$

STS 1: $c_{r}-c_{r}^{\prime} \leq \sigma t-\sigma k^{\prime}$
STS 2: $\left(m-c_{r}, v_{r}, v_{r}^{\prime}\right) \in\left(U\left(\sigma A_{2}, \sigma A_{2}^{\prime}\right)\right\rangle_{v}$.
We first show the second statement, the first one shown later.
Then, it suffices to show $\forall j .\left(j, v_{r}\right) \in \llbracket \sigma A_{2} \rrbracket_{v} \wedge\left(j, v_{r}^{\prime}\right) \llbracket \sigma A_{2}^{\prime} \rrbracket_{v}$. Pick j.
RTS1: $\left(j, v_{r}\right) \in \llbracket \sigma A_{2} \rrbracket_{v}$
RTS2 : $\left(j, v_{r}^{\prime}\right) \llbracket \sigma A_{2}^{\prime} \rrbracket_{v}$
By (1), we know that

$$
\begin{equation*}
\forall j^{\prime} \cdot\left(j^{\prime}, \text { fix } f(x) \cdot e\right) \in\left(A_{1} \xrightarrow{\operatorname{exec}(k, t)} A_{2}\right\rangle_{v} \wedge\left(j^{\prime}, \text { fix } f(x) \cdot e^{\prime}\right) \in \llbracket A_{1}^{\prime} \xrightarrow{\operatorname{exec}\left(k^{\prime}, t^{\prime}\right)} A_{2}^{\prime} \rrbracket_{v} \tag{2}
\end{equation*}
$$

By instantiating j^{\prime} in the first part of (2) with $j+\sigma t+2$, we get

$$
\begin{equation*}
(j+\sigma t+2, \text { fix } f(x) \cdot e) \in\left(\sigma A_{1} \xrightarrow{\operatorname{exec}(\sigma k, \sigma t)} \sigma A_{2}\right)_{v} \tag{3}
\end{equation*}
$$

By unrolling the definition of b) and instantiating the universal quantifier with $j+\sigma t+1$, we get

$$
\begin{equation*}
(j+\sigma t+1, v) \in \llbracket \sigma A_{1} \rrbracket_{v} \tag{4}
\end{equation*}
$$

Then, unrolling the definition of (3) with (4) using $j+\sigma t+1<j+\sigma t+2$, we get

$$
\begin{equation*}
(j+\sigma t+1, e[v / x, \operatorname{fix} f(x) \cdot e / f]) \in \llbracket \sigma A_{2} \rrbracket_{v} \sigma k \sigma t \tag{5}
\end{equation*}
$$

By unrolling the definition of (5) using $\sigma t<j+\sigma t+1$, we get
f) $c_{r} \leq s t$
g) $\left(j+\sigma t+1-c_{r}, v_{r}\right) \in \llbracket \sigma A_{2} \rrbracket v$

Next, we instantiate j^{\prime} in the second part of (2) with $j+c_{r}^{\prime}+2$, we get

$$
\begin{equation*}
\left(j+c_{r}^{\prime}+2, \text { fix } f(x) \cdot e\right) \in\left(\sigma A_{1}^{\prime} \xrightarrow{\operatorname{exec}\left(\sigma k^{\prime}, \sigma t^{\prime}\right)} \sigma A_{2}^{\prime}\right)_{v} \tag{6}
\end{equation*}
$$

By unrolling the definition of b) and instantiating the universal quantifier with $j+c_{r}^{\prime}+1$, we get

$$
\begin{equation*}
\left(j+c_{r}^{\prime}+1, v^{\prime}\right) \in \llbracket \sigma A_{1}^{\prime} \rrbracket_{v} \tag{7}
\end{equation*}
$$

Then, unrolling the definition of (6) with (7) using $j+c_{r}^{\prime}+1<j+c_{r}^{\prime}+2$, we get

$$
\begin{equation*}
\left(j+c_{r}^{\prime}+1, e^{\prime}\left[v^{\prime} / x, \text { fix } f(x) . e^{\prime} / f\right]\right) \in \llbracket \sigma A_{2}^{\prime} \rrbracket v \sigma k^{\prime} \sigma t^{\prime} \tag{8}
\end{equation*}
$$

By unrolling the definition of (8) using d), $c_{r}^{\prime}<j+c_{r}^{\prime}+1$, we get
h) $\sigma k^{\prime} \leq c_{r}^{\prime}$
i) $\left(j+1, v_{r}^{\prime}\right) \in \llbracket \sigma A_{2}^{\prime} \rrbracket_{v}$

Now, we can conclude as follows

1. By f) and h), we get $c_{r}-c_{r}^{\prime} \leq \sigma t-\sigma k^{\prime}$
2. By downward closure (Lemma 4) on g) using

$$
j \leq j+\sigma t-c_{r}+1 \quad \text { by f) }, c_{r} \leq \sigma t
$$

We get $\left(j, v_{r}\right) \in \llbracket \sigma A_{2} \rrbracket_{v}$
By downward closure (Lemma 4) on i) using

$$
j \leq j+1
$$

We get $\left(j, v_{r}^{\prime}\right) \in \llbracket \sigma A_{2}^{\prime} \rrbracket_{v}$ These conclude this subcase.
subcase 2: STS: $\forall j .(j$, fix $f(x) . e) \in \llbracket A_{1} \xrightarrow{\operatorname{exec}(0, \infty)} g r t_{2} \rrbracket_{v} \wedge\left(j\right.$, fix $\left.f(x) . e^{\prime}\right) \in \llbracket A_{1}^{\prime} \xrightarrow{\operatorname{exec}(0, \infty)} A_{2}^{\prime} \rrbracket_{v}$ Pick j.
STS1: $(j$, fix $f(x) . e) \in \llbracket A_{1} \xrightarrow{\operatorname{exec}(0, \infty)} A_{2} \rrbracket v$
$\operatorname{STS} 2:\left(j\right.$, fix $\left.f(x) . e^{\prime}\right) \in \llbracket A_{1}^{\prime} \xrightarrow{\operatorname{exec}(0, \infty)} A_{2}^{\prime} \rrbracket_{v}$
We will only show the first statement above, the second one is similar.
Assume $j^{\prime}<j$ and $\left(j^{\prime}, v\right) \in \llbracket A_{1} \rrbracket_{v}$.
RTS1: $(j, e[v / x,(\operatorname{fix} f(x) . e) / f]) \in \llbracket A_{2} \rrbracket_{\varepsilon}^{0, \infty}$.
By unrolling the first part of (1)'s definition, we get

$$
\begin{equation*}
\forall m .(m, \text { fix } f(x) . e) \in \llbracket A_{1} \xrightarrow{\operatorname{exec}(0, \infty)} A_{2} \rrbracket_{v} \tag{9}
\end{equation*}
$$

By instantiating first part of (9) with j, we get

$$
\begin{equation*}
(j, \text { fix } f(x) \cdot e) \in \llbracket A_{1} \xrightarrow{\operatorname{exec}(0, \infty)} A_{2} \rrbracket_{v} \tag{10}
\end{equation*}
$$

Then, the conclusion follows by unrolling (10) with $\left(j^{\prime}, v\right) \in \llbracket A_{1} \rrbracket_{v}$ and $j^{\prime}<j$.
Case $\overrightarrow{\Delta ; \Phi \models \square\left(\tau_{1} \xrightarrow{\text { diff }(t)} \tau_{2}\right) \sqsubseteq \square \tau_{1} \xrightarrow{\text { diff }(0)} \square \tau_{2}} \rightarrow \square$ diff
Assume that $\sigma \in \mathcal{D} \llbracket \Delta \rrbracket$.
We have

$$
\begin{equation*}
\left.(m, \text { fix } f(x) . e, \text { fix } f(x) . e) \in \nabla \square\left(\sigma \tau_{1} \xrightarrow{\operatorname{diff}(\sigma t)} \sigma \tau_{2}\right)\right)_{v} \tag{1}
\end{equation*}
$$

TS: $(m$, fix $f(x) . e$, fix $f(x) . e) \in\left(\square \sigma \tau_{1} \xrightarrow{\text { diff(} 0)} \square \sigma \tau_{2}\right)_{v}$.
There are two cases:
subcase 1: Assume that $j<m$ and $(j, v, v) \in\left(\square \sigma \tau_{1}\right)_{v}$ (we have the same values due to box).
STS: $(j, e[v / x,(\operatorname{fix} f(x) . e) / f], e[v / x,(\operatorname{fix} f(x) . e) / f]) \in\left(\square \sigma \tau_{2}\right)_{\varepsilon}^{0}$.
Assume that
a) $e[v / x,(\operatorname{fix} f(x) . e) / f] \Downarrow^{c_{r}} v_{r}$
b) $e[v / x,(\operatorname{fix} f(x) . e) / f] \Downarrow^{c_{r}} v_{r}$
c) $c_{r}<m$

By unrolling first part of the definition of (1) with $j<m$ and $(j, v, v) \in\left(\sigma \tau_{1}\right)_{v}$, we get

$$
\begin{equation*}
(j, e[v / x,(\operatorname{fix} f(x) . e) / f], e[v / x,(\operatorname{fix} f(x) . e) / f]) \in\left(\sigma \tau_{2}\right)_{\varepsilon}^{\sigma t} \tag{2}
\end{equation*}
$$

Unrolling the definition of (2) with (a-c), we get
d) $c_{r}-c_{r} \leq \sigma t$
e) $\left(m-c_{r}, v_{r}, v_{r}\right) \in\left(\sigma \tau_{2}\right)_{v}$

We can conclude as follows

1. Trivially $c_{r}-c_{r} \leq 0$
2. By e), we get $\left(m-c_{r}, v_{r}, v_{r}\right) \in\left(\square \sigma \tau_{2}\right)_{v}$
subcase 2: STS: $\forall j$. (j, fix $f(x) . e) \in \llbracket\left|\square \sigma \tau_{1} \xrightarrow{\text { diff(0) }} \square \sigma \tau_{2}\right|_{1} \rrbracket_{v} \equiv \llbracket\left|\sigma \tau_{1}\right|_{1} \xrightarrow{\operatorname{exec}(0, \infty)}\left|\sigma \tau_{2}\right|_{1} \rrbracket_{v}$.
Follows by unrolling the second part of the definition of (1) as shown in the previous case.

Case $\overline{\Delta ; \Phi \models \tau \sqsubseteq U\left(|\tau|_{1},|\tau|_{2}\right)} \mathbf{W}$

Assume that $\sigma \in \mathcal{D} \llbracket \Delta \rrbracket$.
We have

$$
\begin{equation*}
\left(m, v_{1}, v_{2}\right) \in(\sigma \tau)_{v} \tag{1}
\end{equation*}
$$

TS: $\left(m, v_{1}, v_{2}\right) \in\left(U\left(|\sigma \tau|_{1},|\sigma \tau|_{2}\right)\right)_{v}$.
Proof is by induction on τ.
We show a few representative cases below.
subcase 1: $\left(m, v_{1}, v_{2}\right) \in\left(U\left(A_{1}, A_{2}\right)\right\rangle_{v}(\star)$
Since $\sigma \tau=U\left(A_{1}, A_{2}\right)=U\left(|\sigma \tau|_{1},|\sigma \tau|_{2}\right)$, we immediately conclude by (\star).
subcase 2: $\left(m, \operatorname{inl} v_{1}, \operatorname{inl} v_{2}\right) \in\left(\sigma \tau_{1}+\sigma \tau_{2}\right)_{v}(\star)$
TS: $\left(m, \operatorname{inl} v_{1}\right.$, inl $\left.v_{2}\right) \in\left(U\left(\left|\sigma \tau_{1}+\sigma \tau_{2}\right|_{1},\left|\sigma \tau_{1}+\sigma \tau_{2}\right|_{2}\right)\right\rangle_{v}$.
STS: $\forall j .\left(j\right.$, inl $\left.v_{1}\right) \in \llbracket\left|\sigma \tau_{1}+\sigma \tau_{2}\right|_{1} \rrbracket_{v} \wedge\left(j\right.$, inl $\left.v_{2}\right) \in \llbracket\left|\sigma \tau_{1}+\sigma \tau_{2}\right|_{2} \rrbracket_{v}$.
By unrolling their definition and noting that $\left|\sigma \tau_{1}+\sigma \tau_{2}\right|_{i}=\left|\sigma \tau_{1}\right|_{i}+\left|\sigma \tau_{2}\right|_{i} \forall i \in\{1,2\}$, RTS:

$$
\begin{equation*}
\forall j \cdot\left(j, v_{1}\right) \in \llbracket\left|\sigma \tau_{1}\right|_{1} \rrbracket_{v} \wedge\left(j, v_{2}\right) \in \llbracket\left|\sigma \tau_{1}\right|_{2} \rrbracket_{v} \tag{2}
\end{equation*}
$$

By unrolling the definition of (\star), we have $\left(m, v_{1}, v_{2}\right) \in\left(\sigma \tau_{1}\right)_{v}$.
By IH, we get $\left(m, v_{1}, v_{2}\right) \in\left(U\left(\left|\sigma \tau_{1}\right|_{1},\left|\sigma \tau_{1}\right|_{2}\right)\right)_{v}$ which is equivalent to (2).
subcase 3: (m, fix $f(x) \cdot e_{1}$, fix $\left.f(x) \cdot e_{2}\right) \in\left(\sigma \tau_{1} \xrightarrow{\text { diff(}(k)} \sigma \tau_{2}\right)_{v}(\star)$
TS: $\left(m\right.$, fix $f(x) \cdot e_{1}$, fix $\left.f(x) \cdot e_{2}\right) \in\left(U\left(\left|\sigma \tau_{1} \xrightarrow{\text { diff }(k)} \sigma \tau_{2}\right|_{1},\left|\sigma \tau_{1} \xrightarrow{\text { diff }(k)} \sigma \tau_{2}\right|_{2}\right)\right)_{v}$
STS: $\forall j .\left(j\right.$, fix $\left.f(x) . e_{1}\right) \in \llbracket\left|\sigma \tau_{1}\right|_{1} \xrightarrow{\operatorname{exec}(0, \infty)}\left|\sigma \tau_{2}\right|_{1} \rrbracket_{v} \wedge\left(j\right.$, fix $\left.f(x) \cdot e_{2}\right) \in \llbracket\left|\sigma \tau_{1}\right|_{2} \xrightarrow{\operatorname{exec}(0, \infty)}$ $\left|\sigma \tau_{2}\right|_{2} \rrbracket_{v}$.
Follows by unrolling the second part of the definition of (\star).

$$
\text { Case } \frac{\Delta ; \Phi \models n \doteq n^{\prime} \quad \Delta ; \Phi \models \alpha \leq \alpha^{\prime} \quad \Delta ; \Phi \models \tau \sqsubseteq \tau^{\prime}}{\Delta ; \Phi \models \operatorname{list}[n]^{\alpha} \tau \sqsubseteq \operatorname{list}\left[n^{\prime}\right]^{\alpha^{\prime}} \tau^{\prime}} 11
$$

Assume that $\sigma \in \mathcal{D} \llbracket \Delta \rrbracket$ and $=\sigma \Phi$ and $\left(m, v, v^{\prime}\right) \in\left(\operatorname{list}[n]^{\alpha} \tau\right)_{v}$.
TS: $\left(m, v, v^{\prime}\right) \in\left(\operatorname{list}\left[\sigma n^{\prime}\right]^{\sigma \alpha^{\prime}} \sigma \tau^{\prime}\right)_{v}$
From Assumption 13 applied to the first premise, $\sigma n=\sigma n^{\prime}$. Therefore,
STS: $\left(m, v, v^{\prime}\right) \in\left(\operatorname{list}[\sigma n]^{\sigma \alpha^{\prime}} \sigma \tau^{\prime}\right)_{v}$
From Assumption 13 applied to the second premise, $\sigma \alpha \leq \sigma \alpha^{\prime}$. Therefore,
We prove the following more general statement
$\forall m, v, v^{\prime}, n, \alpha, \alpha^{\prime}$. if $\alpha \leq \alpha^{\prime}$ and $\left(m, v, v^{\prime}\right) \in\left(\operatorname{list}[\sigma n]^{\sigma \alpha} \sigma \tau\right)_{v}$, then $\left(m, v, v^{\prime}\right) \in\left(\operatorname{list}[\sigma n]^{\sigma \alpha^{\prime}} \sigma \tau^{\prime}\right)_{v}$.
We establish this statement by subinduction on v and v^{\prime}.
subcase 1: $v=v^{\prime}=$ nil
We can immediately conclude that (m, nil , nil $) \in\left(\operatorname{list}[0]^{\sigma \alpha^{\prime}} \sigma \tau^{\prime}\right)_{v}$ by definition.
subcase 2: $v=\operatorname{cons}\left(v_{1}, v_{2}\right)$ and $v^{\prime}=\operatorname{cons}\left(v_{1}^{\prime}, v_{2}^{\prime}\right)$
TS: $\left(m, \operatorname{cons}\left(v_{1}, v_{2}\right), \operatorname{cons}\left(v_{1}^{\prime}, v_{2}^{\prime}\right)\right) \in\left(\operatorname{list}[I+1]^{\sigma \alpha^{\prime}} \sigma \tau^{\prime}\right)_{v}$ for some $I+1=\sigma n$.
We have two possible cases:

- $\left(m, v_{1}, v_{1}^{\prime}\right) \in(\square \sigma \tau)_{v}(\dagger)$ and $\left(m, v_{2}, v_{2}^{\prime}\right) \in\left(\operatorname{list}[I]^{\sigma \alpha} \sigma \tau\right)_{v}(\dagger \dagger)$.

By subIH on ($\dagger \dagger$), we get

$$
\begin{equation*}
\left(m, v_{2}, v_{2}^{\prime}\right) \in\left(\operatorname{list}[I]^{\sigma \alpha^{\prime}} \sigma \tau^{\prime}\right)_{v} \tag{1}
\end{equation*}
$$

By IH on (\dagger), we get

$$
\begin{equation*}
\left(m, v_{1}, v_{1}^{\prime}\right) \in\left(\square \sigma \tau^{\prime}\right)_{v} \tag{2}
\end{equation*}
$$

Combining (2) with (1), we get $\left(m, \operatorname{cons}\left(v_{1}, v_{2}\right), \operatorname{cons}\left(v_{1}^{\prime}, v_{2}^{\prime}\right)\right) \in\left(\operatorname{list}[I+1]^{\sigma \alpha^{\prime}} \sigma \tau\right)_{v}$.

- $\left(m, v_{1}, v_{1}^{\prime}\right) \in(\sigma \tau)_{v}(\diamond)$ and $\left(m, v_{2}, v_{2}^{\prime}\right) \in\left(\operatorname{list}[I]^{\sigma \alpha-1} \sigma \tau\right)_{v}(\diamond \diamond)$.

By subIH on (\diamond), we get

$$
\begin{equation*}
\left(m, v_{2}, v_{2}^{\prime}\right) \in\left(\operatorname{list}[I]^{\sigma \alpha^{\prime}-1} \sigma \tau^{\prime}\right)_{v} \tag{3}
\end{equation*}
$$

By IH on (\diamond), we get

$$
\begin{equation*}
\left(m, v_{1}, v_{1}^{\prime}\right) \in\left(\sigma \tau^{\prime}\right)_{v} \tag{4}
\end{equation*}
$$

Combining (4) with (3), we get $\left(m, \operatorname{cons}\left(v_{1}, v_{2}\right), \operatorname{cons}\left(v_{1}^{\prime}, v_{2}^{\prime}\right)\right) \in\left(\operatorname{list}[I+1]^{\sigma \alpha^{\prime}} \sigma \tau\right){ }_{v}$.
subcase 3: $v=$ nil and $v^{\prime}=\operatorname{cons}\left(v_{1}^{\prime}, v_{2}^{\prime}\right)$
This case is impossible since they can't be related.
subcase 4: $v=\operatorname{cons}\left(v_{1}, v_{2}\right)$ and $v^{\prime}=\operatorname{nil}$
This case is impossible since they can't be related.
Case $\frac{\Delta ; \Phi \models \alpha \doteq 0}{\Delta ; \Phi \models \operatorname{list}[n]^{\alpha} \tau \sqsubseteq \operatorname{list}[n]^{\alpha} \square \tau} \mathbf{l} 2$
Assume that $\sigma \in \mathcal{D} \llbracket \Delta \rrbracket$ and $=\sigma \Phi$ and $\left(m, v, v^{\prime}\right) \in\left(\operatorname{list}[n]^{\alpha} \tau\right)_{v}$.
TS: $\left(m, v, v^{\prime}\right) \in\left(\operatorname{list}[\sigma n]^{\sigma \alpha} \square \sigma \tau\right){ }_{v}$
We prove the following more general statement by subinduction on n.
subcase 1: $n=0$
Then, we know that $v=v^{\prime}=$ nil
We can immediately conclude that (m, nil , nil $) \in\left(l \operatorname{list}[0]^{0} \square \sigma \tau\right)_{v}$ by definition.
subcase 2: $n=I+1$
Then, we know that $v=\operatorname{cons}\left(v_{1}, v_{2}\right)$ and $v^{\prime}=\operatorname{cons}\left(v_{1}^{\prime}, v_{2}^{\prime}\right)$
TS: $\left(m, \operatorname{cons}\left(v_{1}, v_{2}\right), \operatorname{cons}\left(v_{1}^{\prime}, v_{2}^{\prime}\right)\right) \in\left(\operatorname{list}[I+1]^{0} \square \sigma \tau\right){ }_{v}$.
We have two possible cases:

- $\left(m, v_{1}, v_{1}^{\prime}\right) \in(\square \sigma \tau)_{v}(\dagger)$ and $\left(m, v_{2}, v_{2}^{\prime}\right) \in\left(\operatorname{list}[I]^{0} \sigma \tau\right)_{v}(\dagger \dagger)$.

By subIH on $(\dagger \dagger)$, we get $\left(m, v_{2}, v_{2}^{\prime}\right) \in\left(\operatorname{list}[I]^{0} \square \sigma \tau\right) v$.
Combining the (\dagger) with the previous statement, we get $\left(m, \operatorname{cons}\left(v_{1}, v_{2}\right), \operatorname{cons}\left(v_{1}^{\prime}, v_{2}^{\prime}\right)\right) \in$ (list $\left.[I+1]^{0} \square \sigma \tau\right)_{v}$.

- $\left(m, v_{1}, v_{1}^{\prime}\right) \in(\sigma \tau)_{v}$ and $\left(m, v_{2}, v_{2}^{\prime}\right) \in\left(\operatorname{list}[I]^{0-1} \sigma \tau\right)_{v}$.

This case is impossible since $0-1 \nsupseteq 0$.
Case

$$
\overline{\Delta ; \Phi \models \operatorname{list}[n]^{\alpha} \square \tau \sqsubseteq \square\left(\operatorname{list}[n]^{\alpha} \tau\right)}
$$

Assume that $\sigma \in \mathcal{D} \llbracket \Delta \rrbracket$ and $\vDash \sigma \Phi$ and $\left(m, v, v^{\prime}\right) \in\left(\operatorname{list}[\sigma n]^{\sigma \alpha} \square \sigma \tau\right){ }_{v}$.
TS: $\left(m, v, v^{\prime}\right) \in\left(\square\left(\operatorname{list}[n]^{\alpha} \tau\right)\right)_{v}$
We prove the following more general statement
$\forall i, \beta, \tau$. if $(m, v, v) \in\left(\operatorname{list}[i]^{\beta} \square \tau\right)_{v}$, then $(m, v, v) \in\left(\square\left(\operatorname{list}[i]^{\beta} \tau\right)\right)_{v}$ by subinduction on i.
subcase 1: $n=0$
Then, we know that $v=v^{\prime}=$ nil
We can immediately conclude that $(m$, nil , nil $) \in\left(\square \operatorname{list}[0]^{\sigma \alpha} \sigma \tau\right)_{v}$ by definition.
subcase 2: $n=I+1$
$\mathrm{TS}:\left(m, \operatorname{cons}\left(v_{1}, v_{2}\right), \operatorname{cons}\left(v_{1}^{\prime}, v_{2}^{\prime}\right)\right) \in\left(\square \operatorname{list}[I+1]^{\sigma \alpha} s \tau\right){ }_{v}$.
We have two possible cases:

- $\left(m, v_{1}, v_{1}^{\prime}\right) \in(\square \square \sigma \tau)_{v}(\dagger)$ and $\left(m, v_{2}, v_{2}\right) \in\left(\operatorname{list}[I]^{\sigma \alpha} \square \sigma \tau\right)_{v}(\dagger \dagger)$.

Instantiating subIH on $(\dagger \dagger)$, we get

$$
\begin{equation*}
\left(m, v_{2}, v_{2}^{\prime}\right) \in\left(\square \operatorname{list}[I]^{\sigma \alpha} \sigma \tau\right) v \text { and } v_{2}=v_{2}^{\prime} \tag{1}
\end{equation*}
$$

By (\dagger), we also know that

$$
\begin{equation*}
\left(m, v_{1}, v_{1}\right) \in(\square \sigma \tau) v \tag{2}
\end{equation*}
$$

Combining (2) with (1), we get $\left(m, \operatorname{cons}\left(v_{1}, v_{2}\right), \operatorname{cons}\left(v_{1}, v_{2}\right)\right) \in\left(\square \operatorname{list}[I+1]^{\sigma \alpha} \sigma \tau\right){ }_{v}$.

- $\left(m, v_{1}, v_{1}\right) \in(\square \sigma \tau)_{v}(\diamond)$ and $\left(m, v_{2}, v_{2}\right) \in\left(\operatorname{list}[I]^{\sigma \alpha-1} \square \sigma \tau\right)_{v}(\diamond \diamond)$.

Instantiating subIH on $(\diamond>)$, we get

$$
\begin{equation*}
\left(m, v_{2}, v_{2}^{\prime}\right) \in\left(\square \operatorname{list}[I]^{\sigma \alpha-1} \sigma \tau\right)_{v} \text { and } v_{2}=v_{2}^{\prime} \tag{3}
\end{equation*}
$$

Combining (\diamond) with (3), we get $\left(m, \operatorname{cons}\left(v_{1}, v_{2}\right), \operatorname{cons}\left(v_{1}, v_{2}\right)\right) \in\left(\square \operatorname{list}[I+1]^{\sigma \alpha} \sigma \tau\right) v$.

Proof of statement (2). Proof is by induction on the subtyping derivation.
Case $\frac{\Delta ; \Phi \models^{\mathrm{A}} A_{1}^{\prime} \sqsubseteq A_{1} \quad \Delta ; \Phi \models^{\mathrm{A}} A_{2} \sqsubseteq A_{2}^{\prime} \quad \Delta ; \Phi \models k^{\prime} \leq k \quad \Delta ; \Phi \models t \leq t^{\prime}}{\Delta ; \Phi \not \models^{\mathrm{A}} A_{1} \xrightarrow{\operatorname{exec}(k, t)} A_{2} \sqsubseteq A_{1}^{\prime} \xrightarrow{\operatorname{exec}\left(k^{\prime}, t^{\prime}\right)} A_{2}^{\prime}} \rightarrow$ exec
Assume that $\sigma \in \mathcal{D} \llbracket \Delta \rrbracket$.
We have

$$
\begin{equation*}
(m, \text { fix } f(x) . e) \in\left(\mid \sigma A_{1} \xrightarrow{\operatorname{exec}(\sigma k, \sigma t)} \sigma A_{2}\right)_{v} \tag{1}
\end{equation*}
$$

TS: $(m$, fix $f(x) . e) \in\left(\sigma A_{1}^{\prime} \xrightarrow{\operatorname{exec}\left(\sigma k^{\prime}, \sigma t^{\prime}\right)} \sigma A_{2}^{\prime}\right)_{v}$.
STS: $(m$, fix $f(x) . e) \in \llbracket \sigma A_{1}^{\prime} \xrightarrow{\operatorname{exec}\left(\sigma k^{\prime}, \sigma t^{\prime}\right)} \sigma A_{2}^{\prime} \rrbracket_{v}$.
Pick j and assume that

$$
\begin{equation*}
j<m \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
(j, v) \in \llbracket \sigma A_{1}^{\prime} \rrbracket_{v} \tag{3}
\end{equation*}
$$

STS: $\left.(j, e[v / x,(\operatorname{fix} f(x) . e) / f]) \in \llbracket \sigma A_{2}^{\prime}\right]_{\varepsilon}^{\sigma k^{\prime}, \sigma t^{\prime}}$.
By IH 2 on (3) using the first premise, we get

$$
\begin{equation*}
(j, v) \in \llbracket \sigma A_{1} \rrbracket_{v} \tag{4}
\end{equation*}
$$

By unrolling the definition of (1) with (4) and $j<m$, we get

$$
\begin{equation*}
(j, e[v / x,(\operatorname{fix} f(x) . e) / f]) \in \llbracket \sigma A_{2} \rrbracket_{\varepsilon}^{\sigma k, \sigma t} \tag{5}
\end{equation*}
$$

By Assumption 13 on the third and fourth premises, we get $\sigma k^{\prime} \leq \sigma k$ and $\sigma t \leq \sigma t^{\prime}$.
We conclude by applying IH 4 to (5) using σ, i.e $\sigma t \leq \sigma t^{\prime}$ and $\sigma k^{\prime} \leq \sigma k$.

Lemma 6 (Sort Substitution)

The following hold.

1. If $\Delta \vdash I:: S$ and $\Delta, i:: S \vdash I^{\prime}:: S^{\prime}$, then $\Delta \vdash I^{\prime}[I / i]:: S^{\prime}$.
2. If $\Delta \vdash I:: S$ and $\Delta, \vdash i:: S \vdash C$ wf, then $\Delta \vdash C[I / i]$ wf.
3. If $\Delta \vdash I:: S$ and $\sigma \in \mathcal{D} \llbracket \Delta \rrbracket$, then $\vdash \sigma I:: S$.

Proof. (1) and (2) are established by simultaneous induction on the second given derivations. (3) follows from (1).

Assumption 7 (Constraint Well-formedness)

If $\Delta ; \Phi \models C$ then $\Delta \vdash C$ wf

Lemma 8 (Well-formedness)

The following hold.

1. If $\Delta ; \Phi ; \Gamma \vdash e \ominus e^{\prime} \lesssim t: \tau$ and $\Delta ; \Phi \vdash \Gamma$ wf and $\operatorname{FIV}(\Gamma) \subseteq \operatorname{dom}(\Delta)$, then $\Phi ; \Delta \vdash \tau$ wf and $\operatorname{FIV}(t, \tau) \subseteq \operatorname{dom}(\Delta)$.
2. If $\Delta ; \Phi ; \Omega \vdash_{k}^{t} e: A$ and $\Delta ; \Phi \vdash^{\mathrm{A}} \Omega$ wf and $\operatorname{FIV}(\Omega) \subseteq \operatorname{dom}(\Delta)$, then $\Phi ; \Delta \vdash^{\mathrm{A}} A$ wf and $\operatorname{FIV}(k, t, A) \subseteq \operatorname{dom}(\Delta)$.
3. If $\Delta ; \Phi ; \Gamma \vdash e \ominus e^{\prime} \lesssim t: \tau$, then $\mathrm{FV}(e) \subseteq \operatorname{dom}(\Gamma)$ and $\mathrm{FV}(e) \subseteq \operatorname{dom}(\Gamma)$.
4. If $\Delta ; \Phi ; \Omega \vdash_{k}^{t} e: A$, then $\mathrm{FV}(e) \subseteq \operatorname{dom}(\Omega)$.

Proof. The proof is by induction on the typing derivations.

Lemma 9 (Refinement Removal Well-formedness)

If $\Phi ; \Delta \vdash \tau$ wf, then $\Phi ; \Delta \vdash^{\mathrm{A}}|\tau|_{i}$ wf for $i \in\{1,2\}$.

Lemma 10 (Subtyping well-formedness)

The following hold.

- If $\Delta ; \Phi \models \tau \sqsubseteq \tau^{\prime}$ and $\Delta ; \Phi \vdash \tau$ wf and $F I V(\tau) \subseteq \Delta$, then $\Phi ; \Delta \vdash \tau^{\prime}$ wf and $F I V\left(\tau^{\prime}\right) \subseteq$ Δ.
- If $\Delta ; \Phi \models^{\mathrm{A}} A \sqsubseteq A^{\prime}$ and $\Delta ; \Phi \vdash^{\mathrm{A}} A$ wf and $F I V(A) \subseteq \Delta$, then $\Phi ; \Delta \vdash A^{\prime}$ wf and $F I V\left(A^{\prime}\right) \subseteq \Delta$.

Proof. The proof is by induction on the subtyping derivations.
Both of our fundamental theorems rely on the assumption that the semantic interpretation of every primitive function lies in the interpretation of the function's type. This is explained below.

Assumption 11 (Soundness of primitive functions (relational))

Suppose that $\zeta: \tau_{1} \xrightarrow{\operatorname{diff}(t)} \tau_{2}$ and $\left(m, v, v^{\prime}\right) \in\left(\tau_{1}\right)_{v}$ and $\hat{\zeta} v=\left(c_{r}, v_{r}\right)$ and $\hat{\zeta} v^{\prime}=\left(c_{r}^{\prime}, v_{r}^{\prime}\right)$, then

- $\left(m, v_{r}, v_{r}^{\prime}\right) \in\left(\tau_{2}\right)_{v}$
- $c_{r}-c_{r}^{\prime} \leq t$

Assumption 12 (Soundness of primitive functions (non-relational))

Suppose that $\zeta: A_{1} \xrightarrow{\operatorname{exec}(k, t)} A_{2}$ and $(m, v) \in \llbracket A_{1} \rrbracket_{v}$, then

- $\hat{\zeta} v=\left(c_{r}, v_{r}\right)$
- $\left(m, v_{r}\right) \in \llbracket A_{2} \rrbracket_{v}$
- $k \leq c_{r} \leq t$

We assume that the constraint judgment $\Delta ; \Phi \models C$ satisfies some standard properties.

Assumption 13 (Constraint conditions)

The following hold.

1. [Subst1] If $\Delta, i:: S ; \Phi \models C$ and $\Delta \vdash I:: S$, then $\Delta ; \Phi[I / i] \models C[I / i]$.
2. [Subst2] If $\Delta ; \Phi \models C$ and $\Delta ; \Phi \wedge C \models C^{\prime}$, then $\Delta ; \Phi \models C^{\prime}$.
3. $[\mathrm{Neg}] \Delta ; \Phi \models \neg C$ iff $\Delta ; \Phi \not \vDash C$.
4. [Corr1] If $\models n_{1} \leq n_{2}$, then $n_{1} \leq n_{2}$.
5. [Corr2] If $\equiv I \doteq I^{\prime}$, then $I=I^{\prime}$.

Theorem 14 (Fundamental theorem)

The following holds.

1. Assume that $\Delta ; \Phi ; \Gamma \vdash e_{1} \ominus e_{2} \lesssim t: \tau$ and $\sigma \in \mathcal{D} \llbracket \Delta \rrbracket$ and $\models \sigma \Phi$ and $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$. Then, $\left(m, \delta e_{1}, \delta^{\prime} e_{2}\right) \in(\sigma \tau)_{\varepsilon}^{\sigma t}$.
2. Assume that $\Delta ; \Phi ; \Omega \vdash_{k}^{t} e: A$ and $\sigma \in \mathcal{D} \llbracket \Delta \rrbracket$ and $\models \sigma \Phi$ and there exists Ω^{\prime} s.t. $\mathrm{FV}(e) \subseteq \operatorname{dom}\left(\Omega^{\prime}\right)$ and $\Omega^{\prime} \subseteq \Omega$ and $(m, \gamma) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket$. Then, $(m, \gamma e) \in \llbracket \sigma A \rrbracket_{\varepsilon}^{\sigma k, \sigma t}$.
3. Assume that $\Delta ; \Phi ; \Gamma \vdash e_{1} \ominus e_{2} \lesssim t: \tau$ and $\sigma \in \mathcal{D} \llbracket \Delta \rrbracket$ and $\models \sigma \Phi$. Then for $i \in\{1,2\}$, if there exists Γ_{i}^{\prime} s.t. $\mathrm{FV}\left(e_{i}\right) \subseteq \operatorname{dom}\left(\Gamma_{i}^{\prime}\right)$ and $\Gamma_{i}^{\prime} \subseteq \Gamma$ and $(m, \delta) \in \mathcal{G} \llbracket\left|\sigma \Gamma_{i}^{\prime}\right| i \rrbracket$, then $\left(m, \delta e_{i}\right) \in \llbracket|\sigma \tau| i_{i} \prod_{\varepsilon}^{0, \infty}$.

Proof. Proofs are by induction on typing derivations. We show each statement separately.
Proof of Statement (1). We proceed by induction on the typing derivation. We show the most important cases below.

Case $\frac{\Gamma(x)=\tau}{\Delta ; \Phi ; \Gamma \vdash x \ominus x \lesssim 0: \tau} \mathbf{r}$-var
Assume that $=\sigma \Phi$ and $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$.
TS: $\left(m, \delta(x), \delta^{\prime}(x)\right) \in(\sigma \tau)_{\varepsilon}^{0}$.
By Value Lemma (Lemma 2), STS: $\left(m, \delta(x), \delta^{\prime}(x)\right) \in(\sigma \tau)_{v}$.
This follows by $\Gamma(x)=\tau$ and $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$.
Case $\frac{\Delta ; \Phi ; \Gamma \vdash e_{1} \ominus e_{1}^{\prime} \lesssim t_{1}: \tau \quad \Delta ; \Phi ; \Gamma \vdash e_{2} \ominus e_{2}^{\prime} \lesssim t_{2}: \operatorname{list}[n]^{\alpha} \tau}{\Delta ; \Phi ; \Gamma \vdash \operatorname{cons}\left(e_{1}, e_{2}\right) \ominus \operatorname{cons}\left(e_{1}^{\prime}, e_{2}^{\prime}\right) \lesssim t_{1}+t_{2}: \operatorname{list}[n+1]^{\alpha+1} \tau}$ r-cons1
Assume that $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$ and $\models \sigma \Phi$.
$\mathrm{TS}:\left(m, \operatorname{cons}\left(\delta e_{1}, \delta e_{2}\right), \operatorname{cons}\left(\delta^{\prime} e_{1}^{\prime}, \delta^{\prime} e_{2}^{\prime}\right)\right) \in\left(\operatorname{list}[\sigma n+1]^{\sigma \alpha+1} \sigma \tau\right)_{\varepsilon}^{\sigma t_{1}+\sigma t_{2}}$.
Following the definition of $\left(\cdot D_{\varepsilon}\right.$, assume that
$\frac{\delta e_{1} \Downarrow^{c_{1}} v_{1}(\star) \quad \delta e_{2} \Downarrow^{c_{2}} v_{2}(\diamond)}{\operatorname{cons}\left(\delta e_{1}, \delta e_{2}\right) \Downarrow^{c_{1}+c_{2}} \operatorname{cons}\left(v_{1}, v_{2}\right)}$ cons and $\frac{\delta^{\prime} e_{1}^{\prime} \Downarrow \Downarrow_{1}^{c_{1}^{\prime}} v_{1}^{\prime}(\star \star) \quad \delta^{\prime} e_{2}^{\prime} \Downarrow c^{\prime} v_{2}^{\prime}(\diamond \diamond)}{\operatorname{cons}\left(\delta^{\prime} e_{1}^{\prime}, \delta^{\prime} e_{2}^{\prime}\right) \Downarrow \Downarrow_{1}^{c_{1}^{\prime}+c_{2}^{\prime}} \operatorname{cons}\left(v_{1}^{\prime}, v_{2}^{\prime}\right)}$ cons and
$c_{1}+c_{2}<m$.
By IH 1 on the first premise, we get $\left(m, \delta e_{1}, \delta^{\prime} e_{1}^{\prime}\right) \in(\sigma \tau)_{\varepsilon}^{\sigma t_{1}}$. Unrolling its definition with (\star) and ($\star \star$) and $c_{1}<m$, we get
a) $c_{1}-c_{1}^{\prime} \leq \sigma t_{1}$
b) $\left(m-c_{1}, v_{1}, v_{1}^{\prime}\right) \in(\sigma \tau)_{v}$

By IH 1 on the second premise, we get $\left(m, \delta e_{2}, \delta^{\prime} e_{2}^{\prime}\right) \in\left(\operatorname{list}[\sigma n]^{\sigma \alpha} \sigma \tau\right)_{\varepsilon}^{\sigma t_{2}}$. Unrolling its definition with (\diamond) and $(\diamond \diamond)$, and $c_{2}<m$, we get
c) $c_{2}-c_{2}^{\prime} \leq \sigma t_{2}$
d) $\left(m-c_{2}, v_{2}, v_{2}^{\prime}\right) \in\left(\operatorname{list}[\sigma n]^{\sigma \alpha} \sigma \tau\right)_{v}$

Now, we can conclude as follows:

1. Using a) and c), we get $\left(c_{1}+c_{2}\right)-\left(c_{1}^{\prime}+c_{2}^{\prime}\right) \leq \sigma t_{1}+\sigma t_{2}$
2. By downward closure (Lemma 4) on b) and d) using

$$
\begin{aligned}
& m-\left(c_{1}+c_{2}\right) \leq m-c_{1} \\
& m-\left(c_{1}+c_{2}\right) \leq m-c_{2}
\end{aligned}
$$

we get $\left(m-\left(c_{1}+c_{2}\right), v_{1}, v_{1}^{\prime}\right) \in(\sigma \sigma \tau)_{v}$ and $\left(m-\left(c_{1}+c_{2}\right), v_{2}, v_{2}^{\prime}\right) \in\left(\operatorname{list}[\sigma n]^{\sigma \alpha} \sigma \tau\right)_{v}$, when
combined, gives us $\left(m-\left(c_{1}+c_{2}\right), \operatorname{cons}\left(v_{1}, v_{2}\right), \operatorname{cons}\left(v_{1}^{\prime}, v_{2}^{\prime}\right)\right) \in\left(\operatorname{list}[\sigma n+1]^{\sigma \alpha+1} \sigma \tau\right) v$
Case $\frac{\Delta ; \Phi ; \Gamma \vdash e_{1} \ominus e_{1}^{\prime} \lesssim t_{1}: \square \tau \quad \Delta ; \Phi ; \Gamma \vdash e_{2} \ominus e_{2}^{\prime} \lesssim t_{2}: \operatorname{list}[n]^{\alpha} \tau}{\Delta ; \Phi ; \Gamma \vdash \operatorname{cons}\left(e_{1}, e_{2}\right) \ominus \operatorname{cons}\left(e_{1}^{\prime}, e_{2}^{\prime}\right) \lesssim t_{1}+t_{2}: \operatorname{list}[n+1]^{\alpha} \tau}$ r-cons2
Assume that $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$ and $\models \sigma \Phi$.
TS: $\left(m, \operatorname{cons}\left(\delta e_{1}, \delta e_{2}\right), \operatorname{cons}\left(\delta^{\prime} e_{1}^{\prime}, \delta^{\prime} e_{2}^{\prime}\right)\right) \in\left(\operatorname{list}[\sigma n+1]^{\sigma \alpha} \sigma \tau\right)_{\varepsilon}^{\sigma t_{1}+\sigma t_{2}}$.
Following the definition of $(\cdot \cdot)_{\dot{\varepsilon}}^{\cdot}$, assume that
$\frac{\delta e_{1} \Downarrow^{c_{1}} v_{1}(\star) \quad \delta e_{2} \Downarrow^{c_{2}} v_{2}(\diamond)}{\operatorname{cons}\left(\delta e_{1}, \delta e_{2}\right) \Downarrow^{c_{1}+c_{2}} \operatorname{cons}\left(v_{1}, v_{2}\right)}$ cons and $\frac{\delta^{\prime} e_{1}^{\prime} \Downarrow^{c_{1}^{\prime}} v_{1}^{\prime}(\star \star) \quad \delta^{\prime} e_{2}^{\prime} \Downarrow \Downarrow_{2}^{\prime} v_{2}^{\prime}(\diamond \diamond)}{\operatorname{cons}\left(\delta^{\prime} e_{1}^{\prime}, \delta^{\prime} e_{2}^{\prime}\right) \Downarrow \Downarrow_{1}^{c_{1}^{\prime}+c_{2}^{\prime}} \operatorname{cons}\left(v_{1}^{\prime}, v_{2}^{\prime}\right)}$ cons
and
$c_{1}+c_{2}<m$.
By IH 1 on the first premise, we get $\left(m, \delta e_{1}, \delta^{\prime} e_{1}^{\prime}\right) \in(\square \sigma \tau)_{\varepsilon}^{\sigma t_{1}}$. Unrolling its definition with (\star) and ($\star \star$), and $c_{1}<m$, we get
a) $c_{1}-c_{1}^{\prime} \leq \sigma t_{1}$
b) $\left(m-c_{1}, v_{1}, v_{1}^{\prime}\right) \in(\square \sigma \tau)_{v}$

By IH 1 on the second premise, we get $\left(m, \delta e_{2}, \delta^{\prime} e_{2}^{\prime}\right) \in\left(\operatorname{list}[\sigma n]^{\sigma \alpha} \sigma \tau\right)_{\varepsilon}^{\sigma t_{2}}$. Unrolling its definition with (\diamond) and $(\diamond \diamond)$, and $c_{2}<m$, we get
c) $c_{2}-c_{2}^{\prime} \leq \sigma t_{2}$
d) $\left(m-c_{2}, v_{2}, v_{2}^{\prime}\right) \in\left(\operatorname{list}[\sigma n]^{\sigma \alpha} \sigma \tau\right) v$

Now, we can conclude as follows:

1. Using a) and c), we get $\left(c_{1}+c_{2}\right)-\left(c_{1}^{\prime}+c_{2}^{\prime}\right) \leq \sigma t_{1}+\sigma t_{2}$
2. By downward-closure (Lemma 4) on b) and d) using

$$
\begin{aligned}
& m-\left(c_{1}+c_{2}\right) \leq m-c_{1} \\
& m-\left(c_{1}+c_{2}\right) \leq m-c_{2}
\end{aligned}
$$

we get $\left(m-\left(c_{1}+c_{2}\right), v_{1}, v_{1}^{\prime}\right) \in(\square \sigma \tau){ }_{v}$ and $\left(m-\left(c_{1}+c_{2}\right), v_{2}, v_{2}^{\prime}\right) \in\left(\operatorname{list}[\sigma n]^{\sigma \alpha} \sigma \tau\right) v$, when combined, gives us $\left(m-\left(c_{1}+c_{2}\right), \operatorname{cons}\left(v_{1}, v_{2}\right), \operatorname{cons}\left(v_{1}^{\prime}, v_{2}^{\prime}\right)\right) \in\left(\operatorname{list}[\sigma n+1]^{\sigma \alpha} \sigma \tau\right) v$

$$
\Delta ; \Phi ; \Gamma \vdash e \ominus e^{\prime} \lesssim t: \tau
$$

Case $\frac{\Delta ; \Phi ; \Gamma \vdash e_{l} \ominus e_{l}^{\prime} \lesssim t_{1}: \operatorname{tree}[i]^{\alpha} \tau \quad \Delta ; \Phi ; \Gamma \vdash e_{r} \ominus e_{r}^{\prime} \lesssim t_{2}: \operatorname{tree}[j]^{\beta} \tau}{\Delta ; \Phi ; \Gamma \vdash \operatorname{node}\left(e_{l}, e, e_{r}\right) \ominus \operatorname{node}\left(e_{l}^{\prime}, e^{\prime}, e_{r}^{\prime}\right) \lesssim t+t_{1}+t_{2}: \operatorname{tree}[i+j+1]^{\alpha+\beta+1} \tau}$ r-node1 Assume that $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$ and $\models \sigma \Phi$.

TS: $\left(m, \operatorname{node}\left(\delta e_{l}, \delta e, \delta e_{r}\right), \operatorname{node}\left(\delta^{\prime} e_{l}^{\prime}, \delta^{\prime} e^{\prime}, \delta^{\prime} e_{r}^{\prime}\right)\right) \in\left(\operatorname{tree}[\sigma i+\sigma j+1]^{\sigma \alpha+\sigma \beta+1} \sigma \tau\right)_{\varepsilon}^{\sigma t+\sigma t_{1}+\sigma t_{2}}$.
Following the definition of $\left(\cdot D_{\varepsilon}^{\dot{\varepsilon}}\right.$, assume that
$\underline{\delta e_{l} \Downarrow^{c_{l}} v_{l}(\star) \quad \delta e \Downarrow^{c} v(\diamond) \quad \delta e_{r} \Downarrow^{c_{r}} v_{r}(\dagger)}$ node and
$\operatorname{node}\left(\delta e_{l}, \delta e, \delta e_{r}\right) \Downarrow^{c+c_{l}+c_{r}} \operatorname{node}\left(v_{l}, v, v_{r}\right)$
$\frac{\delta^{\prime} e_{l} \Downarrow^{c_{l}^{\prime}} v_{l}^{\prime}(\star \star) \quad \delta^{\prime} e \Downarrow^{c^{\prime}} v^{\prime}(\diamond>) \quad \delta^{\prime} e_{r} \Downarrow^{c_{r}^{\prime}} v_{r}^{\prime} \quad(\dagger \dagger)}{\operatorname{node}\left(\delta^{\prime} e_{l}, \delta^{\prime} e, \delta^{\prime} e_{r}\right) \Downarrow \Downarrow^{c^{\prime}+c_{l}^{\prime}+c_{r}^{\prime}} \operatorname{node}\left(v_{l}^{\prime}, v^{\prime}, v_{r}^{\prime}\right)}$ node and
$\left(c_{l}+c+c_{r}\right)<m$.
By IH 1 on the first premise, we get $\left(m, \delta e, \delta^{\prime} e^{\prime}\right) \in(\sigma \tau)_{\varepsilon}^{\sigma t}$. Unrolling its definition with (\diamond) and $(\diamond \diamond)$ and $c<m$, we get
a) $c-c^{\prime} \leq \sigma t$
b) $\left(m-c, v, v^{\prime}\right) \in(\sigma \tau \tau) v$

By IH 1 on the second premise, we get $\left(m, \delta e_{l}, \delta^{\prime} e_{l}^{\prime}\right) \in\left(\operatorname{tree}[\sigma i]^{\sigma \alpha} \sigma \tau\right)_{\varepsilon}^{\sigma t_{l}}$. Unrolling its definition with (\star) and $(\star \star)$, and $c_{l}<m$, we get
c) $c_{l}-c_{l}^{\prime} \leq \sigma t_{1}$
d) $\left(m-c_{l}, v_{l}, v_{l}^{\prime}\right) \in\left(\operatorname{tree}[\sigma i]^{\sigma \alpha} \sigma \tau\right)_{v}$

By IH 1 on the second premise, we get $\left(m, \delta e_{r}, \delta^{\prime} e_{r}^{\prime}\right) \in\left(\operatorname{tree}[\sigma j]^{\sigma \beta} \sigma \tau\right)_{\varepsilon}^{\sigma t_{r}}$. Unrolling its definition with (\dagger) and $(\dagger \dagger)$, and $c_{r}<m$, we get
e) $c_{r}-c_{r}^{\prime} \leq \sigma t_{2}$
f) $\left(m-c_{r}, v_{r}, v_{r}^{\prime}\right) \in\left(\operatorname{tree}[\sigma j]^{\sigma \beta} \sigma \tau\right)_{v}$

Now, we can conclude as follows:

1. Using a), c) and e), we get $\left(c_{l}+c+c_{r}\right)-\left(c_{l}^{\prime}+c^{\prime}+c_{r}^{\prime}\right) \leq \sigma t+\sigma t_{1}+\sigma t_{2}$
2. By downward-closure (Lemma 4) on b), d) and e) using

$$
\begin{aligned}
& m-\left(c_{l}+c+c_{r}\right) \leq m-c \\
& m-\left(c_{l}+c+c_{r}\right) \leq m-c_{l} \\
& m-\left(c_{l}+c+c_{r}\right) \leq m-c_{r}
\end{aligned}
$$

we get $\left(m-\left(c_{l}+c+c_{r}\right), v, v^{\prime}\right) \in(\sigma \tau)_{v}$ and $\left(m-\left(c_{l}+c+c_{r}\right), v_{l}, v_{l}^{\prime}\right) \in\left(\operatorname{tree}[\sigma i]^{\sigma \alpha} \sigma \tau\right)_{v}$ and $\left(m-\left(c_{l}+c+c_{r}\right), v_{r}, v_{r}^{\prime}\right) \in\left(\operatorname{tree}[\sigma j]^{\sigma \beta} \sigma \tau\right)_{v}$, when combined, gives us $\left(m-\left(c_{l}+c+\right.\right.$ $\left.\left.c_{r}\right), \operatorname{node}\left(v_{l}, v, v_{r}\right), \operatorname{node}\left(v_{l}^{\prime}, v^{\prime}, v_{r}^{\prime}\right)\right) \in\left(\operatorname{tree}[\sigma i+\sigma j+1]^{\sigma \alpha+\sigma \beta+1} \sigma \tau\right) v_{v}$

$$
\Delta ; \Phi ; \Gamma \vdash e \ominus e^{\prime} \lesssim t: \square \tau
$$

Case $\frac{\Delta ; \Phi ; \Gamma \vdash e_{l} \ominus e_{l}^{\prime} \lesssim t_{1}: \operatorname{tree}[i]^{\alpha} \tau \quad \Delta ; \Phi ; \Gamma \vdash e_{r} \ominus e_{r}^{\prime} \lesssim t_{2}: \operatorname{tree}[j]^{\beta} \tau}{\Delta ; \Phi ; \Gamma \vdash \operatorname{node}\left(e_{l}, e, e_{r}\right) \ominus \operatorname{node}\left(e_{l}^{\prime}, e^{\prime}, e_{r}^{\prime}\right) \lesssim t+t_{1}+t_{2}: \operatorname{tree}[i+j+1]^{\alpha+\beta} \tau}$ r-node2 Assume that $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$ and $\models \sigma \Phi$.
TS: $\left(m, \operatorname{node}\left(\delta e_{l}, \delta e, \delta e_{r}\right), \operatorname{node}\left(\delta^{\prime} e_{l}^{\prime}, \delta^{\prime} e^{\prime}, \delta^{\prime} e_{r}^{\prime}\right)\right) \in\left(\operatorname{tree}[\sigma i+\sigma j+1]^{\sigma \alpha+\sigma \beta} \sigma \tau\right)_{\varepsilon}^{\sigma t+\sigma t_{1}+\sigma t_{2}}$.
Following the definition of $(\cdot)_{\dot{\varepsilon}}^{\cdot}$, assume that
$\frac{\delta e_{l} \Downarrow^{c_{l}} v_{l}(\star) \quad \delta e \Downarrow^{c} v(\diamond) \quad \delta e_{r} \Downarrow^{c_{r}} v_{r}}{\operatorname{node}\left(\delta e_{l} \delta e, \delta e_{r}\right) \Downarrow^{c+c_{l}+c_{r}} \operatorname{node}\left(v_{l} v, v_{r}\right)}$ node and
$\operatorname{node}\left(\delta e_{l}, \delta e, \delta e_{r}\right) \Downarrow^{c+c_{l}+c_{r}}$ node $\left(v_{l}, v, v_{r}\right)$
$\frac{\delta^{\prime} e_{l} \Downarrow^{c_{l}} v_{l}(\star \star) \quad \delta^{\prime} e \Downarrow^{c} v(\infty) \quad \delta^{\prime} e_{r} \Downarrow^{c_{r}} v_{r}{ }^{\prime}}{\operatorname{node}\left(\delta^{\prime} e_{l}, \delta^{\prime} e, \delta^{\prime} e_{r}\right) \Downarrow^{c+c_{l}+c_{r}} \operatorname{node}\left(v_{l}, v, v_{r}\right)}$ node and
$\left(c_{l}+c+c_{r}\right)<m$.
By IH 1 on the first premise, we get ($m, \delta e, \delta^{\prime} e^{\prime}$) $(\square \sigma \tau)_{\varepsilon}^{\sigma t}$. Unrolling its definition with (\star) and $(\star *)$, and $c_{1}<m$, we get
a) $c-c^{\prime} \leq \sigma t$
b) $\left(m-c, v, v^{\prime}\right) \in(\square \sigma \tau)_{v}$

By IH 1 on the second premise, we get $\left(m, \delta e_{l}, \delta^{\prime} e_{l}^{\prime}\right) \in\left(\operatorname{tree}[\sigma i]^{\sigma \alpha} \sigma \tau\right)_{\varepsilon}^{\sigma t_{l}}$. Unrolling its definition with (\star) and $(\star \star)$, and $c_{l}<m$, we get
c) $c_{l}-c_{l}^{\prime} \leq \sigma t_{1}$
d) $\left(m-c_{l}, v_{l}, v_{l}^{\prime}\right) \in\left(\operatorname{tree}[\sigma i]^{\sigma \alpha} \sigma \tau\right) v_{v}$

By IH 1 on the second premise, we get $\left(m, \delta e_{r}, \delta^{\prime} e_{r}^{\prime}\right) \in\left(\operatorname{tree}[\sigma j]^{\sigma \beta} \sigma \tau\right)_{\varepsilon}^{\sigma t_{r}}$. Unrolling its definition with (\dagger) and $(\dagger \dagger)$, and $c_{r}<m$, we get
e) $c_{r}-c_{r}^{\prime} \leq \sigma t_{2}$
f) $\left(m-c_{r}, v_{r}, v_{r}^{\prime}\right) \in\left(\operatorname{tree}[\sigma j]^{\sigma \beta} \sigma \tau\right)_{v}$

Now, we can conclude as follows:

1. Using a), c$)$ and e), we get $\left(c_{l}+c+c_{r}\right)-\left(c_{l}^{\prime}+c^{\prime}+c_{r}^{\prime}\right) \leq \sigma t+\sigma t_{1}+\sigma t_{2}$
2. By downward-closure (Lemma 4) on b), d) and e) using

$$
\begin{aligned}
& m-\left(c_{l}+c+c_{r}\right) \leq m-c \\
& m-\left(c_{l}+c+c_{r}\right) \leq m-c_{l} \\
& m-\left(c_{l}+c+c_{r}\right) \leq m-c_{r}
\end{aligned}
$$

we get $\left(m-\left(c_{l}+c+c_{r}\right), v, v^{\prime}\right) \in(\square \sigma \tau)_{v}$ and $\left(m-\left(c_{l}+c+c_{r}\right)\right.$, $\left.v_{l}, v_{l}^{\prime}\right) \in\left(\operatorname{tree}[\sigma i]^{\sigma \alpha} \sigma \tau\right)_{v}$ and $\left(m-\left(c_{l}+c+c_{r}\right), v_{r}, v_{r}^{\prime}\right) \in\left(\operatorname{tree}[\sigma j]^{\sigma \beta} \sigma \tau\right)_{v}$, when combined, gives us ($m-\left(c_{l}+c+\right.$ $\left.\left.c_{r}\right), \operatorname{node}\left(v_{l}, v, v_{r}\right), \operatorname{node}\left(v_{l}^{\prime}, v^{\prime}, v_{r}^{\prime}\right)\right) \in\left(\operatorname{tree}[\sigma i+\sigma j+1]^{\sigma \alpha+\sigma \beta} \sigma \tau\right) v$

$$
\begin{gathered}
\Delta ; \Phi ; \Gamma \vdash e \ominus e^{\prime} \lesssim t: \operatorname{list}[n]^{\alpha} \tau \quad \Delta ; \Phi \wedge n=0 ; \Gamma \vdash e_{1} \ominus e_{1}^{\prime} \lesssim t^{\prime}: \tau^{\prime} \\
i, \Delta ; \Phi \wedge n=i+1 ; h: \square \tau, t l: \operatorname{list}[i]^{\alpha} \tau, \Gamma \vdash e_{2} \ominus e_{2}^{\prime} \lesssim t^{\prime}: \tau^{\prime}
\end{gathered}
$$

Case

$$
i, \beta, \Delta ; \Phi \wedge n=i+1 \wedge \alpha=\beta+1 ; h: \tau, t l: \operatorname{list}[i]^{\beta} \tau, \Gamma \vdash e_{2} \ominus e_{2}^{\prime} \lesssim t^{\prime}: \tau^{\prime}
$$

$\overline{\Delta ; \Phi ; \Gamma \vdash \text { case } e \text { of nil } \rightarrow e_{1} \mid h:: t l \rightarrow e_{2} \ominus \text { case } e^{\prime} \text { of nil } \rightarrow e_{1}^{\prime} \mid h:: t l \rightarrow e_{2}^{\prime} \lesssim t+t^{\prime}: \tau^{\prime}}{ }^{\mathbf{r}-}$ caseL

Assume that $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$ and $\models \sigma \Phi$.
TS: $\left(m\right.$, case δe of nil $\rightarrow \delta e_{1} \mid h:: t l \rightarrow \delta e_{2}$, case $\delta^{\prime} e^{\prime}$ of nil $\left.\rightarrow \delta^{\prime} e_{1}^{\prime} \mid h:: t l \rightarrow \delta^{\prime} e_{2}^{\prime}\right) \in$ $\left(\sigma \tau^{\prime}\right)_{\varepsilon}^{\sigma t+\sigma t^{\prime}}$.
Following the definition of $\| \cdot D_{\dot{\varepsilon}}$, assume that

$$
\begin{gather*}
\text { case } \delta e \text { of nil } \rightarrow \delta e_{1} \mid h:: t l \rightarrow \delta e_{2} \Downarrow^{C} v_{r} \tag{1}\\
\text { case } \delta^{\prime} e^{\prime} \text { of nil } \rightarrow \delta^{\prime} e_{1}^{\prime} \mid h:: t l \rightarrow \delta^{\prime} e_{2}^{\prime} \Downarrow^{C^{\prime}} v_{r}^{\prime} \tag{2}
\end{gather*}
$$

and $C<m$.
Depending on what δe and $\delta^{\prime} e^{\prime}$ evaluate to, there are four cases.
subcase 1: $\frac{\delta e \Downarrow^{c} \operatorname{nil}(\star) \quad \delta e_{1} \Downarrow^{c_{r}} v_{r}(\diamond)}{\text { case } \delta e \text { of nil } \rightarrow \delta e_{1} \mid h:: t l \rightarrow \delta e_{2} \Downarrow^{c+c_{r}+c_{\text {caseL }}} v_{r}}$ caseL-nil and
$\frac{\delta^{\prime} e^{\prime} \Downarrow^{c^{\prime}} \text { nil } \quad(\star \star) \quad \delta^{\prime} e_{1}^{\prime} \Downarrow^{c_{r}^{\prime}} v_{r}^{\prime}(\diamond \infty)}{\text { case } \delta^{\prime} e^{\prime} \text { of nil } \rightarrow \delta^{\prime} e_{1}^{\prime} \mid h:: t l \rightarrow \delta^{\prime} e_{2}^{\prime} \Downarrow c^{c^{\prime}+c_{r}^{\prime}+c_{\text {caseL }}} v_{r}^{\prime}}$ caseL-nil and $C=c+c_{r}+c_{\text {caseL }}<m$
By IH 1 on the first premise, we get $\left(m, \delta e, \delta^{\prime} e^{\prime}\right) \in\left(\operatorname{list}[\sigma n]^{\sigma \alpha} \sigma \tau\right)_{\varepsilon}^{\sigma t}$. Unrolling its definition with $(\star),(\star \star)$ and $c<m$, we get
a) $c-c^{\prime} \leq \sigma t$
b) $(m-c$, nil, nil $) \in\left(\operatorname{list}[\sigma n]^{\sigma \alpha} \sigma \tau\right)_{v}$

By b), $\sigma n=0$.
Then, we can instantiate IH 1 on the second premise using $\models \sigma \Phi \wedge \sigma n \doteq 0$, to obtain $\left(m, \delta e_{1}, \delta^{\prime} e_{1}^{\prime}\right) \in\left(\sigma \tau^{\prime}\right)_{\varepsilon}^{\sigma t^{\prime}}$.
Unrolling its definition using (\diamond) and $(\diamond \diamond)$ and $c_{r}<m$, we get
c) $c_{r}-c_{r}^{\prime} \leq \sigma t^{\prime}$
d) $\left(m-c_{r}, v_{r}, v_{r}^{\prime}\right) \in\left(\sigma \tau^{\prime}\right)_{v}$

We conclude with

1. By a) and c), we get $\left(c+c_{r}+c_{\text {caseL }}\right)-\left(c^{\prime}+c_{r}^{\prime}+c_{\text {caseL }}\right) \leq \sigma t+\sigma t^{\prime}$
2. By downward closure (Lemma 4) on d) using

$$
m-\left(c+c_{r}+c_{\text {caseL }}\right) \leq m-c_{r}
$$

we get $\left(m-\left(c+c_{r}+c_{\text {caseL }}\right), v_{r}, v_{r}^{\prime}\right) \in\left(\sigma \tau^{\prime}\right)_{v}$.
subcase 2: $\frac{\delta e \Downarrow^{c} \text { nil } \quad(\star) \quad \delta e_{1} \Downarrow^{c_{r}} v_{r}(\diamond)}{\text { case } \delta e \text { of nil } \rightarrow \delta e_{1} \mid h:: t l \rightarrow \delta e_{2} \Downarrow^{c+c_{r}+c_{\text {caseL }}} v_{r}}$ caseL-nil and
$\frac{\delta^{\prime} e^{\prime} \Downarrow \Downarrow^{c^{\prime}} \operatorname{cons}\left(v_{1}^{\prime}, v_{2}^{\prime}\right) \quad(* *) \quad \delta^{\prime} e_{2}^{\prime}\left[v_{1}^{\prime} / h, v_{2}^{\prime} / t l\right] \Downarrow^{c_{r}^{\prime}} v_{r}^{\prime}(\diamond>)}{\text { case } \delta^{\prime} e^{\prime} \text { of nil } \rightarrow \delta^{\prime} e_{1}^{\prime} \mid h:: t l \rightarrow \delta^{\prime} e_{2}^{\prime} \Downarrow^{c^{\prime}+c_{r}^{\prime}+c_{\text {caseL }}} v_{r}^{\prime}}$ caseL-cons and $C=c+c_{r}+c_{\text {caseL }}<m$

By IH 1 on the first premise, we get $\left(m, \delta e, \delta^{\prime} e^{\prime}\right) \in\left(\operatorname{list}[\sigma n]^{\sigma \alpha} \sigma \tau\right)_{\varepsilon}^{\sigma t}$. Unrolling its definition with $(*),(* *)$ and $c<m$, we get
a) $c-c^{\prime} \leq \sigma t$
b) $\left(m-c, \operatorname{nil}, \operatorname{cons}\left(v_{1}^{\prime}, v_{2}^{\prime}\right)\right) \in\left(\operatorname{list}[\sigma n]^{\sigma \alpha} \sigma \tau\right)_{v}$

However, b) is false since two lists of different length are not related, therefore this case is vacuously true.
subcase 3: $\frac{\delta e \Downarrow^{c} \operatorname{cons}\left(v_{1}, v_{2}\right)(\star) \quad \delta e_{2}\left[v_{1} / h, v_{2} / t l\right] \Downarrow^{c_{r}} v_{r}(\diamond)}{\text { case } \delta e \text { of nil } \rightarrow \delta e_{1} \mid h:: t l \rightarrow \delta e_{2} \Downarrow^{c+c_{r}+c_{\text {caseL }}} v_{r}}$ caseL-cons and
$\frac{\delta^{\prime} e^{\prime} \Downarrow \Downarrow^{c^{\prime}} \operatorname{cons}\left(v_{1}^{\prime}, v_{2}^{\prime}\right) \quad(\star \star) \quad \delta^{\prime} e_{2}^{\prime}\left[v_{1}^{\prime} / h, v_{2}^{\prime} / t l\right] \Downarrow^{c_{r}^{\prime}} v_{r}^{\prime}(\diamond>)}{\text { case } \delta^{\prime} e^{\prime} \text { of nil } \rightarrow \delta^{\prime} e_{1}^{\prime} \mid h:: t l \rightarrow \delta^{\prime} e_{2}^{\prime} \Downarrow \Downarrow^{c^{\prime}+c_{r}^{\prime}+c_{\text {caseL }}} v_{r}^{\prime}}$ caseL-cons
By IH 1 on the first premise, we get $(m, \delta e) \in\left(\operatorname{list}[\sigma n]^{\sigma \alpha} \sigma \tau\right)_{\varepsilon}^{\sigma t}$. Unrolling its definition with (\star) and $(\star \star)$ and $c<m$, we get
a) $c-c^{\prime} \leq \sigma t$
b) $\left(m-c, \operatorname{cons}\left(v_{1}, v_{2}\right), \operatorname{cons}\left(v_{1}^{\prime}, v_{2}^{\prime}\right)\right) \in\left(\operatorname{list}[\sigma n]^{\sigma \alpha} \sigma \tau\right) v$

For b), there are two cases:
subsubcase 1: $\sigma n=I+1$ such that we have

$$
\begin{equation*}
\left(m-c, v_{1}, v_{1}^{\prime}\right) \in(\square \sigma \tau) v \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\left(m-c, v_{2}, v_{2}^{\prime}\right) \in\left(\operatorname{list}[I]^{\sigma \alpha} \sigma \tau\right)_{v} \tag{4}
\end{equation*}
$$

In addition, by downward closure (Lemma 4) on $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\Gamma)$, we have

$$
\begin{equation*}
\left(m-c, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma) \tag{5}
\end{equation*}
$$

Then, we can instantiate IH 1 on the third premise using

- $\sigma[i \mapsto I] \in \mathcal{D} \llbracket i:: \mathbb{N}, \Delta \rrbracket$
- $\models \sigma[i \mapsto I](\Phi \wedge n \doteq i+1)$ obtained by
- $\models \sigma \Phi$ by main assumption
$-\models \sigma n \doteq I+1$ by sub-assumption
- $\left(m-c, \delta\left[h \mapsto v_{1}, t l \mapsto v_{2}\right], \delta^{\prime}\left[h \mapsto v_{1}^{\prime}, t l \mapsto v_{2}^{\prime}\right]\right) \in \mathcal{G}(\sigma[i \mapsto I](\Gamma, x:$$\tau, t l:$
list $\left.[i]^{\alpha} \tau\right)$) using (3) and (4) and (5).
we get $\left(m-c, \delta e_{2}\left[v_{1} / h, v_{2} / t l\right], \delta^{\prime} e_{2}^{\prime}\left[v_{1}^{\prime} / h, v_{2}^{\prime} / t l\right]\right) \in\left(\sigma[i \mapsto I] \tau^{\prime}\right)_{\varepsilon}^{\sigma[i \mapsto I] t^{\prime}}$.
Since, $i \notin F V\left(t^{\prime}, \tau, \tau^{\prime}\right)$, we have $\left(m-c, \delta e_{2}\left[v_{1} / h, v_{2} / t l\right], \delta^{\prime} e_{2}^{\prime}\left[v_{1}^{\prime} / h, v_{2}^{\prime} / t l\right]\right) \in\left(\sigma \tau^{\prime}\right)_{\varepsilon}^{\sigma t^{\prime}}$.
Unrolling its definition using $(\diamond),(\diamond)$ and $c_{r}<m-c$, we get
c) $c_{r}-c_{r}^{\prime} \leq \sigma t^{\prime}$
d) $\left(m-\left(c+c_{r}\right), v_{r}, v_{r}^{\prime}\right) \in\left(\sigma \tau^{\prime}\right)_{v}$

We conclude with

1. By a) and c), we get $\left(c+c_{r}+c_{\text {caseL }}\right)-\left(c^{\prime}+c_{r}^{\prime}+c_{\text {caseL }}\right) \leq \sigma t+\sigma t^{\prime}+c_{\text {caseL }}$
2. By downward closure (Lemma 4) on f) using

$$
m-\left(c+c_{r}+c_{\text {caseL }}\right) \leq m-\left(c+c_{r}\right)
$$

we get $\left(m-\left(c+c_{r}+c_{\text {caseL }}\right), v_{r}, v_{r}^{\prime}\right) \in\left(\sigma \tau^{\prime}\right)_{v}$.
subsubcase 2: $\sigma n=I+1$ and $\sigma \alpha=J+1$ such that we have

$$
\begin{gather*}
\left(m-c, v_{1}, v_{1}^{\prime}\right) \in(\sigma \tau \tau)_{v} \tag{6}\\
\left(m-c, v_{2}, v_{2}^{\prime}\right) \in\left(\operatorname{list}[I]^{J} \sigma \tau\right)_{v} \tag{7}
\end{gather*}
$$

In addition, by downward closure (Lemma 4$)$ on $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\Gamma)$, we have

$$
\begin{equation*}
\left(m-c, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma) \tag{8}
\end{equation*}
$$

Then, we can instantiate IH 1 on the fourth premise using

- $\sigma[i \mapsto I, \beta \mapsto J] \in \mathcal{D} \llbracket i:: \mathbb{N}, \beta:: \mathbb{N}, \Delta \rrbracket$
- $\vDash \sigma[i \mapsto I, \beta \mapsto J](\Phi \wedge n \doteq i+1 \wedge \alpha \doteq \beta+1)$ obtained
$-\models \sigma \Phi$ by main assumption
$-\models \sigma n \doteq I+1$ by sub-assumption
$-\models \sigma \alpha \doteq J+1$ by sub-assumption
- $\left(m-c, \delta\left[h \mapsto v_{1}, t l \mapsto v_{2}\right], \delta^{\prime}\left[h \mapsto v_{1}^{\prime}, t l \mapsto v_{2}^{\prime}\right]\right) \in \mathcal{G}(\sigma[i \mapsto I, \beta \mapsto J](\Gamma, x: \tau, t l:$
list $\left.[i]^{\beta} \tau\right) D$ using (6) and (7) and (8)
we get $\left(m-c, \delta e_{2}\left[v_{1} / h, v_{2} / t l\right], \delta^{\prime} e_{2}^{\prime}\left[v_{1}^{\prime} / h, v_{2}^{\prime} / t l\right]\right) \in\left(\sigma[i \mapsto I, \beta \mapsto J] \tau^{\prime}\right)_{\varepsilon}^{\sigma[i \mapsto I, \beta \mapsto J] t^{\prime}}$.
Since, $i, \beta \notin F V\left(t^{\prime}, \tau, \tau^{\prime}\right)$, we have $\left(m-c, \delta e_{2}\left[v_{1} / h, v_{2} / t l\right], \delta^{\prime} e_{2}^{\prime}\left[v_{1}^{\prime} / h, v_{2}^{\prime} / t l\right]\right) \in\left(\mid \sigma \tau^{\prime}\right)_{\varepsilon}^{\sigma t^{\prime}}$.
Unrolling its definition using $(\diamond),(\diamond \diamond)$ and $c_{r}<m-c$, we get
e) $c_{r}-c_{r}^{\prime} \leq \sigma t^{\prime}$
f) $\left(m-\left(c+c_{r}\right), v_{r}, v_{r}^{\prime}\right) \in\left(\sigma \tau^{\prime}\right)_{v}$

We conclude with

1. By a) and e), we get $\left(c+c_{r}+c_{c a s e L}\right)-\left(c^{\prime}+c_{r}^{\prime}+c_{c a s e L}\right) \leq \sigma t+\sigma t^{\prime}+c_{c a s e L}$
2. By downward closure (Lemma 4) on d) using

$$
m-\left(c+c_{r}+c_{\text {caseL }}\right) \leq m-\left(c+c_{r}\right)
$$

we get $\left(m-\left(c+c_{r}+c_{c a s e L}\right), v_{r}, v_{r}^{\prime}\right) \in\left(\sigma \tau^{\prime}\right)_{v}$.
subcase 4: $\frac{\delta e \Downarrow^{c} \operatorname{cons}\left(v_{1}, v_{2}\right)(\star) \quad \delta e_{2}\left[v_{1} / h, v_{2} / t l\right] \Downarrow^{c_{r}} v_{r}(\diamond)}{\text { case } \delta e \text { of nil } \rightarrow \delta e_{1} \mid h:: t l \rightarrow \delta e_{2} \Downarrow^{c+c_{r}+c_{c a s e L}} v_{r}}$ caseL-cons and $\frac{\delta^{\prime} e^{\prime} \Downarrow^{c^{\prime}} \text { nil } \quad(\star \star) \quad \delta^{\prime} e_{1}^{\prime} \Downarrow^{c_{r}^{\prime}} v_{r}^{\prime} \quad(\diamond \diamond)}{\text { case } \delta^{\prime} e^{\prime} \text { of nil } \rightarrow \delta^{\prime} e_{1}^{\prime} \mid h:: t l \rightarrow \delta^{\prime} e_{2}^{\prime} \Downarrow^{c^{\prime}+c_{r}^{\prime}+c_{\text {caseL }}} v_{r}^{\prime}}$ caseL-nil and
$C=c+c_{r}+c_{\text {caseL }}<m$

By IH 1 on the first premise, we get $\left(m, \delta e, \delta^{\prime} e^{\prime}\right) \in\left(\operatorname{list}[\sigma n]^{\sigma \alpha} \sigma \tau\right)_{\varepsilon}^{\sigma t}$. Unrolling its definition with $(\star),(\star \star)$ and $c<m$, we get
a) $c-c^{\prime} \leq \sigma t$
b) $\left(m-c, \operatorname{cons}\left(v_{1}, v_{2}\right)\right.$, nil $) \in\left(\operatorname{list}[\sigma n]^{\sigma \alpha} \sigma \tau\right)_{v}$

However, b) is false since two lists of different length are not related, therefore this case is vacuously true.

$$
\Delta ; \Phi ; \Gamma \vdash e \ominus e^{\prime} \lesssim t: \operatorname{tree}[n]^{\alpha} \tau \quad \Delta ; \Phi \wedge n=0 \wedge ; \Gamma \vdash e_{1} \ominus e_{1}^{\prime} \lesssim t^{\prime}: \tau^{\prime}
$$

$$
i, j, \beta, \theta, \Delta ; \Phi \wedge n=i+j+1 \wedge \alpha=\beta+\theta ; x: \square \tau, l: \operatorname{tree}[i]^{\beta} \tau, r: \operatorname{tree}[j]^{\theta} \tau, \Gamma \vdash e_{2} \ominus e_{2}^{\prime} \lesssim t^{\prime}: \tau^{\prime}
$$

Case

$$
i, j, \beta, \theta, \Delta ; \Phi \wedge n=i+j+1 \wedge \alpha=\beta+\theta+1 ; x: \tau, l: \operatorname{tree}[i]^{\beta} \tau, r: \operatorname{tree}[j]^{\theta} \tau, \Gamma \vdash e_{2} \ominus e_{2}^{\prime} \lesssim t^{\prime}: \tau^{\prime}
$$

$\Delta ; \Phi ; \Gamma \vdash$ case e of leaf $\rightarrow e_{1} \mid \operatorname{node}(l, x, r) \rightarrow e_{2} \ominus$ case e^{\prime} of leaf $\rightarrow e_{1}^{\prime} \mid \operatorname{node}(l, x, r) \rightarrow \lesssim t+t^{\prime}: e_{2}^{\prime} \tau^{\prime}$ caseT

Assume that $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$ and $\vDash \sigma \Phi$.
TS: $\left(m\right.$, case δe of leaf $\rightarrow \delta e_{1} \mid \operatorname{node}(l, x, r) \rightarrow \delta e_{2}$, case $\delta^{\prime} e^{\prime}$ of leaf $\rightarrow \delta^{\prime} e_{1}^{\prime} \mid \operatorname{node}(l, x, r) \rightarrow$ $\left.\delta^{\prime} e_{2}^{\prime}\right) \in\left(\sigma \tau^{\prime}\right)_{\varepsilon}^{\sigma t+\sigma t^{\prime}}$.
Following the definition of $\left(\cdot D_{\varepsilon}^{\cdot}\right.$, assume that

$$
\begin{gather*}
\text { case } \delta e \text { of leaf } \rightarrow \delta e_{1} \mid \operatorname{node}(l, x, r) \rightarrow \delta e_{2} \Downarrow^{C} v_{r} \tag{1}\\
\text { case } \delta^{\prime} e^{\prime} \text { of leaf } \rightarrow \delta^{\prime} e_{1}^{\prime} \mid \operatorname{node}(l, x, r) \rightarrow \delta^{\prime} e_{2}^{\prime} \Downarrow^{C^{\prime}} v_{r}^{\prime} \tag{2}
\end{gather*}
$$

and $C<m$.
Depending on what δe and $\delta^{\prime} e^{\prime}$ evaluate to, there are four cases.
subcase 1: \qquad
case δe of leaf $\rightarrow \delta e_{1} \mid \operatorname{node}(l, x, r) \rightarrow \delta e_{2} \Downarrow^{c+c_{r}+c_{\text {caseT }}} v_{r}$
$\frac{\delta^{\prime} e^{\prime} \Downarrow c^{c^{\prime}} \text { leaf }(\star \star) \quad \delta^{\prime} e_{1}^{\prime} \Downarrow \Downarrow_{r}^{c_{r}^{\prime}} v_{r}^{\prime}(\diamond \diamond)}{\text { case } \delta^{\prime} e^{\prime} \text { of leaf } \rightarrow \delta^{\prime} e_{1}^{\prime} \mid \operatorname{node}(l, x, r) \rightarrow \delta^{\prime} e_{2}^{\prime} \Downarrow \downarrow^{c^{\prime}+c_{r}^{\prime}+c_{\text {caseT }}} v_{r}^{\prime}}$ caseT-leaf and
case $\delta^{\prime} e^{\prime}$ of leaf $\rightarrow \delta^{\prime} e_{1}^{\prime} \mid \operatorname{node}(l, x, r) \rightarrow \delta^{\prime} e_{2}^{\prime} \Downarrow \Downarrow^{c^{\prime}+c_{r}^{\prime}+c_{\text {caseT }}} v_{r}^{\prime}$
$C=c+c_{r}+c_{\text {case } T}<m$

By IH 1 on the first premise, we get $\left(m, \delta e, \delta^{\prime} e^{\prime}\right) \in\left(\operatorname{tree}[\sigma n]^{\sigma \alpha} \sigma \tau\right)_{\varepsilon}^{\sigma t}$. Unrolling its definition with $(\star),(\star \star)$ and $c<m$, we get
a) $c-c^{\prime} \leq \sigma t$
b) $(m-c$, leaf, leaf $) \in\left(\operatorname{tree}[\sigma n]^{\sigma \alpha} \sigma \tau\right)_{v}$

By b), $\sigma n=0$.
Then, we can instantiate IH 1 on the second premise using $\models \sigma \Phi \wedge \sigma n \doteq 0$, to obtain $\left(m, \delta e_{1}, \delta^{\prime} e_{1}^{\prime}\right) \in\left(\sigma \tau^{\prime}\right)_{\varepsilon}^{\sigma t^{\prime}}$.
Unrolling its definition using (\diamond) and $(\diamond>)$ and $c_{r}<m$, we get
c) $c_{r}-c_{r}^{\prime} \leq \sigma t^{\prime}$
d) $\left(m-c_{r}, v_{r}, v_{r}^{\prime}\right) \in\left(\mid \sigma \tau^{\prime}\right)_{v}$

We conclude with

1. By a) and c), we get $\left(c+c_{r}+c_{\text {caseT }}\right)-\left(c^{\prime}+c_{r}^{\prime}+c_{\text {caseT }}\right) \leq \sigma t+\sigma t^{\prime}$
2. By downward closure (Lemma 4) on d) using

$$
m-\left(c+c_{r}+c_{\text {caseT }}\right) \leq m-c_{r}
$$

we get $\left(m-\left(c+c_{r}+c_{\text {case }}\right), v_{r}, v_{r}^{\prime}\right) \in\left(\sigma \tau^{\prime}\right)_{v}$.
subcase 2: $\frac{\delta e \Downarrow^{c} \operatorname{leaf}(\star) \quad \delta e_{1} \Downarrow^{c_{r}} v_{r}(\diamond)}{\text { case } \delta e \text { of leaf } \rightarrow \delta e_{1} \mid \operatorname{node}(l, x, r) \rightarrow \delta e_{2} \Downarrow^{c+c_{r}+c_{\text {caseT }}} v_{r}}$ caseT-leaf and
$\delta^{\prime} e^{\prime} \Downarrow^{c^{\prime}} \operatorname{node}\left(v_{l}^{\prime}, v^{\prime}, v_{r}^{\prime}\right)(\star \star) \quad \delta^{\prime} e_{2}^{\prime}\left[v_{l}^{\prime} / l, v^{\prime} / x, v_{r}^{\prime} / r\right] \Downarrow^{c_{r}^{\prime}} v_{r}^{\prime}(\diamond>)$
caseT-node and
case $\delta^{\prime} e^{\prime}$ of nil $\rightarrow \delta^{\prime} e_{1}^{\prime} \mid \operatorname{node}(l, x, r) \rightarrow \delta^{\prime} e_{2}^{\prime} \Downarrow^{c^{\prime}+c_{r}^{\prime}+c_{\text {caseT }}} v_{r}^{\prime}$
$C=c+c_{r}+c_{\text {case } T}<m$

By IH 1 on the first premise, we get $\left(m, \delta e, \delta^{\prime} e^{\prime}\right) \in\left(\operatorname{tree}[\sigma n]^{\sigma \alpha} \sigma \tau\right)_{\varepsilon}^{\sigma t}$. Unrolling its definition with $(\star),(\star \star)$ and $c<m$, we get
a) $c-c^{\prime} \leq \sigma t$
b) $\left(m-c\right.$, leaf, $\left.\operatorname{node}\left(v_{1}^{\prime}, v_{2}^{\prime}\right)\right) \in\left(\operatorname{tree}[\sigma n]^{\sigma \alpha} \sigma \tau\right)_{v}$

However, b) is false since two trees of different length are not related, therefore this case is vacuously true.
subcase 3: $\frac{\delta e \Downarrow^{c} \operatorname{node}\left(v_{l}, v, v_{r}\right)(\star) \quad \delta e_{2}\left[v_{l} / l, v / x, v_{r} / r\right] \Downarrow^{c_{r}} v_{r}(\diamond)}{\text { case } \delta e \text { of nil } \rightarrow \delta e_{1} \mid \operatorname{node}(l, x, r) \rightarrow \delta e_{2} \Downarrow^{c+c_{r}+c_{\text {caseT }}} v_{r}}$ caseT-node and $\frac{\delta^{\prime} e^{\prime} \Downarrow^{c^{\prime}} \operatorname{node}\left(v_{l}^{\prime}, v^{\prime}, v_{r}^{\prime}\right)(\star \star) \quad \delta^{\prime} e_{2}^{\prime}\left[v_{l}^{\prime} / l, v^{\prime} / x, v_{r}^{\prime} / r\right] \Downarrow^{c_{r}^{\prime}} v_{r}^{\prime} \quad(\diamond \diamond)}{\text { case } \delta^{\prime} e^{\prime} \text { of nil } \rightarrow \delta^{\prime} e_{1}^{\prime} \mid \operatorname{node}(l, x, r) \rightarrow \delta^{\prime} e_{2}^{\prime} \Downarrow^{c^{\prime}+c_{r}^{\prime}+c_{\text {caseT }}} v_{r}^{\prime}}$ caseT-node and $C=c+c_{r}+c_{\text {case } T}<m$

By IH 1 on the first premise, we get $(m, \delta e) \in\left(\operatorname{tree}[\sigma n]^{\sigma \alpha} \sigma \tau\right)_{\varepsilon}^{\sigma t}$. Unrolling its definition with (\star) and $(\star \star)$ and $c<m$, we get
a) $c-c^{\prime} \leq \sigma t$
b) $\left(m-c, \operatorname{node}\left(v_{1}, v_{2}\right), \operatorname{node}\left(v_{1}^{\prime}, v_{2}^{\prime}\right)\right) \in\left(\operatorname{tree}[\sigma n]^{\sigma \alpha} \sigma \tau\right) v$

For b), there are two cases:
subsubcase 1: $\sigma n=I+J+1$ and $\sigma \alpha=M+N$ such that we have

$$
\begin{gather*}
\left(m-c, v, v^{\prime}\right) \in(\square \sigma \tau)_{v} \tag{3}\\
\left(m-c, v_{l}, v_{l}^{\prime}\right) \in\left(\operatorname{tree}[I]^{M} \sigma \tau\right)_{v} \tag{4}\\
\left(m-c, v_{r}, v_{r}^{\prime}\right) \in\left(\operatorname{tree}[J]^{N} \sigma \tau\right)_{v} \tag{5}
\end{gather*}
$$

In addition, by downward closure (Lemma 4) on $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\Gamma)$, we have

$$
\begin{equation*}
\left(m-c, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma) \tag{6}
\end{equation*}
$$

Then, we can instantiate IH 1 on the third premise using

- $\sigma[i \mapsto I, j \mapsto J, \beta \mapsto M, \theta \mapsto N\rceil \in \mathcal{D} \llbracket i:: \mathbb{N}, j:: \mathbb{N}, \beta:: \mathbb{N}, \theta:: \mathbb{N}, \Delta \rrbracket$
- $\models \sigma[i \mapsto I, j \mapsto J, \beta \mapsto M, \theta \mapsto N](\Phi \wedge n \doteq i+j+1 \wedge \alpha \doteq \beta+\theta)$ obtained by
$-\models \sigma \Phi$ by main assumption
$-\mid=\sigma n \doteq I+J+1$ by sub-assumption
$-\mid=\sigma \alpha \doteq M+N$ by sub-assumption
- $\left(m-c, \delta\left[x \mapsto v, l \mapsto v_{l}, r \mapsto v_{r}\right], \delta^{\prime}\left[x \mapsto v^{\prime}, l \mapsto v_{l}^{\prime}, r \mapsto v_{r}^{\prime}\right]\right) \in \mathcal{G}(\sigma[i \mapsto I, j \mapsto$ $J, \beta \mapsto M, \theta \mapsto N]\left(\Gamma, x: \square \tau, l: \operatorname{tree}[i]^{\beta} \tau, r: \operatorname{tree}[j]^{\theta} \tau\right) D$ using (3), (4), (5) and (6)
we get $\left(m-c, \delta e_{2}\left[v / x, v_{l} / l, v_{r} / r\right], \delta^{\prime} e_{2}^{\prime}\left[v^{\prime} / x, v_{l}^{\prime} / l, v_{r}^{\prime} / r\right]\right) \in(\sigma[i \mapsto I, j \mapsto J, \beta \mapsto$ $\left.M, \theta \mapsto N] \tau^{\prime}\right)_{\varepsilon}^{\sigma[i \mapsto I, j \mapsto J, \beta \mapsto M, \theta \mapsto N] t^{\prime}}$.

Since, $i, j, \beta, \theta \notin F V\left(t^{\prime}, \tau, \tau^{\prime}\right)$, we have
$\left(m-c, \delta e_{2}\left[v / x, v_{l} / l, v_{r} / r\right], \delta^{\prime} e_{2}^{\prime}\left[v^{\prime} / x, v_{l}^{\prime} / l, v_{r}^{\prime} / r\right]\right) \in\left(\sigma \sigma \tau^{\prime}\right)_{\varepsilon}^{\sigma t^{\prime}}$.
Unrolling its definition using $(\diamond),(\diamond>)$ and $c_{r}<m-c$, we get
c) $c_{r}-c_{r}^{\prime} \leq \sigma t^{\prime}$
d) $\left(m-\left(c+c_{r}\right), v_{r}, v_{r}^{\prime}\right) \in\left(\sigma \tau^{\prime}\right)_{v}$

We conclude with

1. By a) and c$)$, we get $\left(c+c_{r}+c_{\text {caseT }}\right)-\left(c^{\prime}+c_{r}^{\prime}+c_{\text {case } T}\right) \leq \sigma t+\sigma t^{\prime}+c_{c a s e T}$
2. By downward closure (Lemma 4) on d) using

$$
m-\left(c+c_{r}+c_{\text {caseT }}\right) \leq m-\left(c+c_{r}\right)
$$

$$
\text { we get }\left(m-\left(c+c_{r}+c_{\text {case }}\right), v_{r}, v_{r}^{\prime}\right) \in\left(\sigma \tau^{\prime}\right)_{v} \text {. }
$$

subsubcase 2: $\sigma n=I+J+1$ and $\sigma \alpha=M+N+1$ such that we have

$$
\begin{gather*}
\left(m-c, v, v^{\prime}\right) \in(\sigma \sigma \tau)_{v} \tag{7}\\
\left(m-c, v_{l}, v_{l}^{\prime}\right) \in\left(\operatorname{tree}[I]^{M} \sigma \tau\right)_{v} \tag{8}\\
\left(m-c, v_{r}, v_{r}^{\prime}\right) \in\left(\operatorname{tree}[J]^{N} \sigma \tau\right)_{v} \tag{9}
\end{gather*}
$$

In addition, by downward closure (Lemma 4) on $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\Gamma)$, we have

$$
\begin{equation*}
\left(m-c, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma) \tag{10}
\end{equation*}
$$

Then, we can instantiate IH 1 on the fourth premise using

- $\sigma[i \mapsto I, j \mapsto J, \beta \mapsto M, \theta \mapsto N] \in \mathcal{D} \llbracket i:: \mathbb{N}, j:: \mathbb{N}, \beta:: \mathbb{N}, \theta:: \mathbb{N}, \Delta \rrbracket$
- $\models \sigma[i \mapsto I, j \mapsto J, \beta \mapsto M, \theta \mapsto N](\Phi \wedge n \doteq i+j+1 \wedge \alpha \doteq \beta+\theta+1)$ obtained by
- $\models \sigma \Phi$ by main assumption
$-\models \sigma n \doteq I+J+1$ by sub-assumption
$-\vDash \sigma \alpha \doteq M+N+1$ by sub-assumption
- $\left(m-c, \delta\left[x \mapsto v, l \mapsto v_{l}, r \mapsto v_{r}\right], \delta^{\prime}\left[x \mapsto v^{\prime}, l \mapsto v_{l}^{\prime}, r \mapsto v_{r}^{\prime}\right]\right) \in \mathcal{G}(\sigma[i \mapsto I, j \mapsto$ $J, \beta \mapsto M, \theta \mapsto N]\left(\Gamma, x: \tau, l: \operatorname{tree}[i]^{\beta} \tau, r: \operatorname{tree}[j]^{\theta} \tau\right) D$ using (7), (8), (9) and (10) we get $\left(m-c, \delta e_{2}\left[v / x, v_{l} / l, v_{r} / r\right], \delta^{\prime} e_{2}^{\prime}\left[v^{\prime} / x, v_{l}^{\prime} / l, v_{r}^{\prime} / r\right]\right) \in(\sigma[i \mapsto I, j \mapsto J, \beta \mapsto$ $\left.M, \theta \mapsto N] \tau^{\prime}\right)_{\varepsilon}^{\sigma[i \mapsto I, j \mapsto J, \beta \mapsto M, \theta \mapsto N] t^{\prime}}$.
Since, $i, j, \beta, \theta \notin F V\left(t^{\prime}, \tau, \tau^{\prime}\right)$, we have
$\left(m-c, \delta e_{2}\left[v / x, v_{l} / l, v_{r} / r\right], \delta^{\prime} e_{2}^{\prime}\left[v^{\prime} / x, v_{l}^{\prime} / l, v_{r}^{\prime} / r\right]\right) \in\left(\sigma \tau^{\prime}\right)_{\varepsilon}^{\sigma t^{\prime}}$.
Unrolling its definition using $(\diamond),(\diamond)$ and $c_{r}<m-c$, we get
e) $c_{r}-c_{r}^{\prime} \leq \sigma t^{\prime}$
f) $\left(m-\left(c+c_{r}\right), v_{r}, v_{r}^{\prime}\right) \in\left(\sigma \tau^{\prime}\right)_{v}$

We conclude with

1. By a) and e), we get $\left(c+c_{r}+c_{\text {caseT }}\right)-\left(c^{\prime}+c_{r}^{\prime}+c_{\text {caseT }}\right) \leq \sigma t+\sigma t^{\prime}+c_{\text {case } T}$
2. By downward closure (Lemma 4) on d) using

$$
m-\left(c+c_{r}+c_{\text {caseT }}\right) \leq m-\left(c+c_{r}\right)
$$

we get $\left(m-\left(c+c_{r}+c_{\text {caseT }}\right), v_{r}, v_{r}^{\prime}\right) \in\left(\sigma \tau^{\prime}\right)_{v}$.
subcase 4: $\frac{\delta e \Downarrow^{c} \operatorname{node}\left(v_{l}, v, v_{r}\right)(\star) \quad \delta e_{2}\left[v_{l} / l, v / x, v_{r} / r\right] \Downarrow^{c_{r}} v_{r}(\diamond)}{\text { case } \delta e \text { of nil } \rightarrow \delta e_{1} \mid \operatorname{node}(l, x, r) \rightarrow \delta e_{2} \Downarrow^{c+c_{r}+c_{\text {caseT }}} v_{r}}$ caseT-node and
$\frac{\left.\delta^{\prime} e^{\prime} \Downarrow \Downarrow^{c^{\prime}} \text { leaf (}(\star)\right) \quad \delta^{\prime} e_{1}^{\prime} \Downarrow \downarrow^{c_{r}^{\prime}} v_{r}^{\prime}(\diamond \diamond)}{\text { case } \delta^{\prime} e^{\prime} \text { of leaf } \rightarrow \delta^{\prime} e_{1}^{\prime} \mid \operatorname{node}(l, x, r) \rightarrow \delta^{\prime} e_{2}^{\prime} \Downarrow \Downarrow^{c^{\prime}+c_{r}^{\prime}+c_{\text {caseT }}} v_{r}^{\prime}}$ caseT-leaf
By IH 1 on the first premise, we get $\left(m, \delta e, \delta^{\prime} e^{\prime}\right) \in\left(\operatorname{tree}[\sigma n]^{\sigma \alpha} \sigma \tau\right)_{\varepsilon}^{\sigma t}$. Unrolling its definition with $(*),(* *)$ and $c<m$, we get
a) $c-c^{\prime} \leq \sigma t$
b) $\left(m-c, \operatorname{node}\left(v_{1}, v_{2}\right)\right.$, leaf $) \in\left(\operatorname{tree}[\sigma n]^{\sigma \alpha} \sigma \tau\right)_{v}$

However, b) is false since two trees of different length are not related, therefore this case is vacuously true.

Case $\xrightarrow[{\Delta ; \Phi \vdash \tau_{1} \xrightarrow{\operatorname{diff}(t)} \tau_{2} \mathrm{wf} \quad \Delta ; \Phi ; x: \tau_{1}, f: \tau_{1} \xrightarrow{\operatorname{diff}(t)} \tau_{2}, \Gamma \vdash e_{1} \ominus e_{2} \lesssim t: \tau_{2}}]{\Delta ; \Phi ; \Gamma \vdash \mathrm{fix} f(x) . e_{1} \ominus \mathbf{f i x} f(x) . e_{2} \lesssim 0: \tau_{1} \xrightarrow{\operatorname{diff}(t)} \tau_{2}}$ r-fix
Assume that $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$ and $=\sigma \Phi$.
TS: $\left(m\right.$, fix $f(x) . \delta e_{1}$, fix $\left.f(x) . \delta^{\prime} e_{2}\right) \in\left(\sigma \tau_{1} \xrightarrow{\operatorname{diff}(\sigma t)} \sigma \tau_{2}\right)_{\varepsilon}^{0}$.
By Lemma 2, STS: $\left(m\right.$, fix $f(x) \cdot \delta e_{1}$, fix $\left.f(x) \cdot \delta^{\prime} e_{2}\right) \in\left(\sigma \tau_{1} \xrightarrow{\text { diff }(\sigma t)} \sigma \tau_{2}\right)_{v}$.
Let $F=\operatorname{fix} f(x) . \delta e_{1}$ and $F^{\prime}=\operatorname{fix} f(x) \cdot \delta^{\prime} e_{2}$.
We prove the more general statement

$$
\forall m^{\prime} \leq m \cdot\left(m^{\prime}, F, F^{\prime}\right) \in\left(\sigma \tau_{1} \xrightarrow{\operatorname{diff}(\sigma t)} \sigma \tau_{2}\right)_{v}
$$

by subinduction on m^{\prime}.

There are two parts to show:
subcase 1: $m^{\prime}=0$
By the definition of function types, there are two parts to show:
subsubcase 1: $\forall j<m^{\prime}=0 \cdots$
Since there is no non-negative j such that $j<0$, the goal is vacuously true.
subsubcase 2: STS: $\forall j .(j, F) \in \llbracket\left|\sigma \tau_{1}\right|_{1} \xrightarrow{\operatorname{exec}(0, \infty)}\left|\sigma \tau_{2}\right|_{1} \rrbracket_{v} \wedge\left(j, F^{\prime}\right) \llbracket\left|\sigma \tau_{1}\right|_{2} \xrightarrow{\operatorname{exec}(0, \infty)}\left|\sigma \tau_{2}\right|_{2} \rrbracket_{v}$.
Pick j.

- STS $1:(j, F) \in \llbracket\left|\sigma \tau_{1}\right|_{1} \xrightarrow{\operatorname{exec}(0, \infty)}\left|\sigma \tau_{2}\right|_{1} \rrbracket_{v}$

We prove the more general statement

$$
\forall m^{\prime} \leq j .\left(m^{\prime}, F\right) \in \llbracket\left|\sigma \tau_{1}\right|_{1} \xrightarrow{\operatorname{exec}(0, \infty)}\left|\sigma \tau_{2}\right|_{1} \rrbracket_{v}
$$

by subinduction on m^{\prime}.
There are two cases:
$-m^{\prime}=0$
Since there is no non-negative j such that $j<0$, the goal is vacuously true.
$-m^{\prime}=m^{\prime \prime}+1 \leq m$
By sub-IH

$$
\begin{equation*}
\left(m^{\prime \prime}, \text { fix } f(x) \cdot \delta e_{1}\right) \in \llbracket\left|\sigma \tau_{1}\right|_{1} \xrightarrow{\operatorname{exec}(0, \infty)}\left|\sigma \tau_{2}\right|_{1} \rrbracket_{v} \tag{1}
\end{equation*}
$$

STS: $\left(m^{\prime \prime}+1\right.$, fix $\left.f(x) . \delta e_{1}\right) \in \llbracket\left|\sigma \tau_{1}\right|_{1} \xrightarrow{\operatorname{exec}(0, \infty)}\left|\sigma \tau_{2}\right|_{1} \rrbracket_{v}$.
Pick $j^{\prime \prime}<m^{\prime \prime}+1$ and assume that $\left(j^{\prime \prime}, v\right) \in \llbracket\left|\sigma \tau_{1}\right|_{1} \rrbracket v$.
STS: $\left(j^{\prime \prime}, \delta e_{1}[v / x, F / f]\right) \in \llbracket\left|\sigma \tau_{2}\right|_{1} \rrbracket_{\varepsilon}^{0, \infty}$.
This follows by IH 3 on the premise instantiated with $\left(j^{\prime \prime}, \delta[x \mapsto v, f \mapsto F]\right) \in$ $\mathcal{G} \llbracket x:\left|\sigma \tau_{1}\right|_{1}, f:\left|\sigma \tau_{1}\right|_{1} \xrightarrow{\operatorname{exec}(0, \infty)}\left|\sigma \tau_{2}\right|_{1},|\sigma \Gamma|_{1} \rrbracket$ which holds because

* $\mathrm{FV}\left(e_{1}\right) \subseteq \operatorname{dom}\left(x: \tau_{1}, f: \tau_{1} \xrightarrow{\operatorname{diff}(t)} \tau_{2}, \Gamma\right)$ using Lemma 8 on the second premise
* $\left(j^{\prime \prime}, \delta\right) \in \mathcal{G} \llbracket|\sigma \Gamma|_{1} \rrbracket$ using Lemma 3 on $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$
* $\left(j^{\prime \prime}, v\right) \in \llbracket\left|\sigma \tau_{1}\right|_{1} \rrbracket_{v}$, from the assumption above
* $\left(j^{\prime \prime}\right.$, fix $\left.f(x) \cdot \delta e_{1}\right) \in \llbracket\left|\sigma \tau_{1}\right|_{1} \xrightarrow{\operatorname{exec}(0, \infty)}\left|\sigma \tau_{2}\right|_{1} \rrbracket_{v}$, obtained by downward closure (Lemma 4) on (1) using $j^{\prime \prime} \leq m^{\prime \prime}$
- STS 2: $\left(j, F^{\prime}\right) \in \llbracket\left|\sigma \tau_{1}\right|_{2} \xrightarrow{\operatorname{exec}(0, \infty)}\left|\sigma \tau_{2}\right|_{2} \rrbracket_{v}$

We prove the more general statement

$$
\forall m^{\prime} \leq j .\left(m^{\prime}, F^{\prime}\right) \in \llbracket\left|\sigma \tau_{1}\right|_{2} \xrightarrow{\operatorname{exec}(0, \infty)}\left|\sigma \tau_{2}\right|_{2} \rrbracket_{v}
$$

by subinduction on m^{\prime}.
There are two cases:
$-m^{\prime}=0$
Since there is no non-negative j such that $j<0$, the goal is vacuously true.
$-m^{\prime}=m^{\prime \prime}+1 \leq j$
By sub-IH

$$
\begin{equation*}
\left(m^{\prime \prime}, F^{\prime}\right) \in \llbracket\left|\sigma \tau_{1}\right|_{2} \xrightarrow{\operatorname{exec}(0, \infty)}\left|\sigma \tau_{2}\right|_{2} \rrbracket_{v} \tag{2}
\end{equation*}
$$

STS: $\left(m^{\prime \prime}+1\right.$, fix $\left.f(x) \cdot \delta^{\prime} e_{2}\right) \in \llbracket\left|\sigma \tau_{1}\right|_{2} \xrightarrow{\operatorname{exec}(0, \infty)}\left|\sigma \tau_{2}\right|_{2} \rrbracket_{v}$.
Pick $j^{\prime \prime}<m^{\prime \prime}+1$ and assume that $\left(j^{\prime \prime}, v\right) \in \llbracket\left|\sigma \tau_{1}\right|_{2} \rrbracket_{v}$.
STS: $\left(j^{\prime \prime}, \delta^{\prime} e_{2}\left[v / x, F^{\prime} / f\right]\right) \in \llbracket\left|\sigma \tau_{2}\right|_{2} \rrbracket_{\varepsilon}^{0, \infty}$.
This follows by IH 3 on the premise instantiated with $\left(j^{\prime \prime}, \delta[x \mapsto v, f \mapsto\right.$
$\left(\right.$ fix $\left.\left.f(x) \cdot \delta^{\prime} e_{2}\right) \rrbracket\right) \in \mathcal{G} \llbracket x:\left|\sigma \tau_{1}\right|_{2}, f:\left|\sigma \tau_{1}\right|_{2} \xrightarrow{\operatorname{exec}(0, \infty)}\left|\sigma \tau_{2}\right|_{2},|\sigma \Gamma|_{2} \rrbracket$ which holds because

* $\mathrm{FV}\left(e_{2}\right) \subseteq \operatorname{dom}\left(x: \tau_{1}, f: \tau_{1} \xrightarrow{\operatorname{diff}(t)} \tau_{2}, \Gamma\right)$ using Lemma 8 on the second premise
* $\left(j^{\prime \prime}, v\right) \in \llbracket\left|\sigma \tau_{1}\right|_{2} \rrbracket_{v}$, from the assumption above
* $\left(j^{\prime \prime}, \delta\right) \in \mathcal{G} \llbracket|\sigma \Gamma|_{2} \rrbracket$ using Lemma 3 on $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$
$*\left(j^{\prime \prime}, F^{\prime}\right) \in \llbracket\left|\sigma \tau_{1}\right|_{2} \xrightarrow{\operatorname{exec}(0, \infty)}\left|\sigma \tau_{2}\right|_{2} \rrbracket_{v}$, obtained by downward closure (Lemma 4) on (2) using $j^{\prime \prime} \leq m^{\prime \prime}$
subcase 2: $m^{\prime}=m^{\prime \prime}+1 \leq m$
By sub-IH

$$
\begin{equation*}
\left(m^{\prime \prime}, F, F^{\prime}\right) \in\left(\sigma \tau_{1} \xrightarrow{\operatorname{diff}(\sigma t)} \sigma \tau_{2}\right)_{v} \tag{3}
\end{equation*}
$$

TS: $\left(m^{\prime \prime}+1\right.$, fix $f(x) \cdot \delta e_{1}$, fix $\left.f(x) \cdot \delta^{\prime} e_{2}\right) \in\left(\sigma \tau_{1} \xrightarrow{\operatorname{diff}(\sigma t)} \sigma \tau_{2}\right)_{v}$
Pick $j<m^{\prime \prime}+1$ and assume that $\left(j, v_{1}, v_{2}\right) \in\left(\sigma \tau_{1}\right)_{v}$.
STS: $\left(j, \delta e_{1}\left[v_{1} / x, F / f\right], \delta^{\prime} e_{2}\left[v_{2} / x, F^{\prime} / f\right]\right) \in\left(\sigma \tau_{2}\right)_{\varepsilon}^{\sigma t}$.
This follows by IH on the premise instantiated with
$\left(j, \delta\left[x \mapsto v_{1}, f \mapsto F\right], \delta^{\prime}\left[x \mapsto v_{2}, f \mapsto F^{\prime}\right]\right) \in \mathcal{G}\left(\sigma \Gamma, x: \sigma \tau_{1}, f: \sigma \tau_{1} \xrightarrow{\operatorname{diff}(\sigma t)} \sigma \tau_{2}\right)$ which holds because

- $\left(j, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$ obtained by downward closure (Lemma 4) using $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$ and $j<m^{\prime} \leq m$.
- $\left(j, v_{1}, v_{2}\right) \in\left(\sigma \tau_{1}\right)_{v}$, from the assumption above
- $\left(j, F, F^{\prime}\right) \in\left(\sigma \tau_{1} \xrightarrow{\operatorname{diff}(\sigma t)} \sigma \tau_{2}\right)_{v}$, obtained by downward closure (Lemma 4) on (3) using $j \leq m^{\prime \prime}$

This completes the proof of this case.
$\Delta ; \Phi \vdash \tau_{1} \xrightarrow{\operatorname{diff}(t)} \tau_{2}$ wf $\quad \Delta ; \Phi ; x: \tau_{1}, f: \square\left(\tau_{1} \xrightarrow{\operatorname{diff}(t)} \tau_{2}\right), \Gamma \vdash e \ominus e \lesssim t: \tau_{2}$
Case $\frac{\forall x \in \operatorname{dom}(\Gamma) . \Delta ; \Phi \models \Gamma(x) \sqsubseteq \square \Gamma(x)}{\Delta ; \Phi ; \Gamma \vdash \mathbf{f i x} f(x) . e \ominus \mathbf{f i x} f(x) . e \lesssim 0: \square\left(\tau_{1} \xrightarrow{\operatorname{diff}(t)} \tau_{2}\right)}$ r-fixNC
Assume that $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$ and $\models \sigma \Phi$.
TS: $\left(m\right.$, fix $f(x) . \delta e$, fix $\left.f(x) \cdot \delta^{\prime} e\right) \in\left(\square\left(\sigma \tau_{1} \xrightarrow{\operatorname{diff}(\sigma t)} \sigma \tau_{2}\right) D_{\varepsilon}^{0}\right.$.
By Lemma 2, STS: $\left(m\right.$, fix $f(x) . \delta e$, fix $\left.f(x) \cdot \delta^{\prime} e\right) \in\left(\square\left(\sigma \tau_{1} \xrightarrow{\operatorname{diff}(\sigma t)} \sigma \tau_{2}\right)\right)_{v}$.
By Lemma 5 using $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$ and the third premise, we get $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\square \sigma \Gamma)$, i.e. $\delta=\delta^{\prime}$.

Therefore, STS: $(m$, fix $f(x) . \delta e$, fix $f(x) . \delta e) \in\left(\sigma \tau_{1} \xrightarrow{\operatorname{diff}(\sigma t)} \sigma \tau_{2}\right)_{v}$.
Let $F=$ fix $f(x) . \delta e$.
We prove the more general statement

$$
\forall m^{\prime} \leq m .\left(m^{\prime}, F, F\right) \in\left(\sigma \tau_{1} \xrightarrow{\operatorname{diff}(\sigma t)} \sigma \tau_{2}\right)_{v}
$$

by subinduction on m^{\prime}.
There are two parts to show:
subcase 1: $m^{\prime}=0$
By the definition of function types, there are two parts to show:
subsubcase 1: $\forall j<m^{\prime}=0 \cdots$
Since there is no non-negative j such that $j<0$, the goal is vacuously true.
subsubcase 2: STS: $\forall j .(j, F) \in \llbracket\left|\sigma \tau_{1}\right|_{1} \xrightarrow{\operatorname{exec}(0, \infty)}\left|\sigma \tau_{2}\right|_{1} \rrbracket_{v}$.
Pick j. STS: $(j, F) \in \llbracket\left|\sigma \tau_{1}\right|_{1} \xrightarrow{\operatorname{exec}(0, \infty)}\left|\sigma \tau_{2}\right|_{1} \rrbracket_{v}$
We prove the more general statement

$$
\forall m^{\prime} \leq j .\left(m^{\prime}, F\right) \in \llbracket\left|\sigma \tau_{1}\right|_{1} \xrightarrow{\operatorname{exec}(0, \infty)}\left|\sigma \tau_{2}\right|_{1} \rrbracket_{v}
$$

by subinduction on m^{\prime}.
There are two cases:

- $m^{\prime}=0$

Since there is no non-negative j such that $j<0$, the goal is vacuously true.

- $m^{\prime}=m^{\prime \prime}+1 \leq j$

By sub-IH

$$
\begin{equation*}
\left(m^{\prime \prime}, \operatorname{fix} f(x) \cdot \delta e_{1}\right) \in \llbracket\left|\sigma \tau_{1}\right|_{1} \xrightarrow{\operatorname{exec}(0, \infty)}\left|\sigma \tau_{2}\right|_{1} \rrbracket v \tag{1}
\end{equation*}
$$

STS: $\left(m^{\prime \prime}+1\right.$, fix $\left.f(x) \cdot \delta e_{1}\right) \in \llbracket\left|\sigma \tau_{1}\right|_{1} \xrightarrow{\operatorname{exec}(0, t)}\left|\sigma \tau_{2}\right|_{1} \rrbracket_{v}$.
Pick $j^{\prime \prime}<m^{\prime \prime}+1$ and assume that $\left(j^{\prime \prime}, v\right) \in \llbracket\left|\sigma \tau_{1}\right|_{1} \rrbracket_{v}$.
STS: $\left(j^{\prime \prime}, \delta e_{1}[v / x, F / f]\right) \in \llbracket\left|\sigma \tau_{2}\right|_{1} \rrbracket_{\varepsilon}^{0, \infty}$.
This follows by IH 3 on the premise instantiated with
$-\mathrm{FV}(e) \subseteq \operatorname{dom}\left(x: \tau_{1}, f: \tau_{1} \xrightarrow{\operatorname{diff}(t)} \tau_{2}, \Gamma\right)$ using Lemma 8 on the second premise
$-\left(j^{\prime \prime}, \delta[x \mapsto v, f \mapsto F]\right) \in \mathcal{G} \llbracket x:\left|\sigma \tau_{1}\right|_{1}, f:\left|\sigma \tau_{1}\right|_{1} \xrightarrow{\operatorname{exec}(0, \infty)}\left|\sigma \tau_{2}\right|_{1},|\sigma \Gamma|_{1} \rrbracket$ which holds because

* $\left(j^{\prime \prime}, \delta\right) \in \mathcal{G} \llbracket|\sigma \Gamma|_{1} \rrbracket$ using Lemma 3 on $(m, \delta, \delta) \in \mathcal{G}(\sigma \Gamma)$
* $\left(j^{\prime \prime}, v\right) \in \llbracket\left|\sigma \tau_{1}\right|_{1} \rrbracket_{v}$, from the assumption above
* $\left(j^{\prime \prime}\right.$, fix $\left.f(x) \cdot \delta e_{1}\right) \in \llbracket\left|\sigma \tau_{1}\right|_{1} \xrightarrow{\operatorname{exec}(0, \infty)}\left|\sigma \tau_{2}\right|_{1} \rrbracket_{v}$, obtained by downward closure (Lemma 4) on (1) using $j^{\prime \prime} \leq m^{\prime \prime}$
subcase 2: $m^{\prime}=m^{\prime \prime}+1 \leq m$
By sub-IH

$$
\begin{equation*}
\left(m^{\prime \prime}, F, F\right) \in\left(\sigma \tau_{1} \xrightarrow{\operatorname{diff}(\sigma t)} \sigma \tau_{2}\right)_{v} \tag{2}
\end{equation*}
$$

TS: $\left(m^{\prime \prime}+1\right.$, fix $f(x) \cdot \delta e_{1}$, fix $\left.f(x) \cdot \delta e_{2}\right) \in\left(\sigma \tau_{1} \xrightarrow{\text { diff }(\sigma t)} \sigma \tau_{2}\right) v$
Pick $j<m^{\prime \prime}+1$ and assume that $\left(j, v_{1}, v_{2}\right) \in\left(\sigma \tau_{1}\right)_{v}$.
STS: $\left(j, \delta e_{1}\left[v_{1} / x, F / f\right], \delta e_{2}\left[v_{2} / x, F / f\right]\right) \in\left(\sigma \tau_{2}\right)_{\varepsilon}^{\sigma t}$.
This follows by IH on the premise instantiated with
$\left(j, \delta\left[x \mapsto v_{1}, f \mapsto F\right], \delta\left[x \mapsto v_{2}, f \mapsto F\right]\right) \in \mathcal{G}\left(\sigma \sigma \Gamma, x: \sigma \tau_{1}, f: \square\left(\sigma \tau_{1} \xrightarrow{\operatorname{diff}(\sigma t)} \sigma \tau_{2}\right)\right)$ which holds because

- $(j, \delta, \delta) \in \mathcal{G}(\sigma \Gamma)$ obtained by downward closure (Lemma 4) using $(m, \delta, \delta) \in \mathcal{G}(\sigma \Gamma)$ and $j<m^{\prime} \leq m$.
- $\left(j, v_{1}, v_{2}\right) \in\left(\sigma \tau_{1}\right)_{v}$, from the assumption above
- $(j, F, F) \in \| \square\left(\sigma \tau_{1} \xrightarrow{\text { diff }(\sigma t)} \sigma \tau_{2}\right) D_{v}$, obtained by downward closure (Lemma 4) on (2) using $j \leq m^{\prime \prime}$

This completes the proof of this case.

$$
\Delta ; \Phi ; \Gamma \vdash e_{1} \ominus e_{1}^{\prime} \lesssim t_{1}: \tau_{1} \xrightarrow{\operatorname{diff}(t)} \tau_{2}
$$

Case $\frac{\Delta ; \Phi ; \Gamma \vdash e_{2} \ominus e_{2}^{\prime} \lesssim t_{2}: \tau_{1}}{\Delta ; \Phi ; \Gamma \vdash e_{1} e_{2} \ominus e_{1}^{\prime} e_{2}^{\prime}<t_{1}+t_{2}+t: \tau_{2}}$ r-app
$\Delta ; \Phi ; \Gamma \vdash e_{1} e_{2} \ominus e_{1}^{\prime} e_{2}^{\prime} \lesssim t_{1}+t_{2}+t: \tau_{2}$
Assume that $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$ and $\models \sigma \Phi$.
TS: $\left(m, \delta e_{1} \delta e_{2}, \delta^{\prime} e_{1}^{\prime} \delta^{\prime} e_{2}^{\prime}\right) \in\left(\sigma \tau_{2}\right)_{\varepsilon}^{\sigma t_{1}+\sigma t_{2}+\sigma t}$.
Following the definition of $(\cdot)_{\varepsilon}^{\dot{\varepsilon}}$, assume that
$\frac{\delta e_{1} \Downarrow^{c_{1}} \text { fix } f(x) . e(\star) \quad \delta e_{2} \Downarrow^{c_{2}} v_{2}(\diamond) \quad e\left[v_{2} / x,(\operatorname{fix} f(x) . e) / f\right] \Downarrow^{c_{r}} v_{r}(\dagger)}{\delta e_{1} \delta e_{2} \Downarrow^{c_{1}+c_{2}+c_{r}+c_{a p p}} v_{r}}$ app and
$\frac{\delta^{\prime} e_{1}^{\prime} \Downarrow \Downarrow^{c_{1}^{\prime}} \text { fix } f(x) . e^{\prime}(\star \star) \quad \delta^{\prime} e_{2}^{\prime} \Downarrow^{c_{2}^{\prime}} v_{2}^{\prime}(\diamond \diamond) \quad e^{\prime}\left[v_{2}^{\prime} / x,\left(\text { fix } f(x) . e^{\prime}\right) / f\right] \Downarrow^{c_{r}^{\prime}} v_{r}^{\prime} \quad(\dagger \dagger)}{\delta^{\prime} e_{1}^{\prime} \delta^{\prime} e_{2}^{\prime} \Downarrow{ }^{c_{1}^{\prime}+c_{2}^{\prime}+c_{r}^{\prime}+c_{a p p}} v_{r}^{\prime}}$ app
and
$\left(c_{1}+c_{2}+c_{r}+c_{a p p}\right)<m$.
By IH 1 on the first premise, we get $\left(m, \delta e_{1}, \delta^{\prime} e_{1}^{\prime}\right) \in\left(\sigma \tau_{1} \xrightarrow{\operatorname{diff}(\sigma t)} \sigma \tau_{2}\right)_{\varepsilon}^{\sigma t_{1}}$. Unrolling its definition with (\star) and $(\star \star)$, and $c_{1}<m$, we get
a) $c_{1}-c_{1}^{\prime} \leq \sigma t_{1}$
b) $\left(m-c_{1}\right.$, fix $f(x) . e$, fix $\left.f(x) \cdot e^{\prime}\right) \in\left(\sigma \tau_{1} \xrightarrow{\operatorname{diff}(\sigma t)} \sigma \tau_{2}\right)_{v}$

By IH 1 on the second premise, we get $\left(m, \delta e_{2}, \delta^{\prime} e_{2}^{\prime}\right) \in\left(\sigma \tau_{1}\right)_{\varepsilon}^{\sigma t_{2}}$. Unrolling its definition with (\diamond) and $(\diamond \diamond)$, and $c_{2}<m$, we get
c) $c_{2}-c_{2}^{\prime} \leq \sigma t_{2}$
d) $\left(m-c_{2}, v_{2}, v_{2}^{\prime}\right) \in\left(\sigma \tau_{1}\right)_{v}$

Next, we apply downward-closure (Lemma 4) to d) using

$$
m-\left(c_{1}+c_{2}+c_{a p p}\right) \leq m-c_{2}
$$

and we get

$$
\begin{equation*}
\left(m-\left(c_{1}+c_{2}+c_{a p p}\right), v_{2}, v_{2}^{\prime}\right) \in\left(\sigma \tau_{1}\right)_{v} \tag{1}
\end{equation*}
$$

We unroll b) using (1) since

$$
m-\left(c_{1}+c_{2}+c_{a p p}\right)<m-c_{1} \quad \text { note that } 0<c_{a p p}
$$

and get

$$
\begin{equation*}
\left(m-\left(c_{1}+c_{2}+c_{a p p}\right), e\left[v_{2} / x, \operatorname{fix} f(x) \cdot e / f\right], e^{\prime}\left[v_{2}^{\prime} / x, \text { fix } f(x) \cdot e^{\prime} / f\right]\right) \in\left(\sigma \sigma \tau_{2}\right)_{\varepsilon}^{\sigma t} \tag{2}
\end{equation*}
$$

Next, we unroll (2) using (\dagger) and ($\dagger \dagger$) and $c_{r}<m-\left(c_{1}+c_{2}+c_{\text {app }}\right)$
to obtain
e) $c_{r}-c_{r}^{\prime} \leq \sigma t$
f) $\left(m-\left(c_{1}+c_{2}+c_{r}+c_{a p p}\right), v_{r}, v_{r}^{\prime}\right) \in\left(\sigma \tau_{2}\right)_{v}$

Now, we can conclude as follows:

1. Using a), c) and e), we get $\left(c_{1}+c_{2}+c_{r}+c_{a p p}\right)-\left(c_{1}^{\prime}+c_{2}^{\prime}+c_{r}^{\prime}+c_{a p p}\right) \leq \sigma t_{1}+\sigma t_{2}+\sigma t$
2. By f)

Case $\frac{\Delta ; \Phi ; \Gamma \vdash e_{1} \ominus e_{1}^{\prime} \lesssim t_{1}: \tau_{1} \quad \Delta ; \Phi ; \Gamma \vdash e_{2} \ominus e_{2}^{\prime} \lesssim t_{2}: \tau_{2}}{\Delta ; \Phi ; \Gamma \vdash\left\langle e_{1}, e_{2}\right\rangle \ominus\left\langle e_{1}^{\prime}, e_{2}^{\prime}\right\rangle \lesssim t_{1}+t_{2}: \tau_{1} \times \tau_{2}}$ r-prod
Assume that $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$ and $\models \sigma \Phi$.
$\mathrm{TS}:\left(m,\left\langle\delta e_{1}, \delta e_{1}\right\rangle,\left\langle\delta e_{1}^{\prime}, \delta^{\prime} e_{2}^{\prime}\right\rangle\right) \in\left(\sigma \tau_{1} \times \sigma \tau_{2}\right)_{\varepsilon}^{\sigma t_{1}+\sigma t_{2}}$.
Following the definition of $\left(\cdot \|_{\dot{\varepsilon}}^{\cdot}\right.$, assume that
$\frac{\delta e_{1} \Downarrow^{c_{1}} v_{1}(\star) \quad \delta e_{2} \Downarrow^{c_{2}} v_{2}(\diamond)}{\left\langle\delta e_{1}, \delta e_{2}\right\rangle \Downarrow^{c_{1}+c_{2}}\left\langle v_{1}, v_{2}\right\rangle}$ prod and $\frac{\delta^{\prime} e_{1} \Downarrow_{1}^{c_{1}^{\prime}} v_{1}^{\prime}(\star \star) \quad \delta^{\prime} e_{2} \Downarrow^{c_{2}^{\prime}} v_{2}^{\prime}(\diamond \diamond)}{\left\langle\delta^{\prime} e_{1}, \delta^{\prime} e_{2}\right\rangle \Downarrow^{c_{1}^{\prime}+c_{2}^{\prime}}\left\langle v_{1}^{\prime}, v_{2}^{\prime}\right\rangle}$ prod and $c_{1}+c_{2}<m$.
By IH 1 on the first premise, we get $\left(m, \delta e, \delta^{\prime} e^{\prime}\right) \in\left(\sigma \tau_{1}\right)_{\varepsilon}^{\sigma t_{1}}$. Unrolling its definition with (\star) and $(* *)$ and $c_{1}<m$, we get
a) $c_{1}-c_{1}^{\prime} \leq \sigma t_{1}$
b) $\left(m-c_{1}, v_{1}, v_{1}^{\prime}\right) \in\left(\sigma \tau_{1}\right)_{v}$

By IH 1 on the first premise, we get $\left(m, \delta e, \delta^{\prime} e^{\prime}\right) \in\left(\sigma \tau_{2}\right)_{\varepsilon}^{\delta t_{2}}$. Unrolling its definition with (\star) and ($\star \star$) and $c_{2}<m$, we get
c) $c_{2}-c_{2}^{\prime} \leq \sigma t_{2}$
d) $\left(m-c_{2}, v_{2}, v_{2}^{\prime}\right) \in\left(\sigma \tau_{2}\right)_{v}$

We can conclude as follows:

1. By a) and c), we get $\left(c_{1}+c_{2}\right)-\left(c_{1}^{\prime}+c_{2}^{\prime}\right) \leq \sigma t_{1}+\sigma t_{2}$
2. By downward closure (Lemma 4) on b) using

$$
m-\left(c_{1}+c_{2}\right) \leq m-c_{1}
$$

we get

$$
\begin{equation*}
\left(m-\left(c_{1}+c_{2}\right), v_{1}, v_{2}\right) \in\left(\sigma \tau_{1}\right)_{v} \tag{1}
\end{equation*}
$$

By downward closure (Lemma 4) on d) using

$$
m-\left(c_{1}+c_{2}\right) \leq m-c_{2}
$$

we get

$$
\begin{equation*}
\left(m-\left(c_{1}+c_{2}\right), v_{1}^{\prime}, v_{2}^{\prime}\right) \in\left(\sigma \tau_{2}\right)_{v} \tag{2}
\end{equation*}
$$

By combining (1) and (2), we can show that $\left(m-\left(c_{1}+c_{2}\right),\left\langle v_{1}, v_{2}\right\rangle,\left\langle v_{1}^{\prime}, v_{2}^{\prime}\right\rangle\right) \in\left(\sigma \tau_{1} \times \sigma \tau_{2}\right) v$
Case $\frac{\Delta ; \Phi ; \Gamma \vdash e \ominus e^{\prime} \lesssim t: \tau_{1} \times \tau_{2}}{\Delta ; \Phi ; \Gamma \vdash \pi_{1}(e) \ominus \pi_{1}\left(e^{\prime}\right) \lesssim t: \tau_{1}}$ r-proj1
Assume that $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$ and $\models \sigma \Phi$.
TS: $\left(m, \pi_{1}(\delta e), \pi_{1}\left(\delta^{\prime} e^{\prime}\right)\right) \in\left(\sigma \tau_{1}\right)_{\varepsilon}^{\sigma t}$.
Following the definition of $(\cdot)_{\dot{\varepsilon}}^{\cdot}$, assume that
$\frac{\delta e \Downarrow^{c}\left\langle v_{1}, v_{2}\right\rangle(\star)}{\pi_{1}(\delta e) \Downarrow^{c+c_{\text {proj }}} v_{1}}$ proj1 and $\frac{\delta^{\prime} e \Downarrow^{c}\left\langle v_{1}^{\prime}, v_{2}^{\prime}\right\rangle(\star \star)}{\pi_{1}\left(\delta^{\prime} e\right) \Downarrow^{c^{\prime}+c_{\text {proj }}} v_{1}^{\prime}}$ proj1 and $c+c_{\text {proj }}<m$.
By IH 1 on the first premise, we get $\left(m, \delta e, \delta^{\prime} e^{\prime}\right) \in\left(\sigma \tau_{1}\right)_{\varepsilon}^{\sigma t}$. Unrolling its definition with (\star) and ($* *$) and $c<m$, we get
a) $c-c^{\prime} \leq \sigma t$
b) $\left(m-c,\left\langle v_{1}, v_{2}\right\rangle,\left\langle v_{1}^{\prime}, v_{2}^{\prime}\right\rangle\right) \in\left(\sigma \tau_{1} \times \sigma \tau_{2}\right)_{v}$

We can conclude as follows:

1. By a), $\left(c+c_{\text {proj }}\right)-\left(c^{\prime}+c_{\text {proj }}\right) \leq \sigma t$
2. By unrolling the definition of b$)$, we get $\left(m-c, v_{1}, v_{1}^{\prime}\right) \in\left(\sigma \tau_{1}\right)_{v}$.

By downward closure (Lemma 4) on this using

$$
m-\left(c+c_{\text {proj }}\right) \leq m-c
$$

we get $\left.\left(m-\left(c+c_{\text {proj }}\right)\right), v_{1}, v_{1}^{\prime}\right) \in\left(\sigma \tau_{1}\right)_{v}$.
Case $\xlongequal{\Delta ; \Phi ; \Gamma \vdash e \ominus e^{\prime} \lesssim t: \tau_{1} \quad \Delta ; \Phi \vdash \tau_{2} \mathrm{wf}} \mathrm{r}$-inl
$\Delta ; \Phi ; \Gamma \vdash \mathbf{i n l} e \ominus \mathbf{i n l} e^{\prime} \lesssim t: \tau_{1}+\tau_{2}$
Assume that $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$ and $\models \sigma \Phi$.
TS: $\left(m, \operatorname{inl}(\delta e), \operatorname{inl}\left(\delta^{\prime} e^{\prime}\right)\right) \in\left(\sigma \tau_{1}+\sigma \tau_{2}\right)_{\varepsilon}^{\sigma t}$.
Following the definition of $(\cdot)_{\dot{\varepsilon}}^{\cdot}$, assume that
$\frac{\delta e \Downarrow^{c} v \quad(\star)}{\operatorname{inl} \delta e \Downarrow^{c} \operatorname{inl} v} \operatorname{inl}$ and $\frac{\delta^{\prime} e^{\prime} \Downarrow^{c^{\prime}} v^{\prime}(\star \star)}{\operatorname{inl} \delta^{\prime} e^{\prime} \Downarrow^{c^{\prime}} \operatorname{inl} v^{\prime}}$ inl and $c<m$.
By IH 1 on the first premise, we get $\left(m, \delta e, \delta^{\prime} e^{\prime}\right) \in\left(\sigma \tau_{1}\right)_{\varepsilon}^{\sigma t}$. Unrolling its definition with (\star) and ($\star \star$) and $c<m$, we get
a) $c-c^{\prime} \leq \sigma t$
b) $\left(m-c, v, v^{\prime}\right) \in\left(\sigma \tau_{1}\right)_{v}$

We can conclude as follows:

1. By a), $c-c^{\prime} \leq \sigma t$
2. Using b), we can show that $\left(m-c, \operatorname{inl} v, \operatorname{inl} v^{\prime}\right) \in\left(\sigma \tau_{1}+\sigma \tau_{2}\right)_{v}$

$$
\Delta ; \Phi ; \Gamma \vdash e \ominus e^{\prime} \lesssim t: \tau_{1}+\tau_{2}
$$

Case $\frac{\Delta ; \Phi ; x: \tau_{1}, \Gamma \vdash e_{1} \ominus e_{1}^{\prime} \lesssim t^{\prime}: \tau \quad \Delta ; \Phi ; y: \tau_{2}, \Gamma \vdash e_{2} \ominus e_{2}^{\prime} \lesssim t^{\prime}: \tau}{\Delta ; \Phi ; \Gamma \vdash \operatorname{case}\left(e, x . e_{1}, y . e_{2}\right) \ominus \text { case }\left(e^{\prime}, x . e_{1}^{\prime}, y . e_{2}^{\prime}\right) \lesssim t+t^{\prime}: \tau}$ r-case
Assume that $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$ and $\models \sigma \Phi$.
TS: $\left(m\right.$, case $\left(\delta e, \delta e_{1}, \delta e_{2}\right)$, case $\left.\left(\delta^{\prime} e^{\prime}, \delta^{\prime} e_{1}^{\prime}, \delta^{\prime} e_{2}^{\prime}\right)\right) \in(\sigma \tau)_{\varepsilon}^{\sigma t+\sigma t^{\prime}}$.
Following the definition of $(\cdot)_{\varepsilon}$, assume that
case $\left(\delta e, \delta e_{1}, \delta e_{2}\right) \Downarrow^{C} v_{r}$ and case $\left(\delta^{\prime} e^{\prime}, \delta^{\prime} e_{1}^{\prime}, \delta^{\prime} e_{2}^{\prime}\right) \Downarrow^{C^{\prime}} v_{r}^{\prime}$ and $C<m$.
Depending on what δe and $\delta^{\prime} e^{\prime}$ evaluate to, there are two cases:
subcase 1: $\frac{\delta e \Downarrow^{c} \operatorname{inl} v(\star) \quad \delta e_{1}[v / x] \Downarrow^{c_{r}} v_{r}(\diamond)}{\operatorname{case}\left(\delta e, x . \delta e_{1}, y . \delta e_{2}\right) \Downarrow^{c+c_{r}+c_{c a s e}} v_{r}}$ case-inl and
$\frac{\delta^{\prime} e^{\prime} \Downarrow{c^{\prime}}^{\prime} \operatorname{inl} v^{\prime}(\star \star) \quad \delta^{\prime} e_{1}^{\prime}\left[v^{\prime} / x\right] \Downarrow \Downarrow_{r}^{c_{r}^{\prime}} v_{r}^{\prime}(\infty)}{\text { case }\left(\delta^{\prime} e, x . \delta^{\prime} e_{1}, y . \delta^{\prime} e_{2}\right) \Downarrow \Downarrow^{c^{\prime}+c_{r}^{\prime}+c_{\text {case }}} v_{r}^{\prime}}$ case-inl
Note that $C=c+c_{r}+c_{\text {case }}<m$.
By IH 1 on the first premise, we get $\left(m, \delta e, \delta^{\prime} e^{\prime}\right) \in\left(\sigma \tau_{1}+\sigma \tau_{2}\right)_{\varepsilon}^{\sigma t}$. Unrolling its definition with (\star) and ($\star \star$) and $c<m$, we get
a) $c-c^{\prime} \leq \sigma t$
b) $\left(m-c, \operatorname{inl} v, \operatorname{inl} v^{\prime}\right) \in\left(\sigma \tau_{1}+\sigma \tau_{2}\right) v$

By IH 1 on the second premise using $\left(m-c, \delta[x \mapsto v], \delta^{\prime}\left[x \mapsto v^{\prime}\right]\right) \in \mathcal{G}\left(\sigma \Gamma, x: \sigma \tau_{1}\right)$ obtained by

- $\left(m-c, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$ by downward-closure (Lemma 4) on $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$ using $m-c \leq m$
- $\left(m-c, v, v^{\prime}\right) \in\left(\sigma \tau_{1}\right)_{v}$ by unfolding b)
we get $\left(m-c, \delta e_{1}[v / x], \delta^{\prime} e_{1}^{\prime}\left[v^{\prime} / x\right]\right) \in(\sigma \tau)_{\varepsilon}^{\sigma t^{\prime}}$. Unrolling its definition with (\diamond) and $(\diamond \diamond)$, and $c_{r}<m-c$, we get
c) $c_{r}-c_{r}^{\prime} \leq \sigma t^{\prime}$
d) $\left(m-\left(c+c_{r}\right), v_{r}, v_{r}^{\prime}\right) \in(\sigma \tau)_{v}$

Now, we can conclude this subcase by

1. By a) and c) $\left(c+c_{r}+c_{\text {case }}\right)-\left(c^{\prime}+c_{r}^{\prime}+c_{\text {case }}\right) \leq \sigma t+\sigma t^{\prime}$
2. By downward closure (Lemma 4) on d) using

$$
m-\left(c+c_{r}+c_{\text {case }}\right) \leq m-\left(c+c_{r}, c^{\prime}+c_{r}^{\prime}\right)
$$

we obtain $\left(m-\left(c+c_{r}+c_{\text {case }}\right), v_{r}, v_{r}^{\prime}\right) \in(\sigma \tau)_{v}$.
subcase 2: $\frac{\delta e \Downarrow^{c} \operatorname{inr} v(\star) \quad \delta e_{2}[v / y] \Downarrow^{c_{r}} v_{r}(\diamond)}{\text { case }\left(\delta e, x . \delta e_{1}, y . \delta e_{2}\right) \Downarrow^{c+c_{r}+c_{\text {case }}} v_{r}}$ case-inr and $\frac{\delta^{\prime} e^{\prime} \Downarrow c^{c^{\prime}} \operatorname{inr} v^{\prime} \quad(\star \star) \quad \delta^{\prime} e_{2}^{\prime}\left[v^{\prime} / y\right] \Downarrow^{c_{r}^{\prime}} v_{r}^{\prime}(\diamond)}{\text { case }\left(\delta^{\prime} e, x . \delta^{\prime} e_{1}, y . \delta^{\prime} e_{2}\right) \Downarrow \Downarrow^{c^{\prime}+c_{r}^{\prime}+c_{\text {case }}} v_{r}^{\prime}}$ case-inr

This case is symmetric, hence we skip its proof.
Case $\frac{i:: S, \Delta ; \Phi ; \Gamma \vdash e \ominus e^{\prime} \lesssim t: \tau \quad i \notin \text { FIV }(\Phi ; \Gamma)}{\Delta ; \Phi ; \Gamma \vdash \Lambda e \ominus \Lambda e^{\prime} \lesssim 0: \forall i \stackrel{\operatorname{diff}(t)}{!:} \text { S. } \tau}$ r-iLam
Assume that $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$ and $\models \sigma \Phi$.
TS: $\left(m, \Lambda \delta e, \Lambda \delta^{\prime} e^{\prime}\right) \in(\forall i \stackrel{\operatorname{diff}(\sigma t)}{:!} S . \sigma \tau)_{\varepsilon}^{0}$.
By Lemma 2, STS: $\left(m, \Lambda \delta e, \Lambda \delta^{\prime} e^{\prime}\right) \in(\forall i \stackrel{\text { diff }(\sigma t)}{:} \text { S. } \sigma \tau)_{v}$.
By unrolling its definition, assume that $\vdash I:: S$.
There are two cases to show:
subcase 1: STS: $\left(m, \delta e, \delta^{\prime} e^{\prime}\right) \in(\sigma \sigma \tau\{I / i\})_{\varepsilon}^{\sigma t[I / i]}$.
This follows by IH 1 on the premise instantiated with the substitution $\sigma[i \mapsto I] \in \mathcal{D} \llbracket i::$ $S, \Delta \rrbracket$.
subcase 2: STS: $\forall j .(j, \delta e) \in \llbracket|\sigma \tau\{I / i\}|_{1} \rrbracket_{\varepsilon^{0, \infty}}^{0, \infty} \wedge\left(j, \delta^{\prime} e^{\prime}\right) \in \llbracket|\sigma \tau\{I / i\}|_{2} \rrbracket_{\varepsilon}^{0, \infty}$.
Pick j.
subsubcase 1: STS1: $(j, \delta e) \in \llbracket|\sigma \tau\{I / i\}|_{1} \prod_{\varepsilon}^{0, \infty}$
Follows by IH 3 on the premise using

- $\mathrm{FV}(e) \subseteq \operatorname{dom}(\Gamma)$ using Lemma 8 on the first premise
- $\sigma[i \mapsto I] \in \mathcal{D} \llbracket i:: S, \Delta \rrbracket$
- $(j, \delta) \in \mathcal{G} \llbracket|\sigma[i \mapsto I] \Gamma|_{1} \rrbracket \equiv \mathcal{G} \llbracket|\sigma \Gamma|_{1} \rrbracket$ by Lemma 3 on the main assumption (note that $i \notin \mathrm{FV}(\Gamma ; \Phi))$
subsubcase 2: STS2: $\left(j, \delta^{\prime} e^{\prime}\right) \in \llbracket|\sigma \tau\{I / i\}|_{2} \prod_{\varepsilon}^{0, \infty}$
Follows by IH 3 on the premise using
- $\mathrm{FV}\left(e^{\prime}\right) \subseteq \operatorname{dom}(\Gamma)$ using Lemma 8 on the first premise
- $\sigma[i \mapsto I] \in \mathcal{D} \llbracket i:: S, \Delta \rrbracket$
- $\left(j, \delta^{\prime}\right) \in \mathcal{G} \llbracket|\sigma[i \mapsto I] \Gamma|_{2} \rrbracket \equiv \mathcal{G} \llbracket|\sigma \Gamma|_{2} \rrbracket$ by Lemma 3 on the main assumption (note that $i \notin \mathrm{FV}(\Gamma ; \Phi))$

Case $\frac{\Delta ; \Phi ; \Gamma \vdash e \ominus e^{\prime} \lesssim t: \forall i \stackrel{\operatorname{diff}\left(t^{\prime}\right)}{:} \text {. } S . \tau \quad \Delta \vdash I: S}{\Delta ; \Phi ; \Gamma \vdash e[] \ominus e^{\prime}[] \lesssim t+t^{\prime}[I / i]: \tau\{I / i\}}$ r-iApp
Assume that $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$ and $\models \sigma \Phi$.
TS: $\left(m, \delta e[], \delta^{\prime} e^{\prime}[]\right) \in(\sigma \tau\{\sigma I / i\})_{\varepsilon}^{\sigma t+\sigma t^{\prime}[\sigma I / i]}$.
Following the definition of $(\cdot)_{\varepsilon}$, assume that
$\frac{\delta e \Downarrow^{c} \Lambda e_{b}(\star) \quad e_{b} \Downarrow^{c_{r}} v_{r}(\diamond)}{\delta e[] \Downarrow^{c+c_{r}} v_{r}} \mathbf{i A p p}$ and $\frac{\delta^{\prime} e^{\prime} \Downarrow^{c^{\prime}} \Lambda e_{b}^{\prime}(\star \star) \quad e_{b}^{\prime} \Downarrow^{c_{r}^{\prime}} v_{r}^{\prime}(\diamond \diamond)}{\delta^{\prime} e[] \Downarrow^{c^{\prime}+c_{r}^{\prime}} v_{r}^{\prime}} \mathbf{i A p p}$ and $\left(c+c_{r}\right)<m$.
By IH on the first premise, we get $\left(m, \delta e, \delta^{\prime} e^{\prime}\right) \in\left(\forall i \stackrel{\operatorname{diff}\left(\sigma t^{\prime}\right)}{:} \text { S. } \sigma \tau\right)_{\varepsilon}^{\sigma t}$.
By unrolling its definition with ($*$), ($* *$) and $c<m$, we get
a) $c-c^{\prime} \leq \sigma t$
b) $\left(m-c, \Lambda e_{b}, \Lambda e_{b}^{\prime}\right) \in\left(\forall i \stackrel{\operatorname{diff}\left(\sigma \sigma^{\prime}\right)}{:} \text { S. } \sigma \tau\right)_{v}$

By Lemma 6 on the second premise using $\sigma \in \mathcal{D} \llbracket \Delta \rrbracket$, we get

$$
\begin{equation*}
\vdash \sigma I:: S \tag{1}
\end{equation*}
$$

By unrolling the definition of b) with (1), we get

$$
\begin{equation*}
\left(m-c, e_{b}, e_{b}^{\prime}\right) \in(\sigma \tau\{\sigma I / i\}\rangle_{\varepsilon}^{\sigma t^{\prime}}[\sigma I / i] \tag{2}
\end{equation*}
$$

By unrolling the definition of (2) with (\diamond) and $(\diamond \diamond)$ and $c_{r}<m-c$, we get
c) $c_{r}-c_{r}^{\prime} \leq \sigma t^{\prime}[\sigma I / i]$
d) $\left(m-\left(c+c_{r}\right), v_{r}, v_{r}^{\prime}\right) \in\left(\sigma \sigma \tau\{\sigma I / i\} \emptyset_{v}\right.$

We conclude as follows

1. By a) and c), we get $\left(c+c_{r}\right)-\left(c^{\prime}+c_{r}^{\prime}\right) \leq \sigma t+\sigma t^{\prime}[\sigma I / i]$
2. By d)

Case $\frac{\Delta ; \Phi ; \Gamma \vdash e \ominus e^{\prime} \lesssim t: \tau\{I / i\} \quad \Delta \vdash I:: S}{\Delta ; \Phi ; \Gamma \vdash \text { pack } e \ominus \text { pack } e^{\prime} \lesssim t: \exists i:: S . \tau}$ r-pack
Assume that ($m, \delta, \delta^{\prime}$) $\in \mathcal{G}(\sigma \Gamma)$ and $\models \sigma \Phi$.
TS: $\left(m\right.$, pack δe, pack $\left.\delta^{\prime} e^{\prime}\right) \in(\exists i:: S . \sigma \tau)_{\varepsilon}^{\sigma t}$.
Following the definition of $\left(\cdot D_{\varepsilon}\right.$, assume that
$\frac{\delta e \Downarrow^{c} v(\star)}{\text { pack } \delta e \Downarrow^{c} \text { pack } v}$ pack and $\frac{\delta^{\prime} e^{\prime} \Downarrow^{c^{\prime}} v^{\prime}(\star \star)}{\text { pack } \delta^{\prime} e^{\prime} \Downarrow^{c^{\prime}} \text { pack } v^{\prime}}$ pack and $c<m$.
By IH on the first premise, we get $\left(m, \delta e, \delta^{\prime} e^{\prime}\right) \in(\sigma \sigma \tau\{\sigma I / i\})_{\varepsilon}^{\sigma t}$.
By unrolling its definition with (\star), ($* *$) and $c<m$, we get
a) $c-c^{\prime} \leq \sigma t$
b) $\left(m-c, v, v^{\prime}\right) \in(\sigma \tau\{\sigma I / i\})_{v}$

By Lemma 6 on the second premise, we get

$$
\begin{equation*}
\vdash \sigma I:: S \tag{1}
\end{equation*}
$$

We can conclude as follows

1. By a)
2. TS: $\left(m-c\right.$, pack e, pack $\left.v^{\prime}\right) \in(\exists i:: S . \sigma \tau)_{v}$

STS1: $\vdash \sigma I:: S$ follows directly by (1).
STS2: $\left(m-c, v, v^{\prime}\right) \in(\sigma \tau\{\sigma I / i\})_{v}$ follows by b)

$$
\Delta ; \Phi ; \Gamma \vdash e_{1} \ominus e_{1}^{\prime} \lesssim t_{1}: \exists i:: S . \tau_{1}
$$

$\Delta ; \Phi ; \Gamma \vdash$ unpack e_{1} as x in $e_{2} \ominus$ unpack e_{1}^{\prime} as x in $e_{2}^{\prime} \lesssim t_{1}+t_{2}: \tau_{2}$
Assume that $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$ and $\models \sigma \Phi$.
TS: (m, unpack δe_{1} as x in δe_{2}, unpack $\delta^{\prime} e_{1}^{\prime}$ as x in $\left.\delta^{\prime} e_{2}^{\prime}\right) \in\left(\sigma \tau_{2}\right)_{\varepsilon}^{\sigma t_{1}+\sigma t_{2}}$.
Following the definition of $(\cdot)_{\varepsilon}$, assume that
$\frac{\delta e_{1} \Downarrow^{c_{1}} \text { pack } v(\star) \quad \delta e_{2}[v / x] \Downarrow^{c_{2}} v_{r}(\diamond)}{\text { unpack } \delta e_{1} \text { as } x \text { in } \delta e_{2} \Downarrow^{c_{1}+c_{2}} v_{r}}$ unpack and
$\frac{\delta^{\prime} e_{1}^{\prime} \Downarrow c^{\prime} \text { pack } v^{\prime}(\star \star) \quad \delta^{\prime} e_{2}^{\prime}\left[v^{\prime} / x\right] \Downarrow^{c_{2}^{\prime}} v_{r}^{\prime} \quad(\diamond \diamond)}{\text { unpack } \delta^{\prime} e_{1}^{\prime} \text { as } x \text { in } \delta^{\prime} e_{2}^{\prime} \Downarrow c^{c_{1}^{\prime}+c_{2}^{\prime}} v_{r}^{\prime}}$ unpack and
$\left(c_{1}+c_{2}\right)<m$.
By IH 1 on the first premise, we get $\left(m, \delta e_{1}, \delta^{\prime} e_{1}^{\prime}\right) \in\left(\exists i:: S . \sigma \tau_{1}\right)_{\varepsilon}^{\sigma t_{1}}$.
By unrolling its definition with (\star), ($\star \star$) and $c_{1}<m$, we get
a) $c_{1}-c_{1}^{\prime} \leq \sigma t_{1}$
b) $\left(m-c_{1}\right.$, pack v, pack $\left.v^{\prime}\right) \in\left(\exists i:: S . \sigma \tau_{1}\right)_{v}$

By unrolling the definition of b), we get

$$
\begin{gather*}
\vdash I:: S \tag{1}\\
\left(m-c_{1}, v, v^{\prime}\right) \in\left(\sigma \tau_{1}\{I / i\}\right)_{v} \tag{2}
\end{gather*}
$$

By downward closure (Lemma 4) on $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\Gamma)$, we have

$$
\begin{equation*}
\left(m-c_{1}, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma) \tag{3}
\end{equation*}
$$

By IH 1 on the second premise using

- $\sigma[i \mapsto I] \in \mathcal{D} \llbracket i:: S, \Delta \rrbracket \operatorname{using}(1)$
- $\left(m-c_{1}, \delta[x \mapsto v], \delta^{\prime}\left[x \mapsto v^{\prime}\right]\right) \in \mathcal{G}\left(\sigma[i \mapsto I]\left(\Gamma, x: \tau_{1}\right)\right)$ using (2) and (3)
we get

$$
\begin{equation*}
\left(m-c_{1}, \delta e_{2}[v / x], \delta^{\prime} e_{2}^{\prime}\left[v^{\prime} / x\right]\right) \in\left(\sigma \tau_{2}\right)_{\varepsilon}^{\sigma t_{2}} \tag{4}
\end{equation*}
$$

By unrolling (4)'s definition using $(\diamond),(\diamond>)$ and $c_{2}<m-c_{1}$, we get
c) $c_{2}-c_{2}^{\prime} \leq \sigma t_{2}$
d) $\left(m-\left(c_{1}+c_{2}\right), v_{r}, v_{r}^{\prime}\right) \in\left(\sigma \tau_{2}\right)_{v}$

We can conclude as follows

1. By a) and c), we get $\left(c_{1}+c_{2}\right)-\left(c_{1}^{\prime}+c_{2}^{\prime}\right) \leq \sigma t_{1}+\sigma t_{2}$
2. Follows by d)

Case $\frac{\Delta ; \Phi ; \Gamma \vdash e_{1} \ominus e_{1}^{\prime} \lesssim t_{1}: \tau_{1} \quad \Delta ; \Phi ; x: \tau_{1}, \Gamma \vdash e_{2} \ominus e_{2}^{\prime} \lesssim t_{2}: \tau_{2}}{\Delta ; \Phi ; \Gamma \vdash \text { let } x=e_{1} \text { in } e_{2} \ominus \text { let } x=e_{1}^{\prime} \text { in } e_{2}^{\prime} \lesssim t_{1}+t_{2}: \tau_{2}}$ r-let1
Assume that $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$ and $\models \sigma \Phi$.
TS: $\left(m\right.$, let $x=\delta e_{1}$ in δe_{2}, let $x=\delta^{\prime} e_{1}^{\prime}$ in $\left.\delta^{\prime} e_{2}^{\prime}\right) \in\left(\sigma \tau_{2}\right)_{\varepsilon}^{\sigma t_{1}+\sigma t_{2}}$.
Following the definition of $\left(\cdot D_{\varepsilon}^{*}\right.$, assume that
$\frac{\delta e_{1} \Downarrow^{c_{1}} v_{1}(\diamond) \quad \delta e_{2}\left[v_{1} / x\right] \Downarrow^{c_{r}} v_{r}(\dagger)}{\operatorname{let} x=\delta e_{1} \text { in } \delta e_{2} \Downarrow^{c_{1}+c_{r}+c_{l e t}} v_{r}}$ let and
$\frac{\delta^{\prime} e_{1}^{\prime} \Downarrow \Downarrow_{1}^{c_{1}^{\prime}} v_{1}^{\prime}(\diamond \diamond) \quad \delta^{\prime} e_{2}^{\prime}\left[v_{1}^{\prime} / x\right] \Downarrow \Downarrow_{r}^{\prime} v_{r}^{\prime}(\dagger \dagger)}{\operatorname{let} x=\delta^{\prime} e_{1} \text { in } \delta^{\prime} e_{2} \Downarrow{ }^{c_{1}^{\prime}+c_{r}^{\prime}+c_{l e t}} v_{r}^{\prime}}$ let and $\left(c_{1}+c_{r}+c_{l e t}\right)<m$.
By IH 1 on the first premise, we get $\left(m, \delta e_{1}, \delta^{\prime} e_{1}^{\prime}\right) \in\left(\sigma \tau_{1}\right)_{\varepsilon}^{\sigma t_{1}}$. Unrolling its definition with (\diamond) and $(\diamond \diamond)$ and $c_{1}<m$, we get
a) $c_{1}-c_{1}^{\prime} \leq \sigma t_{1}$
b) $\left(m-c_{1}, v_{1}, v_{1}^{\prime}\right) \in\left(\sigma \tau_{1}\right)_{v}$

By IH 1 on the second premise using $\left(m-c_{1}, \delta\left[x \mapsto v_{1}\right], \delta^{\prime}\left[x \mapsto v_{1}^{\prime}\right]\right) \in \mathcal{G}\left(\sigma \Gamma, x: \sigma \tau_{1}\right)$ obtained by

- $\left(m-c_{1}, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$ by downward closure (Lemma 4) on ($m, \delta, \delta^{\prime}$) $\in \mathcal{G}(\sigma \Gamma)$ using $m-c_{1} \leq m$
- $\left(m-c_{1}, v, v^{\prime}\right) \in\left(\sigma \tau_{1}\right)_{v}$ by b)
we get $\left(m-c_{1}, \delta e_{2}\left[v_{1} / x\right], \delta^{\prime} e_{2}^{\prime}\left[v_{1}^{\prime} / x\right]\right) \in\left(\sigma \tau_{2}\right)_{\varepsilon}^{\sigma t_{2}}$. Unrolling its definition with (\dagger) and ($\dagger \dagger$), and $c_{r}<m-c_{1}$, we get
c) $c_{r}-c_{r}^{\prime} \leq \sigma t_{2}$
d) $\left(m-\left(c_{1}+c_{r}\right), v_{r}, v_{r}^{\prime}\right) \in\left(\sigma \tau_{2}\right)_{v}$

Now, we can conclude with

1. By a) and c) $\left(c_{1}+c_{r}+c_{l e t}\right)-\left(c_{1}^{\prime}+c_{r}^{\prime}+c_{l e t}\right) \leq \sigma t_{1}+\sigma t_{2}$
2. By downward closure (Lemma 4) on d) using

$$
m-\left(c_{1}+c_{r}+c_{l e t}\right) \leq m-\left(c_{1}+c_{r}\right)
$$

we obtain $\left(m-\left(c_{1}+c_{r}+c_{l e t}\right), v_{r}, v_{r}^{\prime}\right) \in\left(\sigma \tau_{2}\right)_{v}$.
Case $\frac{\Delta ; \Phi ;|\Gamma|_{1} \vdash_{k_{1}}^{t_{1}} e_{1}: A_{1} \quad \Delta ; \Phi ;|\Gamma|_{2} \vdash_{k_{2}}^{t_{2}} e_{2}: A_{2}}{\Delta ; \Phi ; \Gamma \vdash e_{1} \ominus e_{2} \lesssim t_{1}-k_{2}: U\left(A_{1}, A_{2}\right)}$ switch
Assume that $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$ and $\vDash \sigma \Phi$.
$\mathrm{TS}:\left(m, \delta e_{1}, \delta^{\prime} e_{2}\right) \in\left(U\left(\sigma A_{1}, \sigma A_{2}\right)\right)_{\varepsilon}^{\sigma t_{1}-\sigma k_{2}}$.
Assume that
a) $\delta e_{1} \Downarrow^{c_{1}} v_{1}$
b) $\delta^{\prime} e_{2} \Downarrow^{c_{2}} v_{2}$
c) $c_{1}<m$

TS 1: $c_{1}-c_{2} \leq \sigma t_{1}-\sigma k_{2}$
TS 2: $\left(m-c_{1}, v_{1}, v_{2}\right) \in\left(U\left(\sigma A_{1}, \sigma A_{2}\right)\right\rangle_{v}$
We first show the second statement, the first one will be shown later.
By unrolling $\left(U\left(\sigma A_{1}, \sigma A_{2}\right)\right)_{v}$'s definition,

STS: $\forall m .\left(m, v_{1}\right) \in \llbracket \sigma A_{1} \rrbracket_{v} \wedge\left(m, v_{2}\right) \in \llbracket \sigma A_{2} \rrbracket_{v}$.
Pick m.

By IH 2 on the first premise using

- $\mathrm{FV}\left(e_{1}\right) \subseteq \operatorname{dom}\left(|\sigma \Gamma|_{1}\right)$ using Lemma 8 on the first premise
- $=\sigma \Phi$
- $\forall j .(j, \delta) \in \mathcal{G} \llbracket|\sigma \Gamma|_{1} \rrbracket$ obtained by Lemma 3 on $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$
we get

$$
\begin{equation*}
\forall j .\left(j, \delta e_{1}\right) \in \llbracket \sigma A_{1} \rrbracket_{\varepsilon}^{\sigma k_{1}, \sigma t_{1}} \tag{1}
\end{equation*}
$$

By IH 2 on the second premise using

- $\mathrm{FV}\left(e_{2}\right) \subseteq \operatorname{dom}\left(|\sigma \Gamma|_{2}\right)$ using Lemma 8 on the second premise
- $=\sigma \Phi$
- $\forall j .\left(j, \delta^{\prime}\right) \in \mathcal{G} \llbracket|\sigma \Gamma|_{2} \rrbracket$ obtained by Lemma 3 on $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$
we get

$$
\begin{equation*}
\forall j .\left(j, \delta^{\prime} e_{2}\right) \in \llbracket \sigma A_{2} \rrbracket_{\varepsilon}^{\sigma k_{2}, \sigma t_{2}} \tag{2}
\end{equation*}
$$

We instantiate j with $m+\sigma t_{1}+1$ in (1) and we get

$$
\begin{equation*}
\left(m+\sigma t_{1}+1, \delta e_{1}\right) \in \llbracket \sigma A_{1} \rrbracket_{\varepsilon}^{\sigma k_{1}, \sigma t_{1}} \tag{3}
\end{equation*}
$$

We instantiate j with $m+c_{2}+1$ in (2) and we get

$$
\begin{equation*}
\left(m+c_{2}+1, \delta^{\prime} e_{2}\right) \in \llbracket \sigma A_{2} \rrbracket_{\varepsilon}^{\sigma k_{2}, \sigma t_{2}} \tag{4}
\end{equation*}
$$

Next, unrolling first part of (3) using $\sigma t_{1}<m+\sigma t_{1}+1$, we get
d) $\delta e_{1} \Downarrow^{c_{1}} v_{1}$
e) $c_{1} \leq \sigma t_{1}$
f) $\left(m+\sigma t_{1}-c_{1}+1, v_{1}\right) \in \llbracket \sigma A_{1} \rrbracket v$

Next, unrolling second part of (4) using b) and $c_{2}<m+c_{2}+1$, we get
g) $\sigma k_{2} \leq c_{2}$
h) $\left(m+1, v_{2}\right) \in \llbracket \sigma A_{2} \rrbracket v$

Now, we can conclude as follows:

1. By e) and g), we get $c_{1}-c_{2} \leq \sigma t_{1}-\sigma k_{2}$
2. By downward closure (Lemma 4) on f) using

$$
m \leq m+\sigma t_{1}-c_{1}+1 \quad\left(\text { note that by e) }, c_{1} \leq \sigma t_{1}\right)
$$

we get $\left(m, v_{1}\right) \in \llbracket \sigma A_{1} \rrbracket_{v}$.
By downward closure (Lemma 4) on h) using

$$
m \leq m+1
$$

we get $\left(m, v_{2}\right) \in \llbracket \sigma A_{2} \rrbracket_{v}$.

Case $\frac{\Delta ; \Phi \models C \quad \Delta ; \Phi \wedge C ; \Gamma \vdash e \ominus e^{\prime} \lesssim t: \tau}{\Delta ; \Phi ; \Gamma \vdash e \ominus e^{\prime} \lesssim t: C \& \tau} \quad$ c-andI
Assume that $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$ and $\models \sigma \Phi$.
$\mathrm{TS}:\left(m, \delta e, \delta^{\prime} e^{\prime}\right) \in(\sigma C \& \sigma \tau)_{\varepsilon}^{\sigma t}$.
Following the definition of $\left(\cdot \int_{\dot{\varepsilon}}^{\cdot}\right.$, assume that
a) $\delta e \Downarrow^{c} v$
b) $\delta^{\prime} e^{\prime} \Downarrow c^{\prime} v^{\prime}$
c) $c<m$.

By IH 1 on the first premise using

- $\models \sigma(C \wedge \Phi)$ hold by the main assumption $\models \sigma \Phi$ and $\models \sigma C(\star)$ obtained by Lemma 6 using the premise $\Delta ; \Phi \models C$
we get $\left(m, \delta e, \delta^{\prime} e^{\prime}\right) \in(\mid \sigma \tau)_{\varepsilon}^{\sigma t}$. Unrolling its definition with (a-c), we get
d) $c-c^{\prime} \leq \sigma t$
e) $\left(m-c, v, v^{\prime}\right) \in(\sigma \sigma \tau) v$

We can conclude as follows:

1. By d), $c-c^{\prime} \leq \sigma t$
2. Using e) and (\star), we can show that $\left(m-c, v, v^{\prime}\right) \in(\sigma C \& \sigma \tau)_{v}$

$$
\text { Case } \frac{\Delta ; \Phi ; \Gamma \vdash e_{1} \ominus e_{1}^{\prime} \lesssim t_{1}: C \& \tau_{1} \quad \Delta ; \Phi \wedge C ; x: \tau_{1}, \Gamma \vdash e_{2} \ominus e_{2}^{\prime} \lesssim t_{2}: \tau_{2}}{\Delta ; \Phi ; \Gamma \vdash \text { clet } e_{1} \text { as } x \text { in } e_{2} \ominus \text { clet } e_{1}^{\prime} \text { as } x \text { in } e_{2}^{\prime} \lesssim t_{1}+t_{2}: \tau_{2}} \text { r-c-andE }
$$

Assume that ($m, \delta, \delta^{\prime}$) $\in \mathcal{G}(\sigma \Gamma)$ and $=\sigma \Phi$.
$\mathrm{TS}:\left(m, \operatorname{clet} \delta e_{1}\right.$ as x in $\delta e_{2}, \operatorname{clet} \delta^{\prime} e_{1}^{\prime}$ as x in $\left.\delta^{\prime} e_{2}^{\prime}\right) \in\left(\sigma \tau_{2}\right)_{\varepsilon}^{\sigma t_{1}+\sigma t_{2}}$.
Following the definition of $(\cdot)_{\varepsilon}$, assume that
$\frac{\delta e_{1} \Downarrow^{c_{1}} v_{1}(\diamond) \quad \delta e_{2}\left[v_{1} / x\right] \Downarrow^{c_{r}} v_{r}(\dagger)}{\operatorname{clet} \delta e_{1} \text { as } x \text { in } \delta e_{2} \Downarrow^{c_{1}+c_{r}} v_{r}}$ clet and
$\frac{\delta^{\prime} e_{1}^{\prime} \Downarrow \psi_{1}^{c_{1}^{\prime}} v_{1}^{\prime}(\diamond) \quad \delta^{\prime} e_{2}^{\prime}\left[v_{1}^{\prime} / x\right] \Downarrow \Downarrow_{r}^{c_{r}^{\prime}} v_{r}^{\prime}(\dagger \dagger)}{\operatorname{clet} \delta^{\prime} e_{1} \text { as } x \text { in } \delta^{\prime} e_{2} \Downarrow \Downarrow^{c_{1}^{\prime}+c_{r}^{\prime}} v_{r}^{\prime}}$ clet and $\left(c_{1}+c_{r}\right)<m$.
By IH 1 on the first premise, we get $\left(m, \delta e_{1}, \delta^{\prime} e_{1}^{\prime}\right) \in\left(\sigma C \& \sigma \tau_{1}\right)_{\varepsilon}^{\sigma t_{1}}$. Unrolling its definition with (\diamond) and $(\diamond \diamond)$ and $c_{1}<m$, we get
a) $c_{1}-c_{1}^{\prime} \leq \sigma t_{1}$
b) $\left(m-c_{1}, v_{1}, v_{1}^{\prime}\right) \in\left(\sigma C \& \sigma \tau_{1}\right)_{v}$

By IH 1 on the second premise using $\left(m-c_{1}, \delta\left[x \mapsto v_{1}\right], \delta^{\prime}\left[x \mapsto v_{1}^{\prime}\right]\right) \in \mathcal{G}\left(\sigma \Gamma, x: \sigma \tau_{1}\right)$ obtained by

- $\models \sigma(C \wedge \Phi)$ hold by the main assumption $\models \sigma \Phi$ and $\models \sigma C$ obtained by unrolling the definition of b)
- $\left(m-c_{1}, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$ by downward closure (Lemma 4) on $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$ using $m-c_{1} \leq m$
- $\left(m-c_{1}, v_{1}, v_{1}^{\prime}\right) \in\left(\sigma \tau_{1}\right)_{v}$ by unrolling the definition of b$)$
we get $\left(m-c_{1}, \delta e_{2}\left[v_{1} / x\right], \delta^{\prime} e_{2}^{\prime}\left[v_{1}^{\prime} / x\right]\right) \in\left(\sigma \tau_{2}\right)_{\varepsilon}^{\sigma t_{2}}$. Unrolling its definition with (\dagger) and ($\dagger \dagger$), and $c_{r}<m-c_{1}$, we get
c) $c_{r}-c_{r}^{\prime} \leq \sigma t_{2}$
d) $\left(m-\left(c_{1}+c_{r}\right), v_{r}, v_{r}^{\prime}\right) \in\left(\sigma \tau_{2}\right)_{v}$

Now, we can conclude with

1. By a) and c) $\left(c_{1}+c_{r}\right)-\left(c_{1}^{\prime}+c_{r}^{\prime}\right) \leq \sigma t_{1}+\sigma t_{2}$
2. By downward closure (Lemma 4) on d) using

$$
m-\left(c_{1}+c_{r}\right) \leq m-\left(c_{1}+c_{r}\right)
$$

we obtain $\left(m-\left(c_{1}+c_{r}\right), v_{r}, v_{r}^{\prime}\right) \in\left(\sigma \tau_{2}\right)_{v}$.

Case $\frac{\Delta ; \Phi \wedge C ; \Gamma \vdash e \ominus e^{\prime} \lesssim t: \tau}{\Delta ; \Phi ; \Gamma \vdash e \ominus e^{\prime} \lesssim t: C \supset \tau} \quad$ r-c-impI
Assume that $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$ and $\models \sigma \Phi$.
TS: $\left(m, \delta e, \delta^{\prime} e^{\prime}\right) \in(\sigma C \& \sigma \tau)_{\varepsilon}^{\sigma t}$.
Following the definition of $(\cdot)_{\dot{\varepsilon}}^{\cdot}$, assume that
a) $\delta e \Downarrow^{c} v$
b) $\delta^{\prime} e^{\prime} \Downarrow \Downarrow^{\prime} v^{\prime}$
c) $c<m$.

We first show the second statement.
TS2: $\left(m-c, v, v^{\prime}\right) \in(\sigma C \supset \sigma \tau)_{v}$
Assume that $=\sigma C \quad(\star)$.
STS: $\left(m-c, v, v^{\prime}\right) \in(\sigma \tau)_{v}$
By IH 1 on the first premise using

- $\models \sigma(C \wedge \Phi)$ hold by the main assumption $\models \sigma \Phi$ and $\models \sigma C$ (by *)
we get ($m, \delta e, \delta^{\prime} e^{\prime}$) $\in(\sigma \tau)_{\varepsilon}^{\sigma t}$. Unrolling its definition with (a-c), we get
d) $c-c^{\prime} \leq \sigma t$
e) $\left(m-c, v, v^{\prime}\right) \in(\sigma \tau) v$

We can conclude as follows:

1. By d), $c-c^{\prime} \leq \sigma t$
2. Using e), we can show that $\left(m-c, v, v^{\prime}\right) \in(\sigma C \supset \sigma \tau) v$

Case $\frac{\Delta ; \Phi ; \Gamma \vdash e \ominus e^{\prime} \lesssim t: C \supset \tau \quad \Delta ; \Phi \models C}{\Delta ; \Phi ; \Gamma \vdash \operatorname{celim} e \ominus \operatorname{celim} e^{\prime} \lesssim t: \tau} \quad$ r-c-implE
Assume that $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$ and $\models \sigma \Phi$.
TS: $\left(m, \operatorname{celim} \delta e, \operatorname{celim} \delta^{\prime} e^{\prime}\right) \in(\sigma \tau)_{\varepsilon}^{\sigma t}$. Following the definition of $\left(\cdot D_{\varepsilon^{\prime}}^{\cdot}\right.$, assume that
$\frac{\delta e \Downarrow^{c} v(\diamond)}{\operatorname{celim} \delta e \Downarrow^{c} v} \operatorname{celim}$ and $\frac{\delta^{\prime} e \Downarrow^{c} v(\diamond \diamond)}{\operatorname{celim} \delta^{\prime} e \Downarrow^{c} v} \operatorname{celim}$ and $c<m(*)$.
By IH 1 on the first premise, we get $\left(m, \delta e, \delta^{\prime} e^{\prime}\right) \in(\sigma C \supset \sigma \tau)_{\varepsilon}^{\sigma t}$. Unrolling its definition using $(\diamond),(\diamond \diamond)$ and (\star), we get
a) $c-c^{\prime} \leq \sigma t$
b) $\left(m-c, v, v^{\prime}\right) \in(\sigma C \supset \sigma \tau)_{v}$

We can conclude as follows:

1. By a), $c-c^{\prime} \leq \sigma t$
2. Using b) and $\models \sigma C$ (obtained by Lemma 6 on the second premise), we can show that $\left(m-c, v, v^{\prime}\right) \in(\sigma \tau)_{v}$

Case $\frac{\Delta ; \Phi ; \Gamma \vdash e \ominus e^{\prime} \lesssim t: \tau_{1} \quad \Delta ; \Phi ; \Gamma \vdash e \ominus e^{\prime} \lesssim t: \tau_{2}}{\Delta ; \Phi ; \Gamma \vdash e \ominus e^{\prime} \lesssim t: \tau_{1} \wedge \tau_{2}}$ r-interI
Assume that ($m, \delta, \delta^{\prime}$) $\in \mathcal{G}(\sigma \Gamma)$ and $\models \sigma \Phi$.
STS: $\left(m, \delta e, \delta^{\prime} e^{\prime}\right) \in\left(\sigma \tau_{1} \wedge \sigma \tau_{2}\right)_{\varepsilon}^{\sigma t}$.
Assume that
a) $\delta e \Downarrow^{c} v$
b) $\delta^{\prime} e^{\prime} \Downarrow c^{c^{\prime}} v^{\prime}$
c) $c<m$

By IH 1 on the first premise using (a-c), we get $\left(m, \delta e, \delta^{\prime} e^{\prime}\right) \in\left(\sigma \tau_{1}\right)_{\varepsilon}^{\sigma t}$.
By unrolling its definition, we get
d) $c-c^{\prime} \leq \sigma t$
e) $\left(m-c, v, v^{\prime}\right) \in\left(\sigma \tau_{1}\right)_{v}$

By IH 1 on the second premise using (a-c), we get $\left(m, \delta e, \delta^{\prime} e^{\prime}\right) \in\left(\sigma \tau_{2}\right)_{\varepsilon}^{\sigma t}$.
By unrolling its definition, we get
f) $c-c^{\prime} \leq \sigma t$
g) $\left(m-c, v, v^{\prime}\right) \in\left(\sigma \tau_{2}\right)_{v}$

We can conclude as follows

1. By d) or f), we get $c-c^{\prime} \leq \sigma t$
2. TS: $\left(m-c, v, v^{\prime}\right) \in\left(\sigma \tau_{1} \wedge \sigma \tau_{2}\right)_{v}$.

Directly follows by e) and g).
Case $\frac{\Delta ; \Phi ; \Gamma \vdash e \ominus e^{\prime} \lesssim t: \tau_{1} \wedge \tau_{2}}{\Delta ; \Phi ; \Gamma \vdash e \ominus e^{\prime} \lesssim t: \tau_{1}}$ r-interE ${ }_{1}$
Assume that $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$ and $\models \sigma \Phi$.
STS: $\left(m, \delta e, \delta^{\prime} e^{\prime}\right) \in\left(\sigma \tau_{1}\right)_{\varepsilon}^{\sigma t}$.
Assume that
a) $\delta e \Downarrow^{c} v$
b) $\delta^{\prime} e^{\prime} \Downarrow c^{\prime} v^{\prime}$
c) $c<m$

By IH 1 on the first premise using (a-c), we get $\left(m, \delta e, \delta^{\prime} e^{\prime}\right) \in\left(\sigma \tau_{1} \wedge \sigma \tau_{2}\right)_{\varepsilon}^{\sigma t}$.
By unrolling its definition, we get
d) $c-c^{\prime} \leq \sigma t$
e) $\left(m-c, v, v^{\prime}\right) \in\left(\sigma \tau_{1} \wedge \sigma \tau_{2}\right)_{v}$

We can conclude as follows

1. By d), we get $c-c^{\prime} \leq \sigma t$
2. TS: $\left(m-c, v, v^{\prime}\right) \in\left(\sigma \tau_{1}\right)_{v}$.

Directly follows by unrolling e).
Case $\frac{\Upsilon(\zeta)=\tau_{1} \xrightarrow{\operatorname{diff}(t)} \tau_{2} \quad \Delta ; \Phi ; \Gamma \vdash e \ominus e^{\prime} \lesssim t^{\prime}: \tau_{1}}{\Delta ; \Phi ; \Gamma \vdash \zeta e \ominus \zeta e^{\prime} \lesssim t+t^{\prime}: \tau_{2}}$ r-primapp
Assume that $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$ and $\models \sigma \Phi$.
TS: $\left(m, \zeta \delta e, \zeta \delta^{\prime} e^{\prime}\right) \in\left(\mid \sigma \tau_{2}\right)_{\varepsilon}^{\sigma t+\sigma t^{\prime}}$.
Following the definition of $\left(\cdot D_{\dot{\varepsilon}}\right.$, assume that
$\frac{\delta e \Downarrow^{c} v(\star) \quad \hat{\zeta}(v)=\left(c_{r}, v_{r}\right)(\diamond)}{\zeta \delta e \Downarrow^{c+c_{r}+c_{a p p}} v_{r}}$ primapp and
$\frac{\delta^{\prime} e^{\prime} \Downarrow{c^{\prime}}^{\prime} v^{\prime}(\star \star) \quad \hat{\zeta}(v)^{\prime}=\left(c_{r}^{\prime}, v_{r}^{\prime}\right)(\diamond \diamond)}{\zeta \delta^{\prime} e^{\prime} \Downarrow \Downarrow^{c^{\prime}+c_{r}^{\prime}+c_{a p p}} v_{r}^{\prime}}$ primapp and
$\left(c+c_{r}+c_{a p p}\right)<m$.
By IH 1 on the second premise, we get $\left(m, \delta e, \delta^{\prime} e^{\prime}\right) \in\left(\sigma \tau_{1}\right)_{\varepsilon}^{\sigma t^{\prime}}$. Unrolling its definition with (\star) and $(\star \star)$, and $c<m$, we get
a) $c-c^{\prime} \leq \sigma t^{\prime}$
b) $\left(m-c, v, v^{\prime}\right) \in\left(\sigma \tau_{1}\right)_{v}$

Next, by Assumption (11) using $\zeta: \sigma \tau_{1} \xrightarrow{\operatorname{diff}(\sigma t)} \sigma \tau_{2}$ (obtained by substitution on the first premise), b), (\star) and ($\star \star$), we get
c) $c_{r}-c_{r}^{\prime} \leq \sigma t$
d) $\left(m-c, v_{r}, v_{r}^{\prime}\right) \in\left(\sigma \tau_{2}\right) v$

Now, we can conclude as follows:

1. Using a) and c$)$, we get $\left(c+c_{r}+c_{a p p}\right)-\left(c^{\prime}+c_{r}^{\prime}+c_{a p p}\right) \leq \sigma t+\sigma t^{\prime}$
2. By downward closure (Lemma 4) on d) using

$$
m-\left(c+c_{r}+c_{a p p}\right) \leq m-c
$$

we get $\left(m-\left(c+c_{r}+c_{a p p}\right), v_{r}, v_{r}^{\prime}\right) \in\left(\sigma \tau_{2}\right)_{v}$

$$
\Delta ; \Phi ; \Gamma \vdash e \ominus e \lesssim t: \tau
$$

Case $\frac{\forall x \in \operatorname{dom}(\Gamma) . \quad \Delta ; \Phi \models \Gamma(x) \sqsubseteq \square \Gamma(x)}{\Delta ; \Phi ; \Gamma, \Gamma^{\prime} ; \Omega \vdash e \ominus e \lesssim 0: \square \tau}$ nochange
Assume that $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}\left(\sigma \Gamma, \sigma \Gamma^{\prime}\right)$ and $\models \sigma \Phi$.
Then, $\delta=\delta_{1} \cup \delta_{2}$ and $\delta^{\prime}=\delta_{1}^{\prime} \cup \delta_{2}^{\prime}$ such that $\left(m, \delta_{1}, \delta_{1}^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$ and $\left(m, \delta_{2}, \delta_{2}^{\prime}\right) \in \mathcal{G}\left(\sigma \Gamma^{\prime}\right)$.
TS: $\left(m, \delta e, \delta^{\prime} e\right) \in(\square \sigma \tau)_{\varepsilon}^{0}$.
Since e doesn't have any free variables from Γ^{\prime} by the first premise,
STS: $\left(m, \delta_{1} e, \delta_{1}^{\prime} e\right) \in(\square \sigma \tau){ }_{\varepsilon}^{0}$.
Assume that
a) $\delta_{1} e \Downarrow^{c} v$
b) $\delta_{1}^{\prime} e \Downarrow \Downarrow^{c^{\prime}} v^{\prime}$
c) $c<m$

TS 1: $c-c^{\prime} \leq 0$
TS 2: $\left(m-c, v, v^{\prime}\right) \in(\square \sigma \tau) v$
By IH 1 on the first premise using

- $\left(m, \delta_{1}, \delta_{1}^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$
- $=\sigma \Phi$
we get $\left(m, \delta_{1} e, \delta_{1}^{\prime} e\right) \in(\sigma \sigma \tau)_{\varepsilon}^{\sigma t}$.
Unfolding its definition with a), b) and c), we get
d) $c-c \leq \sigma t$
e) $\left(m-c, v, v^{\prime}\right) \in(\sigma \sigma \tau) v$

We can conclude as follows

1. By Lemma 5 using $\left(m, \delta_{1}, \delta_{1}^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$ and the second premise, we get $\left(m, \delta_{1}, \delta_{1}\right) \in$ $\mathcal{G}(\square \sigma \Gamma)$. This means that $\delta_{1}=\delta_{1}^{\prime}$.
Therefore, a) and b) are equal, that is $c=c^{\prime}$ and $v=v^{\prime}$. Hence, trivially we get $c-c \leq 0$.
2. Since $v=v^{\prime}$ and $c=c^{\prime}$, by using e), we $\operatorname{get}(m-c, v, v) \in(\square \sigma \tau)$.

Case $\frac{\Delta ; \Phi \wedge C ; \Gamma \vdash e_{1} \ominus e_{2} \lesssim t: \tau \quad \Delta ; \Phi \wedge \neg C ; \Gamma \vdash e_{1} \ominus e_{2} \lesssim t: \tau}{\Delta ; \Phi ; \Gamma \vdash e_{1} \ominus e_{2} \lesssim t: \tau} \quad$ r-split
Assume that $\models \sigma \Phi$ and $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$.
TS: $\left(m, \delta e_{1}, \delta^{\prime} e_{2} \in(\sigma \tau)_{\varepsilon}^{\sigma k}\right.$.
There are two cases:
subcase 1: $\models \sigma \Phi \wedge C$
Follows immediately by IH on the first premise.
subcase 2: $\models \sigma \Phi \wedge \neg C$
Follows immediately by IH on the second premise.

$$
\text { Case } \frac{\Delta ; \Phi ; \Gamma \vdash e \ominus e^{\prime} \lesssim t: \tau \quad \Delta ; \Phi \models \tau \sqsubseteq \tau^{\prime} \quad \Delta ; \Phi \models t \leq t^{\prime}}{\Delta ; \Phi ; \Gamma \vdash e \ominus e^{\prime} \lesssim t^{\prime}: \tau^{\prime}} \mathbf{r}-\sqsubseteq
$$

Assume that $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$ and $\models \sigma \Phi$.
TS: $\left(m, \delta e, \delta^{\prime} e^{\prime}\right) \in\left(\sigma \sigma \tau^{\prime}\right)_{\varepsilon}^{\sigma t^{\prime}}$.
Following the definition of $(\cdot \cdot)_{\varepsilon}^{\cdot} \cdot$, assume that
a) $\delta e \Downarrow^{c} v$
b) $\delta^{\prime} e^{\prime} \Downarrow c^{\prime} v^{\prime}$
c) $c<m$.

By IH 1 on the first premise using (a-c), we get
d) $c-c^{\prime} \leq \sigma t$
e) $\left(m-c, v, v^{\prime}\right) \in(\sigma \tau \tau)_{v}$

We can conclude as

1. By Assumption (13) on the third premise, we get $\sigma t \leq \sigma t^{\prime}$. Combining this with d), we get $c-c^{\prime} \leq \sigma t^{\prime}$.
2. By Lemma 5 on the second premise with e), we get $\left(m-c, v, v^{\prime}\right) \in\left(\sigma \tau^{\prime}\right)_{v}$

Case $\frac{\Delta ; \Phi ;|\Gamma|_{1} \vdash_{k_{1}}^{t_{1}} e_{1}: A_{1} \xrightarrow{\operatorname{exec}(k, t)} A_{2} \quad \Delta ; \Phi ; \Gamma \vdash e_{2} \ominus e_{2}^{\prime} \lesssim t_{2}: U\left(A_{1}, A_{2}^{\prime}\right)}{\Delta ; \Phi ; \Gamma \vdash e_{1} e_{2} \ominus e_{2}^{\prime} \lesssim t_{1}+t_{2}+t+c_{a p p}: U\left(A_{2}, A_{2}^{\prime}\right)}$ r-app-e
Assume that $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$ and $\models \sigma \Phi$.
$\mathrm{TS}:\left(m, \delta e_{1} \delta e_{2}, \delta^{\prime} e_{2}^{\prime}\right) \in\left(U\left(\sigma A_{2}, \sigma A_{2}^{\prime}\right)\right)_{\varepsilon}^{\sigma t_{1}+\sigma t_{2}+\sigma t+c_{a p p}}$.

Following the definition of $\left(\cdot D_{\dot{\varepsilon}}\right.$, assume that
$\frac{\delta e_{1} \Downarrow^{c_{1}} \text { fix } f(x) . e \quad(\star) \quad \delta e_{2} \Downarrow^{c_{2}} v_{2}(\diamond) \quad e\left[v_{2} / x,(\text { fix } f(x) . e) / f\right] \Downarrow^{c_{r}} v_{r}(\dagger)}{\delta e_{1} \delta e_{2} \Downarrow^{c_{1}+c_{2}+c_{r}+c_{a p p}} v_{r}}$ app and
$\delta^{\prime} e_{2}^{\prime} \Downarrow \Downarrow^{c^{\prime}} v^{\prime}(\diamond>)$ and $c_{1}+c_{2}+c_{r}+c_{a p p}<m$.
$\mathrm{TS1}: c_{1}+c_{2}+c_{r}+c_{a p p}-c^{\prime} \leq \sigma t_{1}+\sigma t_{2}+\sigma t+c_{a p p}$
TS2: $\left(m-\left(c_{1}+c_{2}+c_{r}+c_{a p p}\right), v_{r}, v^{\prime}\right) \in\left(U\left(\sigma A_{2}, \sigma A_{2}^{\prime}\right)\right)_{v}$
We first show the second statement.
By unrolling the definition of $\left(U\left(\sigma A_{2}, \sigma A_{2}^{\prime}\right)\right)_{v}$,
STS: $\forall j .\left(j, v_{r}\right) \in \llbracket \sigma A_{2} \rrbracket_{v} \wedge\left(j, v^{\prime}\right) \in \llbracket \sigma A_{2}^{\prime} \rrbracket_{v}$.
Pick j.
By IH 2 on the first premise using

- $\mathrm{FV}\left(e_{1}\right) \subseteq \operatorname{dom}\left(|\sigma \Gamma|_{2}\right)$ using Lemma 8 on the first premise
- $\forall m .(m, \delta) \in \mathcal{G} \llbracket|\sigma \Gamma|_{1} \rrbracket$ using Lemma 3 on $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \sigma \Gamma$.
we get

$$
\begin{equation*}
\forall m .\left(m, \delta e_{1}\right) \in \llbracket \sigma A_{1} \xrightarrow{\operatorname{exec}(\sigma k, \sigma t)} \sigma A_{2} \rrbracket_{\varepsilon}^{\sigma k_{1}, \sigma t_{1}} \tag{1}
\end{equation*}
$$

Instantiating (1) with $j+\sigma t+\sigma t_{1}+1+c_{\text {app }}$, we get

$$
\begin{equation*}
\left(j+\sigma t+\sigma t_{1}+1+c_{a p p}, \delta e_{1}\right) \in \llbracket \sigma A_{1} \xrightarrow{\operatorname{exec}(\sigma k, \sigma t)} \sigma A_{2} \rrbracket_{\varepsilon}^{\sigma k_{1}, \sigma t_{1}} \tag{2}
\end{equation*}
$$

Unfolding the first part of the definition of (2) with $\sigma t_{1}<j+\sigma t+\sigma t_{1}+1+c_{a p p}$, we get
a) $\delta e_{1} \Downarrow^{c_{1}}$ fix $f(x) . e$
b) $c_{1} \leq \sigma t_{1}$
c) $\left(j+\sigma t+\sigma t_{1}+1+c_{a p p}-c_{1}\right.$, fix $\left.f(x) . e\right) \in \llbracket \sigma A_{1} \xrightarrow{\operatorname{exec}(\sigma k, \sigma t)} \sigma A_{2} \rrbracket_{v}$

By IH 1 on the second premise, we get $\left(m, \delta e_{2}, \delta^{\prime} e_{2}^{\prime}\right) \in\left(U\left(\sigma A_{1}, \sigma A_{2}^{\prime}\right)\right)_{\varepsilon}^{\sigma t_{2}}$.
Unrolling its definition with (\diamond) and $(\diamond \diamond)$, and $c_{2}<m$, we get
d) $c_{2}-c^{\prime} \leq \sigma t_{2}$
e) $\left(m-c_{2}, v_{2}, v^{\prime}\right) \in\left(U\left(\sigma A_{1}, \sigma A_{2}^{\prime}\right)\right)_{v}$

By e), we get $\forall m .\left(m, v_{2}\right) \in \llbracket \sigma A_{1} \rrbracket_{v} \wedge\left(m, v^{\prime}\right) \in \llbracket \sigma A_{2}^{\prime} \rrbracket_{v}$.
Instantiating m with $j+\sigma t+c_{\text {app }}$, we get

$$
\begin{equation*}
\left(j+\sigma t+c_{a p p}, v_{2}\right) \in \llbracket \sigma A_{1} \rrbracket v \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\left(j+\sigma t+c_{a p p}, v^{\prime}\right) \in \llbracket \sigma A_{2}^{\prime} \rrbracket_{v} \tag{4}
\end{equation*}
$$

Unrolling c) with (3) since $j+\sigma t+c_{a p p}<j+\sigma t+\sigma t_{1}-c_{1}+1+c_{a p p}$ and $c_{1} \leq \sigma t_{1}$ by (b), we get

$$
\begin{equation*}
\left(j+\sigma t+c_{a p p}, e\left[v_{2} / x,(\operatorname{fix} f(x) . e)\right]\right) \in \llbracket \sigma A_{2} \rrbracket_{\varepsilon}^{\sigma k, \sigma t} \tag{5}
\end{equation*}
$$

By unrolling first part of (5) with $\sigma t<j+\sigma t+c_{a p p}$, we get
f) $e\left[v_{2} / x,(\operatorname{fix} f(x) . e)\right] \Downarrow^{c_{r}} v_{r}$
g) $c_{r} \leq \sigma t$
h) $\left(j+c_{a p p}+\sigma t-c_{r}, v_{r}\right) \in \llbracket \sigma A_{2} \rrbracket_{v}$

Now, we can conclude as follows:

1. Using b), d) and g), we get $\left(c_{1}+c_{2}+c_{r}+c_{a p p}\right)-c^{\prime} \leq \sigma t_{1}+\sigma t_{2}+\sigma t+c_{a p p}$
2. By downward closure (Lemma 4) on h) using

$$
j \leq j+c_{a p p}+\sigma t-c_{r} \quad \text { since } \quad c_{r} \leq \sigma t \quad \text { by }(\mathrm{g})
$$

we get $\left(j, v_{r}\right) \in \llbracket \sigma A_{2} \rrbracket_{v}$.
By downward closure (Lemma 4) on (4) using $j \leq j+\sigma t+c_{a p p}$, we get $\left(j, v^{\prime}\right) \in \llbracket \sigma A_{2}^{\prime} \rrbracket_{v}$.

Case $\frac{\Delta ; \Phi ;|\Gamma|_{2} \vdash_{k_{1}}^{t_{1}} e_{1}^{\prime}: A_{1}^{\prime} \xrightarrow{\operatorname{exec}(k, t)} A_{2}^{\prime} \quad \Delta ; \Phi ; \Gamma \vdash e_{2} \ominus e_{2}^{\prime} \lesssim t_{2}: U\left(A_{2}, A_{1}^{\prime}\right)}{\Delta ; \Phi ; \Gamma \vdash e_{2} \ominus e_{1}^{\prime} e_{2}^{\prime} \lesssim t_{2}-k_{1}-k-c_{\text {app }}: U\left(A_{2}, A_{2}^{\prime}\right)}$ r-e-app
Assume that $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$ and $\models \sigma \Phi$.
$\mathrm{TS}:\left(m, \delta e_{2}, \delta^{\prime} e_{1}^{\prime} \delta e_{2}^{\prime},\right) \in\left(U\left(\sigma A_{2}, \sigma A_{2}^{\prime}\right)\right)_{\varepsilon}^{\sigma t_{2}-\sigma k_{1}-\sigma k-c_{a p p}}$.
Following the definition of $\cap \cdot D_{\dot{\varepsilon}}$, assume that
$\delta e_{2} \Downarrow^{c} v(\diamond \diamond)$ and $\frac{\delta^{\prime} e_{1}^{\prime} \Downarrow^{c_{1}^{\prime}} \text { fix } f(x) . e^{\prime}(\star) \quad \delta^{\prime} e_{2}^{\prime} \Downarrow^{c_{2}^{\prime}} v_{2}^{\prime}(\diamond) \quad e^{\prime}\left[v_{2}^{\prime} / x,\left(\text { fix } f(x) . e^{\prime}\right) / f\right] \Downarrow_{r}^{\prime} v_{r}^{\prime}(\dagger)}{\delta^{\prime} e_{1}^{\prime} \delta^{\prime} e_{2}^{\prime} \Downarrow^{c_{1}^{\prime}+c_{2}^{\prime}+c_{r}^{\prime}+c_{a p p}} v_{r}^{\prime}}$ app
and $c<m$.
TS1: $c-\left(c_{1}^{\prime}+c_{2}^{\prime}+c_{r}^{\prime}+c_{a p p}\right) \leq \sigma t_{2}-\sigma k_{1}-\sigma k-c_{a p p}$
TS2: $\left(m-c, v, v_{r}^{\prime}\right) \in\left(U\left(\sigma A_{2}, \sigma A_{2}^{\prime}\right) D_{v}\right.$
We first show the second statement.
By unrolling the definition of $\left(U\left(\sigma A_{2}, \sigma A_{2}^{\prime}\right)\right)_{v}$,
STS: $\forall j .(j, v) \in \llbracket \sigma A_{2} \rrbracket_{v} \wedge\left(j, v_{r}^{\prime}\right) \in \llbracket \sigma A_{2}^{\prime} \rrbracket_{v}$.
Pick j.
By IH 2 on the first premise using

- $\mathrm{FV}\left(e_{1}^{\prime}\right) \subseteq \operatorname{dom}\left(|\sigma \Gamma|_{2}\right)$ using Lemma 8 on the first premise
- $\forall m$. $\left(m, \delta^{\prime}\right) \in \mathcal{G} \llbracket|\sigma \Gamma|_{2} \rrbracket$ using Lemma 3 on $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$.
we get

$$
\begin{equation*}
\forall m \cdot\left(m, \delta^{\prime} e_{1}^{\prime}\right) \in \llbracket \sigma A_{1}^{\prime} \xrightarrow{\operatorname{exec}(\sigma k, \sigma t)} \sigma A_{2}^{\prime} \rrbracket_{\varepsilon}^{\sigma k_{1}, \sigma t_{1}} \tag{1}
\end{equation*}
$$

Instantiating (1) with $j+c_{1}+c_{r}+1+c_{a p p}$, we get

$$
\begin{equation*}
\left(j+c_{1}+c_{r}+1+c_{a p p}, \delta^{\prime} e_{1}^{\prime}\right) \in \llbracket \sigma A_{1}^{\prime} \xrightarrow{\operatorname{exec}(\sigma k, \sigma t)} \sigma A_{2}^{\prime} \rrbracket_{\varepsilon}^{\sigma k_{1}, \sigma t_{1}} \tag{2}
\end{equation*}
$$

Unfolding the second part of the definition of (2) with (\star) and $c_{1}^{\prime}<j+c_{1}^{\prime}+c_{r}^{\prime}+c_{\text {app }}+1$, we get
a) $\sigma k_{1} \leq c_{1}^{\prime}$
b) $\left(j+c_{r}^{\prime}+c_{a p p}+1\right.$, fix $\left.f(x) . e^{\prime}\right) \in \llbracket \sigma A_{1}^{\prime} \xrightarrow{\operatorname{exec}(\sigma k, \sigma t)} \sigma A_{2}^{\prime} \rrbracket_{v}$

By IH 1 on the second premise, we get $\left(m, \delta e_{2}, \delta^{\prime} e_{2}^{\prime}\right) \in\left(U\left(\sigma A_{2}, \sigma A_{1}^{\prime}\right) D_{\varepsilon}^{\sigma t_{2}}\right.$. Unrolling its definition with $(\diamond>)$ and (\diamond), and $c<m$, we get
c) $c-c_{2}^{\prime} \leq \sigma t_{2}$
d) $\left(m-c, v, v_{2}^{\prime}\right) \in\left(U\left(\sigma A_{2}, \sigma A_{1}^{\prime}\right) D_{v}\right.$

By d), we get $\forall m .(m, v) \in \llbracket \sigma A_{2} \rrbracket_{v} \wedge\left(m, v_{2}^{\prime}\right) \in \llbracket \sigma A_{1}^{\prime} \rrbracket_{v}$.
Instantiating m with $j+c_{r}^{\prime}+c_{a p p}$, we get

$$
\begin{align*}
& \left(j+c_{r}^{\prime}+c_{a p p}, v\right) \in \llbracket \sigma A_{2} \rrbracket_{v} \tag{3}\\
& \left(j+c_{r}^{\prime}+c_{a p p}, v_{2}^{\prime}\right) \in \llbracket \sigma A_{1}^{\prime} \rrbracket_{v} \tag{4}
\end{align*}
$$

Unrolling b) with (4) since $j+c_{r}^{\prime}+c_{a p p}<j+c_{r}^{\prime}+c_{a p p}+1$, we get

$$
\begin{equation*}
\left(j+c_{r}^{\prime}+c_{a p p}, e^{\prime}\left[v_{2}^{\prime} / x,\left(\operatorname{fix} f(x) \cdot e^{\prime}\right)\right]\right) \in \llbracket \sigma A_{2}^{\prime} \rrbracket_{\varepsilon}^{\sigma k, \sigma t} \tag{5}
\end{equation*}
$$

By unrolling (5) with (\dagger) and $c_{r}^{\prime}<j+c_{r}^{\prime}+c_{a p p}$, we get
e) $\sigma k \leq c_{r}^{\prime}$
f) $\left(j+c_{a p p}, v_{r}^{\prime}\right) \in \llbracket \sigma A_{2}^{\prime} \rrbracket_{v}$

Now, we can conclude as follows:

1. Using a), c) and e), we get $c-\left(c_{1}^{\prime}+c_{2}^{\prime}+c_{r}^{\prime}+c_{a p p}\right) \leq \sigma t_{2}-\sigma k_{1}-\sigma k-c_{a p p}$
2. By downward closure (Lemma 4) on (3) using

$$
j \leq j+c_{r}^{\prime}+c_{a p p}
$$

we get $(j, v) \in \llbracket \sigma A_{2} \rrbracket_{v}$.
By downward closure (Lemma 4) on f) using

$$
j \leq j+c_{a p p}
$$

we get $\left(j, v_{r}^{\prime}\right) \in \llbracket \sigma A_{2}^{\prime} \rrbracket_{v}$.

Case $\frac{\Delta ; \Phi ;|\Gamma|_{1} \vdash_{k_{1}}^{t_{1}} e_{1}: A_{1} \quad \Delta ; \Phi ; x: U\left(A_{1}, A_{1}\right), \Gamma \vdash e_{2} \ominus e \lesssim t_{2}: \tau_{2}}{\Delta ; \Phi ; \Gamma \vdash \text { let } x=e_{1} \text { in } e_{2} \ominus e \lesssim t_{1}+t_{2}+c_{l e t}: \tau_{2}}$ r-let-e
Assume that $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$ and $\models \sigma \Phi$.
TS: $\left(m\right.$, let $x=\delta e_{1}$ in $\left.\delta e_{2}, \delta^{\prime} e\right) \in\left(\sigma \tau_{2}\right)_{\varepsilon}^{\sigma t_{1}+\sigma t_{2}+c_{l e t}}$.
Following the definition of $(\cap \cdot)_{\varepsilon}$, assume that
$\frac{\delta e_{1} \Downarrow^{c_{1}} v_{1}(\diamond) \quad \delta e_{2}\left[v_{1} / x\right] \Downarrow^{c_{r}} v_{r}(\dagger)}{\text { let } x=\delta e_{1} \text { in } \delta e_{2} \Downarrow^{c_{1}+c_{r}+c_{l e t}} v_{r}}$ let and $\delta^{\prime} e \Downarrow^{c^{\prime}} v^{\prime}(\star)$ and $\left(c_{1}+c_{r}+c_{l e t}\right)<m$.
To be able to instantiate the IH 1 on the second premise, we first show

$$
\begin{equation*}
\forall m .\left(m, v_{1}\right) \in \llbracket \sigma A_{1} \rrbracket_{v} \tag{1}
\end{equation*}
$$

Subproof. Pick m.
By IH 2 on the first premise using

- $\mathrm{FV}\left(e_{1}\right) \subseteq \operatorname{dom}\left(|\sigma \Gamma|_{1}\right)$ using Lemma 8 on the first premise
- $\left(m+\sigma t_{1}+1, \delta\right) \in \mathcal{G} \llbracket|\sigma \Gamma|_{1} \rrbracket$ obtained by Lemma 3 using $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$
we get

$$
\begin{equation*}
\left(m+\sigma t_{1}+1, \delta e_{1}\right) \in \llbracket \sigma A_{1} \rrbracket_{\varepsilon}^{\sigma k_{1}, \sigma t_{1}} \tag{2}
\end{equation*}
$$

Unfolding the first part of the definition of (2) with $\sigma t_{1}<m+\sigma t_{1}+1$, we get
a) $e_{1} \Downarrow^{c_{1}} v_{1}$
b) $c_{1} \leq \sigma t_{1}$
c) $\left(m+\sigma t_{1}+1-c_{1}, v_{1}\right) \in \llbracket \sigma A_{1} \rrbracket v$

RTS: $\left(m, v_{1}\right) \in \llbracket \sigma A_{1} \rrbracket_{v}$.
This follows by downward closure (Lemma 4) on c) using $m \leq m+\sigma t_{1}-c_{1}+1$ and $0 \leq \sigma t_{1}-c_{1}$ (by (b)).

Next, we instantiate IH 1 on the second premise using

- $\left(m, \delta\left[x \mapsto v_{1}\right], \delta^{\prime}\left[x \mapsto v_{1}\right]\right) \in \mathcal{G}\left(\sigma \Gamma, x: U\left(\sigma A_{1}, \sigma A_{1}\right)\right)$ using
$-\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$
$-\left(m, v_{1}, v_{1}\right) \in\left(U\left(\sigma A_{1}, \sigma A_{1}\right)\right)_{v}$ using (1)
and we get $\left(m, \delta e_{2}\left[v_{1} / x\right], \delta^{\prime} e\left[v_{1} / x\right]\right) \in\left(\sigma \tau_{2}\right)_{\varepsilon}^{\sigma t_{2}}$.
Since x doesn't occur free in e, we have
$\left(m, \delta e_{2}\left[v_{1} / x\right], \delta^{\prime} e\right) \in\left(\sigma \tau_{2}\right)_{\varepsilon}^{\sigma t_{2}}$.
Unrolling its definition with (\dagger) and (\star), and $c_{r}<m$, we get
g) $c_{r}-c^{\prime} \leq \sigma t_{2}$
h) $\left(m-c_{r}, v_{r}, v^{\prime}\right) \in\left(\sigma \tau_{2}\right)_{v}$

Now, we can conclude by

1. By b) and g) $\left(c_{1}+c_{r}+c_{l e t}\right)-c^{\prime} \leq \sigma t_{1}+\sigma t_{2}+c_{l e t}$
2. By downward closure (Lemma 4) on h), using

$$
m-\left(c_{1}+c_{r}+c_{l e t}\right) \leq m-c_{r}
$$

we obtain $\left(m-\left(c_{1}+c_{r}+c_{\text {let }}\right), v_{r}, v^{\prime}\right) \in\left(\sigma \tau_{2}\right)_{v}$.

$$
\Delta ; \Phi ;|\Gamma|_{1} \vdash_{-}^{t} e: A_{1}+A_{2}
$$

Case $\frac{\Delta ; \Phi ; x: U\left(A_{1}, A_{1}\right), \Gamma \vdash e_{1} \ominus e^{\prime} \lesssim t^{\prime}: \tau \quad \Delta ; \Phi ; y: U\left(A_{2}, A_{2}\right), \Gamma \vdash e_{2} \ominus e^{\prime} \lesssim t^{\prime}: \tau}{\Delta ; \Phi ; \Gamma \vdash \operatorname{case}\left(e, x . e_{1}, y . e_{2}\right) \ominus e^{\prime} \lesssim t^{\prime}+t+c_{\text {case }}: \tau}$ r-case-e
Assume that $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$ and $\models \sigma \Phi$.
TS: $\left(m\right.$, case $\left.\left(\delta e, \delta e_{1}, \delta e_{2}\right), \delta^{\prime} e^{\prime}\right) \in(\sigma \tau)_{\varepsilon}^{\sigma t+\sigma t^{\prime}}$.
Following the definition of $(\cdot)_{\varepsilon}$, assume that case $\left(\delta e, \delta e_{1}, \delta e_{2}\right) \Downarrow^{C} v_{r}$ and $\delta^{\prime} e^{\prime} \Downarrow^{c^{\prime}} v^{\prime}(\dagger)$ and $C<m$.
Depending on what δe evaluates to, there are two cases:
subcase 1: $\frac{\delta e \Downarrow^{c} \operatorname{inl} v(\star) \quad \delta e_{1}[v / x] \Downarrow^{c_{r}} v_{r} \quad(\diamond)}{\operatorname{case}\left(\delta e, x . \delta e_{1}, y . \delta e_{2}\right) \Downarrow^{c+c_{r}+c_{\text {case }}} v_{r}}$ case-inl
Note that $C=c+c_{r}+c_{\text {case }}<m$.

To be able to instantiate the IH 1 on the second premise, we first show

$$
\begin{equation*}
\forall m .(m, \operatorname{inl} v) \in \llbracket \sigma A_{1}+\sigma A_{2} \rrbracket_{v} \tag{1}
\end{equation*}
$$

Subproof. Pick m.
By IH 2 on the first premise using

- $\mathrm{FV}(e) \subseteq \operatorname{dom}\left(|\sigma \Gamma|_{1}\right)$ using Lemma 8 on the first premise
- $(m+\sigma t+1, \delta) \in \mathcal{G} \llbracket|\sigma \Gamma|_{1} \rrbracket$ obtained by Lemma 3 using $\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$
we get

$$
\begin{equation*}
\left(m+\sigma t+1, \delta e_{1}\right) \in \llbracket \sigma A_{1}+\sigma A_{2} \rrbracket_{\varepsilon}^{\sigma k, \sigma t} \tag{2}
\end{equation*}
$$

Unfolding the first part of the definition of (2) with $\sigma t<m+\sigma t+1$, we get
a) $e \Downarrow^{c} \operatorname{inl} v$
b) $c \leq \sigma t$
c) $(m+\sigma t+1-c, \operatorname{inl} v) \in \llbracket \sigma A_{1}+\sigma A_{2} \rrbracket_{v}$

RTS: $(m, \operatorname{inl} v) \in \llbracket \sigma A_{1}+\sigma A_{2} \rrbracket_{v}$.
This follows by downward closure (Lemma 4) on c) using $m \leq m+\sigma t-c+1$ and $0 \leq \sigma t-c(b y(b))$.

Next, we instantiate IH 1 on the second premise using

- $\left(m, \delta[x \mapsto v], \delta^{\prime}[x \mapsto v]\right) \in \mathcal{G}\left(\sigma \Gamma, x: U\left(\sigma A_{1}, \sigma A_{1}\right)\right)$ using
$-\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$
$-(m, v, v) \in\left(U\left(\sigma A_{1}, \sigma A_{1}\right)\right)_{v}$ by unrolling the definition of (1)
and we get $\left(m, \delta e_{1}[v / x], \delta^{\prime} e^{\prime}[v / x]\right) \in(\sigma \tau \tau)_{\varepsilon}^{\sigma t^{\prime}}$.
Since x doesn't occur free in e^{\prime}, we have
$\left(m, \delta e_{1}[v / x], \delta^{\prime} e^{\prime}\right) \in(\sigma \tau)_{\varepsilon}^{\sigma t^{\prime}}$.
Unrolling its definition with (\diamond) and (\dagger), and $c_{r}<m$, we get
i) $c_{r}-c^{\prime} \leq \sigma t^{\prime}$
j) $\left(m-c_{r}, v_{r}, v^{\prime}\right) \in(\mid \sigma \tau)_{v}$

Now, we can conclude by

1. By b) and i) $\left(c+c_{r}+c_{\text {case }}\right)-c^{\prime} \leq \sigma t+\sigma t^{\prime}+c_{\text {case }}$
2. By downward closure (Lemma 4) on j), using

$$
m-\left(c+c_{r}+c_{\text {case }}\right) \leq m-c_{r}
$$

we obtain $\left(m-\left(c+c_{r}+c_{c a s e}\right), v_{r}, v^{\prime}\right) \in(\sigma \tau){ }_{v}$.
subcase 2: $\frac{\delta e \Downarrow^{c} \operatorname{inr} v(\star) \quad \delta e_{2}[v / y] \Downarrow^{c_{r}} v_{r}(\diamond)}{\operatorname{case}\left(\delta e, x . \delta e_{1}, y \cdot \delta e_{2}\right) \Downarrow^{c+c_{r}+c_{\text {case }}} v_{r}}$ case-inr
Note that $C=c+c_{r}+c_{\text {case }}<m$.
Like in the previous case, we have

$$
\begin{equation*}
\forall m .(m, \operatorname{inr} v) \in \llbracket \sigma A_{1}+\sigma A_{2} \rrbracket_{v} \tag{3}
\end{equation*}
$$

Next, we instantiate IH 1 on the third premise using

- $\left(m, \delta[y \mapsto v], \delta^{\prime}[y \mapsto v]\right) \in \mathcal{G}\left(\sigma \Gamma, y: U\left(\sigma A_{2}, \sigma A_{2}\right)\right)$ using
$-\left(m, \delta, \delta^{\prime}\right) \in \mathcal{G}(\sigma \Gamma)$
$-(m, v, v) \in\left(U\left(\sigma A_{2}, \sigma A_{2}\right)\right)_{v}$ by unrolling the definition of (3)
and we get $\left(m, \delta e_{2}[v / y], \delta^{\prime} e^{\prime}[v / y]\right) \in(\sigma \tau)_{\varepsilon}^{\sigma t^{\prime}}$.
Since y doesn't occur free in e^{\prime}, we have
$\left(m, \delta e_{2}[v / y], \delta^{\prime} e^{\prime}\right) \in(\mid \sigma \tau)_{\varepsilon}^{\sigma t^{\prime}}$.
Unrolling its definition with (\diamond) and (\dagger), and $c_{r}<m$, we get
k) $c_{r}-c^{\prime} \leq \sigma t^{\prime}$
l) $\left(m-c_{r}, v_{r}, v^{\prime}\right) \in(\sigma \tau) v$

Now, we can conclude by

1. By b) and k) $\left(c+c_{r}+c_{\text {case }}\right)-c^{\prime} \leq \sigma t+\sigma t^{\prime}+c_{\text {case }}$
2. By downward closure (Lemma 4) on l), using

$$
m-\left(c+c_{r}+c_{\text {case }}\right) \leq m-c_{r}
$$

we obtain $\left(m-\left(c+c_{r}+c_{c a s e}\right), v_{r}, v^{\prime}\right) \in(\sigma \tau){ }_{v}$.

Proof of Statement (2). Remember the statement (2) of Theorem 14:
Assume that $\Delta ; \Phi ; \Omega \vdash_{k}^{t} e: A$ and $\sigma \in \mathcal{D} \llbracket \Delta \rrbracket$ and $\models \sigma \Phi$ and there exists Ω^{\prime} s.t. $\mathrm{FV}(e) \subseteq$ $\operatorname{dom}\left(\Omega^{\prime}\right)$ and $\Omega^{\prime} \subseteq \Omega$ and $(m, \gamma) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket$. Then, $(m, \gamma e) \in \llbracket \sigma A \rrbracket_{\varepsilon}^{\sigma k, \sigma t}$.

Proof is by induction on the typing of e. We show a few selected cases.

Case $\frac{\Omega(x)=A}{\Delta ; \Phi ; \Omega \vdash_{0}^{0} x: A} \operatorname{var}$
Assume that $\models \sigma \Phi$ and there exists Ω^{\prime} s.t. $\mathrm{FV}(x) \subseteq \operatorname{dom}\left(\Omega^{\prime}\right)$ and $\Omega^{\prime} \subseteq \Omega$ and $(m, \delta) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket$
$\mathrm{TS}:(m, \gamma(x)) \in \llbracket \sigma A \rrbracket_{\varepsilon}^{0,0}$.
By Value Lemma (Lemma 2),
STS: $(m, \gamma(x)) \in \llbracket \sigma A \rrbracket_{v}$.
Note that $x \in \operatorname{dom}\left(\Omega^{\prime}\right)$ and $\Omega^{\prime} \subseteq \Omega$, therefore $\Omega^{\prime}(x)=A$,
RTS: $(m, \gamma(x)) \in \llbracket \sigma A \rrbracket_{v}$.
This follows by $\Omega(x)=A$ and $(m, \gamma) \in \mathcal{G}(\sigma \Omega)$
Case $\frac{\Delta ; \Phi ; \Omega \vdash_{k_{1}}^{t_{1}} e_{1}: A \quad \Delta ; \Phi ; \Omega \vdash_{k_{2}}^{t_{2}} e_{2}: \operatorname{list}[n] A}{\Delta ; \Phi ; \Omega \vdash_{k_{1}+t_{2}}^{t_{1}+t_{2}} \operatorname{cons}\left(e_{1}, e_{2}\right): \text { list }[n+1] A}$ cons
Assume that $\models \sigma \Phi$ and there exists Ω^{\prime} s.t. $\operatorname{FV}\left(\operatorname{cons}\left(e_{1}, e_{2}\right)\right) \subseteq \operatorname{dom}\left(\Omega^{\prime}\right)$ and $\Omega^{\prime} \subseteq \Omega$ and $(m, \delta) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket$
TS: $\left(m, \operatorname{cons}\left(\gamma e_{1}, \gamma e_{2}\right)\right) \in \llbracket \operatorname{list}[\sigma n+1] \sigma A \rrbracket_{\varepsilon}^{\sigma k_{1}+\sigma k_{2}, \sigma t_{1}+\sigma t_{2}}$.
Following the definition of $\llbracket \cdot \| \frac{\varepsilon^{\circ}}{\bullet}$, there are two parts to show

- Assume that $\sigma t_{1}+\sigma t_{2}<m$.

By IH 2 on the first premise using

$$
\mathrm{FV}\left(e_{1}\right) \subseteq \operatorname{dom}\left(\Omega^{\prime}\right) \text { and } \Omega^{\prime} \subseteq \Omega \text { and }(m, \delta) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket
$$

we get $\left(m, \gamma e_{1}\right) \in \llbracket \sigma A \rrbracket_{\varepsilon}^{\sigma k_{1}, \sigma t_{1}}$. Unrolling its definition with $\sigma t_{1}<m$, we get
a) $\gamma e_{1} \Downarrow^{c_{1}} v_{1}$
b) $c_{1} \leq \sigma t_{1}$
c) $\left(m-c_{1}, v_{1}\right) \in \llbracket \sigma A \rrbracket v$

By IH 2 on the second premise using

$$
\mathrm{FV}\left(e_{2}\right) \subseteq \operatorname{dom}\left(\Omega^{\prime}\right) \text { and } \Omega^{\prime} \subseteq \Omega \text { and }(m, \delta) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket
$$

we get $\left(m, \gamma e_{2}\right) \in \llbracket \operatorname{list}[\sigma n] \sigma A \rrbracket_{\varepsilon}^{\sigma k_{2}, \sigma t_{2}}$.
Unrolling its definition with $\sigma t_{2}<m$, we get
d) $\gamma e_{2} \Downarrow^{c_{2}} v_{2}$
e) $c_{2} \leq \sigma t_{2}$
f) $\left(m-c_{2}, v_{2}\right) \in \llbracket \operatorname{list}[\sigma n] \sigma A \rrbracket_{v}$

Now, we can conclude as follows:

1. Using a) and d), we get
2. Using b) and e), we get $\left(c_{1}+c_{2}\right) \leq \sigma t_{1}+\sigma t_{2}$
3. By downward closure (Lemma 4) on c) using

$$
m-\left(c_{1}+c_{2}\right) \leq m-c_{1}
$$

we get $\left(m-\left(c_{1}+c_{2}\right), v_{1}\right) \in \llbracket \sigma A \rrbracket_{v}$.
By downward closure (Lemma 4) on f) using

$$
m-\left(c_{1}+c_{2}\right) \leq m-c_{2}
$$

we get $\left(m-\left(c_{1}+c_{2}\right), v_{2}\right) \in \llbracket$ list $[\sigma n] \sigma A \rrbracket_{v}$.
By combining these two statements, we can conclude as $\left(m-\left(c_{1}+c_{2}\right), \operatorname{cons}\left(v_{1}, v_{2}\right)\right) \in$ $\llbracket \operatorname{list}[\sigma n+1] \sigma A \rrbracket_{v}$

- Assume that $\frac{\gamma e_{1} \Downarrow^{c_{1}} v_{1}(\star) \quad \gamma e_{2} \Downarrow^{c_{2}} v_{2}(\diamond)}{\operatorname{cons}\left(\gamma e_{1}, \gamma e_{2}\right) \Downarrow^{c_{1}+c_{2}} \operatorname{cons}\left(v_{1}, v_{2}\right)}$ cons and $c_{1}+c_{2}<m$.

By IH 2 on the first premise using

$$
\mathrm{FV}\left(e_{1}\right) \subseteq \operatorname{dom}\left(\Omega^{\prime}\right) \text { and } \Omega^{\prime} \subseteq \Omega \text { and }(m, \delta) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket
$$

we get $\left(m, \gamma e_{1}\right) \in \llbracket \sigma A \rrbracket_{\varepsilon}^{\sigma k_{1}, \sigma t_{1}}$. Unrolling its definition with (\star) and $c_{1}<m$, we get
a) $\sigma k_{1} \leq c_{1}$
b) $\left(m-c_{1}, v_{1}\right) \in \llbracket \sigma A \rrbracket_{v}$

By IH 2 on the second premise using

$$
\mathrm{FV}\left(e_{2}\right) \subseteq \operatorname{dom}\left(\Omega^{\prime}\right) \text { and } \Omega^{\prime} \subseteq \Omega \text { and }(m, \delta) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket
$$

we get $\left(m, \gamma e_{2}\right) \in \llbracket \operatorname{list}[\sigma n] \sigma A \rrbracket_{\varepsilon}^{\sigma k_{2}, \sigma t_{2}}$.
Unrolling its definition with (\diamond) and $c_{2}<m$, we get
c) $\sigma k_{2} \leq c_{2}$
d) $\left(m-c_{2}, v_{2}\right) \in \llbracket$ list $[\sigma n] \sigma A \rrbracket_{v}$

Now, we can conclude as follows:

1. Using a) and c), we get $\sigma k_{1}+\sigma k_{2} \leq\left(c_{1}+c_{2}\right)$
2. By downward closure (Lemma 4) on b) using

$$
m-\left(c_{1}+c_{2}\right) \leq m-c_{1}
$$

we get $\left(m-\left(c_{1}+c_{2}\right), v_{1}\right) \in \llbracket \sigma A \rrbracket_{v}$.
By downward closure (Lemma 4) on d) using

$$
m-\left(c_{1}+c_{2}\right) \leq m-c_{2}
$$

we get $\left(m-\left(c_{1}+c_{2}\right), v_{2}\right) \in \llbracket \operatorname{list}[\sigma n] \sigma A \rrbracket{ }_{v}$.
By combining these two statements, we can conclude as $\left(m-\left(c_{1}+c_{2}\right), \operatorname{cons}\left(v_{1}, v_{2}\right)\right) \in$ \llbracket list $[\sigma n+1] \sigma A \rrbracket_{v}$

Assume that $\models \sigma \Phi$ and there exists Ω^{\prime} s.t. $\mathrm{FV}(\mathrm{fix} f(x)) \subseteq \operatorname{dom}\left(\Omega^{\prime}\right)$ and $\Omega^{\prime} \subseteq \Omega$ and $(m, \delta) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket$ TS: $(m$, fix $f(x) \cdot \gamma e) \in \llbracket \sigma A_{1} \xrightarrow{\operatorname{exec}(\sigma k, \sigma t)} \sigma A_{2} \rrbracket_{\varepsilon}^{0,0}$.
By Lemma 2, STS: $(m$, fix $f(x) \cdot \gamma e) \in \llbracket \sigma A_{1} \xrightarrow{\operatorname{exec}(\sigma k, \sigma t)} \sigma A_{2} \rrbracket_{v}$.
We prove the more general statement

$$
\forall m^{\prime} \leq m \cdot\left(m^{\prime}, \operatorname{fix} f(x) \cdot \gamma e\right) \in \llbracket \sigma A_{1} \xrightarrow{\operatorname{exec}(\sigma k, \sigma t)} \sigma A_{2} \rrbracket_{v}
$$

by subinduction on m^{\prime}.
There are two cases:
subcase 1: $m^{\prime}=0$
Since there is no non-negative j such that $j<0$, the goal is vacuously true.
subcase 2: $m^{\prime}=m^{\prime \prime}+1 \leq m$
By sub-IH

$$
\begin{equation*}
\left(m^{\prime \prime}, \text { fix } f(x) \cdot \gamma e\right) \in \llbracket \sigma A_{1} \xrightarrow{\operatorname{exec}(\sigma k, \sigma t)} \sigma A_{2} \rrbracket_{v} \tag{1}
\end{equation*}
$$

STS: $\left(m^{\prime \prime}+1\right.$, fix $\left.f(x) \cdot \gamma e\right) \in \llbracket \sigma A_{1} \xrightarrow{\operatorname{exec}(\sigma k, t)} \sigma A_{2} \rrbracket_{v}$.
Pick $j<m^{\prime \prime}+1$ and assume that $(j, v) \in \llbracket \sigma A_{1} \rrbracket_{v}$.
STS: $(j, \gamma e[v / x,($ fix $f(x) \cdot \gamma e) / f\rceil) \in \llbracket \sigma A_{2} \rrbracket_{\varepsilon}^{\sigma k, \sigma t}$.
This follows by IH on the premise instantiated with

- $\mathrm{FV}(e) \subseteq \operatorname{dom}\left(x: A_{1}, f: A_{1} \xrightarrow{\operatorname{exec}(k, t)} A_{2}, \Omega^{\prime}\right)$ and $x: A_{1}, f: A_{1} \xrightarrow{\operatorname{exec}(k, t)} A_{2}, \Omega^{\prime} \subseteq$ $x: A_{1}, f: A_{1} \xrightarrow{\operatorname{exec}(k, t)} A_{2}, \Omega$
- $\left(j, \gamma[x \mapsto v, f \mapsto(\right.$ fix $f(x) \cdot \gamma e) \rrbracket) \in \mathcal{G} \llbracket \sigma \Omega^{\prime}, x: \sigma A_{1}, f: \sigma A_{1} \xrightarrow{\operatorname{exec}(\sigma k, \sigma t)} \sigma A_{2} \rrbracket$ which holds because
- $(j, \gamma) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket$ obtained by downward closure (Lemma 4) on $(m, \gamma) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket$ using $j<m^{\prime \prime}+1 \leq m$.
$-(j, v) \in \llbracket \sigma A_{1} \rrbracket_{v}$, from the assumption above
$-(j$, fix $f(x) \cdot \gamma e) \in \llbracket \sigma A_{1} \xrightarrow{\operatorname{exec}(\sigma k, \sigma t)} \sigma A_{2} \rrbracket_{v}$, obtained by downward closure (Lemma 4) on (1) using $j \leq m^{\prime \prime}$

Case $\frac{\Delta ; \Phi ; \Omega \vdash_{k_{1}}^{t_{1}} e_{1}: A_{1} \xrightarrow{\operatorname{exec}(k, t)} A_{2} \quad \Delta ; \Phi ; \Omega \vdash_{k_{2}}^{t_{2}} e_{2}: A_{1}}{\Delta ; \Phi ; \Omega \vdash_{k_{1}+k_{2}+k+c_{\text {app }}}^{t_{1}+t_{2}+t+c_{a p p}} e_{1} e_{2}: A_{2}}$ app
Assume that $\models \sigma \Phi$ and there exists Ω^{\prime} s.t. $\mathrm{FV}\left(e_{1} e_{2}\right) \subseteq \operatorname{dom}\left(\Omega^{\prime}\right)$ and $\Omega^{\prime} \subseteq \Omega$ and $(m, \delta) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket$
TS: $\left(m, \gamma e_{1} \gamma e_{2}\right) \in \llbracket \sigma A_{2} \rrbracket_{\varepsilon}^{\sigma k_{1}+\sigma k_{2}+\sigma k+c_{a p p}, \sigma t_{1}+\sigma t_{2}+\sigma t+c_{a p p}}$.
Following the definition of $\llbracket \prod_{\varepsilon}^{\cdots}$, there are two cases:

- Assume that $\sigma t_{1}+\sigma t_{2}+\sigma t+c_{a p p}<m$.

By IH 2 on the first premise using

$$
\mathrm{FV}\left(e_{1}\right) \subseteq \operatorname{dom}\left(\Omega^{\prime}\right) \text { and } \Omega^{\prime} \subseteq \Omega \text { and }(m, \delta) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket
$$

we get $\left(m, \gamma e_{1}\right) \in \llbracket \sigma A_{1} \xrightarrow{\operatorname{exec}(\sigma k, \sigma t)} \sigma A_{2} \rrbracket_{\varepsilon}^{\sigma k_{1}, \sigma t_{1}}$.
Unrolling its definition with $\sigma t_{1}<m$, we get
a) $\gamma e_{1} \Downarrow^{c_{1}}$ fix $f(x) . e$
b) $c_{1} \leq \sigma t_{1}$
c) $\left(m-c_{1}\right.$, fix $\left.f(x) . e\right) \in \llbracket \sigma A_{1} \xrightarrow{\operatorname{exec}(\sigma k, \sigma t)} \sigma A_{2} \rrbracket_{v}$

By IH 2 on the second premise using

$$
\mathrm{FV}\left(e_{2}\right) \subseteq \operatorname{dom}\left(\Omega^{\prime}\right) \text { and } \Omega^{\prime} \subseteq \Omega \text { and }(m, \delta) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket
$$

we get $\left(m, \gamma e_{2}\right) \in \llbracket \sigma A_{1} \rrbracket_{\varepsilon}^{\sigma k_{2}, \sigma t_{2}}$. Unrolling its definition with $\sigma t_{2}<m$, we get
d) $\gamma e_{2} \Downarrow^{c_{2}} v_{2}$
e) $c_{2} \leq \sigma t_{2}$
f) $\left(m-c_{2}, v_{2}\right) \in \llbracket \sigma A_{1} \rrbracket_{v}$

By downward closure (Lemma 4) on f) using $m-c_{1}-c_{2}-c_{a p p} \leq m-c_{2}$, we get

$$
\begin{equation*}
\left(m-\left(c_{1}+c_{2}+c_{a p p}\right), v_{2}\right) \in \llbracket \sigma A_{1} \rrbracket_{v} \tag{1}
\end{equation*}
$$

Next, we unroll c) with (1) using $m-\left(c_{1}+c_{2}+c_{\text {app }}\right)<m-c_{1}$ to obtain

$$
\begin{equation*}
\left(m-\left(c_{1}+c_{2}+c_{a p p}\right), e\left[v_{2} / x,(\operatorname{fix} f(x) . e)\right]\right) \in \llbracket \sigma A_{2} \rrbracket_{\varepsilon}^{\sigma k, \sigma t} \tag{2}
\end{equation*}
$$

To unroll first part of (2)'s definition, we need to show that $\sigma t<m-\left(c_{1}+c_{2}+c_{\text {app }}\right)$ or $\sigma t+\left(c_{1}+c_{2}+c_{\text {app }}\right)<m$.
By b) and e), we know that

$$
\begin{equation*}
c_{1}+c_{2} \leq \sigma t_{1}+\sigma t_{2} \tag{3}
\end{equation*}
$$

By adding $\sigma t+c_{\text {app }}$ to the both sides of (3), we have

$$
\begin{equation*}
c_{1}+c_{2}+\sigma t+c_{a p p} \leq \sigma t_{1}+\sigma t_{2}+\sigma t+c_{a p p} \tag{4}
\end{equation*}
$$

By the main assumption, we know that $\sigma t_{1}+\sigma t_{2}+\sigma t+c_{a p p}<m$.
Therefore, we know that $c_{1}+c_{2}+\sigma t+c_{a p p}<m$. Now, by unfolding we get
g) $e\left[v_{2} / x,(\right.$ fix $\left.f(x) . e)\right] \Downarrow^{c_{r}} v_{r}$
h) $c_{r} \leq \sigma t$
i) $\left(m-\left(c_{1}+c_{2}+c_{r}+c_{a p p}\right), v_{r}\right) \in \llbracket \sigma A_{2} \rrbracket_{v}$

Now, we can conclude as follows:

1. Using a), d) and g), we get
2. Using b), e) and h), we get $\left(c_{1}+c_{2}+c_{r}+c_{a p p}\right) \leq \sigma t_{1}+\sigma t_{2}+\sigma t+c_{a p p}$
3. By i)

- Assume that
$\frac{\gamma e_{1} \Downarrow^{c_{1}} \text { fix } f(x) . e(\star) \quad \gamma e_{2} \Downarrow^{c_{2}} v_{2}(\diamond) \quad e\left[v_{2} / x,(\text { fix } f(x) . e) / f\right] \Downarrow^{c_{r}} v_{r} \quad(\dagger)}{\gamma e_{1} \gamma e_{2} \Downarrow^{c_{1}+c_{2}+c_{r}+c_{a p p}} v_{r}}$ app and $c_{1}+c_{2}+c_{r}+c_{a p p}<m$.
By IH 2 on the first premise using

$$
\mathrm{FV}\left(e_{1}\right) \subseteq \operatorname{dom}\left(\Omega^{\prime}\right) \text { and } \Omega^{\prime} \subseteq \Omega \text { and }(m, \delta) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket
$$

we get $\left(m, \gamma e_{1}\right) \in \llbracket \sigma A_{1} \xrightarrow{\operatorname{exec}(\sigma k, \sigma t)} \sigma A_{2} \rrbracket_{\varepsilon}^{\sigma k_{1}, \sigma t_{1}}$.
Unrolling its definition with (\star) and $c_{1}<m$, we get
a) $\sigma k_{1} \leq c_{1}$
b) $\left(m-c_{1}\right.$, fix $\left.f(x) . e\right) \in \llbracket \sigma A_{1} \xrightarrow{\operatorname{exec}(\sigma k, \sigma t)} \sigma A_{2} \rrbracket_{v}$

By IH 2 on the second premise using

$$
\mathrm{FV}\left(e_{2}\right) \subseteq \operatorname{dom}\left(\Omega^{\prime}\right) \text { and } \Omega^{\prime} \subseteq \Omega \text { and }(m, \delta) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket
$$

we get $\left(m, \gamma e_{2}\right) \in \llbracket \sigma A_{1} \rrbracket_{\varepsilon}^{\sigma k_{2}, \sigma t_{2}}$. Unrolling its definition with (\diamond) and $c_{2}<m$, we get
c) $\sigma k_{2} \leq c_{2}$
d) $\left(m-c_{2}, v_{2}\right) \in \llbracket \sigma A_{1} \rrbracket_{v}$

By downward closure (Lemma 4) on d) using $m-c_{1}-c_{2}-c_{a p p} \leq m-c_{2}$, we get

$$
\begin{equation*}
\left(m-\left(c_{1}+c_{2}+c_{a p p}\right), v_{2}\right) \in \llbracket \sigma A_{1} \rrbracket v \tag{5}
\end{equation*}
$$

Next, we unroll b) with (5) and $m-\left(c_{1}+c_{2}+c_{a p p}\right)<m-c_{1}$ to obtain

$$
\begin{equation*}
\left(m-\left(c_{1}+c_{2}+c_{a p p}\right), e\left[v_{2} / x,(\operatorname{fix} f(x) . e)\right]\right) \in \llbracket \sigma A_{2} \rrbracket_{\varepsilon}^{\sigma k, \sigma t} \tag{6}
\end{equation*}
$$

By unrolling second part of (6)'s definition using (\dagger) and $c_{r}<m-\left(c_{1}+c_{2}+c_{\text {app }}\right)$, we get
e) $\sigma k \leq c_{r}$
f) $\left(m-\left(c_{1}+c_{2}+c_{r}+c_{a p p}\right), v_{r}\right) \in \llbracket \sigma A_{2} \rrbracket_{v}$

Now, we can conclude as follows:

1. Using a), c) and e), we get $\sigma k_{1}+\sigma k_{2}+\sigma k+c_{a p p} \leq\left(c_{1}+c_{2}+c_{r}+c_{a p p}\right)$
2. By f)

Case $\frac{\Delta ; \Phi ; \Omega \vdash_{k}^{t} e: A_{1} \quad \Delta ; \Phi \vdash^{\mathrm{A}} A_{2} \mathrm{wf}}{\Delta ; \Phi ; \Omega \vdash_{k}^{t} \mathrm{inl} e: A_{1}+A_{2}}$ inl
Assume that $\models \sigma \Phi$ and there exists Ω^{\prime} s.t. $\mathrm{FV}(\operatorname{inl} e) \subseteq \operatorname{dom}\left(\Omega^{\prime}\right)$ and $\Omega^{\prime} \subseteq \Omega$ and $(m, \delta) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket$ $\mathrm{TS}:(m, \operatorname{inl}(\gamma e)) \in \llbracket \sigma A_{1}+\sigma A_{2} \rrbracket_{\varepsilon}^{\sigma k, \sigma t}$.
Following the definition of $\llbracket \cdot \rrbracket_{\dot{\varepsilon}}^{\cdot}$, there are two cases:

- Assume that $\sigma t<m$.

By IH 2 on the first premise using

$$
\mathrm{FV}(e) \subseteq \operatorname{dom}\left(\Omega^{\prime}\right) \text { and } \Omega^{\prime} \subseteq \Omega \text { and }(m, \delta) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket
$$

we get $(m, \gamma e) \in \llbracket \sigma A \rrbracket_{\varepsilon}^{\sigma k, \sigma t}$. Unrolling the first part of its definition with $\sigma t<m$, we get
a) $\gamma e \Downarrow^{c} v$
b) $c \leq \sigma t$
c) $(m-c, v) \in \llbracket \sigma A \rrbracket_{v}$

We can conclude as follows:

1. By a),

$$
\frac{\gamma e \Downarrow^{c} v}{\operatorname{inl} \gamma e \Downarrow^{c} \operatorname{inl} v} \text { inl }
$$

2. By b), $c \leq \sigma t$
3. By c), we can show that $(m-c, \operatorname{inl} v) \in \llbracket \sigma A_{1}+\sigma A_{2} \rrbracket_{v}$

- Assume that $\frac{\gamma e \Downarrow^{c} v(\star)}{\operatorname{inl} \gamma e \Downarrow^{c} \operatorname{inl} v}$ inl and $c<m$.

By IH 2 on the first premise using

$$
\mathrm{FV}(e) \subseteq \operatorname{dom}\left(\Omega^{\prime}\right) \text { and } \Omega^{\prime} \subseteq \Omega \text { and }(m, \delta) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket
$$

we get $(m, \gamma e) \in \llbracket \sigma A \rrbracket_{\varepsilon}^{\sigma k, \sigma t}$. Unrolling the second part of its definition with (\star) and $c<m$, we get
a) $\sigma k \leq c$
b) $(m-c, v) \in \llbracket \sigma A \rrbracket_{v}$

We can conclude as follows:

1. By a), $\sigma k \leq c$
2. By b), we can show that $(m-c, \operatorname{inl} v) \in \llbracket \sigma A_{1}+\sigma A_{2} \rrbracket_{v}$

Case $\frac{\Delta ; \Phi ; \Omega \vdash_{k}^{t} e: A_{1}+A_{2} \quad \Delta ; \Phi ; x: A_{1}, \Omega \vdash_{k^{\prime}}^{t^{\prime}} e_{1}: A \quad \Delta ; \Phi ; y: A_{2}, \Omega \vdash_{k^{\prime}}^{t^{\prime}} e_{2}: A}{\Delta ; \Phi ; \Omega \vdash_{k+k^{\prime}+c_{c a s e}}^{t+t^{\prime}+c_{c a s e}} \operatorname{case}\left(e, x \cdot e_{1}, y . e_{2}\right): A}$ case
Assume that $\models \sigma \Phi$ and there exists Ω^{\prime} s.t. $\mathrm{FV}\left(\right.$ case $\left.\left(e, e_{1}, e_{2}\right)\right) \subseteq \operatorname{dom}\left(\Omega^{\prime}\right)$ and $\Omega^{\prime} \subseteq \Omega$ and $(m, \delta) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket$ TS: $\left(m\right.$, case $\left.\left(\gamma e, \gamma e_{1}, \gamma e_{2}\right)\right) \in \llbracket \sigma A \rrbracket_{\varepsilon}^{\sigma k, \sigma t+\sigma t^{\prime}+c_{\text {case }}}$.
Following the definition of $\llbracket \cdot \| \cdot \cdots$, there are two cases:

- Assume that $\sigma t+\sigma t^{\prime}+c_{\text {case }}<m$.

By IH 2 on the first premise using

$$
\mathrm{FV}(e) \subseteq \operatorname{dom}\left(\Omega^{\prime}\right) \text { and } \Omega^{\prime} \subseteq \Omega \text { and }(m, \delta) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket
$$

we get $(m, \gamma e) \in \llbracket \sigma A_{1}+\sigma A_{2} \rrbracket_{\varepsilon}^{\sigma k, \sigma t}$.
Unrolling the first part of its definition with $\sigma t<m$, there are two cases. We only show one, as the other is very similar. We have
a) $\gamma e \Downarrow^{c}$ inl v
b) $c \leq \sigma t$
c) $(m-c, \operatorname{inl} v) \in \llbracket \sigma A_{1}+\sigma A_{2} \rrbracket_{v}$

By IH 2 on the second premise using $\left(m-c-c_{\text {case }}, \gamma[x \mapsto v]\right) \in \mathcal{G} \llbracket \sigma \Omega^{\prime}, x: \sigma A_{1} \rrbracket$ obtained by
$-\mathrm{FV}\left(e_{1}\right) \subseteq \operatorname{dom}\left(x: A_{1}, \Omega^{\prime}\right)$ and $x: A_{1}, \Omega^{\prime} \subseteq x: A_{1}, \Omega$
$-\left(m-c-c_{\text {case }}, \gamma\right) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket$ by downward closure (Lemma 4) on $(m, \gamma) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket$ using $m-c-c_{\text {case }} \leq m$
$-\left(m-c-c_{c a s e}, v\right) \in \llbracket \sigma A_{1} \rrbracket_{v}$ by downward closure (Lemma 4) on c), and unfolding its definition
we get

$$
\begin{equation*}
\left(m-c-c_{\text {case }}, \gamma e_{1}[v / x]\right) \in \llbracket \sigma A \rrbracket_{\varepsilon}^{\sigma k^{\prime}, \sigma t^{\prime}} \tag{1}
\end{equation*}
$$

To unroll the first part of (1)'s definition, we need to show that $\sigma t^{\prime}<m-\left(c+c_{\text {case }}\right)$ or $\sigma t^{\prime}+\left(c+c_{\text {case }}\right)<m$.
By b), we know that

$$
\begin{equation*}
c \leq \sigma t \tag{2}
\end{equation*}
$$

By adding $\sigma t^{\prime}+c_{\text {case }}$ to both sides of (2), we have

$$
\begin{equation*}
c+\sigma t^{\prime}+c_{\text {case }} \leq \sigma t+\sigma t^{\prime}+c_{\text {case }} \tag{3}
\end{equation*}
$$

By the main assumption, we know that $\sigma t+\sigma t^{\prime}+c_{\text {case }}<m$.
Therefore, we know that $c+\sigma t^{\prime}+c_{\text {case }}<m$. Now, we can unroll to obtain
d) $\gamma e_{1}[v / x] \Downarrow^{c_{r}} v_{r}$
e) $c_{r} \leq \sigma t^{\prime}$
f) $\left(m-\left(c+c_{r}+c_{\text {case }}\right), v_{r}\right) \in \llbracket \sigma A \rrbracket v$

Now, we can conclude as follows

1. By a) and d), we get

$$
\frac{\gamma e \Downarrow^{c} \operatorname{inl} v \quad \gamma e_{1}[v / x] \Downarrow^{c_{r}} v_{r}}{\operatorname{case}\left(\gamma e, x \cdot \gamma e_{1}, y \cdot \gamma e_{2}\right) \Downarrow^{c+c_{r}+c_{\text {case }}} v_{r}} \text { case-inl }
$$

2. By b) and e) $\left(c+c_{r}+c_{\text {case }}\right) \leq \sigma t+\sigma t^{\prime}+c_{\text {case }}$
3. By f)

- Assume that
$\frac{\gamma e \Downarrow^{c} \operatorname{inl} v(\star) \quad \gamma e_{1}[v / x] \Downarrow^{c_{r}} v_{r}(\diamond)}{\text { case }\left(\gamma e, x \cdot \gamma e_{1}, y \cdot \gamma e_{2}\right) \Downarrow^{c+c_{r}+c_{\text {case }}} v_{r}}$ case-inl and $c+c_{r}+c_{\text {case }}<m$.
By IH 2 on the first premise using

$$
\mathrm{FV}(e) \subseteq \operatorname{dom}\left(\Omega^{\prime}\right) \text { and } \Omega^{\prime} \subseteq \Omega \text { and }(m, \delta) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket
$$

we get $(m, \gamma e) \in \llbracket \sigma A_{1}+\sigma A_{2} \rrbracket_{\varepsilon}^{\sigma k, \sigma t}$.
Unrolling second part of its definition with (\star) and $c<m$, we get
a) $\sigma t \leq c$
b) $(m-c, \operatorname{inl} v) \in \llbracket \sigma A_{1}+\sigma A_{2} \rrbracket_{v}$

By IH 2 on the second premise using $\left(m-c-c_{\text {case }}, \gamma[x \mapsto v]\right) \in \mathcal{G} \llbracket \sigma \Omega^{\prime}, x: \sigma A_{1} \rrbracket$ obtained by
$-\mathrm{FV}\left(e_{1}\right) \subseteq \operatorname{dom}\left(x: A_{1}, \Omega^{\prime}\right)$ and $x: A_{1}, \Omega^{\prime} \subseteq x: A_{1}, \Omega$
$\left.-\left(m-c-c_{\text {case }}\right), \gamma\right) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket$ by downward-closure (Lemma 4) on $(m, \gamma) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket$ using $m-c-c_{\text {case }} \leq m$
$-\left(m-c-c_{\text {case }}, v\right) \in \llbracket \sigma A_{1} \rrbracket_{v}$ by downward closure (Lemma 4) on c), and unfolding its definition
we get

$$
\begin{equation*}
\left(m-c-c_{\text {case }}, \gamma e_{1}[v / x]\right) \in \llbracket \sigma A \rrbracket_{\varepsilon}^{\sigma k^{\prime}, \sigma t^{\prime}} \tag{4}
\end{equation*}
$$

By unrolling second part of (4)'s definition using (\diamond) and $c_{r}<m-c-c_{c a s e}$, we get
c) $\sigma t^{\prime} \leq c_{r}$
d) $\left(m-\left(c+c_{r}+c_{\text {case }}\right), v_{r}\right) \in \llbracket \sigma A \rrbracket_{v}$

Now, we can conclude as follows

1. By a) and c) $\sigma k^{\prime}+\sigma t^{\prime}+c_{\text {case }} \leq\left(c+c_{r}+c_{\text {case }}\right)$
2. By d)

$$
\Delta ; \Phi ; \Omega \vdash_{k}^{t} e: \operatorname{list}[n] A
$$

Case $\frac{\Delta ; \Phi \wedge n=0 ; \Omega \vdash_{k^{\prime}}^{t^{\prime}} e_{1}: A^{\prime} \quad i, \Delta ; \Phi \wedge n=i+1 ; h: A, t l: \operatorname{list}[i] A, \Omega \vdash_{k^{\prime}}^{t^{\prime}} e_{2}: A^{\prime}}{\Delta ; \Phi ; \Omega \vdash_{k+k^{\prime}+c_{\text {caseL }}}^{t+t^{\prime}+c_{\text {case }}} \text { case } e \text { of nil } \rightarrow e_{1} \mid h:: t l \rightarrow e_{2}: A^{\prime}}$ caseL
Assume that $\vDash \sigma \Phi$ and there exists Ω^{\prime} s.t. $\mathrm{FV}\left(\right.$ case e of nil $\left.\rightarrow e_{1} \mid h:: t l \rightarrow e_{2}\right) \subseteq \operatorname{dom}\left(\Omega^{\prime}\right)$ and $\Omega^{\prime} \subseteq \Omega$ anc TS: $\left(m\right.$, case γe of nil $\left.\rightarrow \gamma e_{1} \mid h:: t l \rightarrow \gamma e_{2}\right) \in \llbracket \sigma A^{\prime} \rrbracket_{\varepsilon}^{\sigma k+\sigma k^{\prime}+c_{c a s e L}, \sigma t+\sigma t^{\prime}+c_{c a s e L}}$.
Following the definition of $\llbracket \cdot \| \cdot \cdots$, there are two parts to show:

- Assume that $\sigma t+\sigma t^{\prime}+c_{\text {case } L}<m$.

By IH 2 on the first premise using

$$
\mathrm{FV}(e) \subseteq \operatorname{dom}\left(\Omega^{\prime}\right) \text { and } \Omega^{\prime} \subseteq \Omega \text { and }(m, \delta) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket
$$

we get $(m, \gamma e) \in \llbracket \operatorname{list}[\sigma n] \sigma A \rrbracket_{\varepsilon}^{\sigma k, \sigma t}$. Unrolling its definition with $\sigma t<m$, we get
a) $\gamma e \Downarrow^{c} v$
b) $c \leq \sigma t$
c) $(m-c, v) \in \llbracket \operatorname{list}[\sigma n] \sigma A \rrbracket_{v}$

Depending on what γe evaluates to, there are two cases.
subcase 1: $\gamma e \Downarrow^{c}$ nil
By c), $\sigma n=0$ since $v=$ nil.
Then, we can instantiate IH 2 on the second premise using
$-\mathrm{FV}(e) \subseteq \operatorname{dom}\left(\Omega^{\prime}\right)$ and $\Omega^{\prime} \subseteq \Omega$ and $(m, \delta) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket$
$-\models \sigma \Phi \wedge \sigma n \doteq 0$ obtained by combining $\models \sigma \Phi$ with $\models \sigma n \doteq 0$
we get $\left(m, \gamma e_{1}\right) \in \llbracket \sigma A^{\prime} \rrbracket_{\varepsilon}^{\sigma k^{\prime}, \sigma t^{\prime}}$.
Unrolling its definition using $\sigma t^{\prime}<m$, we get
d) $\gamma e_{1} \Downarrow{ }^{c_{r}} v_{r}$
e) $c_{r} \leq \sigma t^{\prime}$
f) $\left(m-c_{r}, v_{r}\right) \in \llbracket \sigma A^{\prime} \rrbracket_{v}$

We conclude with

2. By b) and e), we get $c+c_{r}+c_{\text {caseL }} \leq \sigma t+\sigma t^{\prime}+c_{\text {caseL }}$
3. By downward closure (Lemma 4) on f) using

$$
m-\left(c+c_{r}+c_{\text {caseL }}\right) \leq m-c_{r}
$$

we get $\left(m-\left(c+c_{r}+c_{\text {caseL }}\right), v_{r}\right) \in \llbracket \sigma A^{\prime} \rrbracket_{v}$.
subcase 2: $\gamma e \Downarrow^{c} \operatorname{cons}\left(v_{1}, v_{2}\right)$
By c), $\sigma n=I+1$ and we have

$$
\begin{gather*}
\left(m-c, v_{1}\right) \in \llbracket \sigma A \rrbracket_{v} \tag{1}\\
\left(m-c, v_{2}\right) \in \llbracket \operatorname{list}[I] \sigma A \rrbracket_{v} \tag{2}
\end{gather*}
$$

Then, we can instantiate IH 2 on the third premise using
$-\mathrm{FV}\left(e_{2}\right) \subseteq \operatorname{dom}\left(h: A, t l: \operatorname{list}[i] A, \Omega^{\prime}\right)$ and $h: A, t l: \operatorname{list}[i] A, \Omega^{\prime} \subseteq h: A, t l:$ list $[i] A, \Omega$
$-\sigma[i \mapsto I] \in \mathcal{D} \llbracket i:: \mathbb{N}, \Delta \rrbracket$
$-\models \sigma[i \mapsto I](\Phi \wedge n \doteq i+1)$ obtained by combining $\models \sigma \Phi$ with $\models \sigma n \doteq I+1$,
$-\left(m-c, \gamma\left[h \mapsto v_{1}, t l \mapsto v_{2}\right]\right) \in \mathcal{G} \llbracket \sigma[i \mapsto I]\left(\Omega^{\prime}, x: A, t l: \operatorname{list}[i] A\right) \rrbracket u s i n g$ (1) and (2) and $(m-c, \gamma) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket$ (obtained by downward closure (Lemma 4)).
we get $\left(m-c, \gamma e_{2}\left[v_{1} / h, v_{2} / t l\right]\right) \in \llbracket \sigma[i \mapsto I] A \rrbracket_{\varepsilon}^{\sigma[i \mapsto I] k^{\prime}, \sigma[i \mapsto I] t^{\prime}}$.
Since, $i \notin F V\left(k^{\prime}, t^{\prime}, A, A^{\prime}\right)$, we have $\left.\left(m-c, \gamma e_{2}\left[v_{1} / h, v_{2} / t\right\rfloor\right]\right) \in \llbracket \sigma A^{\prime} \rrbracket_{\varepsilon}^{\sigma k^{\prime}, \sigma t^{\prime}}$.
To unroll its definition, we need to show that $\sigma t^{\prime}<m-c$ or $c+\sigma t^{\prime}<m$.
By b), we know that

$$
\begin{equation*}
c \leq \sigma t \tag{3}
\end{equation*}
$$

By adding σt^{\prime} to both sides of (3), we have

$$
\begin{equation*}
c+\sigma t^{\prime} \leq \sigma t+\sigma t^{\prime} \tag{4}
\end{equation*}
$$

By the main assumption, we know that $\sigma t+\sigma t^{\prime}+c_{\text {case }}<m$.
Therefore, we know that $c+\sigma t^{\prime} \leq \sigma t+\sigma t^{\prime}<\sigma t+\sigma t^{\prime}+c_{\text {caseL }}<m$. Now, we can unroll to obtain
g) $\gamma e_{1}\left[v_{1} / h, v_{2} / t l\right] \Downarrow^{c_{r}} v_{r}$
h) $c_{r} \leq \sigma t^{\prime}$
i) $\left(m-c-c_{r}, v_{r}\right) \in \llbracket \sigma A^{\prime} \rrbracket_{v}$

We conclude with

1. By a) and g), we get $\frac{\gamma e \Downarrow^{c} \operatorname{cons}\left(v_{1}, v_{2}\right) \quad \gamma e_{2}\left[v_{1} / h, v_{2} / t l\right] \Downarrow^{c_{r}} v_{r}}{\text { case } \gamma e \text { of nil } \rightarrow \gamma e_{1} \mid h:: t l \rightarrow \gamma e_{2} \Downarrow^{c+c_{r}+c_{\text {caseL }}} v_{r}}$ caseL-cons
2. By b) and h), we get $c+c_{r}+c_{\text {caseL }} \leq \sigma t+\sigma t^{\prime}+c_{\text {case } L}$
3. By downward closure (Lemma 4) on i) using

$$
m-c-c_{r}-c_{\text {caseL }} \leq m-c-c_{r}
$$

we get $\left(m-\left(c+c_{r}+c_{\text {caseL }}\right), v_{r}\right) \in \llbracket \sigma A^{\prime} \rrbracket v$.

- Assume that case γe of nil $\rightarrow \gamma e_{1} \mid h:: t l \rightarrow \gamma e_{2} \Downarrow^{C} v_{r}$ and $C<m$.

Depending on what γe evaluates to, there are two cases.
subcase 1: $\frac{\gamma e \Downarrow^{c} \text { nil }(\star) \quad \gamma e_{1} \Downarrow^{c_{r}} v_{r}(\diamond)}{\text { case } \gamma e \text { of nil } \rightarrow \gamma e_{1} \mid h:: t l \rightarrow \gamma e_{2} \Downarrow^{c+c_{r}+c_{c a s e L}} v_{r}}$ caseL-nil
By IH 2 on the first premise using

$$
\mathrm{FV}(e) \subseteq \operatorname{dom}\left(\Omega^{\prime}\right) \text { and } \Omega^{\prime} \subseteq \Omega \text { and }(m, \delta) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket
$$

we get $(m, \gamma e) \in \llbracket \operatorname{list}[\sigma n] \sigma A \rrbracket_{\varepsilon}^{\sigma k, \sigma t}$. Unrolling its definition with (\star) and $c<m$, we get
a) $\sigma k \leq c$
b) $(m-c$, nil $) \in \llbracket \operatorname{list}[\sigma n] \sigma A \rrbracket_{v}$

By b), $\sigma n=0$ since $v=$ nil.
Then, we can instantiate IH 2 on the second premise using
$-\mathrm{FV}\left(e_{1}\right) \subseteq \operatorname{dom}\left(\Omega^{\prime}\right)$ and $\Omega^{\prime} \subseteq \Omega$ and $(m, \delta) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket$
$-\models \sigma \Phi \wedge \sigma n \doteq 0$ obtained by combining $\models \sigma \Phi$ with $\models \sigma n \doteq 0$
we get $\left(m, \gamma e_{1}\right) \in \llbracket \sigma A^{\prime} \rrbracket_{\varepsilon}^{\sigma k^{\prime}, \sigma t^{\prime}}$.
Unrolling its definition using (\diamond) and $c_{r}<m$, we get
c) $\sigma k^{\prime} \leq c_{r}$
d) $\left(m-c_{r}, v_{r}\right) \in \llbracket \sigma A^{\prime} \rrbracket_{v}$

We conclude with

1. By a) and c), we get $\sigma k+\sigma k^{\prime}+c_{\text {case } L} \leq c+c_{r}+c_{\text {caseL }}$
2. By downward closure (Lemma 4) on d) using

$$
m-c-c_{r}-c_{c a s e L} \leq m-c-c_{r}
$$

we get $\left(m-\left(c+c_{r}+c_{\text {caseL }}\right), v_{r}\right) \in \llbracket \sigma A^{\prime} \rrbracket_{v}$.
subcase 2: $\frac{\gamma e \Downarrow^{c} \operatorname{cons}\left(v_{1}, v_{2}\right)(\star) \quad \gamma e_{2}\left[v_{1} / h, v_{2} / t l\right] \Downarrow^{c_{r}} v_{r}(\diamond \diamond)}{\text { case } \gamma e \text { of nil } \rightarrow \gamma e_{1} \mid h:: t l \rightarrow \gamma e_{2} \Downarrow^{c+c_{r}+c_{\text {caseL }}} v_{r}}$ caseL-cons
By IH 2 on the first premise, we get $(m, \gamma e) \in \llbracket \operatorname{list}[\sigma n] \sigma A \rrbracket_{\varepsilon}^{\sigma k, \sigma t}$. Unrolling its definition with (\star) and $c<m$, we get
a) $\sigma t \leq c$
b) $\left(m-c, \operatorname{cons}\left(v_{1}, v_{2}\right)\right) \in \llbracket \operatorname{list}[\sigma n] \sigma A \rrbracket_{v}$

By b), $\sigma n=I+1$ for some I and we have

$$
\begin{equation*}
\left(m-c, v_{1}\right) \in \llbracket \sigma A \rrbracket_{v} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\left(m-c, v_{2}\right) \in \llbracket \operatorname{list}[I] \sigma A \rrbracket_{v} \tag{6}
\end{equation*}
$$

Then, we can instantiate IH 2 on the third premise using
$-\mathrm{FV}\left(e_{2}\right) \subseteq \operatorname{dom}\left(h: A, t l: \operatorname{list}[i] A, \Omega^{\prime}\right)$ and $h: A, t l: \operatorname{list}[i] A, \Omega^{\prime} \subseteq h: A, t l:$ list $[i] A, \Omega$
$-\sigma[i \mapsto I] \in \mathcal{D} \llbracket i:: \mathbb{N}, \Delta \rrbracket$
$-\models \sigma[i \mapsto I](\Phi \wedge n \doteq i+1)$ obtained by combining $\models \sigma \Phi$ with $\models \sigma n \doteq I+1$,
$-\left(m-c, \gamma\left[h \mapsto v_{1}, t l \mapsto v_{2}\right]\right) \in \mathcal{G} \llbracket \sigma[i \mapsto I]\left(\Omega^{\prime}, x: A, t l: \operatorname{list}[i] A\right) \rrbracket$ using (5) and (6) and $(m-c, \gamma) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket$ (obtained by downward closure (Lemma 4)).
we get $\left(m, \gamma e_{2}\left[v_{1} / h, v_{2} / t l\right]\right) \in \llbracket \sigma[i \mapsto I] A \rrbracket_{\varepsilon}^{\sigma[i \mapsto I] k^{\prime}, \sigma[i \mapsto I] t^{\prime}}$.
Since, $i \notin F V\left(k^{\prime}, t^{\prime}, A, A^{\prime}\right)$, we have $\left(m, \gamma e_{2}\left[v_{1} / h, v_{2} / t l\right]\right) \in \llbracket \sigma A^{\prime} \rrbracket_{\varepsilon}^{\sigma k^{\prime}, \sigma t^{\prime}}$.
Unrolling its definition using $(\diamond \diamond)$ and $c_{r}<m-c$, we get
c) $\sigma t^{\prime} \leq c_{r}$
d) $\left(m-c-c_{r}, v_{r}\right) \in \llbracket \sigma A^{\prime} \rrbracket_{v}$

We conclude with

1. By a) and c), we get $\sigma k+\sigma k^{\prime}+c_{\text {caseL }} \leq c+c_{r}+c_{\text {caseL }}$
2. By downward closure (Lemma 4) on d) using

$$
m-c-c_{r}-c_{c a s e L} \leq m-c-c_{r}
$$

we get $\left(m-\left(c+c_{r}+c_{c a s e L}\right), v_{r}\right) \in \llbracket \sigma A^{\prime} \rrbracket_{v}$.
Case $\frac{\Delta ; \Phi ; \Omega \vdash_{k}^{t} e: A\{I / i\} \quad \Delta \vdash I:: S}{\Delta ; \Phi ; \Omega \vdash_{k}^{t} \text { pack } e: \exists i:: S . A}$ pack
Assume that $\models \sigma \Phi$ and there exists Ω^{\prime} s.t. $\mathrm{FV}(\operatorname{pack} e) \subseteq \operatorname{dom}\left(\Omega^{\prime}\right)$ and $\Omega^{\prime} \subseteq \Omega$ and $(m, \delta) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket$
TS: $(m$, pack $\gamma e) \in \llbracket \exists i:: S . A \rrbracket_{\varepsilon}^{\sigma k, \sigma t}$.
Following the definition of $\llbracket \cdot \| \cdot \vec{\varepsilon}$, there are two parts to show:

- Assume that $\sigma t<m$.

By IH 2 on the first premise using

$$
\mathrm{FV}(e) \subseteq \operatorname{dom}\left(\Omega^{\prime}\right) \text { and } \Omega^{\prime} \subseteq \Omega \text { and }(m, \delta) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket
$$

we get $(m, \gamma e) \in \llbracket \sigma A\{\sigma I / i\} \rrbracket_{\varepsilon}^{\sigma k, \sigma t}$.
Unrolling its definition with $\sigma t<m$, we get
a) $\gamma e \Downarrow^{c} v$
b) $c \leq \sigma t$
c) $(m-c, v) \in \llbracket \sigma A\{\sigma I / i\} \rrbracket_{v}$

Then we can conclude as follows:

1. By a), we get $\frac{\gamma e \Downarrow^{c} v}{\text { pack } \gamma e \Downarrow^{c} \text { pack } v}$ pack
2. By b), $c \leq \sigma t$
3. TS: $(m-c, \operatorname{pack} v) \in \llbracket \exists i:: S . A \rrbracket_{v}$.

By Lemma 6 on the second premise we know that $\vdash \sigma I:: S$.
STS: $(m-c, v) \in \llbracket \sigma A\{\sigma I / i\} \rrbracket_{v}$.
This follows by c).

- Assume that
$\frac{\gamma e \Downarrow^{c} v(\star)}{\text { pack } \gamma e \Downarrow^{c} \text { pack } v}$ pack and $c<m$.
By IH 2 on the first premise using

$$
\mathrm{FV}(e) \subseteq \operatorname{dom}\left(\Omega^{\prime}\right) \text { and } \Omega^{\prime} \subseteq \Omega \text { and }(m, \delta) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket
$$

we get $(m, \gamma e) \in \llbracket \sigma A\{\sigma I / i\} \rrbracket_{\varepsilon}^{\sigma k, \sigma t}$.
Unrolling its definition with (\star) and $c<m$, we get
a) $\sigma k \leq c$
b) $(m-c, v) \in \llbracket \sigma A\{\sigma I / i\} \rrbracket_{v}$

Then we can conclude as follows:

1. By a), $\sigma k \leq c$
2. TS: $(m-c$, pack $v) \in \llbracket \exists i:: S . A \rrbracket_{v}$.

By Lemma 6 on the second premise we know that $\vdash \sigma I:: S$.
STS: $(m-c, v) \in \llbracket \sigma A\{\sigma I / i\} \rrbracket_{v}$.
This follows by b).
Case $\frac{\Delta ; \Phi ; \Omega \vdash_{k_{1}}^{t_{1}} e_{1}: A_{1} \quad \Delta ; \Phi ; x: A_{1}, \Omega \vdash_{k_{2}}^{t_{2}} e_{2}: A_{2}}{\Delta ; \Phi ; \Omega \vdash_{k_{1}+k_{2}+C_{\text {let }}}^{t_{1}+t_{2}+c_{l e t}} \text { let } x=e_{1} \text { in } e_{2}: A_{2}}$ let
Assume that $\models \sigma \Phi$ and there exists Ω^{\prime} s.t. $\mathrm{FV}\left(\right.$ let $x=e_{1}$ in $\left.e_{2}\right) \subseteq \operatorname{dom}\left(\Omega^{\prime}\right)$ and $\Omega^{\prime} \subseteq \Omega$ and $(m, \delta) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket$
TS: $\left(m\right.$, let $x=\gamma e_{1}$ in $\left.\gamma e_{2}\right) \in \llbracket \sigma A_{2} \rrbracket_{\varepsilon}^{\sigma k_{1}+\sigma k_{2}+c_{l e t}, \sigma t_{1}+\sigma t_{2}+c_{l e t}}$.
Following the definition of $\llbracket \cdot \| \frac{\square}{\varepsilon}$, there are two parts to show

- Assume that $\sigma t_{1}+\sigma t_{2}+c_{\text {let }}<m$.

By IH 2 on the first premise using

$$
\mathrm{FV}\left(e_{1}\right) \subseteq \operatorname{dom}\left(\Omega^{\prime}\right) \text { and } \Omega^{\prime} \subseteq \Omega \text { and }(m, \delta) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket
$$

we get $\left(m, \gamma e_{1}\right) \in \llbracket \sigma A_{1} \rrbracket_{\varepsilon}^{\sigma k_{1}, \sigma t_{1}}$. Unrolling its definition with $\sigma t_{1}<m$, we get
a) $\gamma e_{1} \Downarrow^{c_{1}} v_{1}$
b) $c_{1} \leq \sigma t_{1}$
c) $\left(m-c_{1}, v_{1}\right) \in \llbracket \sigma A_{1} \rrbracket_{v}$

By IH 2 on the second premise using $\left(m-c_{1}-c_{l e t}, \gamma[x \mapsto v]\right) \in \mathcal{G} \llbracket \sigma \Omega^{\prime}, x: \sigma A_{1} \rrbracket$ obtained by
$-\mathrm{FV}\left(e_{2}\right) \subseteq \operatorname{dom}\left(x: A_{1}, \Omega^{\prime}\right)$ and $x: A_{1}, \Omega^{\prime} \subseteq x: A_{1}, \Omega$

- $\left(m-c_{1}-c_{l e t}, \gamma\right) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket$ by downward closure (Lemma 4) on $(m, \gamma) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket$ using $m-c_{1}-c_{l e t} \leq m$
$-\left(m-c_{1}-c_{l e t}, v\right) \in \llbracket \sigma A_{1} \rrbracket_{v}$ by downward closure (Lemma 4) on c)
we get

$$
\begin{equation*}
\left(m-c_{1}-c_{l e t}, \gamma e_{1}[v / x]\right) \in \llbracket \sigma A_{2} \rrbracket_{\varepsilon}^{\sigma k_{2}, \sigma t_{2}} \tag{1}
\end{equation*}
$$

To unroll the first part of (1)'s definition, we need to show that $\sigma t_{2}<m-\left(c+c_{\text {let }}\right)$ or $\sigma t_{2}+\left(c+c_{l e t}\right)<m$.
By b), we know that

$$
\begin{equation*}
c \leq \sigma t_{1} \tag{2}
\end{equation*}
$$

By adding $\sigma t_{2}+c_{\text {let }}$ to both sides of (2), we have

$$
\begin{equation*}
c+\sigma t_{2}+c_{l e t} \leq \sigma t_{1}+\sigma t_{2}+c_{l e t} \tag{3}
\end{equation*}
$$

By the main assumption, we know that $\sigma t_{1}+\sigma t_{2}+c_{l e t}<m$.
Therefore, we know that $c+\sigma t_{2}+c_{l e t}<m$. Now, we can unroll to obtain
d) $\gamma e_{1}[v / x] \Downarrow^{c_{r}} v_{r}$
e) $c_{r} \leq \sigma t_{2}$
f) $\left(m-\left(c_{1}+c_{2}+c_{l e t}\right), v_{r}\right) \in \llbracket \sigma A \rrbracket_{v}$

Now, we can conclude as follows

1. By a) and d), we get

$$
\frac{\gamma e_{1} \Downarrow^{c_{1}} v_{1} \quad \gamma e_{2}\left[v_{1} / x\right] \Downarrow^{c_{r}} v_{r}}{\text { let } x=\gamma e_{1} \text { in } \gamma e_{2} \Downarrow^{c_{1}+c_{r}+c_{l e t}} v_{r}} \text { let }
$$

2. By b) and e) $\left(c_{1}+c_{r}+c_{\text {let }}\right) \leq \sigma t_{1}+\sigma t_{2}+c_{\text {let }}$
3. By f)

- Assume that $\frac{\gamma e_{1} \Downarrow^{c_{1}} v_{1}(\star) \quad \gamma e_{2}\left[v_{1} / x\right] \Downarrow^{c_{r}} v_{r}(\diamond)}{\text { let } x=\gamma e_{1} \text { in } \gamma e_{2} \Downarrow^{c_{1}+c_{r}+c_{l e t}} v_{r}}$ let and $c_{1}+c_{r}+c_{\text {let }}<m$.

By IH 2 on the first premise using

$$
\mathrm{FV}\left(e_{1}\right) \subseteq \operatorname{dom}\left(\Omega^{\prime}\right) \text { and } \Omega^{\prime} \subseteq \Omega \text { and }(m, \delta) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket
$$

we get $\left(m, \gamma e_{1}\right) \in \llbracket \sigma A_{1} \rrbracket_{\varepsilon}^{\sigma k_{1}, \sigma t_{1}}$. Unrolling its definition with (\star) and $c_{1}<m$, we get
a) $\sigma k_{1} \leq c_{1}$
b) $\left(m-c_{1}, v_{1}\right) \in \llbracket \sigma A_{1} \rrbracket_{v}$

By IH 2 on the second premise using $\left(m-c_{1}-c_{l e t}, \gamma[x \mapsto v]\right) \in \mathcal{G} \llbracket \sigma \Omega^{\prime}, x: \sigma A_{1} \rrbracket$ obtained by
$-\mathrm{FV}\left(e_{2}\right) \subseteq \operatorname{dom}\left(x: A_{1}, \Omega^{\prime}\right)$ and $x: A_{1}, \Omega^{\prime} \subseteq x: A_{1}, \Omega$
$-\left(m-c_{1}-c_{l e t}, \gamma\right) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket$ by downward closure (Lemma 4) on $(m, \gamma) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket$ using $m-c_{1}-c_{\text {let }} \leq m$
$-\left(m-c_{1}-c_{l e t}, v\right) \in \llbracket \sigma A_{1} \rrbracket v$ by downward closure (Lemma 4) on c)
we get

$$
\begin{equation*}
\left(m-c_{1}-c_{l e t}, \gamma e_{1}[v / x]\right) \in \llbracket \sigma A_{2} \rrbracket_{\varepsilon}^{\sigma k_{2}, \sigma t_{2}} \tag{4}
\end{equation*}
$$

Unrolling (4)'s definition using (\diamond) and $c_{r}<m-c_{1}-c_{l e t}$, we get
c) $\sigma k_{2} \leq c_{r}$
d) $\left(m-\left(c_{1}+c_{2}+c_{l e t}\right), v_{r}\right) \in \llbracket \sigma A \rrbracket_{v}$

Now, we can conclude as follows

1. By a) and c) $\sigma k_{1}+\sigma k_{2}+c_{l e t} \leq\left(c_{1}+c_{r}+c_{l e t}\right)$
2. By d)

Case $\frac{\Upsilon(\zeta)=A_{1} \xrightarrow{\operatorname{exec}(k, t)} A_{2} \quad \Delta ; \Phi ; \Omega \vdash_{k^{\prime}}^{t^{\prime}} e: A_{1}}{\Delta ; \Phi ; \Omega \vdash_{k+k^{\prime}+c_{a p p}}^{t+t^{\prime}+c_{a p p}} \zeta e: A_{2}}$ primapp
Assume that $\models \sigma \Phi$ and there exists Ω^{\prime} s.t. $\mathrm{FV}(\zeta e) \subseteq \operatorname{dom}\left(\Omega^{\prime}\right)$ and $\Omega^{\prime} \subseteq \Omega$ and $(m, \delta) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket$ TS: $(m, \zeta \gamma e) \in \llbracket \sigma A_{2} \rrbracket_{\varepsilon}^{\sigma k+\sigma k^{\prime}+c_{a p p}, \sigma t+\sigma t^{\prime}+c_{a p p} .}$
Following the definition of $\llbracket \cdot \| \frac{\square}{\varepsilon}$, there are two parts to show

- Assume that $\sigma t+\sigma t^{\prime}+c_{a p p}<m$.

By IH 2 on the second premise using

$$
\mathrm{FV}(e) \subseteq \operatorname{dom}\left(\Omega^{\prime}\right) \text { and } \Omega^{\prime} \subseteq \Omega \text { and }(m, \delta) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket
$$

we get $(m, \gamma e) \in \llbracket \sigma A_{1} \rrbracket_{\varepsilon}^{\sigma k^{\prime}, \sigma t^{\prime}}$. Unrolling its definition with $\sigma t^{\prime}<m$, we get
a) $\gamma e \Downarrow^{c} v$
b) $\sigma k^{\prime} \leq c \leq \sigma t^{\prime}$
c) $(m-c, v) \in \llbracket \sigma A_{1} \rrbracket_{v}$

Next, by Assumption (12) using $\zeta: \sigma A_{1} \xrightarrow{\operatorname{exec}(\sigma k, \sigma t)} \sigma A_{2}$ (obtained by substitution on the first premise) and c), we get
d) $\hat{\zeta}(v)=\left(c_{r}, v_{r}\right)$
e) $\sigma k \leq c_{r} \leq \sigma t$
f) $\left(m-c, v_{r}\right) \in \llbracket \sigma A_{2} \rrbracket_{v}$

Now, we can conclude as follows:

1. Using a) and d), we get $\frac{\gamma e \Downarrow^{c} v \quad \hat{\zeta}(v)=\left(c_{r}, v_{r}\right)}{\zeta \gamma e \Downarrow^{c+c_{r}+c_{a p p}} v_{r}}$ primapp
2. Using b) and e), we get $\sigma k+\sigma k^{\prime}+c_{a p p} \leq\left(c+c_{r}+c_{a p p}\right) \leq \sigma t+\sigma t^{\prime}+c_{a p p}$
3. By downward closure (Lemma 4) on f) using

$$
m-\left(c+c_{r}+c_{a p p}\right) \leq m-c
$$

we get $\left(m-\left(c+c_{r}+c_{a p p}\right), v_{r}\right) \in \llbracket \sigma A_{2} \rrbracket v$
Case $\frac{\Delta ; \Phi ; \Omega \vdash_{k}^{t} e: A \quad \Delta ; \Phi \models A \sqsubseteq A^{\prime} \quad \Delta ; \Phi \models k^{\prime} \leq k \quad \Delta ; \Phi \models t \leq t^{\prime}}{\Delta ; \Phi ; \Omega \vdash_{k^{\prime}}^{t^{\prime}} e: A^{\prime}} \sqsubseteq$ exec
Assume that $\models \sigma \Phi$ and there exists Ω^{\prime} s.t. $\mathrm{FV}(e) \subseteq \operatorname{dom}\left(\Omega^{\prime}\right)$ and $\Omega^{\prime} \subseteq \Omega$ and $(m, \delta) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket$ TS: $(m, \gamma e) \in \llbracket \sigma A^{\prime} \rrbracket_{\varepsilon}^{\sigma k^{\prime}, \sigma t^{\prime}}$.
Following the definition of $\llbracket \cdot \|_{\varepsilon}^{\prime}$, there are two parts to show
subcase 1: Assume that $\sigma t^{\prime}<m$.
By Assumption (13) on the fourth premise, we get

$$
\begin{equation*}
\sigma t \leq \sigma t^{\prime} \tag{1}
\end{equation*}
$$

By IH 2 on the first premise using

$$
\mathrm{FV}(e) \subseteq \operatorname{dom}\left(\Omega^{\prime}\right) \text { and } \Omega^{\prime} \subseteq \Omega \text { and }(m, \delta) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket
$$

we get $(m, \gamma e) \in \llbracket \sigma A \rrbracket_{\varepsilon}^{\sigma k^{\prime}, \sigma t^{\prime}}$. Unrolling its definition with $\sigma t \leq \sigma t^{\prime}<m$, we get
a) $\gamma e \Downarrow^{c} v$
b) $c \leq \sigma t$
c) $(m-c, v) \in \llbracket \sigma A \rrbracket_{v}$

We can conclude this subcase

1. By a)
2. By b) and (1), we get $c-c^{\prime} \leq \sigma t^{\prime}$
3. By Lemma 5 on the second premise using c), we get $(m-c, v) \in \llbracket \sigma A^{\prime} \rrbracket v$
subcase 2: Assume that
a) $\gamma e \Downarrow^{c} v$
b) $c<m$.

By IH 2 on the first premise using

$$
\mathrm{FV}(e) \subseteq \operatorname{dom}\left(\Omega^{\prime}\right) \text { and } \Omega^{\prime} \subseteq \Omega \text { and }(m, \delta) \in \mathcal{G} \llbracket \sigma \Omega^{\prime} \rrbracket
$$

we get $(m, \gamma e) \in \llbracket \sigma A \rrbracket_{\varepsilon}^{\sigma k^{\prime}, \sigma t^{\prime}}$. Unrolling its definition with a) and $c<m$, we get
c) $\sigma k \leq c$
d) $(m-c, v) \in \llbracket \sigma A \rrbracket_{v}$

We can conclude this subcase

1. By Assumption (13) on the third premise, we get $\sigma k^{\prime} \leq \sigma k$. By c) we know $\sigma k \leq c$, therefore we get $\sigma k^{\prime} \leq c$
2. By Lemma 5 on the second premise using c), we get $(m-c, v) \in \llbracket \sigma A^{\prime} \rrbracket_{v}$

Proof of Statement (3). Remember the statement (3) of Theorem 14:
Assume that $\Delta ; \Phi ; \Gamma \vdash e_{1} \ominus e_{2} \lesssim t: \tau$ and $\sigma \in \mathcal{D} \llbracket \Delta \rrbracket$ and $\models \sigma \Phi$. Then for $i \in\{1,2\}$, if there exists Γ_{i}^{\prime} s.t. $\mathrm{FV}\left(e_{i}\right) \subseteq \operatorname{dom}\left(\Gamma_{i}^{\prime}\right)$ and $\Gamma_{i}^{\prime} \subseteq \Gamma$ and $(m, \delta) \in \mathcal{G} \llbracket\left|\sigma \Gamma_{i}^{\prime}\right| i \rrbracket$, then $\left(m, \delta e_{i}\right) \in$ $\llbracket|\sigma \tau|_{i} \rrbracket_{\varepsilon}^{0, \infty}$.

For the structural rules, we will only show the left side since the right side is similar. For asynchronous rules, we first show the left side and then the right side in the same case.

Case $\frac{\Gamma(x)=\tau}{\Delta ; \Phi ; \Gamma \vdash x \ominus x \lesssim 0: \tau}$ r-var
Assume that $\models \sigma \Phi$ and there exists Γ^{\prime} s.t. $\mathrm{FV}(x) \subseteq \operatorname{dom}\left(\Gamma^{\prime}\right)$ and $\Gamma^{\prime} \subseteq \Gamma$ and $(m, \delta) \in \mathcal{G} \llbracket\left|\sigma \Gamma^{\prime}\right|_{1} \rrbracket$.
$\mathrm{TS}:(m, \delta(x)) \in \llbracket|\sigma \tau|_{1} \rrbracket_{\varepsilon}^{0, \infty}$.
By Lemma 2, STS: $(m, \delta(x)) \in \llbracket|\sigma \tau|_{1} \rrbracket_{v}$.
By $(m, \delta) \in \mathcal{G} \llbracket\left|\sigma \Gamma^{\prime}\right|_{1} \rrbracket$ and $x \in \operatorname{dom}\left(\Gamma^{\prime}\right)$, we can conclude that $(m, \delta(x)) \in \llbracket|\sigma \tau|_{1} \rrbracket_{v}$.
Case $\xrightarrow[{\Delta ; \Phi \vdash \tau_{1} \xrightarrow{\operatorname{diff}(t)} \tau_{2} \text { wf } \quad \Delta ; \Phi ; x: \tau_{1}, f: \tau_{1} \xrightarrow{\operatorname{diff}(t)} \tau_{2}, \Gamma \vdash e_{1} \ominus e_{2} \lesssim t: \tau_{2}}]{\Delta ; \Phi ; \Gamma \vdash \operatorname{fix} f(x) . e_{1} \ominus \text { fix } f(x) . e_{2} \lesssim 0: \tau_{1} \xrightarrow{\operatorname{diff}(t)} \tau_{2}}$ r-fix
Assume that $\models \sigma \Phi$ and there exists Γ^{\prime} s.t. $\mathrm{FV}($ fix $f(x) . e) \subseteq \operatorname{dom}\left(\Gamma^{\prime}\right)$ and $\Gamma^{\prime} \subseteq \Gamma$ and $(m, \delta) \in \mathcal{G} \llbracket\left|\sigma \Gamma^{\prime}\right|_{1} \rrbracket$.
TS: $\left.\left(m\right.$, fix $\left.f(x) \cdot \delta e_{1}\right) \in \llbracket\left|\sigma \tau_{1}\right|_{1} \xrightarrow{\operatorname{exec}(0, \infty)}\left|\sigma \tau_{2}\right|\right|_{1} \rrbracket_{\varepsilon}^{0, \infty}$.
By Lemma 2, STS: $\left(m\right.$, fix $\left.f(x) \cdot \delta e_{1}\right) \in \llbracket\left|\sigma \tau_{1}\right|_{1} \xrightarrow{\operatorname{exec}(0, \infty)}\left|\sigma \tau_{2}\right|_{1} \rrbracket_{v}$.
We prove the more general statement

$$
\forall m^{\prime} \leq m .\left(m^{\prime}, \text { fix } f(x) \cdot \delta e_{1}\right) \in \llbracket\left|\sigma \tau_{1}\right|_{1} \xrightarrow{\operatorname{exec}(0, \infty)}\left|\sigma \tau_{2}\right|_{1} \rrbracket_{v}
$$

by subinduction on m^{\prime}.
There are two cases:
subcase 1: $m^{\prime}=0$
Since there is no non-negative j such that $j<0$, the goal is vacuously true.
subcase 2: $m^{\prime}=m^{\prime \prime}+1 \leq m$
By sub-IH

$$
\begin{equation*}
\left(m^{\prime \prime}, \operatorname{fix} f(x) \cdot \delta e_{1}\right) \in \llbracket\left|\sigma \tau_{1}\right|_{1} \xrightarrow{\operatorname{exec}(0, \infty)}\left|\sigma \tau_{2}\right|_{1} \rrbracket_{v} \tag{1}
\end{equation*}
$$

STS: $\left(m^{\prime \prime}+1\right.$, fix $\left.f(x) \cdot \delta e_{1}\right) \in \llbracket\left|\sigma \tau_{1}\right|_{1} \xrightarrow{\operatorname{exec}(0, \infty)}\left|\sigma \tau_{2}\right|_{1} \rrbracket_{v}$.
Pick $j<m^{\prime \prime}+1$ and assume that $(j, v) \in \llbracket\left|\sigma \tau_{1}\right| 1 \rrbracket_{v}$.
STS: $\left.\left(j, \delta e_{1}\left[v / x,\left(\operatorname{fix} f(x) . \delta e_{1}\right) / f\right\rfloor\right) \in \llbracket\left|\sigma \tau_{2}\right|_{1}\right]_{\varepsilon}^{0, \infty}$.
This follows by IH 3 on the premise instantiated with

- $\left(j, \delta\left[x \mapsto v, f \mapsto\left(\operatorname{fix} f(x) . \delta e_{1}\right)\right]\right) \in \mathcal{G} \llbracket x:\left|\sigma \tau_{1}\right|_{1}, f:\left|\sigma \tau_{1}\right|_{1} \xrightarrow{\operatorname{exec}(0, \infty)}\left|\sigma \tau_{2}\right|_{1},|\sigma \Gamma|_{1} \rrbracket$ which holds because
$-\mathrm{FV}\left(e_{1}\right) \subseteq \operatorname{dom}\left(x: \tau_{1}, f: \tau_{1} \xrightarrow{\operatorname{diff}(t)} \tau_{2}\right), \Gamma^{\prime}$ and $x: \tau_{1}, f: \tau_{1} \xrightarrow{\operatorname{diff}(t)} \tau_{2}, \Gamma^{\prime} \subseteq x:$ $\tau_{1}, f: \tau_{1} \xrightarrow{\text { diff }(t)} \tau_{2}, \Gamma$
- $(j, \delta) \in \mathcal{G} \llbracket|\sigma \Gamma|_{1} \rrbracket$ using downward closure (Lemma 4) on $(m, \delta) \in \mathcal{G} \llbracket|\sigma \Gamma|_{1} \rrbracket$ using $j<m^{\prime \prime}+1 \leq m$.
$-(j, v) \in \llbracket\left|\sigma \tau_{1}\right|_{1} \rrbracket v$, from the assumption above
- $\left(j\right.$, fix $\left.f(x) \cdot \delta e_{1}\right) \in \llbracket\left|\sigma \tau_{1}\right|_{1} \xrightarrow{\operatorname{exec}(0, \infty)}\left|\sigma \tau_{2}\right|_{1} \rrbracket_{v}$, obtained by downward closure (Lemma 4) on (1) using $j \leq m^{\prime \prime}$

$$
\text { Case } \frac{\Delta ; \Phi ; \Gamma \vdash e_{1} \ominus e_{1}^{\prime} \lesssim t_{1}: \tau_{1} \xrightarrow{\operatorname{diff}(t)} \tau_{2}}{\Delta ; \Phi ; \Gamma \vdash e_{2} \ominus e_{2}^{\prime} \lesssim t_{2}: \tau_{1}} \begin{aligned}
& \Delta ; \Gamma \vdash e_{1} e_{2} \ominus e_{1}^{\prime} e_{2}^{\prime} \lesssim t_{1}+t_{2}+t: \tau_{2} \\
& \text { r-app }
\end{aligned}
$$

Assume that $\vDash \sigma \Phi$ and there exists Γ^{\prime} s.t. $\mathrm{FV}\left(e_{1} e_{2}\right) \subseteq \operatorname{dom}\left(\Gamma^{\prime}\right)$ and $\Gamma^{\prime} \subseteq \Gamma$ and $(m, \delta) \in \mathcal{G} \llbracket\left|\sigma \Gamma^{\prime}\right|_{1} \rrbracket$.

TS: $\left(m, \delta e_{1} \delta e_{2}\right) \in \llbracket\left|\sigma \tau_{2}\right|_{1} \rrbracket_{\varepsilon}^{0, \infty}$.
Following the definition of $\llbracket \|_{\dot{\varepsilon} \cdot}$, there are two cases:

- Assume that $\infty<m$.

Since m is finite, this case is vacuously true.

- Assume that
$\frac{\delta e_{1} \Downarrow^{c_{1}}}{\operatorname{fix}} f(x) . e(\star) \quad \delta e_{2} \Downarrow^{c_{2}} v_{2}(\diamond) \quad e\left[v_{2} / x,(\right.$ fix $\left.f(x) . e) / f\right] \Downarrow^{c_{r}} v_{r}(\dagger)$ app and $c_{1}+c_{2}+c_{r}+c_{a p p}<m$.
By IH 3 on the first premise using

$$
\mathrm{FV}\left(e_{1}\right) \subseteq \operatorname{dom}\left(\Gamma^{\prime}\right) \text { and } \Gamma^{\prime} \subseteq \Gamma \text { and }(m, \delta) \in \mathcal{G} \llbracket\left|\sigma \Gamma^{\prime}\right|_{1} \rrbracket
$$

we get $\left(m, \delta e_{1}\right) \in \llbracket\left|\sigma \tau_{1}\right|_{1} \xrightarrow{\operatorname{exec}(0, \infty)}\left|\sigma \tau_{2}\right|_{1} \rrbracket_{\varepsilon}^{0, \infty}$.
Unrolling its definition with (\star) and $c_{1}<m$, we get
a) $0 \leq c_{1}$
b) $\left(m-c_{1}\right.$, fix $\left.f(x) . e\right) \in \llbracket\left|\sigma \tau_{1}\right|_{1} \xrightarrow{\operatorname{exec}(0, \infty)}\left|\sigma \tau_{2}\right|_{1} \rrbracket_{v}$

By IH 3 on the second premise using

$$
\mathrm{FV}\left(e_{2}\right) \subseteq \operatorname{dom}\left(\Gamma^{\prime}\right) \text { and } \Gamma^{\prime} \subseteq \Gamma \text { and }(m, \delta) \in \mathcal{G} \llbracket\left|\sigma \Gamma^{\prime}\right|_{1} \rrbracket
$$

we get $\left(m, \delta e_{2}\right) \in \llbracket\left|\sigma \tau_{1}\right|_{1} \rrbracket_{\varepsilon}^{0, \infty}$. Unrolling its definition with (\diamond) and $c_{2}<m$, we get
c) $0 \leq c_{2}$
d) $\left(m-c_{2}, v_{2}\right) \in \llbracket\left|\sigma \tau_{1}\right|_{1} \rrbracket_{v}$

By downward closure (Lemma 4) on d) using $m-c_{1}-c_{2}-c_{\text {app }} \leq m-c_{2}$, we get

$$
\begin{equation*}
\left(m-\left(c_{1}+c_{2}+c_{a p p}\right), v_{2}\right) \in \llbracket\left|\sigma \tau_{1}\right|_{1} \rrbracket_{v} \tag{1}
\end{equation*}
$$

Next, we unroll b) with (1) and $m-\left(c_{1}+c_{2}+c_{\text {app }}\right)<m-c_{1}$ to obtain

$$
\begin{equation*}
\left(m-\left(c_{1}+c_{2}+c_{a p p}\right), e\left[v_{2} / x,(\operatorname{fix} f(x) . e)\right]\right) \in \llbracket\left|\sigma \tau_{2}\right|_{1} \rrbracket_{\varepsilon}^{0, \infty} \tag{2}
\end{equation*}
$$

By unrolling second part of (2)'s definition using (\dagger) and $c_{r}<m-\left(c_{1}+c_{2}+c_{\text {app }}\right)$, we get
e) $0 \leq c_{r}$
f) $\left(m-\left(c_{1}+c_{2}+c_{r}+c_{a p p}\right), v_{r}\right) \in \llbracket\left|\sigma \tau_{2}\right|_{1} \rrbracket_{v}$

Now, we can conclude as follows:

1. We can trivially show $0 \leq\left(c_{1}+c_{2}+c_{r}+c_{a p p}\right)$
2. By f)

Case $\frac{\Delta ; \Phi ; \Gamma \vdash e_{1} \ominus e_{1}^{\prime} \lesssim t_{1}: \tau \quad \Delta ; \Phi ; \Gamma \vdash e_{2} \ominus e_{2}^{\prime} \lesssim t_{2}: \operatorname{list}[n]^{\alpha} \tau}{\Delta ; \Phi ; \Gamma \vdash \operatorname{cons}\left(e_{1}, e_{2}\right) \ominus \operatorname{cons}\left(e_{1}^{\prime}, e_{2}^{\prime}\right) \lesssim t_{1}+t_{2}: \operatorname{list}[n+1]^{\alpha+1} \tau}$ r-cons1
Assume that $\models \sigma \Phi$ and there exists Γ^{\prime} s.t. $\mathrm{FV}\left(\operatorname{cons}\left(e_{1}, e_{2}\right)\right) \subseteq \operatorname{dom}\left(\Gamma^{\prime}\right)$ and $\Gamma^{\prime} \subseteq \Gamma$ and $(m, \delta) \in \mathcal{G} \llbracket \mid \sigma \Gamma^{\prime}{ }_{1} \rrbracket$. TS: $\left(m, \operatorname{cons}\left(\delta e_{1}, \delta e_{2}\right)\right) \in \llbracket\left|\operatorname{list}[\sigma n+1]^{\sigma \alpha+1} \sigma \tau\right| \rrbracket_{\varepsilon}^{0, \infty} \equiv \llbracket \operatorname{list}[\sigma n+1]|\sigma \tau|_{1} \rrbracket_{\varepsilon}^{0, \infty}$.
Following the definition of $\llbracket \cdot \| \varepsilon \varepsilon^{\prime}$, there are two parts to show

- Assume that $\infty<m$.

This is vacuously true.

- Assume that $\frac{\delta e_{1} \Downarrow^{c_{1}} v_{1}(\star) \quad \delta e_{2} \Downarrow^{c_{2}} v_{2}(\diamond)}{\operatorname{cons}\left(\delta e_{1}, \delta e_{2}\right) \Downarrow^{c_{1}+c_{2}} \operatorname{cons}\left(v_{1}, v_{2}\right)}$ cons and $c_{1}+c_{2}<m$.

By IH 3 on the first premise using

$$
\mathrm{FV}\left(e_{1}\right) \subseteq \operatorname{dom}\left(\Gamma^{\prime}\right) \text { and } \Gamma^{\prime} \subseteq \Gamma \text { and }(m, \delta) \in \mathcal{G} \llbracket\left|\sigma \Gamma^{\prime}\right|_{1} \rrbracket
$$

we get $\left(m, \delta e_{1}\right) \in \llbracket|\sigma \tau|_{1} \rrbracket_{\varepsilon}^{0, \infty}$. Unrolling its definition with (\star) and $c_{1}<m$, we get
a) $0 \leq c_{1}$
b) $\left(m-c_{1}, v_{1}\right) \in \llbracket|\sigma \tau|_{1} \rrbracket_{v}$

By IH 3 on the second premise using

$$
\mathrm{FV}\left(e_{2}\right) \subseteq \operatorname{dom}\left(\Gamma^{\prime}\right) \text { and } \Gamma^{\prime} \subseteq \Gamma \text { and }(m, \delta) \in \mathcal{G} \llbracket\left|\sigma \Gamma^{\prime}\right|_{1} \rrbracket
$$

we get $\left(m, \delta e_{2}\right) \in \llbracket\left|\operatorname{list}[\sigma n]^{\sigma \alpha} \sigma \tau\right|_{1} \rrbracket_{\varepsilon}^{0, \infty}$.
Unrolling its definition with (\diamond) and $c_{2}<m$, we get
c) $0 \leq c_{2}$
d) $\left(m-c_{2}, v_{2}\right) \in \llbracket \operatorname{list}[\sigma n]|\sigma \tau|_{1} \rrbracket_{v}$

Now, we can conclude as follows:

1. We can trivially show that $0 \leq\left(c_{1}+c_{2}\right)$
2. By downward closure (Lemma 4) on b) and d), we get $\left(m-\left(c_{1}+c_{2}\right), v_{1}\right) \in \llbracket|\sigma \tau|_{1} \rrbracket_{v}$ and $\left(m-\left(c_{1}+c_{2}\right), v_{2}\right) \in \llbracket \operatorname{list}[\sigma n]|\sigma \tau|_{1} \rrbracket v$, when combined, gives us $\left(m-\left(c_{1}+\right.\right.$ $\left.\left.c_{2}\right), \operatorname{cons}\left(v_{1}, v_{2}\right)\right) \in \llbracket \operatorname{list}[\sigma n+1]|\sigma \tau|_{1} \rrbracket_{v} \equiv \llbracket\left|\operatorname{list}[\sigma n]^{\sigma \alpha+1} \sigma \tau\right|_{1} \rrbracket_{v}$

Case $\frac{\Delta ; \Phi ; \Gamma \vdash e_{1} \ominus e_{1}^{\prime} \lesssim t_{1}: \square \tau \quad \Delta ; \Phi ; \Gamma \vdash e_{2} \ominus e_{2}^{\prime} \lesssim t_{2}: \operatorname{list}[n]^{\alpha} \tau}{\Delta ; \Phi ; \Gamma \vdash \operatorname{cons}\left(e_{1}, e_{2}\right) \ominus \mathbf{c o n s}\left(e_{1}^{\prime}, e_{2}^{\prime}\right) \lesssim t_{1}+t_{2}: \operatorname{list}[n+1]^{\alpha} \tau}$ r-cons2
Assume that $\vDash \sigma \Phi$ and there exists Γ^{\prime} s.t. $\operatorname{FV}\left(\operatorname{cons}\left(e_{1}, e_{2}\right)\right) \subseteq \operatorname{dom}\left(\Gamma^{\prime}\right)$ and $\Gamma^{\prime} \subseteq \Gamma$ and $(m, \delta) \in \mathcal{G} \llbracket\left|\sigma \Gamma^{\prime}\right|_{1} \rrbracket$.
$\mathrm{TS}:\left(m, \operatorname{cons}\left(\delta e_{1}, \delta e_{2}\right)\right) \in \llbracket\left|\operatorname{list}[\sigma n+1]^{\sigma \alpha} \sigma \tau\right|_{1} \rrbracket_{\varepsilon}^{0, \infty} \equiv \llbracket \operatorname{list}[\sigma n+1]|\sigma \tau|_{1} \rrbracket_{\varepsilon}^{0, \infty}$.
Following the definition of $\llbracket \cdot \| \frac{\square}{\varepsilon}$, there are two parts to show

- Assume that $\infty<m$.

This is vacuously true.

- Assume that $\frac{\delta e_{1} \Downarrow^{c_{1}} v_{1}(\star) \quad \delta e_{2} \Downarrow^{c_{2}} v_{2}(\diamond)}{\operatorname{cons}\left(\delta e_{1}, \delta e_{2}\right) \Downarrow^{c_{1}+c_{2}} \operatorname{cons}\left(v_{1}, v_{2}\right)}$ cons and $c_{1}+c_{2}<m$.

By IH 3 on the first premise using

$$
\mathrm{FV}\left(e_{1}\right) \subseteq \operatorname{dom}\left(\Gamma^{\prime}\right) \text { and } \Gamma^{\prime} \subseteq \Gamma \text { and }(m, \delta) \in \mathcal{G} \llbracket\left|\sigma \Gamma^{\prime}\right|_{1} \rrbracket
$$

we get $\left(m, \delta e_{1}\right) \in \llbracket|\square \sigma \tau|_{1} \rrbracket_{\varepsilon}^{0, \infty}$. Unrolling its definition with (\star) and $c_{1}<m$, we get
a) $0 \leq c_{1}$
b) $\left(m-c_{1}, v_{1}\right) \in \llbracket|\square \sigma \tau|_{1} \rrbracket_{v} \equiv \llbracket|\sigma \tau|_{1} \rrbracket_{v}$

By IH 3 on the second premise using

$$
\mathrm{FV}\left(e_{2}\right) \subseteq \operatorname{dom}\left(\Gamma^{\prime}\right) \text { and } \Gamma^{\prime} \subseteq \Gamma \text { and }(m, \delta) \in \mathcal{G} \llbracket\left|\sigma \Gamma^{\prime}\right|_{1} \rrbracket
$$

we get $\left(m, \delta e_{2}\right) \in \llbracket\left|\operatorname{list}[\sigma n]^{\sigma \alpha} \sigma \tau\right|_{1} \rrbracket_{\varepsilon}^{0, \infty}$.
Unrolling its definition with (\diamond) and $c_{2}<m$, we get
c) $0 \leq c_{2}$
d) $\left(m-c_{2}, v_{2}\right) \in \llbracket \operatorname{list}[\sigma n]|\sigma \tau|_{1} \rrbracket_{v}$

Now, we can conclude as follows:

1. We can trivially show that $0 \leq\left(c_{1}+c_{2}\right)$
2. By downward closure (Lemma 4) on b) and d), we get $\left(m-\left(c_{1}+c_{2}\right), v_{1}\right) \in \llbracket|\sigma \tau|_{1} \rrbracket_{v}$ and $\left(m-\left(c_{1}+c_{2}\right), v_{2}\right) \in \llbracket \operatorname{list}[\sigma n]|\sigma \tau|_{1} \rrbracket v$, when combined, gives us $\left(m-\left(c_{1}+\right.\right.$ $\left.\left.c_{2}\right), \operatorname{cons}\left(v_{1}, v_{2}\right)\right) \in \llbracket \operatorname{list}[\sigma n+1]|\sigma \tau|_{1} \rrbracket_{v} \equiv \llbracket\left|\operatorname{list}[\sigma n]^{\sigma \alpha} \sigma \tau\right|_{1} \rrbracket_{v}$

Case $\frac{\Delta ; \Phi ;|\Gamma|_{1} \vdash_{k_{1}}^{t_{1}} e_{1}: A_{1} \quad \Delta ; \Phi ;|\Gamma|_{2} \vdash_{k_{2}}^{t_{2}} e_{2}: A_{2}}{\Delta ; \Phi ; \Gamma \vdash e_{1} \ominus e_{2} \lesssim t_{1}-k_{2}: U\left(A_{1}, A_{2}\right)}$ switch
The are two parts to show.
subcase 1: Assume that $\models \sigma \Phi$ and there exists Γ^{\prime} s.t. $\mathrm{FV}\left(e_{1}\right) \subseteq \operatorname{dom}\left(\Gamma^{\prime}\right)$ and $\Gamma^{\prime} \subseteq \Gamma$ and $(m, \delta) \in \mathcal{G} \llbracket\left|\sigma \Gamma^{\prime}\right|_{1} \rrbracket$. $\mathrm{TS}:\left(m, \delta e_{1}\right) \in \llbracket\left|U\left(\sigma A_{1}, \sigma A_{2}\right)\right|_{1} \rrbracket_{\varepsilon}^{0, \infty} \equiv \llbracket \sigma A_{1} \rrbracket_{\varepsilon}^{0, \infty}$.
There are two parts to show.

- Assume that $\infty<m$.

This is vacuously true.

- Assume that
a) $\delta e_{1} \Downarrow^{c_{r}} v_{r}$
b) $c_{r}<m$.

By IH 2 on the first premise using

$$
\mathrm{FV}\left(e_{1}\right) \subseteq \operatorname{dom}\left(\left|\Gamma^{\prime}\right|_{1}\right) \text { and }\left|\Gamma^{\prime}\right|_{1} \subseteq|\Gamma|_{1} \text { and }(m, \delta) \in \mathcal{G} \llbracket\left|\sigma \Gamma^{\prime}\right|_{1} \rrbracket
$$

we get $\left(m, \delta e_{1}\right) \in \llbracket \sigma A_{1} \rrbracket_{\varepsilon}^{\sigma k_{1}, \sigma t_{1}}$
By unrolling second part of its definition with a) and b), we get
a) $\sigma k_{1} \leq c_{r}$
b) $\left(m-c_{r}, v_{r}\right) \in \llbracket \sigma A_{1} \rrbracket_{v}$

We can conclude as follows

1. Trivially, $0 \leq c_{r}$
2. By d)
subcase 2: Assume that $\models \sigma \Phi$ and there exists Γ^{\prime} s.t. $\mathrm{FV}\left(e_{2}\right) \subseteq \operatorname{dom}\left(\Gamma^{\prime}\right)$ and $\Gamma^{\prime} \subseteq \Gamma$ and $(m, \delta) \in \mathcal{G} \llbracket\left|\sigma \Gamma^{\prime}\right|_{2} \rrbracket$. $\mathrm{TS}:\left(m, \delta e_{2}\right) \in \llbracket\left|U\left(\sigma A_{1}, \sigma A_{2}\right)\right|_{2} \rrbracket_{\varepsilon}^{0, \infty} \equiv \llbracket \sigma A_{2} \rrbracket_{\varepsilon}^{0, \infty}$.
There are two parts to show.

- Assume that $\infty<m$.

This is vacuously true.

- Assume that
a) $\delta e_{2} \Downarrow^{c_{r}} v_{r}$
b) $c_{r}<m$.

By IH 2 on the second premise using

$$
\mathrm{FV}\left(e_{2}\right) \subseteq \operatorname{dom}\left(\left|\Gamma^{\prime}\right|_{2}\right) \text { and }\left|\Gamma^{\prime}\right|_{2} \subseteq|\Gamma|_{2} \text { and }(m, \delta) \in \mathcal{G} \llbracket\left|\sigma \Gamma^{\prime}\right|_{2} \rrbracket
$$

we get $\left(m, \delta e_{2}\right) \in \llbracket \sigma A_{2} \rrbracket_{\varepsilon}^{\sigma k_{2}, \sigma t_{2}}$
By unrolling second part of its definition with a) and b), we get
a) $\sigma k_{2} \leq c_{r}$
b) $\left(m-c_{r}, v_{r}\right) \in \llbracket \sigma A_{2} \rrbracket_{v}$

We can conclude as follows

1. Trivially, $0 \leq c_{r}$
2. By d)

Case $\frac{\Delta ; \Phi ;|\Gamma|_{1} \vdash_{k_{1}}^{t_{1}} e_{1}: A_{1} \xrightarrow{\operatorname{exec}(k, t)} A_{2} \quad \Delta ; \Phi ; \Gamma \vdash e_{2} \ominus e_{2}^{\prime} \lesssim t_{2}: U\left(A_{1}, A_{2}^{\prime}\right)}{\Delta ; \Phi ; \Gamma \vdash e_{1} e_{2} \ominus e_{2}^{\prime} \lesssim t_{1}+t_{2}+t+c_{\text {app }}: U\left(A_{2}, A_{2}^{\prime}\right)}$ r-app-e
There are two parts to show: left and right sides. We first show the left side.
subcase 1: Assume that $\models \sigma \Phi$ and there exists Γ^{\prime} s.t. $\mathrm{FV}\left(e_{1} e_{2}\right) \subseteq \operatorname{dom}\left(\Gamma^{\prime}\right)$ and $\Gamma^{\prime} \subseteq \Gamma$ and $(m, \delta) \in \mathcal{G} \llbracket\left|\sigma \Gamma^{\prime}\right|_{1} \rrbracket$.
$\mathrm{TS}:\left(m, \delta e_{1} \delta e_{2}\right) \in \llbracket\left|U\left(\sigma A_{2}, \sigma A_{2}^{\prime}\right)\right| \rrbracket_{\varepsilon}^{0, \infty} \equiv \llbracket \sigma A_{2} \rrbracket_{\varepsilon}^{0, \infty}$.
Following the definition of $\llbracket \cdot \| \varepsilon{ }_{\varepsilon}^{2}$, there are two cases:

- Assume that $\infty<m$.

Since m is finite, this case is vacuously true.

- Assume that
$\frac{\delta e_{1} \Downarrow^{c_{1}} \text { fix } f(x) . e(\star) \quad \delta e_{2} \Downarrow^{c_{2}} v_{2}(\diamond) \quad e\left[v_{2} / x,(\text { fix } f(x) . e) / f\right] \Downarrow^{c_{r}} v_{r} \quad(\dagger)}{\delta e_{1} \delta e_{2} \Downarrow^{c_{1}+c_{2}+c_{r}+c_{a p p}} v_{r}}$ app
and $c_{1}+c_{2}+c_{r}+c_{a p p}<m$.
By IH 2 on the first premise using

$$
\mathrm{FV}\left(e_{1}\right) \subseteq \operatorname{dom}\left(\left|\Gamma^{\prime}\right|_{1}\right) \text { and }\left|\Gamma^{\prime}\right|_{1} \subseteq|\Gamma|_{1} \text { and }(m, \delta) \in \mathcal{G} \llbracket\left|\sigma \Gamma^{\prime}\right|_{1} \rrbracket
$$

we get $\left(m, \delta e_{1}\right) \in \llbracket \sigma A_{1} \xrightarrow{\operatorname{exec}(\sigma k, \sigma t)} \sigma A_{2} \rrbracket_{\varepsilon}^{\sigma k_{1}, \sigma t_{1}}$.
Unrolling its definition with (\star) and $c_{1}<m$, we get
a) $\sigma k_{1} \leq c_{1}$
b) $\left(m-c_{1}\right.$, fix $\left.f(x) . e\right) \in \llbracket \sigma A_{1} \xrightarrow{\operatorname{exec}(\sigma k, \sigma t)} \sigma A_{2} \rrbracket_{v}$

By IH 3 on the second premise using $(m-c, \delta) \in \mathcal{G} \llbracket\left|\sigma \Gamma^{\prime}\right|_{1} \rrbracket$ which hold since

- $\mathrm{FV}\left(e_{2}\right) \subseteq \operatorname{dom}\left(\Gamma^{\prime}\right)$ and $\Gamma^{\prime} \subseteq \Gamma$
- $(m-c, \delta) \in \mathcal{G} \llbracket\left|\sigma \Gamma^{\prime}\right|_{1} \rrbracket$ by downward closure (Lemma 4) on $(m, \delta) \in \mathcal{G} \llbracket|\sigma \Gamma|_{2} \rrbracket$ using $m-c \leq m$
we get $\left(m, \delta e_{2}\right) \in \llbracket \sigma A_{1} \rrbracket_{\varepsilon}^{0, \infty}$. Unrolling its definition with (\diamond) and $c_{2}<m$, we get
c) $0 \leq c_{2}$
d) $\left(m-c_{2}, v_{2}\right) \in \llbracket \sigma A_{2} \rrbracket_{v}$

By downward closure (Lemma 4) on d) using $m-c_{1}-c_{2}-c_{a p p} \leq m-c_{2}$, we get

$$
\begin{equation*}
\left(m-\left(c_{1}+c_{2}+c_{a p p}\right), v_{2}\right) \in \llbracket \sigma A_{1} \rrbracket_{v} \tag{1}
\end{equation*}
$$

Next, we unroll b) with (1) and $m-\left(c_{1}+c_{2}+c_{a p p}\right)<m-c_{1}$ to obtain

$$
\begin{equation*}
\left(m-\left(c_{1}+c_{2}+c_{a p p}\right), e\left[v_{2} / x,(\operatorname{fix} f(x) . e)\right]\right) \in \llbracket \sigma A \rrbracket_{\varepsilon}^{\sigma k, \sigma t} \tag{2}
\end{equation*}
$$

By unrolling second part of (2)'s definition using (\dagger) and $c_{r}<m-\left(c_{1}+c_{2}+c_{a p p}\right)$, we get
e) $\sigma k \leq c_{r}$
f) $\left(m-\left(c_{1}+c_{2}+c_{r}+c_{a p p}\right), v_{r}\right) \in \llbracket \sigma A_{2} \rrbracket_{v}$

Now, we can conclude as follows:

1. We can trivially show $0 \leq\left(c_{1}+c_{2}+c_{r}+c_{\text {app }}\right)$
2. By f)
subcase 2: Assume that $\models \sigma \Phi$ and there exists Γ^{\prime} s.t. $\mathrm{FV}\left(e_{2}^{\prime}\right) \subseteq \operatorname{dom}\left(\Gamma^{\prime}\right)$ and $\Gamma^{\prime} \subseteq \Gamma$ and $(m, \delta) \in \mathcal{G} \llbracket\left|\sigma \Gamma^{\prime}\right|_{2} \rrbracket$. $\mathrm{TS}:\left(m, \delta e_{2}^{\prime}\right) \in \llbracket\left|U\left(\sigma A_{2}, \sigma A_{2}^{\prime}\right)\right|_{2} \rrbracket_{\varepsilon}^{0, \infty} \equiv \llbracket A_{2}^{\prime} \rrbracket_{\varepsilon}^{0, \infty}$
Following the definition of $\llbracket \cdot \| \cdot \vec{\varepsilon}$, there are two cases:

- Assume that $\infty<m$.

Since m is finite, this case is vacuously true.

- The conclusion follows by IH 3 on the second premise using $(m-c, \delta) \in \mathcal{G} \llbracket\left|\sigma \Gamma^{\prime}\right|_{2} \rrbracket$ which hold since
$-\mathrm{FV}\left(e_{2}^{\prime}\right) \subseteq \operatorname{dom}\left(\Gamma^{\prime}\right)$ and $\Gamma^{\prime} \subseteq \Gamma$
- $(m-c, \delta) \in \mathcal{G} \llbracket\left|\sigma \Gamma^{\prime}\right|_{2} \rrbracket$ by downward closure (Lemma 4) on $(m, \delta) \in \mathcal{G} \llbracket|\sigma \Gamma|_{2} \rrbracket$ using $m-c \leq m$
i.e. we get $\left(m, \delta e_{2}\right) \in \llbracket \sigma A_{2}^{\prime} \rrbracket_{\varepsilon}^{0, \infty}$.

Case $\frac{\Delta ; \Phi ;|\Gamma|_{2} \vdash_{k_{1}}^{t_{1}} e_{1}: A_{1} \quad \Delta ; \Phi ; x: U\left(A_{1}, A_{1}\right), \Gamma \vdash e \ominus e_{2} \lesssim t_{2}: \tau_{2}}{\Delta ; \Phi ; \Gamma \vdash e \ominus \text { let } x=e_{1} \text { in } e_{2} \lesssim t_{2}-k_{1}-c_{\text {let }}: \tau_{2}}$ r-e-let
There are two parts to show.
subcase 1: Assume that $\models \sigma \Phi$ and there exists Γ^{\prime} s.t. $\mathrm{FV}(e) \subseteq \operatorname{dom}\left(\Gamma^{\prime}\right)$ and $\Gamma^{\prime} \subseteq \Gamma$ and $(m, \delta) \in \mathcal{G} \llbracket\left|\sigma \Gamma^{\prime}\right|_{1} \rrbracket$. $\mathrm{TS}:(m, \delta e) \in \llbracket\left|\sigma \tau_{2}\right|_{1} \rrbracket_{\varepsilon}^{0, \infty}$
There are two parts to show

- Assume that $\infty<m$.

This is vacuously true.

- By IH 3 on the second premise using $(m, \delta) \in \mathcal{G} \llbracket\left|\sigma \Gamma^{\prime}\right|_{1} \rrbracket$ since we know that $\mathrm{FV}(e) \subseteq \operatorname{dom}\left(\Gamma^{\prime}\right)$ and $\Gamma^{\prime} \subseteq \Gamma, x: A_{1}$ since x doesn't occur free in e, we get immediately $(m, \delta e) \in \llbracket\left|\sigma \tau_{2}\right|_{1} \rrbracket_{\varepsilon}^{0, \infty}$.
subcase 2: Assume that $\models \sigma \Phi$ and there exists Γ^{\prime} s.t. $\mathrm{FV}\left(\operatorname{let} x=e_{1}\right.$ in $\left.e_{2}\right) \subseteq \operatorname{dom}\left(\Gamma^{\prime}\right)$ and $\Gamma^{\prime} \subseteq \Gamma$ and $(m, \delta) \in \mathcal{G} \llbracket \mid$ TS: $\left(m\right.$, let $x=\delta e_{1}$ in $\left.\delta e_{2}\right) \in \llbracket\left|\sigma \tau_{2}\right|_{2} \rrbracket_{\varepsilon}^{0, \infty}$
There are two parts to show
- Assume that $\infty<m$.

This is vacuously true.

- Assume that
a) $\frac{\delta e_{1} \Downarrow^{c_{1}} v_{1}(\star) \quad \delta e_{2}\left[v_{1} / x\right] \Downarrow^{c_{r}} v_{r}(\diamond)}{\text { let } x=\delta e_{1} \text { in } \delta e_{2} \Downarrow^{c_{1}+c_{r}+c_{\text {let }}} v_{r}}$ let
b) $c_{1}+c_{r}+c_{l e t}<m$

By IH 2 on the first premise using

$$
\mathrm{FV}\left(e_{1}\right) \subseteq \operatorname{dom}\left(\left|\Gamma^{\prime}\right|_{2}\right) \text { and }\left|\Gamma^{\prime}\right|_{2} \subseteq|\Gamma|_{2} \text { and }(m, \delta) \in \mathcal{G} \llbracket\left|\sigma \Gamma^{\prime}\right|_{2} \rrbracket
$$

we get $\left(m, \delta e_{1}\right) \in \llbracket \sigma A_{1} \rrbracket_{\varepsilon}^{\sigma k_{1}, \sigma t_{1}}$.
Unrolling second part of its definition using (\star) and $c_{1}<m$, we get
c) $\sigma k_{1} \leq c_{1}$
d) $\left(m-c_{1}, v_{1}\right) \in \llbracket \sigma A_{1} \rrbracket_{v}$

By IH 3 on the second premise using $\left(m-c, \delta\left[x \mapsto v_{1}\right]\right) \in \mathcal{G} \llbracket x: \sigma A_{1},\left|\sigma \Gamma^{\prime}\right|_{2} \rrbracket$ which hold since
$-\mathrm{FV}\left(e_{2}\right) \subseteq \operatorname{dom}\left(x: U\left(A_{1}, A_{1}\right), \Gamma^{\prime}\right)$ and $x: U\left(A_{1}, A_{1}\right), \Gamma^{\prime} \subseteq x: U\left(A_{1}, A_{1}\right), \Gamma$

- $(m-c, \delta) \in \mathcal{G} \llbracket\left|\sigma \Gamma^{\prime}\right|_{2} \rrbracket$ by downward closure (Lemma 4) on $(m, \delta) \in \mathcal{G} \llbracket|\sigma \Gamma|_{2} \rrbracket$ using $m-c \leq m$
$-\left(m-c, v_{1}\right) \in \llbracket \sigma A_{1} \rrbracket_{v}$
we get $\left(m-c, \delta e_{2}\left[v_{1} / x\right]\right) \in \llbracket\left|\sigma \tau_{2}\right|_{2} \rrbracket_{\varepsilon}^{0, \infty}$.
Unfolding its definition using (\diamond) and $c_{r}<m-c_{1}$, we get
e) $0 \leq c_{r}$
f) $\left(m-\left(c_{1}+c_{r}\right), v_{r}\right) \in \llbracket\left|\sigma \tau_{2}\right|_{2} \rrbracket_{v}$

Then we can conclude as follows

1. Trivially, $0 \leq c_{1}+c_{r}+c_{l e t}$
2. By downward closure (Lemma 4) on f) using

$$
m-\left(c_{1}+c_{r}+c_{\text {let }}\right) \leq m-\left(c_{1}+c_{r}\right)
$$

we get $\left(m-\left(c_{1}+c_{r}+c_{l e t}\right), v_{r}\right) \in \llbracket\left|\sigma \tau_{2}\right|_{2} \rrbracket_{v}$

$$
\Delta ; \Phi ;|\Gamma|_{2} \vdash_{\overline{k^{\prime}}} e^{\prime}: A_{1}+A_{2}
$$

Case $\frac{\Delta ; \Phi ; x: U\left(A_{1}, A_{1}\right), \Gamma \vdash e \ominus e_{1}^{\prime} \lesssim t: \tau \quad \Delta ; \Phi ; y: U\left(A_{2}, A_{2}\right), \Gamma \vdash e \ominus e_{2}^{\prime} \lesssim t: \tau}{\Delta ; \Phi ; \Gamma \vdash e \ominus \operatorname{case}\left(e^{\prime}, x . e_{1}^{\prime}, y . e_{2}^{\prime}\right) \lesssim t-k^{\prime}-c_{\text {case }}: \tau}$ r-e-case
There are two parts to show.
subcase 1: Assume that $\models \sigma \Phi$ and there exists Γ^{\prime} s.t. $\mathrm{FV}(e) \subseteq \operatorname{dom}\left(\Gamma^{\prime}\right)$ and $\Gamma^{\prime} \subseteq \Gamma$ and $(m, \delta) \in \mathcal{G} \llbracket\left|\sigma \Gamma^{\prime}\right|_{1} \rrbracket$.
$\mathrm{TS}:(m, \delta e) \in \llbracket|\sigma \tau|_{1} \prod_{\varepsilon}^{0, \infty}$
There are two parts to show

- Assume that $\infty<m$.

This is vacuously true.

- By IH 3 on the second premise using $(m, \delta) \in \mathcal{G} \llbracket\left|\sigma \Gamma^{\prime}\right|_{1} \rrbracket$ since we know that $\mathrm{FV}(e) \subseteq \operatorname{dom}\left(\Gamma^{\prime}\right)$ and $\Gamma^{\prime} \subseteq \Gamma, x: A_{1}$ since x doesn't occur free in e, we get immediately $(m, \delta e) \in \llbracket|\sigma \tau|_{1} \rrbracket_{\varepsilon}^{0, \infty}$.
subcase 2: Assume that $\models \sigma \Phi$ and there exists Γ^{\prime} s.t. $\mathrm{FV}\left(\right.$ case $\left.\left(e^{\prime}, e_{1}^{\prime}, e_{2}^{\prime}\right)\right) \subseteq \operatorname{dom}\left(\Gamma^{\prime}\right)$ and $\Gamma^{\prime} \subseteq \Gamma$ and $(m, \delta) \in \mathcal{G} \llbracket \mid$ $\mathrm{TS}:\left(m\right.$, case $\left.\left(\delta e^{\prime}, \delta e_{1}^{\prime}, \delta e_{2}^{\prime}\right)\right) \in \llbracket|\sigma \tau|_{2} \rrbracket_{\varepsilon}^{0, \infty}$
There are two parts to show
- Assume that $\infty<m$.

This is vacuously true.

- There are also two parts to show here depending on what δe evaluates to. We only show one for brevity, the other one is similar.
Assume that
a) $\frac{\delta e^{\prime} \Downarrow c^{c^{\prime}} \operatorname{inl} v^{\prime}(\star) \quad \delta e_{1}^{\prime}\left[v^{\prime} / x\right] \Downarrow^{c_{r}^{\prime}} v_{r}^{\prime}(\diamond)}{\text { case }\left(\delta e, x \cdot \delta e_{1}, y \cdot \delta e_{2}\right) \Downarrow^{c^{\prime}+c_{r}^{\prime}+c_{\text {case }}} v_{r}^{\prime}}$ case-inl
b) $c^{\prime}+c_{r}^{\prime}+c_{\text {case }}<m$

By IH 2 on the first premise using
$\mathrm{FV}\left(e^{\prime}\right) \subseteq \operatorname{dom}\left(\left|\Gamma^{\prime}\right|_{2}\right)$ and $\left|\Gamma^{\prime}\right|_{2} \subseteq|\Gamma|_{2}$ and $(m, \delta) \in \mathcal{G} \llbracket\left|\sigma \Gamma^{\prime}\right|_{2} \rrbracket$
we get $\left(m, \delta e^{\prime}\right) \in \llbracket \sigma A_{1}+\sigma A_{2} \rrbracket_{\varepsilon}^{\sigma k^{\prime},,^{\prime}}$.
Unrolling second part of its definition using (\star) and $c<m$, we get
c) $\sigma k^{\prime} \leq c^{\prime}$
d) $\left(m-c^{\prime}\right.$, inl $\left.v^{\prime}\right) \in \llbracket \sigma A_{1}+\sigma A_{2} \rrbracket v$

By IH 3 on the second premise using $\left(m-c^{\prime}, \delta\left[x \mapsto v^{\prime}\right]\right) \in \mathcal{G} \llbracket x: \sigma A_{1},\left|\sigma \Gamma^{\prime}\right|_{2} \rrbracket$ which hold since
$-\mathrm{FV}\left(e_{1}^{\prime}\right) \subseteq \operatorname{dom}\left(x: U\left(A_{1}, A_{1}\right), \Gamma^{\prime}\right)$ and $x: U\left(A_{1}, A_{1}\right), \Gamma^{\prime} \subseteq x: U\left(A_{1}, A_{1}\right), \Gamma$
$-\left(m-c^{\prime}, \delta\right) \in \mathcal{G} \llbracket\left|\sigma \Gamma^{\prime}\right|_{2} \rrbracket$ by downward closure (Lemma 4) on $(m, \delta) \in \mathcal{G} \llbracket|\sigma \Gamma|_{2} \rrbracket$ using $m-c \leq m$
$-\left(m-c^{\prime}, v^{\prime}\right) \in \llbracket \sigma A_{1} \rrbracket_{v}$
we get $\left(m-c^{\prime}, \delta e_{2}^{\prime}\left[v^{\prime} / x\right]\right) \in \llbracket|\sigma \tau|_{2} \rrbracket_{\varepsilon}^{0, \infty}$.
Unfolding its definition using (\diamond) and $c_{r}^{\prime}<m-c^{\prime}$, we get
e) $0 \leq c_{r}^{\prime}$
f) $\left(m-\left(c^{\prime}+c_{r}^{\prime}\right), v_{r}^{\prime}\right) \in \llbracket|\sigma \tau|_{2} \rrbracket_{v}$

Then we can conclude as follows

1. Trivially, $0 \leq c^{\prime}+c_{r}^{\prime}+c_{\text {let }}$
2. By downward closure (Lemma 4) on f) using

$$
m-\left(c^{\prime}+c_{r}^{\prime}+c_{l e t}\right) \leq m-\left(c^{\prime}+c_{r}^{\prime}\right)
$$

we get $\left(m-\left(c^{\prime}+c_{r}^{\prime}+c_{l e t}\right), v_{r}^{\prime}\right) \in \llbracket|\sigma \tau|_{2} \rrbracket v$

2 Example Programs

2.1 Two-dimensional count (in-depth)

The following example demonstrates that by using relational analysis we can show that one program is faster than the other in a case where non-relational reasoning does not suffice to do so. Let us consider 2Dcount an algorithm that counts how many rows of a two-dimensional matrix contain a key x and satisfy a predicate p. Such an algorithm could be used in many scenarios, e.g. in the context of web analytics, a data analyst might be interested in how many rows of a matrix storing the number of top m frequently visited websites contains "google.com" and satisfy a predicate. We can define 2Dcount as follows:

```
fix 2Dcount(find). \(\lambda x . \lambda M\).case \(M\) of
    nil \(\rightarrow 0\)
\(\mid l:: M^{\prime} \rightarrow\) let \(r=2\) Dcount find \(x M^{\prime}\) in
    if \(p l\) then \(r+(\) find \(x l)\)
                            else \(r\)
```

Suppose that we have the following two different implementations for find.

```
fix find1(x).\lambdal.case l of
    nil }->
| h:: tl }->\mathrm{ if }h=x\mathrm{ then 1 else find1 x tl
```

fix $\operatorname{find} 2(x) . \lambda l$.case l of
nil $\rightarrow 0$
$\mid h:: t l \rightarrow$ if $($ find2 $x t l)=1$ then 1 else if $(h=x)$ then 1 else 0

The first function find1 scans the row from left to right and returns 1 for the first element that matches the key whereas the second function find2 scans the list from right to left and returns 1 for the last element that matches the key. Assume that the matrix M has type list $[m]^{0}$ (list $[n]^{0}$ int) and the predicate p has the same worst- and best-case execution cost. For simplicity, let us also assume that we only account for application steps; the analysis generalizes to non-zero costs for other elimination steps as well. What can we say about the relative cost of 2 D count with respect to these two find implementations?

A naive non-relational reasoning reveals that the minimum and the maximum execution costs for find1 are 1 and $3 \cdot n$, respectively whereas the minimum and maximum execution costs for find2 are $3 \cdot n$ and $4 \cdot n$, respectively. Unlike the sam example where we used a representative linear cost function, for this example, we show the concrete costs to emphasize the importance of precise cost counting. ${ }^{1}$

$$
\text { find1 }: \text { int } \rightarrow \forall n:: \mathbb{N} . \operatorname{list}[n] \text { int } \xrightarrow{\operatorname{exec}(1,3 \cdot n)} \text { int. }
$$

[^0]$$
\text { find2 }: \text { int } \rightarrow \forall n:: \mathbb{N} \text {. list }[n] \text { int } \xrightarrow{\operatorname{exec}(3 \cdot n, 4 \cdot n)} \text { int. }
$$

So, we can conclude that find1 is faster than find2 because the difference in find1's maximum and find2's minimum execution cost is less than or equal to 0 . However, a similar naive analysis for the whole top-level program cannot establish that 2Dcount with find is faster than 2Dcount with find2. When the predicate is always false, 2Dcount find1 runs slowest with cost $3 \cdot n \cdot m+7 \cdot m$ and when the predicate is always true, 2Dcount find2 runs fastest with cost $4 \cdot m$, i.e. their difference is not upper bounded by 0 .

Instead, we can establish this by performing a relational analysis of 2Dcount and using the fact that we are interested in the relative cost of the same matrix M. We can type 2Dcount as follows:

```
\(\vdash\) 2Dcount \(\ominus\) 2Dcount \(\lesssim 0\) :
\((U(\) int, int \() \rightarrow \forall n:: \mathbb{N} . U(\) list \([n]\) int, list \([n]\) int \() \xrightarrow{\text { diff }(0)} U(\) bool, bool \()) \rightarrow\) int \(_{r} \rightarrow \forall m, n:: \mathbb{N}\).
list \([m]^{0}\left(\right.\) list \([n]^{0}\) int \(\left._{r}\right) \xrightarrow{\text { diff( } 0)} U\) (int, int).
```

Note that 2Dcount takes as input the find function with 0 relative cost (find's type is given in parentheses above). We can instantiate find with find1 or find2. To show that their relative cost is upper bounded by 0 , based on the non-relational types of find 1 and find2 obtained above, we use the following subtyping rule

$$
\left.\bar{\Delta} \Phi \Phi U\left(A_{1} \xrightarrow{\operatorname{exec}(k, t)} A_{2}, A_{1}^{\prime} \xrightarrow{\operatorname{exec}\left(k^{\prime}, t^{\prime}\right)} A_{2}^{\prime}\right) \sqsubseteq U\left(A_{1}, A_{1}^{\prime}\right) \xrightarrow{\operatorname{diff}\left(t-k^{\prime}\right)} U\left(A_{2}, A_{2}^{\prime}\right)\right) \rightarrow \text { execdiff }
$$

Next, let us see how we establish 0 relative cost for 2Dcount in RelCost. In particular, let us focus on the more interesting case in which the two matrices contain at least one row. Since the rows do not differ between the two executions, the result of the predicate p will be the same, hence both programs will take the same branch in the two runs. It suffices to show that the two "then" branches and the two "else" branches are related. For the "then" branches, the analysis is trivial since we recursively call 2Dcount which is assumed to have 0 relative cost. For the "else" branches, since we know that the relative cost of find and 2Dcount are 0 , we can immediately establish 0 cost.

Comment on how this example is typed in the type system in the paper Note that in the above example, the subtyping rule \rightarrow execdiff is more general than the following subtyping rule that is shown in the paper:

$$
\overline{\Delta ; \Phi \models U\left(A_{1} \xrightarrow{\operatorname{exec}(k, t)} A_{2}\right) \sqsubseteq U A_{1} \xrightarrow{\text { diff }(t-k)} U A_{2}} \rightarrow \text { execdiff }
$$

The above subtyping rule is more restricting: it forces the two functions to have the same lower and upper bounds. So, if we don't allow unrelated types to talk about two different unary types, we would be forced to subtype the functions find1 and find2 to have the same costs as follows:

$$
\text { find1 }:(\text { int } \rightarrow \forall n:: \mathbb{N} . \operatorname{list}[n] \text { int } \xrightarrow{\operatorname{exec}(1,3 \cdot n)} \text { int }) \sqsubseteq(\text { int } \rightarrow \forall n:: \mathbb{N} . \text { list }[n] \text { int } \xrightarrow{\operatorname{exec}(1,4 \cdot n)} \text { int })
$$

$$
\text { find2 }:(\text { int } \rightarrow \forall n:: \mathbb{N} . \operatorname{list}[n] \text { int } \xrightarrow{\operatorname{exec}(3 \cdot n, 4 \cdot n)} \text { int }) \sqsubseteq(\text { int } \rightarrow \forall n:: \mathbb{N} . \operatorname{list}[n] \text { int } \xrightarrow{\operatorname{exec}(1,4 \cdot n)} \text { int }) .
$$

Then, we cannot show that find1 and find2 have 0 execution cost difference using the rule \rightarrow execdiff since $4 \cdot n-1 \neq 0$. For the system in the paper, the proof is completed using the following rule which can be shown sound.

$$
\frac{|\Gamma| \vdash_{k_{1}}^{t_{1}} e_{1}: A_{1} \xrightarrow{\operatorname{exec}\left(k_{1}^{\prime}, t_{1}^{\prime}\right)} A_{2} \quad|\Gamma| \vdash_{k_{2}}^{t_{2}} e_{2}: A_{1} \xrightarrow{\operatorname{exec}\left(k_{2}^{\prime}, t_{2}^{\prime}\right)} A_{2}}{\Gamma \vdash e_{1} \ominus e_{2} \lesssim t_{1}-k_{2}: U A_{1} \xrightarrow{\operatorname{diff}\left(t_{1}^{\prime}-k_{2}^{\prime}\right)} U A_{2}} \text { fun-switch. }
$$

In the generalized system with $U\left(A_{1}, A_{2}\right)$, we do not need fun-switch since we can derive an analogous rule using the generic subtyping rule \rightarrow execdiff.

2.2 Loop unswitching

Next, we consider a compiler optimization technique known as loop unswitching that moves a conditional inside a loop to the outside. For simplicity, we consider a variant in which the else branch just returns a unit. Consider the function loop that iterates over a list l.
fix loop (l).case l of
nil $\rightarrow()$
$\mid h:: t l \rightarrow$ if b then let $=f h$ in loop $t l$ else ().
This program can be transformed to a version that pulls out the conditional from the loop body as follows:
loop0p $=$ if b then

```
fix loop \({ }^{\prime}(l)\).case \(l\) of
    nil \(\rightarrow()\)
    \(\mid h:: t l \rightarrow \quad\) let \(\quad=f h\) in loop \(^{\prime} t l\)
```

else $\lambda l .()$
Suppose that the list l has type $\operatorname{list}[n]^{0} \operatorname{int}_{r}$, i.e. it is substituted by the same list for two programs, and the function f has type $\operatorname{int}_{r} \xrightarrow{\text { diff(} 0 \text {) }}$ int $_{r}$, i.e. given related integers, it returns related integers with 0 execution cost difference. Assuming that the boolean input b is equal between two runs, what can we say about the relative cost of these two programs? Intuitively, loop0p is an optimization: rather than checking b at each iteration, it only checks it once outside of the function definition. Here, we do a more fine-grained cost counting and assume all elimination forms to have a unit cost. Then, intuitively one would expect that the execution cost difference between these two programs is n.

If we resort to the non-relational execution cost analysis, using the switch rule we have introduced in Example 1 from the paper, we can establish the following type

$$
\begin{aligned}
\vdash \lambda b . \text { loop } \ominus \lambda b . \text { loop0p } \lesssim 0: \quad & U((\mathrm{bool} \rightarrow \forall n:: \mathbb{N} . \\
& \operatorname{list}[n] \operatorname{int} \xrightarrow{\operatorname{exec}(5 \cdot n+1,1)} \text { unit }), .)
\end{aligned}
$$

by typing the two programs independently. Then, via subtyping $U\left(\left(A_{1} \xrightarrow{\operatorname{exec}(k, t)} A_{2}\right),\left(A_{1} \xrightarrow{\operatorname{exec}(k, t)}\right.\right.$ $\left.\left.A_{2}\right)\right) \subseteq U\left(A_{1}, A_{1}\right) \xrightarrow{\operatorname{diff}(t-k)} U\left(A_{2}, A_{2}\right)$, we can establish a relative execution cost difference
of $5 \cdot n$ for these two functions. However, this bound is not precise enough: it is 5 times more than what we expected, because it completely ignores the fact that b doesn't change between the two programs.

Instead, we can obtain a more precise bound using relational analysis. To achieve this, we make use of asynchronous rules that allows us to compare programs with different structure. For instance, we can compare an arbitrary expression e to an if statement as follows:

$$
\frac{|\Gamma|_{2} \vdash_{k}^{t} e^{\prime}: \text { bool } \quad \Gamma \vdash e \ominus e_{1}^{\prime} \lesssim t^{\prime}: \tau \quad \Gamma \vdash e \ominus e_{2}^{\prime} \lesssim t^{\prime}: \tau}{\Gamma \vdash e \ominus\left(\text { if } e^{\prime} \text { then } e_{1}^{\prime} \text { else } e_{2}^{\prime}\right) \lesssim t^{\prime}-k-1: \tau} \text { e-if }
$$

In this rule we relate e to the branches of the conditional and separately establish lower and upper bounds on the execution cost of the guard of the conditional. This rule allows us to compare loop to the inner recursive function loop' in loop0p. Similarly, using a symmetric variant of e-if rule, we can compare the inner conditional branch of loop to the body of loop ${ }^{\prime}$ (shown in shaded boxes above). Note that, in the latter, we want to avoid comparing the "else" branch () to let $=f h$ in loop' $t l$. This can be taken care of by refining the boolean type with its value as follows: bool $_{r}[B] .{ }^{2}$ Then, we can type these two programs with a more precise relative cost n

$$
\begin{aligned}
& \vdash \lambda b \text {.loop } \ominus \lambda b . \text { loop0p } \lesssim 0: \forall B::\{\text { true, false }\} . \\
& \quad \operatorname{bool}[B] \xrightarrow{\operatorname{diff}(-1)} \forall n:: \mathbb{N} . \operatorname{list}[n]^{0} \operatorname{int}_{r} \xrightarrow{\operatorname{diff}(n)} \text { unit }_{r} .
\end{aligned}
$$

The negative cost 1 comes from the fact that the optimized version incurs a unit cost for the outer "if" statement and the expected cost n comes from the fact that the conditional elimination incurs a unit cost for each recursive call.

2.3 Selection Sort

Consider the standard selection sort algorithm that finds the smallest element in a list and then sorts the remaining list recursively. In RelCost, we can show that ssort is a constant time algorithm, i.e. its relative cost is 0 .

We briefly explain its typing. The first ingredient is the function minR that takes a non-empty list of size n and returns the minimum element and the remaining list of size n.

```
fix \(\operatorname{minR}(l)\).case \(l\) of
    nil \(\rightarrow\) contra
\(\mid h:: t l \rightarrow\) case \(t l\) of
    nil \(\rightarrow(h\), nil \()\)
    \(\mid h^{\prime}:: t l^{\prime} \rightarrow\) let \((m, r)=\operatorname{minR} t l\) in
    if \(h<m\) then cons \((h, \operatorname{cons}(m, r))\)
                        else \(\operatorname{cons}(m, \operatorname{cons}(h, r))\)
```

It can be given the following type with the same minimum and maximum case execution cost $h(n)$, where h is a linear funtion in n.

$$
\vdash_{0}^{0} \operatorname{minR}: \forall n:: \mathbb{N} . n>0 \& \operatorname{list}[n] \operatorname{int} \xrightarrow{\operatorname{exec}(h(n), h(n))}(\operatorname{int} \times \operatorname{list}[n-1] \operatorname{int}) .
$$

[^1]Note that its type constraints the input sizes to be non-zero by using the constrained type $C \& \tau$. Then, by using the following subtyping rule

$$
\Delta ; \Phi \models U\left(A_{1} \xrightarrow{\operatorname{exec}(k, t)} A_{2}, A_{1}^{\prime} \xrightarrow{\operatorname{exec}\left(k^{\prime}, t^{\prime}\right)} A_{2}^{\prime}\right) \sqsubseteq U\left(A_{1}, A_{1}^{\prime}\right) \xrightarrow{\operatorname{diff}\left(t-k^{\prime}\right)} U\left(A_{2}, A_{2}^{\prime}\right) \rightarrow \text { execdiff }
$$

we can give minR zero relative cost as follows:
$\vdash \operatorname{minR} \ominus \operatorname{minR} \lesssim 0: \forall n:: \mathbb{N} . n>0 \& U((\operatorname{list}[n+1]$ int $),(\operatorname{list}[n+1]$ int $)) \xrightarrow{\operatorname{diff}(0)} U(($ int $\times \operatorname{list}[n]$ int $),($ int \times list
The selection sort function ssort first finds the minimum element and the rest of the list members and then returns the minimum element appended to the rest of the sorted list.

```
fix ssort (l).case \(l\) of
    nil \(\rightarrow\) nil
\(\mid h:: t l \rightarrow\) let \((m, r)=\operatorname{minR} l\) in \(\operatorname{cons}(m\), ssort \(r)\)
```

Then, we can relationally show that ssort has zero relative cost with respect to two lists that differ by α elements.

$$
\vdash \operatorname{ssort} \ominus \operatorname{ssort} \lesssim 0: \forall n, \alpha:: \mathbb{N} . \operatorname{list}[n]^{\alpha} U(\text { int }, \text { int }) \xrightarrow{\operatorname{diff}(0)} U((\operatorname{list}[n] \text { int }),(\operatorname{list}[n] \text { int })) .
$$

We briefly explain how we derived this type. We focus on the part where the list has at least one element. From the type above, we know that minR's relative cost is 0 and "cons"'ing is constant time. In addition, we assumed that recursively, ssort incurs 0 cost. Hence we can conclude that relative cost of ssort is 0 .

2.4 Approximate sum

The next example is from the approximate computing domain in which one often runs an approximate version of the program to save resources. For instance, consider two implementations of a calculation that computes the mean of a list of real numbers. The first function computes the sum of a list of reals and divides the sum by the length of the list whereas the second function (its approximate version) only computes the sum of the half of the elements, divides this sum by the total length of the list and then doubles the result afterwards. The first version could be operating over precise real numbers whereas the second-approximate-version could be operating over approximate numbers. How can we type these two implementations in RelCost?

We first show the two helper functions sum and sumAppr that correspond to precise and approximate summation over a list of numbers.

```
fix sum(l).\lambdaacc.case l of
    nil }->ac
| h:: tl }->\mathrm{ case tl of
    nil }->h+ac
    | h}::t\mp@subsup{l}{}{\prime}->h+h'+(sum tl' acc)
```

fix sumAppr (l). $\lambda a c c$.case l of
nil $\rightarrow a c c$
$\mid h:: t l \rightarrow$ case $t l$ of nil $\rightarrow h+a c c$
$\mid h^{\prime}:: t l^{\prime} \rightarrow \mathrm{h}+$ (sumAppr tl' acc)
Assume that addition and division operations are constant time and the helper function length can be given the following type

$$
\vdash \text { length } \ominus \text { length } \lesssim 0: \forall n:: \mathbb{N} \text {. list }[n]^{\alpha} U(\text { int }, \text { int }) \xrightarrow{\operatorname{diff}(0)} \text { int }_{r}
$$

Then, we can show that the two helper functions sum and sumAppr can be given the following relational type with relative cost n.

$$
\vdash \operatorname{sum} \ominus \operatorname{sumAppr} \lesssim 0: \forall n:: \mathbb{N} . \operatorname{list}[n]^{\alpha} U(\text { int }, \text { int }) \xrightarrow{\operatorname{diff}(2 n)} U(\text { int, int }) .
$$

Intuitively, these two functions only differ by an addition operation for each recursive call, therefore we obtain $2 n$ difference cost in their execution time: for each recursive call, a unit cost for the addition and a unit cost for the primitive application. To type sum and sumAppr in RelCost we make use of the following asynchronous typing rule that allows us to compare the argument of a function application to an arbitrary expression

$$
\frac{\Delta ; \Phi ;|\Gamma|_{1} \vdash_{k_{1}}^{t_{1}} e_{1}: A_{1} \xrightarrow{\operatorname{exec}(k, t)} A_{2} \quad \Delta ; \Phi ; \Gamma \vdash e_{2} \ominus e_{2}^{\prime} \lesssim t_{2}: U\left(A_{1}, A_{2}^{\prime}\right)}{\Delta ; \Phi ; \Gamma \vdash e_{1} e_{2} \ominus e_{2}^{\prime} \lesssim t_{1}+t_{2}+t+c_{a p p}: U\left(A_{2}, A_{2}^{\prime}\right)} \text { r-app-e }
$$

In particular, in the bodies of sum and sumAppr, we can relationally reason about the shaded parts and independently establish the maximum execution cost of the addition operation in sum. Then we can type these two functions as follows:

$$
\vdash\left(\lambda l . \frac{\text { sum } l 0}{\text { length } l}\right) \ominus\left(\lambda l .2 \cdot \frac{\text { sumAppr } l 0}{\text { length } l}\right) \lesssim 0: \forall n:: \mathbb{N} . \operatorname{list}[n]^{\alpha} U(\text { int, int }) \xrightarrow{\operatorname{diff}(2 n-2)} U(\text { int }, \text { int }) .
$$

Since the approximate version performs an additional multiplication operation, we use the symmetric version of the rule r-app-e and subtract two unit costs: one for the cost of the multiplication and one for the cost of the application of the primitive application.

[^0]: ${ }^{1}$ If t is omitted from $\tau_{1} \xrightarrow{\operatorname{diff}(t)} \tau_{2}$, it is assumed to be zero (similarly for unary functions).

[^1]: ${ }^{2}$ Although we do not consider indexed booleans in this paper, they can be easily simulated by lists.

