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Abstract—We present the design and implementation of
PCFS, a file system that adapts proof-carrying authorization to
provide direct, rigorous, and efficient enforcement of dynamic
access policies. The keystones of PCFS are a new authorization
logic BL that supports policies whose consequences may change
with both time and system state, and a rigorous enforcement
mechanism that combines proof verification with conditional
capabilities. We prove that our enforcement using capabilities
is correct, and evaluate our design through performance
measurements and a case study.
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I. INTRODUCTION

Proof-carrying authorization (PCA) [7, 9, 10] has emerged
as a promising, open-ended architecture for rigorous en-
forcement of access control policies. In PCA, policy rules
and credentials are represented as logical formulas at a
high level of abstraction and published in certificates that
are signed digitally by policy creators; a trusted reference
monitor allows an operation to be performed on a pro-
tected resource only if the principal requesting the operation
produces enough certificates to authorize the access, as
well as a formal logical proof which explains why the
certificates entail access. Although PCA combines the rigor
and flexibility of formal logic for expressing and interpreting
access policies, and of digital signatures for maintaining
their integrity, the reference monitor must check a logical
proof and associated certificates at each access, which may
together limit the throughput of resource access. To date,
PCA has been practically deployed for access control on the
web [9] and in physical devices [10]. In either case, latency
of access checks is not a significant concern since it is
overshadowed by the time taken for network communication
and movement of physical parts, respectively.

In this paper we present the theory, design, and imple-
mentation of PCA in a local file system where latency of
access checks is a significant concern. Given an effective
disk cache, a local file system is expected to perform several
thousand operations a second, which leaves only a few mi-
croseconds for each access check. In particular, a file system
that verifies proofs and certificates at each access results in
visible delays, a hypothesis we confirmed through an im-

plementation that preceded the work presented in this paper.
To attain high throughput during file access, our present file
system PCFS (proof-carrying file system) off-lines proof and
certificate checking to a trusted verifier program, which is
invoked in advance of access and issues signed capabili-
ties after verifying proofs and associated certificates. The
capabilities, called procaps (proven capabilities), can then
be used to authorize access to files and perform disk I/O.
Verification of capabilities is approximately two orders of
magnitude faster than verification of proofs and certificates
and, as a result, PCFS attains high throughput during file
access even in our prototype implementation.

At a high-level of abstraction, procaps are similar to
entries of a cache that a reference monitor may maintain
to record accesses it has authorized in the past. However,
procaps are more general than cache entries since they scale
easily to decentralized settings where the trusted verifier
and reference monitor are running on different nodes of
a network. Further, as opposed to a reference monitor
maintained cache, procaps are closer in spirit to proof-
carrying authorization where the principal seeking access
is responsible for maintaining and providing evidence to
authorize access. Another merit of using capabilities as
opposed to caches is that both the design and implementation
of the access control system factor into two parts that interact
via capabilities only: (a) The front end that deals with
policies, proofs, and verification of proofs and certificates,
and (b) The back end that uses capabilities to authorize
access and perform I/O. Indeed, the PCFS back end is
independent of the logic used in the front end, and it can be
used with any policy infrastructure that produces compatible
capabilities. Similarly, the PCFS front end may be used for
managing policies and proofs for controlling access to any
class of resources, not necessarily a file system.

Although the design and implementation of an access
control system that separates policy decision from policy
enforcement via capabilities may seem technically straight-
forward (indeed such designs have been used in many
prior systems, e.g., [6, 25, 33, 37], although none of these
systems use logic for representing policies), a technically
challenging and interesting aspect of our work that has
not been addressed previously is a rigorous treatment of



dynamic authorizations, i.e. authorizations that are valid only
at specific points of time or in particular system states,
both of which may change between the generation of a
capability and its use. To address this problem satisfactorily,
we consider a new logic BL that can represent both time
and state dependent policies, describe a proof verification
procedure that extracts time and state conditions on which
proofs rely (these conditions are then written to generated
capabilities), require that the PCFS back end verify these
conditions, and prove rigorously that this two-part checking
of proofs where proof structure and certificates are verified
off-line and conditions are checked during access ensures
that a full proof authorizing access exists at the time of
access. Thus file access in PCFS has the same formal
guarantees as PCA, but with much smaller access check
overheads.

As part of the infrastructure supporting the core PCFS
architecture, we have built an automatic proof search tool
for BL that is based on logic programming. As in PCA,
this tool is not a part of the trusted computing base, but
users may choose to use it for constructing proofs. To test
the expressiveness of the framework, we have completed
a realistic case study that represents in BL policies for
controlling access to classified information in the U.S., and
explains their enforcement through PCFS.

The current implementation of the PCFS back end main-
tains compatibility with existing programs by requiring that
capabilities be put in an indexed store on disk in advance of
program invocation. Capabilities are fetched from this store
by the file system back end when needed, so the existing file
system API remains unmodified. The PCFS architecture has
been constructed with generality in mind, and we expect that
it can be used in other centralized and decentralized settings
(besides file systems) without significant changes to either
its design or its implementation.

Contributions: Our work contributes to both the theory
and practice of access control. At a theoretical level, the
primary contribution of our work is the logic BL that
can represent dynamic authorization policies, a detailed
development of its proof theory (of which we present only
a part in this paper), a verification procedure that generates
capabilities conditional on time and system state from BL
proofs, and a rigorous proof that enforcement of policies
with off-line proof verification and capabilities has the
same formal guarantees as PCA. On the practical side, we
implement a prototype file system PCFS that includes a BL
front end with an automatic proof search tool and a proof
verification tool that generates procaps, as well as a back end
that uses capabilities to authorize access. We show through
measurements that capability based authorization checks are
fast in practice even when capabilities are conditional on
time and state, and verify expressiveness of the framework
through a case study. The back end of PCFS also makes
a minor contribution by adding two new permissions to

the three permissions mandated by POSIX (read, write, and
execute). This enables enforcement of both discretionary and
mandatory access control policies, as becomes evident in
our case study (it is known that mandatory access control
policies are difficult to enforce with POSIX permissions).

Non-goals: Our focus in designing and building PCFS is
on logical foundations and efficiency of access control. Is-
sues of end-user friendliness, although important in practice,
are beyond the scope of this paper. In particular, we do not
consider methods for authoring policies, finding certificates
relevant for proof construction (prior work on this subject
may also apply here [12, 16]), and role-based access control
(RBAC) or its administration. The implementation of PCFS
is a prototype meant to evaluate access control checks; it
does not focus on other aspects of security, e.g., encryption
of data and communication protocols between the kernel
and the file system. Further, we do not evaluate file-use
patterns in common programs. In general, our architecture
will perform better for programs whose working files can
either be predicted prior to execution or are newly created
during execution. In the former case, procaps needed for
access can be generated in advance and for the latter case
PCFS automatically creates procaps that provide a program
access to newly created files for a fixed period of time,
without requiring administrators to create new policy rules.
Finally, we do not consider the issue of security of signing
keys. Instead, we assume that administrators keep their
signing keys secure at all times.

Organization: The rest of this paper is organized as
follows. In Section II we introduce the architecture of
PCFS and its various components. Section III covers the
logic BL used to represent policies in PCFS and its proof
theory. Section IV briefly describes a case study on access
control for classified information in the U.S. Section V
covers the front end of PCFS including our implementation
of automatic proof search and proof verification. It also
shows formally that procap-based enforcement of policies in
PCFS is equivalent to an enforcement with proof-carrying
authorization. Section VI discusses the back end of PCFS
that uses procaps to authorize permissions. Section VII
evaluates performance of the PCFS back end. Section VIII
discusses some related work, and Section IX concludes the
paper.

Proofs of theorems and several aspects of BL’s meta-
theory have been omitted from this paper due to lack of
space. These are present in the first author’s thesis [20].
Details of the case study are in a separate technical re-
port [23]. Source code of the entire implementation of PCFS
is available from the first author’s homepage.

II. OVERVIEW OF PCFS

PCFS is implemented as a local file system for the Linux
operating system. Technically, PCFS is a virtual file system
that relies on the Fuse kernel module [2]. An underlying file

2



F
I
L
E

A
P
IData

Proof, certificate 
verifierProof search

admin says
may (...) admin says

may (...) admin says
may (...) admin says

may (...) 

admin says
may (...) admin says

may (...) admin says
may (...) admin says

may (...) 

User

yes

Data

no

Error

/Error

Procap
Store

PCFS
Handler

Procap
OK?

File system call

Administrators

admin says
may (...) admin says

may (...) admin says
may (...) admin says

may (...) 

1

2

3

4

5

6

7

8

9

10

11a 11b

11c
12

Storage
(Ext3)

admin says
may (...) admin says

may (...) admin says
may (...) admin says

may (...) 

Policies Proof Procap

Secret key

Legend

Figure 1. PCFS Workflow

system (ext3 in all experiments reported in this paper) is
used for disk I/O after making access control checks. PCFS
is mounted using the command:

$> sudo pcfs-main /path/to/src \
/path/to/mountpoint

Here /path/to/src is an existing directory in an
ext3 system, and /path/to/mountpoint is an empty
directory. After the execution of this command, any file
system call on a path inside /path/to/mountpoint/
(e.g.,/path/to/mountpoint/foo/bar) results
in a corresponding operation on the path inside
/path/to/src/ (e.g.,/path/to/src/foo/bar),
but is subject to rigorous access checks. PCFS expects
some configuration information in special files in
/path/to/src/, which is described in Section VI.

Figure 1 shows the PCFS workflow. Numbers are used
to label steps in order of occurrence. Steps 1–6 create and
store procaps which show that a user is allowed certain
permissions in the file system. These steps are performed
in advance of file access, and happen infrequently (usually
before a user accesses a file for the first time). Once procaps
are stored, they can be used repeatedly to perform file
operations (steps 7–12). The solid black vertical line in the

figure separates steps that happen in user space, i.e. before
and after a file system call (left side of the line) from those
that happen during a file system call (right side of the line).
Briefly, policy enforcement in PCFS follows the path:

Policy→ Proof→ Procap→ File access

Policy creation (Step 1): We define a policy as a set of
rules and facts which determines access rights. An access
right is a triple 〈k, f, η〉, which means that user k (Alice,
Bob, etc.) has permission η (read, write, etc.) on file or
directory f . We allow different rules and facts in a policy
to be created by different individuals called administrators
(this is necessary to faithfully represent separation of duty
in many organizations). We require that each administrator
write her portion of facts and rules as logical formulas in
a text file and digitally sign the file with her private key.
This signed file is called a certificate. In a concrete sense,
therefore, a policy is a collection of certificates signed by
different administrators. Abstractly, a policy is a collection
of logical formulas which are contained in the certificates.
We often denote this collection of logical formulas with the
symbol Γ. PCFS provides its own logic for writing policies.
This logic, BL, is described in Section III.
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PCFS provides a command line tool, pcfs-cert, to
help administrators check formulas for adherence to logical
syntax, to digitally sign them, and to convert them to a
custom certificate format. (We could have used a standard
certificate format like X.509 [27], but found it easier to
create our own format.) We do not assume a centralized
store for certificates. Instead they are distributed to users to
whom they grant permissions. Certificates may be issued and
revoked over time (revocation is discussed in Section V), so
the policy may change over time.

Proof generation (Steps 2–3): Once certificates have been
created by administrators and given to users, the latter use
them to show that they are allowed certain permissions in the
file system. The basic tenet of PCFS (adapted from PCA) is
that a user k is allowed permission η on resource f at time
u, if and only if the user can provide a formal logical proof
M which shows that the policies in effect (Γ) entail a fixed
formula auth(k, f, η, u), or in formal notation, M :: Γ `
auth(k, f, η, u). The formula auth(k, f, η, u) is defined in
Section III.

To facilitate proof construction, PCFS provides an auto-
matic theorem prover for BL through the command line tool
pcfs-search, which we describe briefly in Section V-A.
However, the proof search tool is not a trusted component
of PCFS and users may create their own proof search tool
or use heuristics to construct proofs.

Proof verification (Steps 4–5): Once the user has con-
structed a proof M , this proof, together with the certificates
used to construct it, is given to a proof verifier, invoked using
another command line program pcfs-verify (Step 4 in
Figure 1). The verifier is a simple piece of code and must
be trusted. The verifier checks that the logical structure of
the proof M is correct, and checks the digital signatures of
all certificates used in the proof. If both checks succeed, the
verifier gives back the user a procap, which is a capability
that mentions the right 〈k, f, η〉 that the proof grants (Step
5). The procap also contains conditions related to time and
system state on which the proof depends (see Section V-B
for details) and is signed using a shared symmetric key that
is known only to the verifier and the file system reference
monitor. The signature is necessary to prevent users from
forging capabilities.

Procap injection (Step 6): After receiving a procap, the
user calls another command line tool which puts the procap
in a central store marked “Procap Store” in Figure 1. This
store is in a designated part of the PCFS file system, and is
accessible to both users as well as the file system back end.
The back end looks up this store to find relevant procaps
when file system calls are made. We describe this store’s
organization in Section VI.

File system call (Step 7): A call to the PCFS file system is
made through the usual POSIX file system API during the
execution of a user program or through a shell command
like ls, cp, rm, etc. The PCFS file access back end

respects the standard POSIX interface, so user programs and
shell commands don’t need to change to work on PCFS.
However, before a program is started or a shell command
is executed, the user must ensure that enough procaps have
been injected to allow the program to complete all its file
operations. So steps 2–6 may have to be repeated many times
by the user (this can be automated using simple scripts).
Alternatively, the program must be augmented to possibly
create, and certainly inject, procaps on the fly. For files that
are created during the execution of a program, the back end
automatically creates and stores some default procaps that
allow temporary access to the user creating them. These are
discussed in Section VI.

Procap look up and checking (Steps 8–10): When a
system call is made on a PCFS file system, it is redirected by
the Linux kernel to a process server which we have written
(Step 8 in Figure 1). Depending on the specific operation
requested, this server looks up one or more procaps in the
procap store (Steps 9 and 10). The exact procaps needed
for each operation vary, and are listed in Section VI. If all
relevant procaps are found, they are checked.

Error (Steps 11a, 12): If any procap needed for perform-
ing the requested file operation is missing, or fails to check,
an error code is returned to the user program.

File operation (Steps 11b, 11c, 12): If all relevant procaps
needed to perform the requested file operation are found, and
successfully check, then the underlying file system is used
to perform the requested file operation (Step 11b). The result
of the operation is returned to the user (Steps 11c and 12).

A. Implementation

Our implementation factors into two parts: (a) The front
end, which comprises the command line tools for creating
certificates, constructing proofs, checking proofs to create
procaps, and injecting procaps into the central store (Steps
1–6 in Figure 1), and (b) the back end which handles
the calls from the Fuse kernel module, looks up procaps
in the store, checks them, and then makes calls on the
underlying file system to perform disk operations (Steps 8–
11c in Figure 1). The two parts interact via procaps which
carry information from logical proofs into the file system’s
back end.

The front end, with the exception of the procap injection
tool, has strong foundations in logic, and the technical
challenge in its design has been the development theoretical
principles for BL that can be practically implemented. Our
implementation of the front end tools is written in Standard
ML, and comprises nearly 7,000 lines of code. OpenSSL [3]
is used for all cryptographic operations. Because the front
end tools are used less frequently than the back end tools,
their efficiency is also less of a concern.

The back end is the bottleneck for performance and
needs to be extremely efficient. It is implemented in C++
using approximately 10,000 lines of code, most of which
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is devoted to procap parsing and checking. We evaluate
performance of the back end in Section VII.

III. BL: THE AUTHORIZATION LOGIC

PCFS provides a new logic for writing policies, which we
call BL, and describe in this section.1 BL is an extension of
first-order intuitionistic logic with two modalities that have
been studied in prior work [5, 18, 30]: k says s, which
means that principal k states or believes formula s, and
s @ [u1, u2] which means that s holds from time u1 to
time u2. The former is used to distinguish in the logic
parts of the policy made by different individuals whereas
the latter is needed to accurately represent time-dependent
rules. The logical interpretation of k says s in BL is different
from that in any existing work. This new interpretation is
designed to facilitate faster proof search and to increase
expressiveness (Sections V-A and III-C). In addition to these
modalities, BL includes support for checking constraints,
which are relations between terms decided using external
decision procedures not formalized in the logic (e.g., the
usual order ≤ on integers). BL also supports predicates
that capture the state of the file system. Formulas in BL
are denoted using the letters s and r. The syntax of BL is
summarized below.

Sorts σ ::= principal | time | file | perm | . . .
Terms t ::= a | x | h(t1, . . . , tn)
I-Predicates I (Interpreted Predicates)
U-Predicates P (Uninterpreted Predicates)
I-Atoms i ::= I(t1, . . . , tn)
U-Atoms p, q ::= P (t1, . . . , tn)
Constraints c ::= u1 ≤ u2 | k1 � k2 | . . .
Formulas r, s ::= p | i | c | r ∧ s | r ∨ s | r ⊃ s |

> | ⊥ | ∀x:σ.s | ∃x:σ.s |
k says s | s @ [u1, u2]

As in first-order logic, subjects of predicates are called
terms. They represent principals, files, time points, etc.
Abstractly, terms can be either ground constants a, bound
variables x, or applications of uninterpreted function sym-
bols h to ground terms. Terms in BL are classified into
sorts σ (sometimes called types). We stipulate at least four
sorts: principal, whose elements are denoted by the letter
k, time whose elements are denoted by the letter u, file
whose elements are denoted by the letter f , and perm (for
permission) whose elements are denoted by the letter η.
Elements of time are called time points, and it is assumed
that ground time points are integers (we could also have used
rationals or real numbers instead). In the external syntax of
the logic, we allow time points to be actual clock times
written to second level accuracy as yyyy:mm:dd:hh:mm:ss,
but internally time points are represented as integers that
measure seconds elapsed from a fixed clock time.

1BL stands for “Binder Logic”, as a tribute to the trust management
framework Binder [17] from which the logic draws inspiration.

Predicates in BL are divided into three categories: (a) Un-
interpreted predicates, denoted P , which are established
using logical rules and a priori using signed certificates,
(b) Constraints, which are interpreted through trusted de-
cision procedures, and (c) Interpreted predicates, denoted I ,
which capture properties of the environment. By environ-
ment here we mean the state of the file system, including,
but not limited to, meta data contained in the files such
as extended attributes and file ownership information. We
assume that the environment is volatile, i.e. it may change
unpredictably. We denote an abstract logical representation
of the environment by the letter E and write E |= i to
mean that the interpreted atomic formula i holds in the
environment E.

In the implementation we require trusted decision proce-
dures to decide the truth of both interpreted predicates and
constraints. The difference between the two is that the truth
of interpreted predicates may depend on state, while that
of constraints may not. We stipulate at least two types of
constraints: u1 ≤ u2 that captures the usual total order on
time points, and a pre-order k1 � k2, which means that
principal k1 is stronger than principal k2. If k1 � k2, then
BL’s inference rules force (k1 says s) ⊃ (k2 says s) for
every formula s. In this sense, k1 � k2 is similar to the
“speaks for” relation of Abadi et al. [5, 30]. The difference
is that the BL relation k1 � k2 is a constraint, so it does not
have to be defined entirely through logical formulas, and its
verification may rely on external decision procedures. We
assume that there is a strongest principal `, i.e. ` � k holds
for every k. In particular (` says s) ⊃ (k says s) for every
k and s. For this reason ` is called the “local authority”,
a principal whom everyone believes. (We borrow this term
from the language SecPAL [11].) The notation |= c means
that constraint c holds.

Time-invariance of state: An important design decision
in BL is that interpreted predicates occurring in a proof are
implicitly defined (and verified) relative to the environment
E prevailing at the time that the procap derived from the
proof is used for access. For the proof system of BL,
this design choice has the consequence that the truth of
interpreted atoms does not change with time, so i @ [u1, u2]
and i @ [u′

1, u
′
2] are equivalent for arbitrary intervals [u1, u2]

and [u′
1, u

′
2] (both mean that i holds in the environment

prevalent at the time of access). Although counter-intuitive,
because, in practice, the truth of interpreted predicates does
change as system state changes, this design choice simplifies
the proof verifier and the design of procaps (Section V-B).
Further, limiting system state to one point in time does not
reduce expressiveness: if some access control policy were
to rely on a predicate over system state having been true in
the past, this can still be represented in BL by requiring that
there be explicit evidence – either an element of system
state or a certificate – still valid at the time of access
that witnesses this fact. Clearly, requiring such persistent
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evidence is no harder than requiring the reference monitor
to maintain a record of the entire history, and is in fact,
a better design choice since it requires the policy to make
explicit what evidence from the past is necessary to verify
proofs. Our case study (Section IV) shows that this design
choice does not preclude representation of realistic policies
in BL.

A. Proof System

Next, we present a proof system for BL in the natural
deduction style of Gentzen [24]. We have also designed
a sequent calculus for BL but omit it here. Our proof
theory is based on the judgmental method [34], where a
syntactic category of judgments (distinct from formulas) is
the subject of proofs and deductions. Using the judgmental
method simplifies meta-theory of the logic. Our technical
presentation closely follows prior work for a related logic
by DeYoung and the authors [18]. As in that work, we
introduce two judgments: s ◦ [u1, u2] meaning that formula
s is provably true in the interval [u1, u2], and k claims s ◦
[u1, u2] meaning that principal k states that s holds from
u1 to u2. The symbol ◦ is read “during”. s ◦ [u1, u2] is
logically equivalent to the formula s @ [u1, u2], whereas
k claims s ◦ [u1, u2] is logically equivalent to the formula
(k says s) @ [u1, u2].

Judgments J ::= s ◦ [u1, u2] | k claims s ◦ [u1, u2]
Views α ::= k, ub, ue
Hypotheses Γ ::= π1 : J1 . . . πn : Jn (n ≥ 0)
Sequent E; Γ α−→ s ◦ [u1, u2]

Hypothetical judgments (which are established through
proofs) have the form E; Γ α−→ s ◦ [u1, u2]. E is an abstract
logical representation of the environment and Γ is the set of
assumed judgments (hypotheses or policy). π1, . . . , πn are
distinct names for assumptions in Γ. A novel feature of the
proof system is the triple α = k, ub, ue on the entailment
arrow, which we call the view of the sequent.2 The view
represents the principal and interval of time relative to
which reasoning is being performed. It affects provability
in the following manner: while reasoning in view k, ub, ue,
an assumption of the form k′ claims s ◦ [u′

1, u
′
2] entails

s ◦ [u′
1, u

′
2] if k′ � k, u′

1 ≤ ub, and ue ≤ u′
2. This entailment

does not hold in general.
A proof is represented using a compact representation

called a proof term, denoted M . We write M :: E; Γ α−→
s ◦ [u1, u2] to mean that M is a proof term that represents a
proof of the hypothetical judgment that follows it. For each

2We simplify the presentation of the proof system by not explicitly
listing term parameters that are allowed to occur in hypothetical judgments.
Further, we do not consider hypothetical constraints here. A full set of
rules without these omissions is available in the first author’s thesis [20,
Chapter 4].

|= u′
1 ≤ u1 |= u2 ≤ u′

2

π :: E; Γ, π : s ◦ [u′
1, u

′
2]

α−→ s ◦ [u1, u2]
hyp

α = k, ub, ue |= u′
1 ≤ u1

|= u2 ≤ u′
2 |= u′

1 ≤ ub |= ue ≤ u′
2 |= k′ � k

π :: E; Γ, π : k′ claims s ◦ [u′
1, u

′
2]

α−→ s ◦ [u1, u2]
claims

M :: E; Γ| k,u1,u2−−−−−→ s ◦ [u1, u2]

(pf saysI M) :: E; Γ
α−→ (k says s) ◦ [u1, u2]

saysI

M1 :: E; Γ
α−→ s1 ⊃ s2 ◦ [u1, u2]

M2 :: E; Γ
α−→ s1 ◦ [u′

1, u
′
2]

|= u1 ≤ u′
1 ≤ u′′

1 |= u′′
2 ≤ u′

2 ≤ u2

(pf impE M1 M2 u
′
1 u

′
2) :: E; Γ

α−→ s2 ◦ [u′′
1 , u

′′
2 ]
⊃E

M :: E; Γ
α−→ ∀x:σ.s ◦ [u1, u2]

(pf forallE M t) :: E; Γ
α−→ s[t/x] ◦ [u1, u2]

∀E

E |= i

(pf sinjI) :: E; Γ
α−→ i ◦ [u1, u2]

interI

|= c

(pf cinjI) :: E; Γ
α−→ c ◦ [u1, u2]

consI

Figure 2. BL: Natural Deduction (Selected rules)

deduction rule in our proof system, there is a unique con-
structor for proof terms. An entire proof can be reconstructed
from its proof term and the hypotheses.

Figure 2 shows selected and slightly simplified rules
of the proof system. As usual, we have introduction and
elimination rules for each connective (marked I and E
respectively). For a syntactic entity R, R[t/x] denotes the
capture avoiding substitution of term t for variable x in R.
The rule (hyp) states that the assumption s ◦ [u′

1, u
′
2] entails

s ◦ [u1, u2] if u′
1 ≤ u1 and u2 ≤ u′

2, i.e. the interval [u1, u2]
is a subset of the interval [u′

1, u
′
2]. This makes intuitive sense:

if a formula s holds throughout an interval, it must hold on
every subinterval as well. The proof term corresponding to
this (trivial) derivation is π, where π is also the name for
the assumption s ◦ [u′

1, u
′
2]. The rule (claims) is similar,

except that it allows us to conclude s ◦ [u1, u2] from the
assumption k′ claims s ◦ [u′

1, u
′
2]. In this case, it must also

be shown, among other things, that k′ is stronger than the
principal k in the view (premise |= k′ � k).

(saysI) is the only rule which changes the view. The
notation Γ| in this rule denotes the subset of Γ that contains
exactly the claims of principals, i.e. the set {(k′ claims s′ ◦
[u′

1, u
′
2]) ∈ Γ}. The rule means that (k says s) ◦ [u1, u2]

holds in any view α if s ◦ [u1, u2] holds in the view k, u1, u2

using only claims of principals. Assumptions of the form
s′ ◦ [u′

1, u
′
2] are eliminated from Γ in the premise because

they may have been added in the view α (using other rules
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not shown here), but may not hold in the view k, u1, u2.
(⊃E) is a variant of the common rule of modus ponens.

It means that if s1 ⊃ s2 holds during an interval [u1, u2],
and s1 holds during a subinterval [u′

1, u
′
2], then s2 must hold

during any interval [u′′
1 , u

′′
2 ], which is contained in both. (∀E)

states that if ∀x:σ.s holds during some interval [u1, u2], then
s[t/x] holds during the same interval for any term t.

The rule (interI) states that an interpreted atomic formula
i is provable if it holds in the abstract logical representation
of the environment E. The proof term sinjI that appears
in this rule has no specific structure; it is merely a marker to
indicate that a decision procedure must be invoked to check
i in the prevailing environment. The rule (consI) is similar
but it is used to establish constraints. It should be noted that
the view α is relevant only for assumptions in Γ and is not
used in the rules (interI) and (consI).

Meta-theory: A meta-theorem is a theorem about the
proof system in general. For an access control logic like BL,
whose application is based on verification of proofs, meta-
theory of the proof system is an important foundational jus-
tification [22]. We state below two important meta-theorems
about BL’s proof system (substitution and subsumption).
Structural theorems such as weakening for the hypotheses
also hold, but we do not state them explicitly. M [M ′/π]
denotes the capture-avoiding substitution of proof term M ′

for the name π in the proof term M .

Theorem III.1 (Substitution). Suppose the following hold:
1) M ′ :: E; Γ α−→ s ◦ [u1, u2]
2) M :: E; Γ, π : s ◦ [u1, u2] α−→ r ◦ [u′

1, u
′
2]

Then, (M [M ′/π]) :: E; Γ α−→ r ◦ [u′
1, u

′
2]

Theorem III.2 (Subsumption). Suppose the following hold:
1) M :: E; Γ α−→ s ◦ [u1, u2]
2) |= u1 ≤ u′

1 and |= u′
2 ≤ u2

Then, M :: E; Γ α−→ s ◦ [u′
1, u

′
2]

Several other meta-theorems about BL, its sequent cal-
culus, and proofs of the above theorems are available in a
separate report [20, Chapter 4].

B. Connection to Enforcement

Representation of files and principals: The logic BL
does not mandate how files and users are concretely
represented. However, from the perspective of an imple-
mentation, making this choice is important. In PCFS,
files and directories are represented by their full path
names, relative to the path where PCFS is mounted. Thus,
if PCFS is mounted at /path/to/mountpoint, then
the file /foo/bar in any formula refers to the file
/path/to/mountpoint/foo/bar in the file system.
Principals are represented in one of two ways: either as
symbolic constants, or by their Linux user ids. The former
is used to represent principals that do not correspond to
any real users (e.g., organizational roles), while the latter

is used for principals that do (e.g., users that run programs
and access files). Permissions are given on a per-file (or per-
directory) basis to real users.

Representation of policy in BL: If an administrator k
creates a rule represented by formula s, and puts it in a
certificate that is valid from time u1 to time u2, then this rule
is reflected in BL as the assumption k claims s ◦ [u1, u2].
In addition, we require that each rule be accompanied by
a unique name (a string), which is written in the certificate
with the rule. This name is used to refer to the assumption in
proofs. The whole policy has the form Γ = {πi : ki claims
si ◦ [ui, u′

i] | 1 ≤ i ≤ n}, where ki’s are administrators,
and πi’s are unique names for the rules of the policy.

What should be proved?: We assume the existence of one
distinguished administrator, symbolically denoted admin,
who is the ultimate authority on access. In order to get
permission η on file f at time u, user k must prove that the
policy in effect entails the defined judgment auth(k, f, η, u),
where:

auth(k, f, η, u) , (admin says may(k, f, η)) ◦ [u, u]

may is a fixed uninterpreted predicate taking three argu-
ments, and u is the time of access ([u, u] is a singleton
set on the integer line containing exactly the time point u).

When we start constructing a proof in BL at the top level,
the exact view α does not matter. As a result, to get access,
it must be shown that: E; Γ α−→ auth(k, f, η, u), where α is
a view made of fresh constants, and Γ is the policy. When
E is fixed, we often abbreviate this hypothetical judgment
to Γ ` auth(k, f, η, u).

Usually, admin delegates part of its authority to other
administrators through rules. Also, in most policies, admin
may have authority over the predicate may but not other
predicates. For this reason, it is advisable to keep admin
distinct from `, the strongest principal whom everyone
believes on every predicate.

Interpreted Predicates: The implementation of BL in
PCFS natively supports two interpreted predicates, although
support for other predicates can be added easily through
a programming API provided for this purpose. These two
predicates are: owner(f, k), which means that file f has
owner k, and has xattr(f, a, v), which means that file
f has value v for the extended attribute user.#pcfs.a.
Extended attributes beginning with the prefix user.#pcfs.
are specially protected by PCFS – a special permission
called “govern” is needed to change them. By limiting this
permission to trusted individuals only, policies may use these
attributes to label files in a secure manner, as illustrated in
Section IV. Interpreted predicates are written in boldface to
distinguish them from others.

C. Expressiveness of BL

Besides the realistic case study described in Section IV,
we evaluate expressiveness of BL in two ways. First, on
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the practical side, we have examined common access policy
policy idioms that can be expressed in BL and those that
cannot be expressed in BL. We mention some of these
idioms briefly (details may be found in [20, Sections 3.1.2
and 4.1.2]). Access control matrices, administrative roles and
groups, and delegation of authority can be represented in BL
using the says modality and first-order quantifiers, as in other
access control frameworks [11, 17, 22]. Further, using the
@ connective, we can express certificate expiration directly.
Using the @ connective we can also express policies that
rely on explicit points of time in the past. As an example
of this class of policies, the following rule, created by
an administrator A, states that if principal k becomes an
alumnus at time T and has access to file f at time T , then
k will continue to have access to f for 180 days after T .

A says ∀k, f, T.
((alumni k T ) ∧ ((mayaccess k f) @ [T, T ]))

⊃ ((mayaccess k f) @ [T, T + 180d]))

Such policies cannot be represented in access control logics
that treat time as a part of the state and, consequently, allow
policies to refer to the time of access but not other points of
time (e.g., [9, 11]). This increased expressiveness justifies
the separation of time from other forms of state in BL.

BL’s novel interpretation of the says modality through
views in hypothetical judgments also improves expressive-
ness as compared to other access control logics, particularly
those that admit the axiom s ⊃ (k says s) [4, 7, 21, 22]
(BL does not admit this axiom). In BL’s proof system
k′ says ((k says s) ⊃ s′) and k says s imply k′ says s′, but
k′ says ((k says s) ⊃ s′) and k′ says s do not, in general,
imply k′ says s′. As a result, k′ says ((k says s) ⊃ s′)
represents a transfer of authority over formula s from k′ to
k, wherein k′ does not retain control of s. This is useful in
representing many realistic access policies, including several
parts of our case study (Section IV). In logics that admit
the axiom s ⊃ (k says s), k′ says ((k says s) ⊃ s′) and
k′ says s imply k′ says s′, so representing this form of
delegation is difficult.

Using constraints that test for set membership, policies
that require approval of k out of n designated principals can
be expressed easily in BL (see [11, Section 5] for details).
In common with other access control logics, it is difficult to
express in BL policies for which order of rules matters, as
well as policies that are contradictory. However, it should be
noted that, like many other access logics, k says ⊥ does not
imply ⊥ in BL, so contradictory statements by individuals
do not make the policy inconsistent as a whole.

To further establish the expressiveness of BL as a logic
for representing access policies, we have translated two
existing policy frameworks into BL, and proved soundness
and completeness of the translations. The two frameworks
are an access control logic used in a significant amount of
prior work [4, 8, 21, 22, 28] and the authorization framework

Soutei [36]. We refer the reader to another report for details
of the translations [20, Section 3.5].

IV. CASE STUDY: CLASSIFIED INFORMATION IN U.S.

Based on information obtained from public government
documents, and through an industrial collaborator, we have
completed a realistic case study that formalizes several
policies for access to sensitive (classified or potentially
classifiable) information in the intelligence community in the
U.S. The study is quite extensive and contains approximately
50 fixed rules that exercise both explicit time as well as
system state in BL. Extended attributes of files, manifest
in BL through interpreted predicates, are used to represent
the classification status of files (classified vs unclassified)
and their classification level. Attributes of individuals are
specified in certificates issued by administrators, many of
which expire at fixed points of time. For example, some
background checks expire every 5 years. These expirations
are represented using the @ connective in BL.

Whereas the entire case study is available in a separate
technical report [23], in this section we present two policy
rules adapted from this case study as an illustration of the use
of BL. Access to classified information in practice is more
complicated than indicated by our illustrative example and
involves background checks, credit checks, and polygraph
tests among other things, all of which we omit here to keep
the illustration simple.

Each sensitive file in an intelligence agency is assumed
to have a classification level, which is an element of the
ordered set confidential < secret < topsecret. Dually, each
individual affiliated with such an agency has a clearance
level, also from the same set. This clearance level indicates
the highest level of classified files the individual may read.
For the purpose of representation in BL, we assume that
the classification level of a file is written in an extended
attribute user.#pcfs.level on the file. We also assume
one distinguished administrator, hr, who is responsible for
deciding attributes of users, e.g., giving them classification
levels and employment certifications.

Let us assume that principal k may read file f only
if three conditions are met: (a) k is an employee of
the intelligence organization (predicate employee(k)), (b)
k has a classification level above the file (predicate
hasLevelForFile(k, f)), and (c) k gets permission from
the owner of the file. Suppose that this rule came in effect
in 2000, and will remain in effect till 2010. The following
credential (created by admin) captures this rule in BL. For
readability, we omit sort annotations from quantifiers.

(1) admin claims ∀k, k′, f.
(((hr says employee(k)) ∧

(hasLevelForFile(k, f)) ∧
(owner(f, k′)) ∧
(k′ says may(k, f, read))) ⊃ may(k, f, read))

◦ [2000, 2010]
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The predicate hasLevelForFile(k, f) may further be de-
fined by admin in terms of classification levels of k and f .

(2) admin claims ∀k, f, l, l′.
(((has xattr(f, level, l) ∧

(hr says levelPrin(k, l′)) ∧
(below(l, l′))) ⊃ hasLevelForFile(k, f))

◦ [2000, 2010]

It is instructive to observe how the interpreted predicate
owner has been used to capture the actual owner of the
file as written in its meta data, and how has xattr has
been used to reflect the file’s classification level in the logic.
The predicate below(l, l′) captures the order l < l′ between
classification levels. We assume that all principals believe
this order. Hence it is stated by the strongest principal `.

(3) ` claims below(confidential, secret) ◦ [2000, 2010]
(4) ` claims below(secret, topsecret) ◦ [2000, 2010]
(5) ` claims below(confidential, topsecret) ◦

[2000, 2010]

As an illustration of the use of this policy, let us assume
that file /secret.txt is owned by Alice (user id 1003) and
classified at the level secret. Thus, the following must hold
in the file system state E at the time of access:

(A) E |= owner(/secret.txt, uid 1003)
(B) E |= has xattr(/secret.txt, level, secret)

Suppose further that Bob (user id 1500) is an employee
cleared at level topsecret from 2007 to 2009, and further
that Alice wants to let Bob read file /secret.txt from 2008
to 2009. This information may be captured by the following
formulas (signed by the respective principals).

(6) hr claims employee(uid 1500) ◦ [2007, 2009]
(7) hr claims levelPrin(uid 1500, topsecret) ◦

[2007, 2009]
(8) (uid 1003) claims may(uid 1500, secret.txt, read) ◦

[2008, 2009]

Let Γ denote the set of policy rules (1)–(8) (with
corresponding names p1–p8). Then using the rules
of Figure 2 we can show that there is a proof
term M such that M :: E; Γ α−→ (admin says
may(uid 1500, /secret.txt, read)) ◦ [2008, 2009], if E satis-
fies the conditions (A) and (B). From Theorem III.2, it fol-
lows that M :: E; Γ α−→ auth(uid 1500, /secret.txt, read, u)
whenever u ∈ [2008, 2009], and hence Bob should be able
to read /secret.txt from 2008 to 2009. This is what we may
intuitively expect because the intersection of the validity of
all certificates issued here is exactly [2008, 2009]. Further,
M :: E; Γ α−→ auth(uid 1500, /secret.txt, read, u) will
not hold if u 6∈ [2008, 2009] or E does not satisfy either
(A) or (B). Therefore, the proof M correctly reflects the
dependence of policy rules on both time as well as system
state.

V. PCFS FRONT END: PROOF SEARCH AND
VERIFICATION

Next, we describe the front end of the PCFS implemen-
tation. We start by describing the proof search tool briefly,
and then turn to a formal description of proof verification
and the structure of procaps.

A. Automatic Proof Search

Even though users are free to construct proofs of access by
any means they like, PCFS provides a command line tool
called pcfs-search for performing this task automati-
cally. As discussed in Section III, the objective is to prove a
judgment of the form E; Γ α−→ (admin says may(k, f, η)) ◦
[u, u], where u is the expected time of access. In almost all
cases, it is unreasonable to expect that the time of access can
be predicted in advance to the precision of seconds (which is
the precision at which enforcement of time works in PCFS),
so instead of an exact time u, the user is expected to provide
a range of time [u1, u2] during which she desires access. The
user must also provide the parameters k, f, η and the policy
Γ in the form of certificates obtained from administrators.
The output of the tool is the proof term M such that
M :: E; Γ α−→ (admin says may(k, f, η)) ◦ [u1, u2]. By
Theorem III.2 it follows that M :: E; Γ α−→ auth(k, f, η, u)
for every u ∈ [u1, u2], so this proof term M can be used
for access at any time in the interval [u1, u2].

Proof search in BL is, in general, an undecidable problem
because BL extends first-order intuitionistic logic, which
is itself undecidable. However, as past work on languages
and logics for authorization shows [11, 13, 17, 31, 36],
most access policies in practice fit into a restricted fragment
of logic on which logic programming techniques can be
used for proof construction. Although logic programming
methods work fast, extending them from fragments of first-
order logic (where they are well understood) to BL’s two
modalities – k says s and s @ [u1, u2] – is a challenging
task. The second modality is particularly difficult to handle
since it interacts with all other connectives of BL in non-
trivial ways. Due to a lack of space, we omit details of the
proof search method, but mention only that it is based on a
fragment of BL over which goal-directed search (e.g., [32])
is complete. The prover searches for proofs depth-first like
Prolog for reasons of efficiency, although it is also possible
to search breadth-first, which would result in a semi-decision
procedure for the fragment.

A salient point about the prover is that it must have
access to decision procedures for interpreted predicates I
and constraints c. When the prover needs to establish one of
these, it calls the corresponding decision procedure. A point
of concern is that the file system state E at the time of proof
search may not be what the user expects it to be at the time
of access. As a result, a proof search may fail, when a proof
would actually exist at the time that the user desires access.
To construct such “optimistic” proofs, pcfs-search can
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be run in interactive mode, where the tool asks for user input
about expected file system state if it fails to construct a proof
in the prevailing state.

B. Proof Verification and Procaps

The proof verifier checks proofs that a user constructs and
issues procaps in return. Since these procaps can be directly
used for access, the proof verifier is a trusted program.
Briefly, the proof verifier is invoked with a command line
tool pcfs-verify. It is given as input the policy Γ (in
the form of signed certificates), the parameters k, f , η,
and a proof term M . The verifier first checks that the
policy is correct, i.e. all its certificates have authentic digital
signatures. For this, the verifier must have access to some
public key infrastructure (PKI) that maps public keys to
principals that own them. We use a simple PKI, with a single
certifying authority (CA) that certifies all keys. The public
key of the CA is stored in a specially protected section of
the file system itself as described in Section VI.

Second, the verifier checks the logical structure of the
proof term, i.e. M :: E; Γ α−→ auth(k, f, η, u). This ver-
ification is performed bidirectionally to minimize the need
for annotating proof terms with formulas [35]. Although this
is mostly standard, subtleties arise in the PCFS architecture
due to two reasons.

1) The proof should be checked in the file system state
E which would prevail when the procap is used in
future, but it may be impossible to predict this state
at the time of proof verification.

2) It may not be possible to predict u, the time(s) at
which the procap generated from the proof will be
used for access.

In PCFS, problem (1) is addressed by never checking inter-
preted predicates during proof verification. Instead, when
the verifier encounters the proof term pf sinjI, which
corresponds to an application of the rule (interI) from
Figure 2, the verifier writes the interpreted predicate i to
be checked in the output procap. This predicate must then
be checked by the file system back end when the procap is
used. As a result, any interpreted predicates on which the
validity of the proof depends are transferred as is to the
procap, and are checked at the time of access in the state
prevalent at that time.

To address problem (2), the verifier uses a special sym-
bolic constant ctime, which has sort time, in place of u: the
verifier tries to check that M :: ·; Γ α−→ auth(k, f, η, ctime).
During verification, many constraints of the form u1 ≤ u2

may fail to check, e.g., in the rules (hyp), (claims), (⊃E),
and (consI), because either u1 or u2 contains the unresolved
constant ctime. If this happens, then instead of verifying
the constraint using the decision procedure, the constraint is
written into the output procap. During file access, the file
system back end substitutes the actual time of access for

~c1 ./ ~c2 = (u′
1 ≤ u1, u2 ≤ u′

2) |= ~c2

π :: ·; Γ, π : s ◦ [u′
1, u

′
2]

α
=⇒ s ◦ [u1, u2]↘ ~c1; ·

hyp

α = k, ub, ue |= ~c2
~c1 ./ ~c2 = (u′

1 ≤ u1, u2 ≤ u′
2, u

′
1 ≤ ub, ue ≤ u′

2, k
′ � k)

π :: ·; Γ, π : k′ claims s ◦ [u′
1, u

′
2]

α
=⇒ s ◦ [u1, u2]↘ ~c1; ·

claims

M :: ·; Γ| k,u1,u2⇐= s ◦ [u1, u2]↘ ~c;~i

(pf saysI M) :: ·; Γ
α⇐= (k says s) ◦ [u1, u2]↘ ~c;~i

saysI

M1 :: ·; Γ
α

=⇒ s1 ⊃ s2 ◦ [u1, u2]↘ ~c1; ~i1
M2 :: ·; Γ

α⇐= s1 ◦ [u′
1, u

′
2]↘ ~c2; ~i2

~c3 ./ ~c4 = (u1 ≤ u′
1 ≤ u′′

1 , u
′′
2 ≤ u′

2 ≤ u2) |= ~c4

(pf impE M1 M2 u
′
1 u

′
2) :: ·; Γ

α⇐= s2 ◦ [u′′
1 , u

′′
2 ]↘ ~c1, ~c2, ~c3; ~i1, ~i2

⊃E

(pf sinjI) :: ·; Γ
α⇐= i ◦ [u1, u2]↘ ·; i

interI

~c1 ./ ~c2 = c |= ~c2

(pf cinjI) :: ·; Γ
α⇐= c ◦ [u1, u2]↘ ~c1; ·

consI

Figure 3. BL proof verification in PCFS (Selected rules)

the constant ctime in the procap and checks the resulting
ground constraint.

Interpreted predicates and constraints written to a procap
as described above together constitute the conditions of the
procap.

Formal description of PCFS proof verification: We
present a simplified formalization of the verification pro-
cedure of PCFS and prove that successful execution of the
procedure on a proof followed by checking of the resulting
conditions at the time of access is equivalent to checking
the entire proof at the time of access.3 This implies that the
formal guarantees obtained from PCFS are equal to those
from proof-carrying authorization without procaps.

Let ~c and ~i denote multisets of constraints and inter-
preted predicates respectively. Proof verification in PCFS
is formalized by two hypothetical judgments: the checking
judgment M :: ·; Γ α⇐= s ◦ [u1, u2] ↘ ~c;~i and the
inference judgment M :: ·; Γ α=⇒ s ◦ [u1, u2] ↘ ~c;~i.
The intent of both judgments is that if |= ~c and E |= ~i,
then M :: E; Γ α−→ s ◦ [u1, u2] in BL’s natural deduction
system (Figure 2). As is standard in bidirectional proof
verification [35], s ◦ [u1, u2] is an input to the verification
procedure in the checking judgment, and an output of the
procedure in the synthesis judgment. M,E,Γ, α are inputs
in both cases. The novelty here are the multisets ~c,~i which
are outputs of both judgments and form the conditions of

3As in Section III, the simplification here is that we do not explicitly
record parameters that may appear in hypothetical judgments, nor do we
consider hypothetical constraints.
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the procap generated after proof verification.
Selected rules for establishing these two judgments are

shown in Figure 3. The notation ~c1 ./ ~c2 = ~c in these
rules means that ~c1 and ~c2 are a disjoint partition of ~c such
that ~c1 has all constraints of ~c which contain ctime and
do not hold in that generality, and ~c2 has all the remaining
constraints of ~c. The rules of verification are similar to those
of natural deduction. The difference is that in each rule of
proof verification, constraints that would have been verified
in the premise of the corresponding rule of natural deduction
but cannot be checked because they contain ctime are added
to the output ~c in the conclusion of the rule (from where
they get written to the procap generated, and are checked
whenever the procap is used to authorize access), whereas
the remaining constraints are checked immediately. In the
rule (interI), instead of checking the interpreted atom i as in
natural deduction, we write i to the output conditions.

The rules, when applied backwards, can be interpreted
as a decision procedure for checking proof terms. The
following theorem establishes formally the soundness and
completeness of this verification procedure. For the proof,
see [20, Section 5.2].

Theorem V.1 (Correctness of PCFS Verification). Let
M,Γ, α, s not contain the constant ctime. Then the following
hold.

1) (Soundness) If M :: ·; Γ α⇐= s ◦ [ctime, ctime]↘ ~c;~i,
|= ~c[u/ctime], and E |= ~i, then M :: E; Γ α−→ s ◦
[u, u].

2) (Completeness) If M :: E; Γ α−→ s ◦ [u, u] then
there exist ~c and ~i such that M :: ·; Γ α⇐= s ◦
[ctime, ctime]↘ ~c;~i, |= ~c[u/ctime], and E |=~i.

Soundness in the above theorem means that if a proof term
M is verified in the PCFS verifier as being a witness for s if
the conditions ~c and ~i hold, then in any system state E and
at any time u such that |= ~c[u/time] and E |=~i, M is indeed
a correct proof of s ◦ [u, u]. Completeness is dual: if M is
a proof term that correctly shows s ◦ [u, u] for some time
u in some system state E, then PCFS verification on M (at
any other time and in any state) will succeed in outputting
some constraints ~c and some interpreted predicates ~i, both
of which will check at time u in state E. Together, the two
clauses of the theorem imply that procap based enforcement
in PCFS has the same formal guarantees as proof-carrying
authorization (the latter would check the proof term M
entirely at the time of access).

C. Procap structure

Formally, a procap contains four-tuple 〈ψ,~i,~c,Σ〉, where
- ψ = 〈k, f, η〉 is a triple that lists the principal, file, and

permission that the procap authorizes.
- ~i is a list of interpreted predicates on which the verified

proof depends.

- ~c is a list of constraints that contain the constant ctime,
and on which the proof depends.

- Σ is a cryptographic signature over the first three com-
ponents (written in ASCII syntax). This guarantees the
procap’s integrity.

The procap 〈ψ,~i,~c,Σ〉 is generated by the proof veri-
fier when it successfully checks the certificates that con-
stitute a policy Γ and the judgment M :: ·; Γ α⇐=
auth(k, f, η, ctime) for some M and a view α composed
of fresh constants. The signature Σ is generated using a
symmetric secret key that is stored in a specially marked
file in the PCFS file system (Section VI). The file sys-
tem back end ensures that only a specific user id (called
pcfssystem) has read access to this file. The verification
tool pcfs-verify’s disk file is owned by this user, and
executes with a set-uid bit. As a result, when a user invokes
this program, it runs with pcfssystem’s user id and, hence,
gets access to the secret key. Other users do not have access
to the key and, therefore, cannot forge procaps.

Before admitting a procap, the file system back end
must check not only the procap’s signature Σ, but also the
interpreted predicates ~i in the state prevalent at the time of
access and the constraints in the list ~c with ctime substituted
by the actual time of access.

Example 1: At the end of Section IV, we constructed
a proof term M which established E; Γ α−→ (admin says
may(uid 1500, /secret.txt, read)) ◦ [2008, 2009], where E
was required to satisfy the two conditions (A) and (B). If we
give this proof term to the PCFS proof verifier, the resulting
procap will have the structure 〈ψ,~i,~c,Σ〉, where

- ψ = 〈uid 1500, /secret.txt, read〉
- ~i = owner(/secret.txt, uid 1003),

has xattr(/secret.txt, level, secret)
- ~c = 2008:01:01:00:00:00 ≤ ctime,

ctime ≤ 2009:12:31:23:59:59
The predicates in list~i imply that the procap is valid only in
a state where the file /secret.txt is owned by Alice, and the
file has extended attribute user.#pcfs.level set to secret.
These correspond exactly to conditions (A) and (B) from
Section IV. The list ~c means that the time of access (ctime)
must lie in the interval [2008, 2009], which is also what we
expect from the policy rules.

Certificate Revocation: A revocation refers to the with-
drawal of a signed policy rule or fact after it has been
created but before it expires. Revocations are an issue for
enforcement because proofs and procaps depending on a
revoked statement may already have been generated. There
are two simple ways to enforce revocations using procaps,
both of which we describe briefly. The methods have an
efficiency vs accuracy trade-off and one of these may be
selected depending on deployment requirements. The current
implementation of PCFS does not support revocation, but
either of these methods is easy to add.

11



- A list of unique ids of certificates on which a proof
depends can be included in the procap generated from
the proof. Before admitting a procap, the file system back
end can compare the list of certificate ids in it to a list of
revoked certificates provided by administrators. If there
is an overlap, the procap can be rejected. Although this
would enforce revocation perfectly, it would also slow
down file access because an additional check would be
performed on each procap.

- Alternatively, the list of revoked certificates can be pro-
vided to the proof verifier instead of the file system back
end. The verifier can then refuse to accept any proof
that depends on revoked certificates. If the verifier issues
a procap, it can be short lived, i.e. its validity can be
restricted to a short duration T using a constraint on
ctime. Although the effect of revocation in this method
is not immediate (it can lag by a time T ), the back end
performance is not affected.

VI. PCFS BACK END

Whereas the front end of PCFS is used to generate procaps
from proofs of access, the back end grants access to files
and directories, using procaps to check access rights. Since
the back end is invoked at every file access, it has to be
extremely efficient. In this section, we discuss the design
and implementation of the PCFS back end.

Overall architecture: The back end of PCFS is imple-
mented as a process server, which listens to upcalls made
from the kernel. The implementation relies on the Linux
kernel module Fuse [2]. When a call is made to a file system
resource within the mount path of the PCFS file system, this
module makes an upcall to the process server, and depending
on the operation requested, a specific handling function is
invoked. There is roughly one function for every POSIX
file system operation (open, read, write, stat, unlink, rmdir,
mkdir, etc.). Depending on the operation, this handling
function first finds and checks procaps corresponding to
permissions needed to perform the operation. If these checks
succeed, it invokes an identical file system call, but on a
different mount path, which is actually an ext3 file system. In
order to bypass any access checks during the call to the ext3
file system, the process server runs with superuser privileges.
Further to prevent users from directly using the ext3 file
system to access the data, we give ownership of the root
directory on the ext3 file system to the superuser, and turn
off all access on it.4 Using an ext3 file system for I/O makes
our back end simpler since we need to implement only the
code to look up the procaps and to check them.

4A more secure method to prevent access via the underlying file system
is to keep data encrypted on it, and to decrypt data in the process server.
We have not implemented this design since our objective here is to measure
the performance of access checks.

Organization of the file system: For the purpose of
illustration let us assume that PCFS is mounted at /pcfs,
and that it makes calls to the ext3 file system at /src. Then
the file structure visible inside /pcfs is the same as that
in /src, except that all calls on the former are subject to
procap based checks. A special directory /pcfs/#config
contains configuration data for the file system, including
procaps and the secret key used to sign them. This directory
is protected by the file system with strict rules that do not
use procaps. We list below some of the important files and
directories in this special directory, as well their contents
and protections.

/pcfs/#config/config-file: File containing
configuration options, including the user ids of the
principals admin and pcfssystem. (Recall from Section V
that pcfssystem is the only user who has access to the
secret key needed to sign procaps.) Anyone can read this
file, but only pcfssystem can change this file.
/pcfs/#config/shared-key: Contains the shared
key used to sign procaps. Only pcfssystem may read or
write this file.
/pcfs/#config/ca-pubkey.pem: Contains the
public key of the certifying authority who signs
associations between other public keys and users.
Anyone may read this file, but only pcfssystem may
write to it.
/pcfs/#config/procaps/: This directory contains
the procaps. Its organization is discussed below. The user
pcfssystem has full access to this directory and other users
have access to specific subdirectories only.

Within the directory /pcfs/#config/procaps/,
there is a subdirectory for each user that stores
procaps relevant to that user. In general, the procap
giving the right 〈k, f, η〉 is stored in the file
/pcfs/#config/procaps/<k>/<f>.perm.<η>.
Here <k> is the user id of the user k, <f> is the path
of the file f (relative to the mount point), and <η> is a
textual representation of the permission. Thus each procap
is stored in a separate file and, further, for each right
〈k, f, η〉 there is at most one procap that authorizes the
right. While this may be restrictive, it makes procap look
up easy since the path where a procap is to be found
can be determined simply by knowing the PCFS mount
point and the right 〈k, f, η〉. The PCFS server ensures
that only user k can access (read, write, or delete) files
inside /pcfs/#config/procaps/<k>/. This is done
to prevent denial of service attacks by other users.

The user pcfssystem has complete access to all files and
directories within /pcfs/#config/, and is expected to
act as the maintainer of configuration in a PCFS file system.
In particular, it may periodically delete obsolete procaps. At
the same time, the user account of pcfssystem may be a
very attractive target for attack: If an attacker gains control
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Operation Permissions needed
stat /foo execute on /foo
open /foo in read mode read on /foo
open /foo in write mode write on /foo
create /bar/foo write on /bar
delete /bar/foo identity on /bar/foo
rename /bar to /foo identity on /bar,

write on /foo
getxattr on /foo execute on /foo
setxattr on /foo govern on /foo if attribute

starts with user.#pcfs.,
write otherwise

chown on /foo govern on /foo

Figure 4. Permissions needed to perform some operations

of this user account, it can obtain the secret key used to
sign and verify procaps, and then inject fake procaps to
access other files. To prevent this, the PCFS process server
denies pcfssystem all rights in other directories inside the
file system. Thus, to attack the file system through this
mechanism, the attacker must break into at least one more
account in addition to pcfssystem.

Permissions: PCFS uses five distinct permissions on any
file or directory: read, write, execute, identity, and govern.
In contrast, POSIX mandates only the first three permissions.
The read and write permissions are the obvious ones;
they are needed to read and to change the contents of a
file/directory respectively. As usual, execute is the permis-
sion to read the meta data of a file or directory. The identity
permission is needed to delete a file or directory, or to
rename it. This permission is separated from others because
in many settings, administrators may not want to allow users
to be able to delete or rename shared files, but perform other
operations on them. The govern permission is needed to
change the owner of a file and to change extended attributes
starting with the prefix user.#pcfs. Because of this special
protection, these attributes can be used by administrators
to give classification or security labels to files, on which
policy rules can depend, as illustrated in Section IV. Figure 4
lists the permissions needed to perform some common file
system operations. During a file system call, this table is
used to determine the procaps that must be looked up and
checked. By separating the govern permission from write,
we allow for the possibility of mandatory administration of
file attributes as, for instance, happens with classification
labels in Section IV. Such administration is difficult with
POSIX permissions because POSIX allows anyone with
write permission on a file to also modify all of its attributes.

Default Permissions: When a program first creates a file,
it cannot be assumed that any policy rules apply to the
file, since that usually requires creation of certificates by
administrators. Yet, many programs create temporary files,
to which they must get access. To allow such programs to

execute correctly, when a new file or directory is created,
PCFS automatically creates and stores default procaps giving
the creator of the file read, write, execute, and identity
permissions for a fixed period of time (this period can be
adjusted at mount time). This allows programs to create
and use temporary files. In addition the user admin is given
execute and govern rights on the new file. After this period
of time elapses, the administrators must create policy rules
to control access to the file, since the default procaps expire.

In-memory procap cache: Since procaps are stored in
files, and one or more of them must be read to au-
thorize almost every operation on a PCFS file system,
it is helpful to cache commonly used procaps in mem-
ory to improve performance. Accordingly, PCFS uses a
least recently used (LRU) in-memory cache for procaps,
whose size can be adjusted through an option in the
file /pcfs/#config/config-file. The cache stores
parsed procaps, whose signatures have already been verified.
The only cost involved in using a cached procap is checking
its conditions (~c and~i from Section V). This is fast and usu-
ally takes only 10–100µs. In contrast, seeking the procap on
disk may take a few milliseconds, and parsing it often takes
up to 70µs. We evaluate the effect of the cache with different
hit rates in Section VII. The PCFS back end automatically
marks a cached procap dirty if its corresponding file on disk
changes or is deleted. This forces the cached procap to be
read again from the disk whenever it is needed next.

VII. PERFORMANCE OF THE BACK END

We report the results of some performance benchmarks
on the back end of our prototype implementation of PCFS.
Specifically, we evaluate the overhead of access checks
during read, write, stat, create, and delete operations, and
measure the effectiveness of the in-memory procap cache
through microbenchmarks. To evaluate performance in prac-
tice, we also present the results of two simple macrobench-
marks. Since we are primarily interested in measuring the
overhead of procap-based access checks, our baseline for
comparing performance is a Fuse-based file system that does
not perform the corresponding checks, but otherwise runs
a server process and uses an underlying ext3 file system,
just as PCFS does. We call this file system Fuse/Null.
For macrobenchmarks we also compare with a native ext3
file system. All measurements reported here were made on
a 2.4GHz Core Duo 2 machine with 3GB RAM and a
7200RPM 100GB hard disk drive, running the Linux kernel
2.6.24-23.

Read and write throughput: By default, PCFS does not
make any access checks when read or write operations are
performed on a previously opened file. (Access checks on
each read and write call can be turned on using an option
in the configuration file.) As a result its read and write
throughput is very close to that of Fuse/Null. The following
table summarizes the read and write throughput of PCFS
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and Fuse/Null based on reading and writing a 1GB file
sequentially using the Bonnie++ test suite [1].

Operation PCFS (MB/s) Fuse/Null (MB/s)
Read 538.69 567.47
Write 73.18 76.05

Even if access checks on every read and write are enabled,
the read and write throughput do not show a significant
change as long as required procaps remain cached in mem-
ory.

File stats and effectiveness of caching: Besides read and
write, two other common file operations are open and stat
(reading a file’s meta-data). In terms of access checks, both
are similar, since usually one procap must be checked in
each case. (Two procaps must be checked when a file is
opened in read and write modes simultaneously.) We report
in the table below the speed of the stat operation and the
effect of the in-memory procap cache with different hit rates.
All measurements are reported in number of operations per
second, as well as time taken per operation. The row label
n% indicates a measurement with a cache hit rate of n%. For
comparison, performance of Fuse/Null is also shown. The
figures are based on choosing a random file 20,000 times
in a directory containing exactly 20,000 files, and calling
the stat function on it. To get a hit rate of n%, the cache
size is set to n/100 × 20000, and the cache is warmed a
priori with random procaps. It is easy to prove that for an
LRU cache this results in a hit rate of exactly n% when
subsequent files (procaps) are also chosen at random. All
procaps used here are default procaps, whose conditions
include two constraints of the form u1 ≤ u2, and one
interpreted predicate of each of the two forms has xattr
and owner.

Cache hit rate Stats per second Time per stat (µs)
0% 5774 173.2

50% 7186 139.2
90% 8871 112.7
95% 9851 101.5
98% 11879 84.2
100% 23652 42.2

Fuse/Null 36042 27.7

As can be seen from this table, the procap cache is helpful
for fast performance. The difference of the time values in
the last two rows is an estimate of the time it takes to check
a cached procap, i.e. the time needed to check the conditions
in a procap. In this case, this time is 42.2− 27.7 = 14.5µs.
This estimate is rough, and the actual time varies with
the complexity of the conditions in the procap. In other
experiments, we have found that this time varies from 10
to 100µs. By taking the difference of the time values in
the first and last rows, we obtain an estimate of the time
required to read a procap, check its signature, parse the
procap, and check its conditions. In this experiment, this

time is 173.2 − 27.7 = 145.5µs. Additional time may be
needed to seek to the procap on disk, which was most
likely not counted here, since the procaps used were in a
single directory in the underlying file system, hence making
the latter’s cache very effective. Nonetheless, this suggests
that, in general, procap checking is dominated by reading
and parsing times. The signatures we use for procaps are
message authentication codes, which can be verified in 1 to
2µs each.

File creation and deletion: The table below lists the
number of create and delete operations per second that are
supported by PCFS and Fuse/Null. These are measured by
creating and deleting 10,000 files in a single directory.

Operation PCFS (op/s) Fuse/Null (op/s)
Create 1386 4738
Delete 1989 15429

The reason why PCFS is approximately 3.5 times slower
than FUSE/Null in creating files is that in this experiment
PCFS also created six default procaps for every file created.
As a result, the PCFS numbers measure creation of seven
times as many files in three separate directories. Similarly,
deletion in PCFS in this experiment is nearly 7.7 times
slower than that in Fuse/Null because when a file is deleted
all procaps related to the file are deleted to prevent useless
procaps from accumulating. In this case, each file deletion
in PCFS corresponds to seven file deletions on the ext3 file
system in three different directories. The effect of the procap
cache is negligible during these experiments, since the cache
size was kept very small as compared to the number of files.
Due to its high cost, automatic deletion of procaps can be
turned off using an option in the configuration file.

Macrobenchmarks: To understand the performance of
PCFS in practice, we also ran two simple macrobenchmarks,
both of which are reasonably intensive in file operations.
The first (called OpenSSL in the table below), untars the
OpenSSL source code, compiles it and deletes it. The other
(called Fuse in the table below), performs similar operations
for the source of the fuse kernel module five times in
sequence. As can be seen, the performance penalty for
PCFS as compared to Fuse/Null is approximately 10% for
OpenSSL, and 2.5% for Fuse. The difference arises because
the OpenSSL benchmark depends more on file creation and
deletion as compared to the Fuse benchmark.

Benchmark PCFS (s) Fuse/Null (s) Ext3 (s)
OpenSSL 126 114 94
Fuse × 5 79 77 70

Summary: In summary, assuming a low rate of cache
misses, the performance of PCFS on common file operations
like read, write, stat, and open is comparable to that of
Fuse/Null. On the other hand, less common operations
like create and delete are slower because procaps must be
managed. We believe that the efficiency attained even by our
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prototype implementation is good enough for use in practice.
A realistic file system based on the PCFS architecture would
probably not use a process server architecture, which would
improve its performance further.

VIII. RELATED WORK

The use of certificates to represent policies expressed in
logic as well as the use of logical inference to authorize
access was initiated in the Taos operating system [39]. It is
interesting that the authors of Taos suggest that caching of
authorizations at several levels would be critical to high per-
formance. PCFS procaps and their in-memory cache in the
back end realize this suggestion and show that the suggestion
works well in practice. The idea of removing proof search
from the trusted computing base by requiring the reference
monitor to check user-provided proofs originated in proof-
carrying authorization (PCA) [7, 9, 10]. PCFS differs from
PCA in that it off-lines proof verification as well, and uses
conditional capabilities generated from it for authorizing
access. This design is motivated by the need to have quicker
access in PCFS than has been the requirement in previous
deployments of PCA [9, 10].

Many logics and logic-based languages have been pro-
posed in the past for representing access control policies
(e.g., [4, 5, 11, 17, 22, 26, 36]). The k says s modality in BL
is most closely related to a similar modality in Binder [17].
Although our treatment of explicit time draws on prior
work by DeYoung and the authors [18], we believe that
a logical combination of time and interpreted predicates is
novel to BL. The treatment of interpreted predicates in BL
is similar to that in the work of Dougherty et al [19] and
that in the Nexus Authorization Logic (NAL; Schneider et
al. [38]). Independent of our work, PCA based in NAL has
been implemented in low-level interfaces, including a file
system, in the Nexus Operating System. Although similar
in spirit, the NAL implementation differs from ours in that
it follows a traditional PCA architecture where proofs are
checked directly by the reference monitor without mediating
capabilities.

The STRONGMAN project [29] includes an implemen-
tation of a file system, and several other applications that
rely on the KeyNote trust management system [14] for
authorization. Many prior file systems have used capabilities
to authorize access (e.g., [6, 25, 33, 37]), but the use
of proofs to generate capabilities is novel to our work.
The overall design of PCFS was inspired by an intriguing
paper by Chaudhuri [15] that considers formal analysis of
bisimulation-based correctness of implementations of autho-
rization through cryptographic capabilities in the face of dy-
namic policies. That paper also considers many strategies for
enforcing time-based and state dependent policies, but the
mechanism used to represent policies is treated abstractly. In
contrast, in Theorem V.1, we show our enforcement correct
with respect to a concrete logic and proof system.

IX. CONCLUSION

PCFS combines strong logical foundations for access
policies with an efficient enforcement based on proofs and
cryptographic capabilities. Owing to a very expressive logic
for policies and conditions in capabilities, PCFS can enforce
time and state dependent policies rigorously and efficiently.
A significant contribution of our work is Theorem V.1
which shows that enforcement of policies using procaps
is identical to one with proofs directly (as in PCA). We
believe that owing to its modular design and implementation,
the PCFS architecture can be used in both centralized and
decentralized settings without significant modification.

One interesting direction for future work is to consider
access control with logical proofs in operation-intensive
settings by deriving all possible permissions from the access
policies periodically, thus freeing the user from the burden
of generating proofs, having them verified, and maintaining
capabilities. Another area for future work may be to build
an optimized version of PCFS that does not rely on Fuse.
Other avenues for future work may be to construct tools for
authoring policies to complement the PCFS front end, and
user studies to further validate usefulness of the framework.
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