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Abstract

A novel countermodel-producing decision procedure that applies to several multi-modal log-
ics, both intuitionistic and classical, is presented. Based on backwards search in labeled sequent
calculi, the procedure employs a novel termination condition and countermodel construction.
Using the procedure, it is argued that multi-modal variants of several classical and intuitionistic
logics including K, T, K4, S4 and their combinations with D are decidable and have the finite
model property. At least in the intuitionistic multi-modal case, the decidability results are new.
It is further shown that the countermodels produced by the procedure, starting from a set of
hypotheses and no goals, characterize the atomic formulas provable from the hypotheses.

1 Introduction

Modal logics are widely used in several fields of Computer Science and their decidability is a subject
of deep interest to the academic community. The subject has been investigated through various
techniques, notably semantic filtrations [5, 8], semantic tableaux [4, 10, 11], and translation into
decidable fragments of first-order logic [2], yet many areas related to decidability of modal logics
remain open. Two such areas are: (1) Decidability of multi-modal intuitionistic logics, especially
when modalities interact with each other, and (2) Decision procedures based on sequent calculi
that can be directly implemented. Both these areas are challenging. Decidability of intuitionistic
modal logics is challenging because standard techniques like semantic filtrations and tableaux have
not been studied extensively in the intuitionistic setting, whereas sequent calculi are difficult to
use for decision procedures in modal logic because of a well-known problem of looping [10, 16, 25],
which is exacerbated by the interaction between modalities and intuitionistic implication.

Spanning both these areas, we present a uniform decision procedure for several propositional
multi-modal logics (both intuitionistic and classical), based on backwards search in labeled sequent
calculi. Our decision procedure is constructive, which means that for any given formula it either
produces a derivation which shows that the formula is true in all (Kripke) models or produces a
finite set of finite countermodels on all of which the formula is false.

The decision procedure is also general; it applies to any intuitionistic modal logic without
possibility (diamond) modalities and any classical modal logic (even with possibility modalities),
provided the logic satisfies a specific technical condition, namely the existence of what we call
a suitable closure relation or SCR. As examples, we show that the classical and intuitionistic
variants of the following multi-modal logics are constructively decidable by our method: K (the
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basic normal modal logic), T (reflexive frames), K4 (transitive frames), S4 (reflexive and transitive
frames) and their combinations with D (serial frames). We further show that several interaction
axioms between modalities such as I ((2Aα) → (2B2Aα)) [9, 13], unit (α → (2Aα)) [7] and
subsumption ((2Aα) → (2Bα)) result in decidable logics. Constructive decidability also implies
the finite model property, so our results also show this property for all the logics listed earlier. For
multi-modal intuitionistic logics, not only our method, but also the decidability results are new.

Technical approach and challenges. We present our method separately for classical and in-
tuitionistic logics due to minor technical differences between the two. Our method uses the labeled
approach to proof theory of modal logic as developed, among others, by [16, 23, 25], and more
specifically [16], to produce labeled sequent calculi with strong analyticity properties. We define
a multi-modal intuitionistic (classical) logic MMIχ (MMχ) as the set of all formulas that are valid
in all intuitionistic (classical) Kripke frames satisfying stipulated conditions, represented as a set
χ. Conditions in χ can be arbitrary, but are restricted in two ways: (1) They must be of the
form ∀~x.((∧i=1,...,n xiRix

′
i) → (xRx′)), where R,Ri range over the relations of a Kripke frame,

and (2) The conditions χ must have a SCR, which is a relation over Kripke frames satisfying some
stipulated properties, as discussed later in the paper. Briefly, the existence of the SCR implies that
frame relations can be deduced from the conditions χ only in some specific ways. We then build
a non-terminating, standard labeled sequent calculus for the logic, which we refine in two steps to
obtain a constructive decision procedure that, for a given sequent, either produces a proof of it, or
a finite set of finite countermodels for it. Next, we build an extension of our method that works
for any logic on which our original method works, extended with seriality. Finally, we prove an
interesting property of our decision procedure: The set of countermodels it produces for a given
hypotheses without a specific goal completely characterizes the atomic formulas that can be proved
from the hypotheses. Thus the set of countermodels produced is, in a sense, complete. We call this
property comprehensiveness.

The first challenge for our work is to find a general termination condition for backwards search
in labeled sequent calculi. Our termination condition is based on containment of the sets of formulas
labeling worlds, which we show to be complete so long as the logic has an SCR. This idea is a non-
trivial generalization of existing work on logic-specific termination conditions for many uni-modal
classical logics [6, 10, 16]. Finding an appropriate definition for SCRs, that is both sufficient to
obtain termination and general enough, is the main technical challenge of our work and also its
main technical contribution.

The second challenge in our work is to actually build the countermodel when we know that
backwards proof search has unsuccessfully terminated. To this end, we observe that a straightfor-
ward extension of the model inherent in the sequent at which search terminates (with a few more
relations) is actually a countermodel to the sequent. As far as we know, this construction is novel.

Contributions. In summary, our work makes the following contributions to the area of decid-
ability of modal logics:

• It proves, by uniform method, the decidability of the necessitation-only, multi-modal intu-
itionistic variants of the logics K, T, K4 and S4 and their combinations with the logic D. Our
decision procedure produces countermodels, and also establishes the finite model property
for these logics. (The corresponding uni-modal intuitionistic logics are already known to be
decidable due to the work of Simpson [23] and Hasimoto [15].)
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• We provide the first sequent calculus based constructive decision procedure for multi-modal
logics. (Sequent calculus based decision procedures for specific uni-modal logics exist in both
the classical [16, 24] and intuitionistic [23] settings.)

• At a technical level, we provide a general method for forcing termination in labeled sequent
calculi for modal logics and a sufficient condition (the existence of SCRs) under which it works
without loss of completeness. We also present a simple method to extract countermodels when
search terminates.

• As far as we know, ours is the first decision procedure which produces a set of countermodels
that is comprehensive in the sense described above.

Limitations. There are existing undecidability results for modal logics with frame conditions
such as symmetry and transitivity [3]. Consequently, we cannot hope for a method that proves
decidability for all logics MMIχ or all logics MMχ. Nonetheless, there are some classes of frame
conditions which are not known to immediately result in undecidability, but to which our method
does not apply (either because they do not fit our definition of χ or because they do not have
SCRs):

• Due to an interaction with intuitionistic implication, our method cannot handle possibility
modalities in intuitionistic logic, even though it works fine with them in classical logic. This
is discussed in Section 4.

• We do not know whether our method can handle “label-producing” conditions like density
or confluence. However, it can be easily extended to work with seriality, as discussed in
Section 3.6.

Further, like many other methods in this domain, an analysis of our proofs does not necessarily
produce good upper bounds on the actual complexity of modal logics.

Organization. Since our constructive decision procedure and its correctness proof are almost
identical for intuitionistic and classical modal logics, in the main body of the paper, we present
our results only for the intuitionistic case. The case of classical modal logic is briefly discussed in
Section 5 and its details are deferred to Appendix B.

In Section 2, we define the syntax, semantics and a standard, but non-terminating labeled se-
quent calculus for the intuitionistic multi-modal logic MMIχ. We illustrate the known problem of
non-termination due to looping in the sequent calculus in Section 2.3. Section 3 presents the main
technical work. Starting from an informal introduction, we proceed to a description of the deci-
sion procedure (Sections 3.1–3.4), its comprehensiveness (Section 3.5), its extension with seriality
(Section 3.6), and its instantiation to several known intuitionistic multi-modal logics (Section 3.7).
We discuss limitations of our work and its relation to semantic filtrations in Section 4. Section 5
briefly lists modifications needed to adapt the method to classical logic. Related work is discussed
in Section 6 and Section 7 concludes the paper.

2 MMIχ: Multi-Modal Intuitionistic Logic

We start by defining formally the family of intuitionistic multi-modal logics we consider in this
paper. The family is parametrized by a set χ of conditions on Kripke frames that must have a
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specific (standard) form, as described later in this section. The logic obtained by instantiating our
definition of syntax and semantics with a specific set χ is called MMIχ.

Syntax. Let I = {A,B, . . .} be a finite set of indices for modalities and p denote an atomic
formula, drawn from a countable set of such formulas. Then, the syntax of formulas of the logic
MMIχ is:

Formulas ϕ, α, β ::= p | > | ⊥ | α ∧ β | α ∨ β | α→ β | A nec α

Connectives >, ⊥, ∧, and ∨ have their usual meanings. Implication → is interpreted intuition-
istically. A nec α is the necessitation modality of index A. This is commonly written 2Aα, but we
prefer the more descriptive notation. Negation is not primitive, but may be defined in a standard
way as ¬α = α → ⊥. We do not consider possibility modalities in the intuitionistic setting, since
they are incompatible with our method (see Section 4).

2.1 Semantics

We provide Kripke (frame) semantics to formulas of MMIχ and assume in our presentation that
the reader has basic familiarity with this style of semantics. Unlike classical (multi-)modal logic,
whose Kripke semantics are standard, several different Kripke semantics for intuitionistic modal
logic have been proposed [1, 23, 26]. They differ in the number of relations used, how the relations
are related to each other and also how the modalities are interpreted. In what follows, we use
semantics that are closest in spirit to those of Wolter et al. [26]. This choice makes the technical
development easier.

Definition 2.1 (Kripke model). An intuitionistic model, Kripke model or, simply, model, M is a
tuple (W,≤, {NA}A∈I , h) where,

• (W,≤) is a preorder. Elements of W are called worlds and written x, y, z, w. Since ≤ is a
preorder, it satisfies the following conditions:

∀x.(x ≤ x) (refl)

∀x, y, z.(((x ≤ y) ∧ (y ≤ z))→ (x ≤ z)) (trans)

≤−1 is also written ≥.

• Each NA is a binary relation on W that satisfies the condition (≤ ◦NA) ⊆ NA, i.e.,1

∀x, y, z.(((x ≤ y) ∧ (yNAz))→ (xNAz)) (mon-N)

• h assigns to each atom p the set of worlds h(p) ⊆ W where p holds. We require h to be
monotone w.r.t. ≤, i.e., if x ∈ h(p) and x ≤ y then y ∈ h(p).

A model without the assignment, i.e., the tuple (W,≤, {NA}A∈I) is also called a frame and the
conditions on relations above, e.g., (mon-N), are called frame conditions.

1Wolter et al. [26] require the stronger condition (≤ ◦NA◦ ≤) = NA, but our condition results in the same set of
valid formulas.
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The frame conditions χ. In addition to the frame conditions (refl), (trans) and (mon-N), we
allow a countable number of additional frame conditions as rules of the following form: ∀~x.((∧i=1,...,n

xiRix
′
i) → (xRx′)), where R1, . . . , Rn, R are from the set {NA | A ∈ I} ∪ {≤} and all variables

xi, x
′
i, x, x

′ are in ~x. A set of such additional frame conditions is denoted χ. MMIχ is the logic
whose valid formulas are exactly those that are valid (in the sense defined below) in frames that
satisfy all conditions in χ.

Definition 2.2 (Satisfaction). Given a model M = (W,≤, {NA}A∈I , h) and a world w ∈ W , we
define the satisfaction relation M |= w : α, read “the world w satisfies formula α in model M” by
induction on α as follows:

M |= w : p iff w ∈ h(p)

M |= w : > (unconditionally)

M |= w : α ∧ β iff M |= w : α and M |= w : β

M |= w : α ∨ β iff M |= w : α or M |= w : β

M |= w : α→ β iff for every w′ such that w ≤ w′ and M |= w′ : α, we have M |= w′ : β.

M |= w : A nec α iff for every w′ such that wNAw
′, we have M |= w′ : α.

We say thatM 6|= w : α if it is not the case thatM |= w : α. In particular, for everyM and every
w, M 6|= w : ⊥.

A formula α is true in a model M, written M |= α, if for every world w ∈ M, M |= w : α. A
formula α is valid in MMIχ, written |= α, if M |= α for every model M satisfying all conditions
in χ.

Valid axioms. For the benefit of readers, we list below some valid axioms and admissible rules
that are common to all logics MMIχ. If a rule/axiom is standard in literature, its common name
is mentioned to the extreme right. α ≡ β means (α→ β) ∧ (β → α).

(All tautologies of intuitionistic propositional logic are valid in MMIχ)

|= α

|= A nec α
(nec)

|= (A nec (α→ β))→ ((A nec α)→ (A nec β)) (K)

|= ((A nec α) ∧ (A nec β)) ≡ (A nec (α ∧ β))

The frame conditions χ can be used to force additional axioms in a standard way, which has
been explored in great detail in literature on correspondence theory [5]. For example,

• The condition ∀x, y.((xNAy)→ (x ≤ y)) corresponds to the axiom α→ (A nec α), commonly
called (unit) and of central importance in lax logic [7].

• The condition ∀x, y, z.(((xNAy) ∧ (yNAz)) → (xNAz)) corresponds to the axiom (A nec
α)→ (A nec A nec α), commonly called (4).
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The following is a very important, fundamental property of Kripke models of all intuitionistic
logics, including ours. It is used to prove our sequent calculus (Section 2.2) sound with respect to
our Kripke semantics.

Lemma 2.3 (Monotonicity). If M |= w : α and w ≤ w′ ∈M, then M |= w′ : α.

Proof. By induction on α.

2.2 Seq-MMIχ: A Labeled Sequent Calculus for MMIχ

As a first step towards building a constructively complete decision procedure for logics MMIχ, we
build a sound, complete, cut-free sequent calculus for MMIχ. Following the work of Negri [16],
our calculus is presented in what is known as “labeled” style of calculi for modal logics, which
means that the calculus proves formulas labeled with symbolic worlds. A labeled formula contains
a symbol x, y, z, w, u denoting a world and a formula α, written together as x : α. A sequent in our
calculus has the form Σ;M; Γ⇒χ ∆, where

- Σ is a finite set of world symbols appearing in the rest of the sequent. World symbols are
also called labels.

- M is a finite multi-set of relations between labels in Σ. Relations have the forms x ≤ y and
xNAy.

- Γ is a finite multi-set of labeled formulas.

- ∆ is a finite multi-set of labeled formulas.

The intuition is that if Σ;M; Γ⇒χ ∆ is valid, then every model with a world set containing at
least Σ, satisfying all relations in M and all labeled formulas in Γ must satisfy at least one labeled
formula in ∆. This is formalized in the following definition.

Definition 2.4 (Sequent satisfaction and validity). A model M and a mapping ρ from elements
of Σ to worlds of M satisfy a (possibly non-provable) sequent Σ;M; Γ ⇒χ ∆, written M, ρ |=
(Σ;M; Γ⇒χ ∆), if one of the following holds:

- There is an xRy ∈M with R ∈ {≤} ∪ {NA | A ∈ I} such that ρ(x) R ρ(y) 6∈ M.

- There is an x : α ∈ Γ such that M 6|= ρ(x) : α.

- There is an x : α ∈ ∆ such that M |= ρ(x) : α.

A model M satisfies a sequent Σ;M; Γ ⇒χ ∆, written M |= (Σ;M; Γ ⇒χ ∆), if for every
mapping ρ, we have M, ρ |= (Σ;M; Γ ⇒χ ∆). Finally, a sequent Σ;M; Γ ⇒χ ∆ is valid, written
|= (Σ;M; Γ⇒χ ∆), if for every model M we have M |= (Σ;M; Γ⇒χ ∆).

Rules of the sequent calculus. The sequent calculus for MMIχ is shown in Figure 1. Following
standard approach in labeled calculi, the rules for each connective mimic the (Kripke) semantic
definition of the connective. For example, in the rule (∧R), to prove x : α ∧ β in the conclusion,
we prove x : α and x : β in the premises. The rules (→R) and (necR) introduce fresh worlds
into Σ, consistent with the semantic definition (Definition 2.2). As illustrated in Section 2.3, it
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Axiom Rules

Σ;M, x ≤ y; Γ, x : p⇒χ y : p,∆
init

Logical Rules

Σ;M; Γ⇒χ x : >,∆
>R

Σ;M; Γ, x : ⊥ ⇒χ ∆
⊥L

Σ;M; Γ⇒χ x : α, x : α ∧ β,∆ Σ;M; Γ⇒χ x : β, x : α ∧ β,∆
Σ;M; Γ⇒χ x : α ∧ β,∆

∧R

Σ;M; Γ, x : α ∧ β, x : α, x : β ⇒χ ∆

Σ;M; Γ, x : α ∧ β ⇒χ ∆
∧L

Σ;M; Γ⇒χ x : α, x : β, x : α ∨ β,∆
Σ;M; Γ⇒χ x : α ∨ β,∆

∨R

Σ;M; Γ, x : α ∨ β, x : α⇒χ ∆ Σ;M; Γ, x : α ∨ β, x : β ⇒χ ∆

Σ;M; Γ, x : α ∨ β ⇒χ ∆
∨L

Σ, y;M, x ≤ y; Γ, y : α⇒χ y : β, x : α→ β,∆

Σ;M; Γ⇒χ x : α→ β,∆
→R

Σ;M, x ≤ y; Γ, x : α→ β ⇒χ y : α,∆ Σ;M, x ≤ y; Γ, x : α→ β, y : β ⇒χ ∆

Σ;M, x ≤ y; Γ, x : α→ β ⇒χ ∆
→L

Σ, y;M, xNAy; Γ⇒χ y : α, x : A nec α,∆

Σ;M; Γ⇒χ x : A nec α,∆
necR

Σ;M, xNAy; Γ, x : A nec α, y : α⇒χ ∆

Σ;M, xNAy; Γ, x : A nec α⇒χ ∆
necL

Frame Rules

Σ, x;M, x ≤ x; Γ⇒χ ∆

Σ, x;M; Γ⇒χ ∆
refl

Σ;M, x ≤ y, y ≤ z, x ≤ z; Γ⇒χ ∆

Σ;M, x ≤ y, y ≤ z; Γ⇒χ ∆
trans

Σ;M, x ≤ y, yNAz, xNAz; Γ⇒χ ∆

Σ;M, x ≤ y, yNAz; Γ⇒χ ∆
mon-N

(∀~x.((∧i (xiRix
′
i))→ (xRx′))) ∈ χ xiRix

′
i ∈M Σ;M, xRx′; Γ⇒χ ∆

Σ;M; Γ⇒χ ∆
χ

Figure 1: Seq-MMIχ: A labeled sequent calculus for MMIχ
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is primarily because of these rules that a backwards derivation in the sequent calculus may not
terminate trivially; this motivates most of our technical development.

We say that ` (Σ;M; Γ ⇒χ ∆) if Σ;M; Γ ⇒χ ∆ has a proof in the calculus. The sequent
calculus is both sound and complete with respect to the semantics.

Theorem 2.5 (Soundness). If ` (Σ;M; Γ⇒χ ∆), then |= (Σ;M; Γ⇒χ ∆).

Proof. Fix an M. It is easily proved by induction on the given derivation of Σ;M; Γ ⇒χ ∆ that
for every mapping ρ, M, ρ |= (Σ;M; Γ⇒χ ∆).

The converse of Theorem 2.5, completeness, also holds. It can be proved using a Henkin-style
argument, but we do not need this result in the rest of our development so we do not present the
proof here. For those logics MMIχ to which our method applies, completeness is also a consequence
of the completeness of our decision procedure, which we prove later. The following property is
critical to the design and correctness of our constructively complete decision procedure.

Theorem 2.6 (Weak subformula property). If a formula ϕ appears in any proof tree (possibly
infinite) obtained by applying the rules of Figure 1 backwards starting from a concluding sequent
Σ;M; Γ⇒χ ∆, then ϕ is a subformula of some formula in either Γ or ∆.

Proof. By induction on the distance (in the proof tree) of the occurrence of ϕ from the conclusion
Σ;M; Γ⇒χ ∆.

2.3 Non-Termination in the Sequent Calculus

The main challenge in constructing a decision procedure based on the sequent calculus of Figure 1
is that backwards search in it can loop forever, due to unbounded creation of new worlds in the
rules (→R) and (necR). We illustrate this through an example. Suppose χ = {∀x, y, z.(((xNAy) ∧
(yNAz)) → (xNAz))}, i.e., the relation NA is transitive. Then the calculus admits the following
infinite derivation. The omitted steps marked (†) are the same as the steps between the two (→L)
rules with the difference that x1 is used in place of x0 in all rules. To keep the derivation concise,
we drop those formulas from M, Γ and ∆ that are no longer needed after each backwards step.

...
x0, x1, x2;x0NAx2;x0 : A nec ((A nec α)→ α)→ α⇒χ x2 : α

x0, x1, x2;x0NAx1, x1NAx2;x0 : A nec ((A nec α)→ α)→ α⇒χ x2 : α
...

(†)
..
.

χ

. . .

x0, x1;x0NAx1, x1 ≤ x1;x0 : A nec ((A nec α)→ α)→ α⇒χ x1 : α
→L

x0, x1;x0NAx1;x0 : A nec ((A nec α)→ α), x1 : (A nec α)→ α⇒χ x1 : α
refl

x0, x1;x0NAx1;x0 : A nec ((A nec α)→ α)⇒χ x1 : α
necL

x0; ·;x0 : A nec ((A nec α)→ α), x0 : (A nec α)→ α⇒χ x0 : A nec α
necR∗

. . .

x0;x0 ≤ x0;x0 : A nec ((A nec α)→ α), x0 : (A nec α)→ α⇒χ x0 : α
→L

x0;x0NAx0, x0 ≤ x0;x0 : A nec ((A nec α)→ α)⇒χ x0 : α
necL

Note that the sequent at the top of the derivation is identical to the premise of the rule marked ∗
with a fresh world x2 replacing x1, so this derivation loops forever. The problem is caused by an

8



interaction of the rules (→L), (necR) and our frame condition χ that keeps creating new worlds.
Although we do not illustrate them here, similar loops can also be created using the rule (→R) in
place of (necR).

The question then is: How do we detect such loops during backwards proof search to obtain a
decision procedure? In the rest of this paper we present a general technique that not only detects
such loops in a wide variety of logics, but also produces Kripke countermodels witnessing the
non-validity of the end-sequent when such loops are detected.

3 Constructively Complete Decision Procedure for MMIχ

In this section we present our general constructively complete (countermodel producing) decision
procedure for several intuitionistic multi-modal logics of the form MMIχ. Since any application of
a rule other than (→R) and (necR) is unnecessary in a backward proof search when the labeled
formulas introduced in the premise(s) already exist in Γ and ∆, the use of all rules other than
(→R) and (necR) can be bounded easily. So, the main technical challenge is to be able to detect
loops, such as the one illustrated in Section 2.3. Although the end-result of our technique, i.e.,
the decision procedure itself is quite straightforward, building up to it requires some non-standard
machinery, which we motivate here by presenting an informal outline of our method.

To control the use of rules (→R) and (necR) in backwards proof search, we generalize a technique
from existing work on tableau calculi for classical uni-modal logics [10]. The technique prevents
loops by checking for containment of formulas that label a world in those labeling another. We start
by observing that in any sequent Σ;M; Γ ⇒χ ∆ obtained during backwards proof search starting
from a single goal formula, all worlds in M lie on a rooted, directed tree, whose edges are relations
in M that were introduced by the rules (→R) and (necR) in earlier steps of the search. We call
the reflexive-transitive closure of this tree �. Next, we define a function Sfor(Σ;M; Γ; ∆, x) that
lists, approximately, all formulas labeled by x in Γ and ∆ (the exact definition of Sfor depends on
χ, and is one of our key technical contributions). This function satisfies a very important, critical
property, whose proof requires induction on �: If there is a world y (y 6= x) such that y � x
and Sfor(Σ;M; Γ; ∆, x) ⊆ Sfor(Σ;M; Γ; ∆, y), then it is useless to apply any of the rules (→R) and
(necR) on any principal formula labeled by x in the sequent Σ;M; Γ ⇒χ ∆ in backwards proof
search. It only remains to show that this condition forces termination. This follows from the fact
that Sfor(Σ;M; Γ; ∆, x) increases monotonically for each x in a backwards proof search and the fact
that the number of possible values of Sfor is finite, which, in turn, is a consequence of the weak
subformula property (Theorem 2.6).

We further show that if no rule applies backwards to a sequent Σ;M; Γ ⇒χ ∆ (after imposing
our termination checks), then we can obtain a countermodel to the sequent Σ;M; Γ ⇒χ ∆ by
adding an edge x ≤ y whenever Sfor(Σ;M; Γ; ∆, x) ⊆ Sfor(Σ;M; Γ; ∆, y). This forms the basis of
our countermodel extraction. (As explained in Section 6, this method of extracting countermodels
is motivated by Negri’s proof of completeness of labeled sequent calculi for uni-modal logic with
respect to their Kripke semantics [17]. In that proof, Negri shows how to extract countermodels
from failed branches of a non-terminating labeled sequent calculus. However, our construction of
the countermodel is different.)

The definition of the function Sfor depends on the conditions χ that define the logic. In our
formal development, we define a suitable Sfor for every logic for which there exists what we call
a suitable closure relation (SCR). Technically, a SCR is a family of relations on frames, which
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satisfies some stipulated properties. Our entire method applies to any logic MMIχ for whose χ
a SCR exists. This begs the question of how general the existence of a SCR is. As we show in
Section 3.7, several (multi-) modal logics with reflexivity, transitivity, and modality interaction
conditions, including the multi-modal logics K, S4, T, and I [9, 13] have SCRs. We further show in
Section 3.6 that our method can be extended to any logic with a SCR plus the seriality condition on
its accessibility relations. This is, in an informal sense, the most we could hope for from a general
decision procedure for multi-modal logics because there are negative results for decidability of multi-
modal logics with other classes of frame conditions like symmetry (see Section 4). On the negative
side, our method does not directly generalize to handle possibility modalities in intuitionistic logic
(Section 4). However, the method does work for possibility modalities in classical logic, where
possibility can be defined as the DeMorgan dual of necessity (Section 5).

Our technical presentation consists of the following steps:

• We define the term “SCR for χ”. Its existence is the only condition that must hold for our
method to apply to the logic MMIχ.

• We define the function Sfor using SCRs. We also define a predicate on sequents, whose
elements (sequents) are called saturated histories. Roughly, a saturated history is a sequent
which satisfies all the termination conditions listed above, i.e., applying any rule other than
(→R) and (necR) backwards on the sequent does not add any new labeled formulas, and the
application of these two rules is blocked by the containment condition on Sfor. We prove, by
construction, the key property of our entire method: If a sequent is a saturated history, then
it has a finite countermodel.

• We define an intermediate sequent calculus Seq-MMIχCM with judgments Σ;M; Γ ⇒χ
CM ∆ ↘

S. Here, S is a (possibly empty) finite set of finite countermodels. The correctness property
of this calculus is: If Σ;M; Γ ⇒χ

CM ∆ ↘ {} has a proof, then ` (Σ;M; Γ ⇒χ ∆) and if
Σ;M; Γ⇒χ

CM ∆↘ S has a proof for S 6= {}, then every M ∈ S satisfies: M 6|= (Σ;M; Γ⇒χ

∆). Backwards search in this calculus does not necessarily terminate because the calculus
allows every rule of ⇒χ, and, in addition, it has a new rule that produces a countermodel
when Σ;M; Γ; ∆ is a saturated history. Consequently, in itself, the calculus is not a decision
procedure. However, we find the calculus a useful intermediate step to prove many properties.

• We observe that a specific strategy for proof search in Seq-MMIχCM terminates. This strategy
is presented as a sequent calculus Seq-MMIχT, which is a countermodel producing decision
procedure.

In the next four subsections, we present the technical details of each of these steps. In particular,
the last of these subsections, Section 3.4, describes our decision procedure. In Section 3.5 we state
and prove a comprehensiveness property of countermodels generated by our procedure.

3.1 Suitable Closure Relations (SCRs)

We start our technical presentation by defining suitable closure relations (SCRs) for frame condi-
tions χ. Our constructive decision procedure applies to any logic MMIχ whose χ has a SCR. Call a
frame M closed if it is closed under the conditions (refl), (trans), (mon-N) and χ. Given a frame M,
let M denote its closure obtained by closing the frame under the conditions (refl), (trans), (mon-N)
and χ, obtained as the least fixed point of the application of these rules. Informally, a SCR is

10



a family of relations (R(A))A∈I that, given any closed frame M and any extension M′ of it with
additional edges of the form ≤, characterizes all relations NA in M′ in terms of the relations in M
and the difference M′ −M.

Definition 3.1 (Suitable closure relation (SCR)). A family of binary relations (R(A))A∈I is called
a suitable closure relation or SCR for χ if the following hold:

0. Each R(A) is definable in first-order logic in terms of the relations ≤ ∪ {NA | A ∈ I}.

1. For a finite frame M and x, y ∈M, it can be decided whether x(R(A))y or not.

2. ((R(A))∗ ◦NA) ⊆ NA can be derived from the frame conditions (refl), (trans), (mon-N) and
χ.

3. For any closed frame M and any C ⊆ {x ≤ y | x, y ∈M}, if xNAy ∈M ∪ C, then x((R(A) ∪
C)∗ ◦NA ◦ ≤)y, where all relations R(A) and NA on the right are in M.

4. For any closed frame M and any C ⊆ {x ≤ y | x, y ∈M}, if x ≤ y ∈M ∪ C, then x(≤∪C)∗y,
where all ≤ relations on the right are in M.

Observe that condition (4) depends on χ, not on the choice of R(A), but we include it here for
uniformity.

SCRs for many different χ are listed in Section 3.7, but we describe one in the following example
for illustration.

Example 3.2 (SCR for transitivity). Let trans(A) be the frame condition ∀x, y, z.(((xNAy) ∧
(yNAz))→ (xNAz)) and let χ = {trans(A) | A ∈ I}. Then, the relation R(A) = NA ∪≤ is a SCR
for χ. To prove this, we verify each of the conditions (0)–(4) in the definition of SCR. Conditions
(0) and (1) are trivially true. (2) is equivalent to ((NA ∪ ≤)∗ ◦NA) ⊆ NA, which follows from the
frame conditions (mon-N) and χ. To prove (3), suppose that xNAy ∈ M ∪ C. Then, because the
only way to derive a relation NA is to use either (mon-N) or trans(A), it follows that in M∪C, we
have x((NA ∪≤)∗ ◦NA)y. So, we also have x((NA ∪≤∪C)∗ ◦NA)y, where all ≤ and NA relations
are in M, i.e., x((R(A)∪C)∗◦NA)y. Finally, since ≤ is reflexive, we have: x((R(A)∪C)∗◦NA◦≤)y,
as required. The proof of (4) is similar to that of (3).

3.2 Saturated Histories

Our method applies only to those logics MMIχ whose χ has a SCR, so in the sequel we fix a set
of frame conditions χ and assume there is a SCR (R(A))A∈I for this χ. Although we present the
technical material generically with respect to an abstract χ and SCR, we strongly advise the reader
to choose a specific χ and its SCR (for instance, those from Example 3.2), and instantiate our
definitions and theorems on them.

A history is a tuple Σ;M; Γ; ∆ (equivalently, a sequent Σ;M; Γ ⇒χ ∆) such that all labels in
M, Γ and ∆ occur in Σ. Let T (ϕ) and F (ϕ) be two uninterpreted unary relations. Informally, we
read T (ϕ) as “ϕ should be true” and F (ϕ) as “ϕ should be false”. Given a history Σ;M; Γ; ∆ and
x ∈ Σ, the signed formulas of x, written Sfor(Σ;M; Γ; ∆, x) are defined as follows:

11



Sfor(Σ;M; Γ; ∆, x) =
{T (ϕ) | x : ϕ ∈ Γ}∪
{F (ϕ) | x : ϕ ∈ ∆}∪

{T (A nec ϕ) | ∃y. y(R(A))∗x ∈M and y : A nec ϕ ∈ Γ}∪
{T (ϕ→ ψ) | ∃y. y ≤ x ∈M and y : ϕ→ ψ ∈ Γ}∪

{T (p) | ∃y. y ≤ x ∈M and y : p ∈ Γ}

When Σ,M,Γ,∆ are clear from context, we abbreviate Sfor(Σ;M; Γ; ∆, x) to Sfor(x). We say
that x 4 y iff Sfor(x) ⊆ Sfor(y).

We call a frame M tree-like if it can be derived from a finite tree of the relations ≤ and NA and
(possibly partial) closure by frame rules. This tree is called the underlying tree of M and we say
that x� y (in M) iff there is a directed path from x to y in the tree underlying M.

The key definition in our method is that of a saturated history. Intuitively, this definition
characterizes those histories Σ;M; Γ; ∆ for which we can directly define a countermodel for the
sequent Σ;M; Γ⇒χ ∆. (The definition of this countermodel is given immediately after the definition
of a saturated history.)2

Definition 3.3 (Saturated history). A history Σ;M; Γ; ∆ is called saturated if the following hold:

1. M is tree-like and saturated with respect to the conditions (refl), (trans), (mon-N) and χ. (In
particular, because M is tree-like, it has a relation � defined on it.)

2. If x : p ∈ Γ, then there is no y such that x ≤ y ∈M and y : p ∈ ∆.

3. There is no x such that x : > ∈ ∆.

4. There is no x such that x : ⊥ ∈ Γ.

5. If x : α ∧ β ∈ Γ, then x : α ∈ Γ and x : β ∈ Γ.

6. If x : α ∧ β ∈ ∆, then either x : α ∈ ∆ or x : β ∈ ∆.

7. If x : α ∨ β ∈ Γ, then either x : α ∈ Γ or x : β ∈ Γ.

8. If x : α ∨ β ∈ ∆, then x : α ∈ ∆ and x : β ∈ ∆.

9. If x : α→ β ∈ Γ and x ≤ y ∈M, then either y : α ∈ ∆ or y : β ∈ Γ.

10. If x : α→ β ∈ ∆, then either:

(a) There is a y such that x ≤ y ∈M, y : α ∈ Γ and y : β ∈ ∆ or

(b) There is a y such that y 6= x, y � x and x 4 y.

11. If x : A nec α ∈ Γ and xNAy ∈M, then y : α ∈ Γ.

12. If x : A nec α ∈ ∆, then either:

(a) There is a y such that xNAy ∈M and y : α ∈ ∆ or

(b) There is a y such that y 6= x, y � x and x 4 y.

2Saturated histories are labeled generalizations of Hintikka sets.
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Definition 3.4 (Countermodel of a saturated history). For a saturated history Σ;M; Γ; ∆, the
countermodel of the history, CM(Σ;M; Γ; ∆) is defined as follows:

- The worlds of CM(Σ;M; Γ; ∆) are exactly those in Σ.

- The relations of CM(Σ;M; Γ; ∆) are M ∪ C, where C = {x ≤ y | x 4 y}.

- h(p) = {x | ∃y. (y ≤ x ∈M) ∧ (y : p ∈ Γ)}.

It is not obvious that CM(Σ;M; Γ; ∆) is a model. It does satisfy all frame conditions. However,
we must also show monotonicity: If x ≤ y ∈ CM(Σ;M; Γ; ∆) and x ∈ h(p), then y ∈ h(p). The
following lemma states that this is the case.

Lemma 3.5. If Σ;M; Γ; ∆ is a saturated history, then CM(Σ;M; Γ; ∆) has a monotonic valuation
h, i.e., x ∈ h(p) and x ≤ y ∈ CM(Σ;M; Γ; ∆) imply y ∈ h(p).

Proof. Let C be the set {x ≤ y | x 4 y}. Suppose that x ≤ y ∈ CM(Σ;M; Γ; ∆), i.e., x ≤ y ∈M ∪ C
and x ∈ h(p). From the latter, there is a z such that z ≤ x ∈M and z : p ∈ Γ. From the definition
of SCR, clause (4) it follows that x(≤ ∪ C)∗y, where all the relations ≤ are in M. Hence, we have
a chain x = x0(≤∪C)x1 . . . (≤∪C)xn = y where all relations ≤ are in M. We induct on i to show
that T (p) ∈ Sfor(xi). The result then follows immediately from T (p) ∈ Sfor(xn) = Sfor(y). See
Appendix A, Lemma A.1 for details.

The next Lemma states the central property of our method. In particular, the Lemma imme-
diately implies that if Σ;M; Γ; ∆ is a saturated history, then CM(Σ;M; Γ; ∆) is a countermodel to
the sequent Σ;M; Γ⇒χ ∆.

Lemma 3.6. The following hold for any saturated history Σ;M; Γ; ∆:

A. If T (ϕ) ∈ Sfor(Σ;M; Γ; ∆, x), then CM(Σ;M; Γ; ∆) |= x : ϕ

B. If F (ϕ) ∈ Sfor(Σ;M; Γ; ∆, x), then CM(Σ;M; Γ; ∆) 6|= x : ϕ

Proof. We prove both properties simultaneously by lexicographic induction, first on ϕ, and then on
the partial (tree-like) order � of M. (Note that we cannot induct on either M or the relation in
CM(Σ;M; Γ; ∆), because both of these may potentially be cyclic.) Since the context Σ;M; Γ; ∆ is
fixed here, we abbreviate Sfor(Σ;M; Γ; ∆, x) to Sfor(x). We show only one interesting case here;
for the remaining cases, see Appendix A, Lemma A.2.

Case. Proof of (A), ϕ = A nec α. We are given that T (A nec α) ∈ Sfor(x). We need to
show that CM(Σ;M; Γ; ∆) |= x : A nec α, i.e., for any y such that xNAy in the model, we have
CM(Σ;M; Γ; ∆) |= y : α. Pick any y such that xNAy in the model. Because of the definition of
SCR, clause (3), we have x((R(A)∪C)∗ ◦NA ◦≤)y, where the relations R(A) and NA are in M. So
there are x0, . . . , xn, y

′ such that x = x0(R(A) ∪ C)x1 . . . (R(A) ∪ C)xnNAy
′ ≤ y. We now prove,

by induction on i, that T (A nec α) ∈ Sfor(xi) for each i.

• For i = 0, x0 = x and we are given that T (A nec α) ∈ Sfor(x).

• For the inductive case, assume that T (A nec α) ∈ Sfor(xi) for some i. We show that T (A nec
α) ∈ Sfor(xi+1) by case analyzing the relation xi(R(A) ∪ C)xi+1.
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– xi(R(A))xi+1 ∈ M: By the i.h., T (A nec α) ∈ Sfor(xi) so there is some z such that
z(R(A))∗xi ∈ M and z : A nec α ∈ Γ. Clearly, we have z(R(A))∗xi+1 ∈ M, so T (A nec
α) ∈ Sfor(xi+1).

– (xi, xi+1) ∈ C: Because of the definition of C, Sfor(xi+1) ⊇ Sfor(xi). Thus, T (A nec
α) ∈ Sfor(xi) immediately implies T (A nec α) ∈ Sfor(xi+1).

Since we just proved that T (A nec α) ∈ Sfor(xi), it follows, in particular, that T (A nec α) ∈
Sfor(xn). Consequently, there is some z′ such that z′(R(A))∗xn ∈ M and z′ : A nec α ∈ Γ. Then,
we also have (within M) that: z′(R(A))∗x′nNAy

′. So, by clause (2) of the definition of SCR, z′NAy
′ ∈

M. Hence, by clause (11) of the definition of saturated history, we must have y′ : α ∈ Γ. Therefore,
T (α) ∈ Sfor(y′) and by the i.h., CM(Σ;M; Γ; ∆) |= y′ : α. Since y′ ≤ y ∈ CM(Σ;M; Γ; ∆), by
Lemma 2.3, CM(Σ;M; Γ; ∆) |= y : α.

Corollary 3.7 (Existence of countermodel). If Σ;M; Γ; ∆ is a saturated history, then CM(Σ;M; Γ; ∆) 6|=
(Σ;M; Γ⇒χ ∆).

Proof. Lemma 3.6 immediately implies that CM(Σ;M; Γ; ∆), ρ 6|= (Σ;M; Γ⇒χ ∆), where ρ : Σ→ Σ
is the identity substitution.

3.3 Seq-MMIχCM: Countermodels for MMIχ

Having defined a saturated history, i.e., a sequent for which a countermodel exists (Corollary 3.7), we
now define a sequent calculus Seq-MMIχCM, written⇒χ

CM, which uses this fact to emit countermodels
from unprovable sequents. Although this calculus is not a decision procedure, we find it a useful
step in proving several results, in particular, the results of Section 3.5.

Sequents of Seq-MMIχCM have the form Σ;M; Γ ⇒χ
CM ∆ ↘ S, where S is a finite set of finite

models. We write ` (Σ;M; Γ ⇒χ
CM ∆ ↘ S) if Σ;M; Γ ⇒χ

CM ∆ ↘ S has a proof. The meaning of
Σ;M; Γ ⇒χ

CM ∆ ↘ S depends on S. If ` (Σ;M; Γ ⇒χ
CM ∆ ↘ {}), then ` (Σ;M; Γ ⇒χ ∆) and if

` (Σ;M; Γ⇒χ
CM ∆↘ S) with S 6= {}, then every modelM∈ S is a countermodel to Σ;M; Γ⇒χ ∆

in the sense of (the converse of) Definition 2.4.
The rules of the sequent calculus Seq-MMIχCM are shown in Figure 2. First, every rule in

the ordinary sequent calculus (Figure 1) is modified to have in the conclusion the union of the
(counter)models in the premises. This is sound because the rules of the sequent calculus are
invertible (i.e., the conclusion of each rule holds iff the premises hold). Second, there is a new rule
(CM) that produces the countermodel CM(Σ;M; Γ; ∆) when Σ;M; Γ; ∆ is a saturated history.

We emphasize again that this calculus is not necessarily a decision procedure because it includes
all rules of ⇒χ and hence admits all of the latter’s infinite backwards derivations as well.

Theorem 3.8 (Soundness 1). If ` (Σ;M; Γ⇒χ
CM ∆↘ {}), then ` (Σ;M; Γ⇒χ ∆).

Proof. By induction on the given derivation of Σ;M; Γ ⇒χ
CM ∆ ↘ {}. Note that the case of

rule (CM) does not apply because the set of countermodels in it is non-empty. The proof is
straightforward because the rules of ⇒χ

CM mimic those of ⇒χ.

Theorem 3.9 (Soundness 2). If ` (Σ;M; Γ ⇒χ
CM ∆ ↘ S), then for every model M ∈ S, M 6|=

(Σ;M; Γ⇒χ ∆).
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Axiom Rules

Σ;M; Γ; ∆ is a saturated history

Σ;M; Γ⇒χ
CM ∆↘ {CM(Σ;M; Γ; ∆)}

CM
Σ;M, x ≤ y; Γ, x : p⇒χ

CM y : p,∆↘ {}
init

Logical Rules

Σ;M; Γ⇒χ
CM x : >,∆↘ {}

>R
Σ;M; Γ, x : ⊥ ⇒χ

CM ∆↘ {}
⊥L

Σ;M; Γ⇒χ
CM x : α, x : α ∧ β,∆↘ S1 Σ;M; Γ⇒χ

CM x : β, x : α ∧ β,∆↘ S2

Σ;M; Γ⇒χ
CM x : α ∧ β,∆↘ S1, S2

∧R

Σ;M; Γ, x : α ∧ β, x : α, x : β ⇒χ
CM ∆↘ S

Σ;M; Γ, x : α ∧ β ⇒χ
CM ∆↘ S

∧L
Σ;M; Γ⇒χ

CM x : α, x : β, x : α ∨ β,∆↘ S

Σ;M; Γ⇒χ
CM x : α ∨ β,∆↘ S

∨R

Σ;M; Γ, x : α ∨ β, x : α⇒χ
CM ∆↘ S1 Σ;M; Γ, x : α ∨ β, x : β ⇒χ

CM ∆↘ S2

Σ;M; Γ, x : α ∨ β ⇒χ
CM ∆↘ S1, S2

∨L

Σ, y;M, x ≤ y; Γ, y : α⇒χ
CM y : β, x : α→ β,∆↘ S

Σ;M; Γ⇒χ
CM x : α→ β,∆↘ S

→R

Σ;M, x ≤ y; Γ, x : α→ β ⇒χ
CM y : α,∆↘ S1 Σ;M, x ≤ y; Γ, x : α→ β, y : β ⇒χ

CM ∆↘ S2

Σ;M, x ≤ y; Γ, x : α→ β ⇒χ
CM ∆↘ S1, S2

→L

Σ, y;M, xNAy; Γ⇒χ
CM y : α, x : A nec α,∆↘ S

Σ;M; Γ⇒χ
CM x : A nec α,∆↘ S

necR
Σ;M, xNAy; Γ, x : A nec α, y : α⇒χ

CM ∆↘ S

Σ;M, xNAy; Γ, x : A nec α⇒χ
CM ∆↘ S

necL

Frame Rules

Σ, x;M, x ≤ x; Γ⇒χ
CM ∆↘ S

Σ, x;M; Γ⇒χ
CM ∆↘ S

refl
Σ;M, x ≤ y, y ≤ z, x ≤ z; Γ⇒χ

CM ∆↘ S

Σ;M, x ≤ y, y ≤ z; Γ⇒χ
CM ∆↘ S

trans

Σ;M, x ≤ y, yNAz, xNAz; Γ⇒χ
CM ∆↘ S

Σ;M, x ≤ y, yNAz; Γ⇒χ
CM ∆↘ S

mon-N

(∀~x.((∧i (xiRix
′
i))→ (xRx′))) ∈ χ xiRix

′
i ∈M Σ;M, xRx′; Γ⇒χ

CM ∆↘ S

Σ;M; Γ⇒χ
CM ∆↘ S

χ

Figure 2: Seq-MMIχCM: Countermodel producing sequent calculus for MMIχ
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Proof. By induction on the given derivation of Σ;M; Γ ⇒χ
CM ∆ ↘ S and case analysis of its last

rule. The rules (init), (⊥L), and (>R) are vacuous because they have empty S. For all other rules,
except (CM), we simply observe that contexts in all major premises are a superset of corresponding
contexts in the conclusion and hence we can trivially conclude by induction on one of the premises.
The case of rule (CM) is shown below:

Case.
Σ;M; Γ; ∆ is a saturated history

Σ;M; Γ⇒χ
CM ∆↘ {CM(Σ;M; Γ; ∆)}

CM

Here M = CM(Σ;M; Γ; ∆). So, the result follows by Corollary 3.7.

3.4 Seq-MMIχT: Termination and Countermodel Extraction for MMIχ

Next, we describe a particular backwards proof search strategy in Seq-MMIχCM that always ter-
minates without losing completeness, thus obtaining a countermodel producing decision proce-
dure for MMIχ. This strategy is described as a calculus Seq-MMIχT, with sequents of the form
Σ;M; Γ ⇒χ

T ∆ ↘ S. Operationally, the rules of the calculus can be interpreted backwards as
a decision procedure with inputs Σ, M, Γ, and ∆ and output S. For a given Σ, M, Γ, and ∆,
(Σ;M; Γ⇒χ ∆) is provable iff S = {}, else every model in S is a countermodel to the sequent.

The rules of the calculus Seq-MMIχT are shown in Figure 3. Each rule in the calculus corresponds
to a rule of the same name in Seq-MMIχCM (Figure 2). The only significant difference between
the two calculi is that the premise of the rule (CM) in Seq-MMIχCM requires that Σ;M; Γ; ∆ be
a saturated history, but the rule (CM) applies in Seq-MMIχT only when no other rule applies.
To ensure that “no other rule applies” implies that Σ;M; Γ; ∆ is a saturated history, we spread
the negations of the conditions (1) and (5)–(12) from the definition of saturated history to rules
other than (CM) as pre-conditions, called applicability conditions. Conditions (2), (3) and (4)
obviously hold when the rules (init), (>R) and (⊥L) do not apply, respectively. Hence, when no
rule other than (CM) applies, all 12 conditions of the definition of saturated history must hold, so
Σ;M; Γ; ∆ must be a saturated history. The conditions are spread to the obvious rules; for example,
the negation of condition (5) is applied to the rule (∧R). In Figure 3, applicability conditions

are highlighted using boxes . It only remains to show that the calculus with these applicability
conditions does not admit infinite backwards derivations. This follows from a counting argument,
as in the proof of Theorem 3.12.

Lemma 3.10 (Correctness of CM). Let Σ, M, Γ and ∆ be such that M is tree-like and no rule
except (CM) applies backwards to Σ;M; Γ⇒χ

T ∆↘ . . .. Then, Σ;M; Γ; ∆ is a saturated history.

Proof. We verify all conditions in the definition of a saturated history. Each condition corresponds
to the negation of premises of one of the rules of Figure 3.

Lemma 3.11 (Tree-like M). Let M be tree-like. Then, the M′ in any sequent Σ′;M′; Γ′ ⇒χ
T ∆′ ↘ . . .

appearing in a backwards search starting from Σ;M; Γ⇒χ
T ∆↘ . . . is tree-like.

Proof. By backwards analysis of each rule observing that the M in the premises of each rule is
tree-like if that in the conclusion is.

Note that the underlying tree of M in any sequent of a backward proof search starting from
a single formula consists of exactly those edges that are introduced in one of the rules (→R) and
(necR).
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Axiom Rules

No other rule applies

Σ;M; Γ⇒χ
T ∆↘ {CM(Σ;M; Γ; ∆)}

CM
Σ;M, x ≤ y; Γ, x : p⇒χ

T y : p,∆↘ {}
init

Logical Rules

Σ;M; Γ⇒χ
T x : >,∆↘ {}

>R
Σ;M; Γ, x : ⊥ ⇒χ

T ∆↘ {}
⊥L

x : α 6∈ ∆ and x : β 6∈ ∆ Σ;M; Γ⇒χ
T x : α, x : α ∧ β,∆↘ S1 Σ;M; Γ⇒χ

T x : β, x : α ∧ β,∆↘ S2

Σ;M; Γ⇒χ
T x : α ∧ β,∆↘ S1, S2

∧R

x : α 6∈ Γ or x : β 6∈ Γ Σ;M; Γ, x : α ∧ β, x : α, x : β ⇒χ
T ∆↘ S

Σ;M; Γ, x : α ∧ β ⇒χ
T ∆↘ S

∧L

x : α 6∈ ∆ or x : β 6∈ ∆ Σ;M; Γ⇒χ
T x : α, x : β, x : α ∨ β,∆↘ S

Σ;M; Γ⇒χ
T x : α ∨ β,∆↘ S

∨R

x : α 6∈ Γ and x : β 6∈ Γ Σ;M; Γ, x : α ∨ β, x : α⇒χ
T ∆↘ S1 Σ;M; Γ, x : α ∨ β, x : β ⇒χ

T ∆↘ S2

Σ;M; Γ, x : α ∨ β ⇒χ
T ∆↘ S1, S2

∨L

∀y ∈ Σ.(x ≤ y ∈ M)⇒ (y : α 6∈ Γ or y : β 6∈ ∆)

∀y ∈ Σ.(y � x)⇒ (x = y or x 64 y) Σ, y;M, x ≤ y; Γ, y : α⇒χ
T y : β, x : α→ β,∆↘ S

Σ;M; Γ⇒χ
T x : α→ β,∆↘ S

→R

y : α 6∈ ∆ and y : β 6∈ Γ Σ;M, x ≤ y; Γ, x : α→ β ⇒χ
T y : α,∆↘ S1 Σ;M, x ≤ y; Γ, x : α→ β, y : β ⇒χ

T ∆↘ S2

Σ;M, x ≤ y; Γ, x : α→ β ⇒χ
T ∆↘ S1, S2

→L

∀y ∈ Σ.(xNAy ∈ M)⇒ y : α 6∈ ∆

∀y ∈ Σ.(y � x)⇒ (x = y or x 64 y) Σ, y;M, xNAy; Γ⇒χ
T y : α, x : A nec α,∆↘ S

Σ;M; Γ⇒χ
T x : A nec α,∆↘ S

necR

y : α 6∈ Γ Σ;M, xNAy; Γ, x : A nec α, y : α⇒χ
T ∆↘ S

Σ;M, xNAy; Γ, x : A nec α⇒χ
T ∆↘ S

necL

Frame Rules

x ≤ x 6∈ M Σ, x;M, x ≤ x; Γ⇒χ
T ∆↘ S

Σ, x;M; Γ⇒χ
T ∆↘ S

refl
x ≤ z 6∈ M Σ;M, x ≤ y, y ≤ z, x ≤ z; Γ⇒χ

T ∆↘ S

Σ;M, x ≤ y, y ≤ z; Γ⇒χ
T ∆↘ S

trans

xNAz 6∈ M Σ;M, x ≤ y, yNAz, xNAz; Γ⇒χ
T ∆↘ S

Σ;M, x ≤ y, yNAz; Γ⇒χ
T ∆↘ S

mon-N

(∀~x.((∧i (xiRix
′
i))→ (xRx′))) ∈ χ xiRix

′
i ∈ M xRx′ 6∈ M Σ;M, xRx′; Γ⇒χ

T ∆↘ S

Σ;M; Γ⇒χ
T ∆↘ S

χ

Figure 3: Seq-MMIχT: Terminating, countermodel producing sequent calculus for MMIχ. Appli-

cability conditions are written in boxes . Wherever mentioned, the relation 4 is the equivalence
relation of the contexts Σ;M; Γ; ∆ in the conclusion of the rule. Similarly, � is the order of the
underlying tree of M.
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Theorem 3.12 (Termination). The following hold:

1. Any backwards search in Seq-MMIχT starting from a sequent Σ;M; Γ ⇒χ
T ∆ with M tree-like

terminates.

2. For any Σ;M; Γ; ∆ with M tree-like, there is an S such that ` (Σ;M; Γ⇒χ
T ∆↘ S) and such

an S can be finitely computed.

Proof. Proof of (1): Suppose, for the sake of contradiction, that there is an infinite backward proof
starting from Σ;M; Γ⇒χ

T ∆↘ . . .. Since the proof is finitely branching (every rule has a bounded
number of premises), it must have an infinite path. Observe that Γ,∆ are monotonic backwards, so
the applicability conditions in the rules prevent application of the same rule on the same principal
labeled formula more than once in any branch. Since there are only a finite number of formulas that
can appear in any search (weak subformula property, Theorem 2.6), it follows that in the infinite
path there must be an infinite number of labels. Let T be the underlying tree of this entire path
(i.e., the underlying tree of the union of M for each sequent on this path). Since the tree is finitely
branching (because we cannot apply rules (→R) and (necR) to the same label infinitely often), it
must have an infinite path. Let this path be x0 � x1 � . . .. Let Si be the value of Sfor(xi) when
either of the rules (→R) and (necR) is applied to create xi+1. Note that for i < j, Si 6⊇ Sj , because
if Si ⊇ Sj , then at the time that xj+1 is created, Sfor(xi) ⊇ Si ⊇ Sj = Sfor(xj), so the application
of the rules (→R) and (necR) on xj would be blocked, so xj+1 could not have been created. Hence,
for i < j, Si 6⊇ Sj . Call this fact (A). (The reader may note that the deduction Sfor(xi) ⊇ Si two
sentences ago relies on the fact that Sfor(x) increases monotonically as we move backwards in a
derivation.)

If Φ is the set of all subformulas of the original sequent we start from, then by Theorem 2.6,
each Si ⊆ {T (α) | α ∈ Φ} ∪ {F (α) | α ∈ Φ}. Note that the right hand side is a finite set, so its
subsets form a finite partial order under set inclusion. Call this partial order P . Since P is finite,
it has a finite number of chains and since the sequence S1, S2, . . . is infinite, at least one infinite
subsequence R of S1, S2, . . . must contain elements from only a single chain in P . Consider any two
elements Si, Sj ∈ P with i < j. Since P is a chain, we must have either Si ⊇ Sj or Si ( Sj . The
former is ruled out fact (A). So Si ( Sj . Hence, we have S1 ( S2 ( S3 . . ., so the chain P contains
an infinite ascending sequence, which is a contradiction because P is finite.

Proof of (2): Follows immediately from (1), Lemma 3.11, and the observation that all applicability
conditions are finitely computable. The latter follows from condition (1) of the definition of SCRs.

Note that Theorem 3.12(2) does not stipulate that the S be unique. Indeed, depending on the
order in which the rules of the calculus ⇒χ

T are applied to a given sequent, S may be different.
However, the fact that at least one such S exists and can be computed is enough to get decidability
for MMIχ.

Lemma 3.13 (Simulation). If M is tree-like and ` (Σ;M; Γ ⇒χ
T ∆ ↘ S), then ` (Σ;M; Γ ⇒χ

CM

∆↘ S).

Proof. By induction on the given derivation of Σ;M; Γ⇒χ
T ∆↘ S. The case of rule (CM) follows

from Lemma 3.10. The rest of the cases are immediate from the i.h. The only fact to take care of
is that the tree-like property holds for each i.h. application. This follows from Lemma 3.11.
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Theorem 3.14 (Decidability). For a tree-like M, suppose that S is such that ` (Σ;M; Γ⇒χ
T ∆↘

S) (such an S must exist and can be computed using Theorem 3.12). Then:

1. If S = {}, then |= (Σ;M; Γ⇒χ ∆).

2. If S 6= {}, then every modelM in S is a countermodel to the sequent, i.e., M 6|= (Σ;M; Γ⇒χ

∆).

Proof. By Lemma 3.13, we have that ` (Σ;M; Γ⇒χ
CM ∆↘ S). Now, (1) follows from Theorems 3.8

and 2.5 and (2) follows from Theorem 3.9.

Corollary 3.15 (Decidability and finite model property). If a SCR exists for χ, then MMIχ is
decidable, has the finite model property and has a constructive decision procedure.

Proof. Immediate from Theorem 3.14.

3.5 Comprehensiveness of Seq-MMIχCM and Seq-MMIχT Countermodels

Countermodels generated by Seq-MMIχCM (and Seq-MMIχT) have an interesting property: If `
(Σ;M; Γ ⇒χ

CM ∆ ↘ S), then ` (Σ;M; Γ ⇒χ
CM x : p,∆ ↘ {}) if and only if ∀M ∈ S. M |= x : p.

Thus, if we can produce a set of countermodels S by running without an actual goal (like x : p), then
the set of atoms that are actually true are exactly those that are in the intersection of the valuation
of all models in the set S. Further, because the result applies to derivations in Seq-MMIχCM, it
also applies to derivations in Seq-MMIχT due to Lemma 3.13 and the latter can be used to actually
produce the set S. We call this result comprehensiveness and prove it below.

Theorem 3.16 (Comprehensiveness). Suppose ` (Σ;M; Γ ⇒χ
CM ∆ ↘ S). Then ` (Σ;M; Γ ⇒χ

CM

x : p,∆↘ {}) iff ∀M ∈ S.M |= x : p.

Proof. See Appendix A, Theorem A.5.

Corollary 3.17 (Comprehensiveness in Seq-MMIχT). Suppose ` (Σ;M; Γ ⇒χ
T ∆ ↘ S). Then,

` (Σ;M; Γ⇒χ x : p,∆) iff ∀M ∈ S.M |= x : p.

Proof. From ` (Σ;M; Γ ⇒χ
T ∆ ↘ S) we derive ` (Σ;M; Γ ⇒χ

CM ∆ ↘ S) using Lemma 3.13. The
result then follows from Theorem 3.16.

3.6 Adding Seriality

In this section we show that if χ has a SCR, then our method applies not only to the logic MMIχ

(Corollary 3.15), but also to the logic which, in addition, forces seriality with respect to some of
its relations NA. Seriality for index A is the condition ∀x.∃y.(xNAy). This corresponds to the
axiom ¬(A nec ⊥), also called D in literature [5]. Note that seriality does not fit our definition of χ
because frame conditions in χ cannot contain existentials, so it cannot be handled in the method
described so far. Consequently, we must modify our method slightly to include seriality as a frame
condition. The only new challenge is to control creation of worlds due to the seriality condition
during backwards search; for this we use an approach similar to that for controlling the use of rules
(→R) and (necR). Proofs do not change significantly.
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Suppose we wish to make relations NA for A ∈ J ⊆ I serial. We first add the following rule to
our sequent calculus Seq-MMIχ (Figure 1) for every A ∈ J :

Σ, x, y;M, xNAy; Γ⇒χ ∆

Σ, x;M; Γ⇒χ ∆
D

Next, we change clause (1) of the definition of saturated history not to require closure under this
new frame condition, which would cause infinite models, but instead new conditions based on 4:

(1) M is tree-like and saturated with respect to the conditions (refl), (trans), (mon-N)
and χ. In addition, at least one of the following must hold for each x ∈ Σ and each
index A ∈ J :

(a) There is a y ∈ Σ such that xNAy ∈M, or

(b) There is a y ∈ Σ such that y 6= x, y � x and x 4 y.

With this new clause (1), we can show by induction on � that CM(Σ;M; Γ; ∆) is closed under
seriality for A ∈ J , hence it is a model of our (modified) logic. Next, we add the following rule
for every A ∈ J to the terminating calculus Seq-MMIχT and a corresponding rule without the
applicability conditions to Seq-MMIχCM.

∀y ∈ Σ. (xNAy 6∈M) ∀y ∈ Σ.(y � x)⇒ (y = x or x 64 y) Σ, x, y;M, xNAy; Γ⇒χ
T ∆↘ S

Σ, x;M; Γ⇒χ
T ∆↘ S

D

With these changes, our entire development works with only minor changes to the proofs (interest-
ingly, the proof of Lemma 3.6 does not change).

Theorem 3.18 (Constructive decidability with seriality). Let D contain seriality conditions for
some set of indices and let the frame conditions χ have a SCR. Then the logic MMIχ,D is construc-
tively decidable by our method.

3.7 Constructive Decidability for Common Intuitionistic Logics

In this section, we list some common sets of frame conditions with their SCRs, thus showing that
the intuitionistic logics corresponding to each of them is constructively decidable by our method.
Unfortunately, SCRs are not modular: We cannot combine the SCRs for frame conditions χ1 and
χ2 to get a SCR for a modal logic χ1 ∪ χ2. As a result, we must explicitly construct a SCR for
every modal logic of interest.

Figure 4 lists some common intuitionistic logics, their frame conditions (χ), the corresponding
axioms they admit and the corresponding SCRs. In cases where the name of the logic is not
common, we have cited the source of the logic. We note two things: (1) This list is not exhaustive,
but merely representative, and (2) Our method also applies to any of these logics combined with
seriality from Section 3.6 due to Theorem 3.18.

Theorem 3.19 (Decidability of Common Logics). The intuitionistic logics shown in Figure 4 have
the SCRs also shown in that figure. Consequently, all these logics (and their combination with the
seriality condition from Section 3.6) are constructively decidable by our method.
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Logic Frame conditions χ Additional Axioms SCR

K {} – R(A) = (≤)
T ∀A, x. xNAx (A nec α)→ α R(A) = (≤)

K4 ∀A, x, y, z. ((xNAy) ∧ (yNAz))→ (xNAz) (A nec α)→ (A nec A nec α) R(A) = (NA ∪ ≤)
S4 Conditions of K4 and T Axioms of K4 and T R(A) = (NA ∪ ≤)
I
[9, 13]

∀A,B, x, y, z. ((xNBy) ∧ (yNAz))→ (xNAz) (A nec α)→ (B nec A nec α) R(A) = ((∪B∈INB) ∪ ≤)

unit
[7]

∀A, x, y. (xNAy)→ (x ≤ y) α→ (A nec α) R(A) = (≤)

– ∀x, y. (xNAy)→ (xNBy) (B nec α)→ (A nec α) R(A) = (≤)

Figure 4: SCRs for some multi-modal intuitionistic logics. All these logics are constructively
decidable by our method.

4 Discussion

This section discusses some loose ends: The connection between our technique and the technique
of semantic filtrations, and some broad limitations of our work.

Relation to semantic filtration. Semantic filtrations [5] are a technique for establishing the
finite model property of modal logics. The key idea is to show the existence of an accessibility
relation (called a filtration) on the finite model obtained by collapsing worlds of any model that
satisfy the same set of formulas. The relation must satisfy some specific conditions. Often the ac-
cessibility relation constructed has a definition similar to our SCR relations R(A) and, superficially,
the two techniques may look similar. However, a careful examination reveals differences. Primarily,
filtrations are semantic techniques that manipulate Kripke models whereas our method is purely
syntactic and SCRs only work with sets of formulas generated during a specific backwards search.
A consequence of this difference is that, for any of the logics considered in this paper, we have not
been able to find a suitable filtration on the obvious model whose worlds are equivalence classes of
4 ∩ <. In particular, it seems extremely difficult to satisfy what is known as the “back condition”,
which is required of a filtration. We also note that there is no standard definition of filtrations for
intuitionistic modal logics. We know of only one work in this domain, and that work is also limited
to the uni-modal case [15] (the author of the paper notes in the conclusion that generalizing to the
multi-modal case is not trivial).

Complexity bounds. Even though our method proves the finite model property and provides a
constructive decision procedure for a wide-variety of multi-modal logics, even in the intuitionistic
case, it does not provide tight upper bounds on the complexity of the logics. For example, based on
the result of [15], we expect that the intuitionistic modal logic K is decidable in doubly exponential
time, but an analysis of Theorem 3.12 yields a bound that is at best quadruply exponential. This
inability to produce accurate complexity bounds may be partly attributed to the method’s general-
ity (it also applies to multi-modal logics) and partly to the fact that it constructs a comprehensive
set of countermodels (Section 3.5). We do not know of any existing complexity bound for producing
such comprehensive sets of countermodels.

Intuitionistic possibility modalities. Our method does not work when intuitionistic possibility
modalities A pos α (commonly written 3Aϕ) are included in the logic. The reason for this is subtle,
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but primarily stems from the fact that the binary relation PA used to define the possibility modality
must satisfy (≥ ◦ PA) ⊆ PA (as compared to (≤ ◦NA) ⊆ NA for necessitation) [26]. Consequently,
in the definition of saturated history, the clause for A pos α analogous to clause (12) reads:

If x : A pos α ∈ Γ, then either:

(a) There is a y such that xPAy ∈M and y : α ∈ Γ or

(b) There is a y such that y 6= x, y � x and y 4 x.

Observe that in part (b) above, we have the condition y 4 x instead of x 4 y in clause (12b).
This difference is enough to break the termination property (Theorem 3.12); in particular, the fact
called (A) in its proof cannot be established with possibility modalities.

In classical logic, where the relation ≤ is absent, possibility modalities are easily handled by
our method. In fact, they need no special treatment as they are just the DeMorgan duals of
necessitation (Appendix B).

Symmetry condition. To the best of our knowledge, there is no SCR for the symmetry condition
(∀x, y.(xNAy)→ (yNAx)), the cornerstone of the modal logic S5. Consequently, our method cannot
be used to prove decidability for this logic, in either the uni-modal or multi-modal setting. This
is not surprising because Baldoni has shown that, in general, multi-modal logics with symmetry
conditions are undecidable [3]. So, a general method like ours is unlikely to be able to handle these
conditions. Nonetheless it is dissatisfying that our method is unable to handle even uni -modal S5,
which is known to be decidable.

Other label producing conditions. We showed in Section 3.6 that our method is compatible
with the seriality frame condition. A question is whether it is also compatible with other frame
conditions that produce labels, like seriality does. For example, can it be extended to handle density:
∀x, y.((xNAy) → ∃z.((xNAz) ∧ (zNAy)))? Although we have not investigated this question in
detail, there seems to be no obvious method to extend our technique to include such conditions
in general. Nonetheless, it may be possible to combine our method with work on decidability for
layered modal logics [11], that are derived from a specific subclass of label-producing conditions.
We leave this combination to future work.

5 Classical Logic

Although we developed our decision procedure with intuitionistic modal logic in mind, it can be
modified to apply to classical multi-modal logics as well. The overall approach of using SCRs and
the structure of the calculi remains the same. However, because Kripke frames in classical logic
do not require the preorder ≤, we must change the definition of CM(Σ;M; Γ; ∆) (Definition 3.4)
that relies on ≤. This is not difficult: Instead of adding x ≤ y when x 4 y, we add the relation
xNAz when yNAz and x 4 y. Appendix B describes in detail our method as it applies to classical
logics, together will all relevant proofs. In classical logic, the possibility modality of index A can
be defined as the DeMorgan dual of the necessitation modality of the same index, so on classical
logic, our method applies to possibility modalities as well.
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6 Related Work

The applicability conditions of rules (→R) and (necR) in Figure 3, based on the relation 4, are
inspired by the work of Gasquet et al. [10] in which tableaux-based decision procedures are given for
classical uni-modal logics with the following frame conditions: Transitivity, reflexivity, symmetry,
Euclideanness, seriality and confluence. Our method is based on labeled sequent calculi and it
applies to both classical and intuitionistic modal logics with any number of modalities. As a
consequence, we had to develop new proof techniques to establish our results, particularly in the
intuitionistic setting.

Our method of extracting countermodels is inspired by Negri’s proof of completeness of labeled
sequent calculi for uni-modal logic with respect to their Kripke semantics [17][18, Chapter 11].
In that proof, it is shown how to extract (possibly infinite) countermodels from non-terminating
branches of a failed proof search taking the union of all M occurring along the branch. Here,
instead, countermodels are built in the context of a decision procedure and finite countermodels
are built by adding additional edges based on the relation 4 and saturating with respect to the
frame conditions.

Boretti and Negri [6] develop a countermodel producing decision procedure similar to ours
for a Priorean linear time fixed point calculus (a variant of linear time temporal logic, LTL),
which also includes two rules like seriality. They also use a notion of saturation and construct
countermodels from histories. The main difference between this work and [6] is that this work
handles general frame conditions and, additionally, intuitionistic connectives. Boretti and Negri
also discuss previous tableaux-style approaches to the generation of countermodels for LTL, such
as [22].

Countermodel producing sequent calculi, also known in the literature as “refutation calculi”,
have been given for intuitionistic logic, bi-intuitionistic logic, and provability logics [12, 14, 19] and
in a way closer to the present paper’s approach in [20]. One of the peculiarities of our method in
relation to previous work is that the countermodel construction is made part of the calculus itself.

Gasquet and Said [11] introduce a technique called dynamic filtration to establish complexity
bounds for the satisfiability problem of classical layered modal logics (LMLs), i.e., “logics char-
acterized by semantic properties only stating the existence of possible worlds that are in some
sense further than the other”. Typically, such logics include confluence-like conditions, but they
do not include transitivity-like conditions. Our work provides constructive decision procedures for
a different and disjoint class of logics to which the techniques in [11] do not apply. In fact, with
the exception of seriality, none of the frame conditions considered in this paper fall in the class
of LMLs. Moreover, because LMLs cannot be applied with transitivity conditions it is not clear
whether the techniques in [11] are suitable in the intuitionistic setting.

Simpson [23] presents decision procedures based on labeled sequent calculi for the intuitionistic
uni-modal logics K, D, T and B together with S5. He leaves open the decidability of intuitionistic
S4, K4 and KD4. Our method shows that the necessitation-only fragments of all three logics are
decidable, not only in the uni-modal case, but also in the multi-modal case and, further, that the
logics have constructive decision procedures.

Schmidt and Tishkovsky [21] present a general method for synthesizing sound and complete
tableaux calculi given a semantic filtration [5] for the underlying classical modal logic. Although
semantic filtrations are a powerful and general technique, their definition is not clear for many
intuitionistic and multi-modal logics, so our method handles several logics that cannot be handled by
Schmidt and Tishkovsky. To the best of our knowledge, the only work on filtrations for intuitionistic

23



logics is limited to the uni-modal case [15] (the author of the paper notes in the conclusion that
generalizing to the multi-modal case is not trivial). Filtration-based methods are also technically
different from our syntactic approach. Whereas filtrations manipulate Kripke models, our method
is purely syntactic and SCRs only work with sets of formulas generated during a specific backwards
search. A consequence of this difference is that, for any of the logics considered in this paper, we
have not been able to find a suitable filtration on the obvious model whose worlds are equivalence
classes of 4 ∩ <. In particular, it seems extremely difficult to satisfy the “back condition” of a
filtration.

Alechina and Shakatov [2] present a general technique to prove decidability of intuitionistic
(multi)-modal logics by embedding the relational definition of the semantics into Monadic Second
Order Logic (MSO). As noted by the authors themselves and unlike our method, this approach
does not give good decision procedures since it proceeds by reduction to satisfiability of formulas
in SkS (monadic second-order theory of trees with constant branching factor k), which has non-
elementary complexity. Moreover, the method applies to a logic only if its frame conditions can be
expressed as acyclic closure conditions in MSO; this makes the method inapplicable to logics with
frame conditions mentioning more than one modal relation, e.g., the logic (I) from Figure 4.

Negri [16] and Viganó [24] provide sound, complete and terminating labeled sequent calculi for
uni-modal classical logics K, T, K4 and S4. Out method extends these results for a wider class of
modal logics including axiom D, multiple modalities and intuitionistic logics.

Goré and Nguyen [13] present non-labeled tableaux calculi for seven types of classical multi-
modal logics to reason about epistemic states of agents in distributed systems. The introduced
tableaux require formulas of the logic to be first translated into a clausal form. We observe that
one of the axioms presented in [13] is positive introspection for beliefs and corresponds to axiom
(I) in Figure 4. To the best of our knowledge, [13] is the only work to provide decision procedures
for logics including axiom (I).

7 Conclusion and Future Work

We have presented a sequent calculus-based, constructive decision procedure for several multi-
modal logics, both intuitionistic and classical. Besides a novel construction of countermodels and a
novel termination condition, we show, for the first time, that several standard intuitionistic multi-
modal logics without diamonds, as well as several logics with interactions between modalities, are
decidable. We also show that our procedure has an interesting, novel comprehensiveness property.

Although we believe that our work is a significant step in using sequent calculi (especially,
labeled sequent calculi) in constructive decision procedures for modal logics, a lot still needs to be
done. First, we believe that our method can be extended to label-producing frame conditions more
general than seriality. In particular, it should be possible to extend the technique of Section 3.6
to all layered modal logics of Gasquet and Said [11], which we discussed in Section 6. Second, we
would like to either extend our method, or find a new one that can handle possibility modalities in
intuitionistic logic.

Another direction of research is to exploit the embedding of intuitionistic modal logics into
classical bi-modal logics to establish decidability results for the former, a direction pursued in [26]
but with semantic rather than syntactic methods.
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A Proofs from Section 3

Lemma A.1 (Lemma 3.5). If Σ;M; Γ; ∆ is a saturated history, then CM(Σ;M; Γ; ∆) has a mono-
tonic valuation h, i.e., x ∈ h(p) and x ≤ y ∈ CM(Σ;M; Γ; ∆) imply y ∈ h(p).

Proof. Let C be the set {x ≤ y | x 4 y}. Suppose that x ≤ y ∈ CM(Σ;M; Γ; ∆), i.e., x ≤ y ∈M ∪ C
and x ∈ h(p). From the latter, there is a z such that z ≤ x ∈M and z : p ∈ Γ. From the definition
of SCR, clause (4) it follows that x(≤ ∪ C)∗y, where all the relations ≤ are in M. Hence, we have
a chain x = x0(≤∪C)x1 . . . (≤∪C)xn = y where all relations ≤ are in M. We induct on i to show
that T (p) ∈ Sfor(xi).

- For i = 0, x0 = x and we know that z : p ∈ Γ and z ≤ x ∈ M. It follows from definition of
Sfor that T (p) ∈ Sfor(x), as required.

- For the induction step, assume that T (p) ∈ Sfor(xi). We prove that T (p) ∈ Sfor(xi+1). We
consider two possible cases on the relation xi(≤ ∪ C)xi+1.
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– xi ≤ xi+1 ∈ M. Because T (p) ∈ Sfor(xi), there is a z′ such that z′ ≤ xi ∈ M and
z′ : p ∈ Γ. Hence, also z′ ≤ xi+1 ∈M. So T (p) ∈ Sfor(xi+1).

– (xi, xi+1) ∈ C. Because of the definition of C, Sfor(xi) ⊆ Sfor(xi+1), so T (p) ∈ Sfor(xi)
immediately implies T (p) ∈ Sfor(xi+1).

This completes the inductive proof that T (p) ∈ Sfor(xi). In particular, T (p) ∈ Sfor(xn). By
definition of Sfor, there is a z′ such that z′ ≤ xn ∈ M and z′ : p ∈ Γ. This immediately implies
xn ∈ h(p), i.e., y ∈ h(p), as required.

Lemma A.2 (Lemma 3.6). The following hold for any saturated history Σ;M; Γ; ∆:

A. If T (ϕ) ∈ Sfor(Σ;M; Γ; ∆, x), then CM(Σ;M; Γ; ∆) |= x : ϕ

B. If F (ϕ) ∈ Sfor(Σ;M; Γ; ∆, x), then CM(Σ;M; Γ; ∆) 6|= x : ϕ

Proof. We prove both properties simultaneously by lexicographic induction, first on ϕ, and then on
the partial (tree-like) order � of M. (Note that we cannot induct on either M or the relation in
CM(Σ;M; Γ; ∆), because both of these may potentially be cyclic.) Since the context Σ;M; Γ; ∆ is
fixed here, we abbreviate Sfor(Σ;M; Γ; ∆, x) to Sfor(x). Let C be the set {(x, y) | x 4 y}.

Proof of A.

Case. ϕ = p. We are given that T (p) ∈ Sfor(x) and want to prove that CM(Σ;M; Γ; ∆) |= x : p.
Since T (p) ∈ Sfor(x), we know from definition of the function Sfor that there is a y with y ≤ x ∈M
and y : p ∈ Γ. Since y ≤ x ∈M, we know from definition of CM(Σ;M; Γ; ∆) that x ∈ h(p). Hence,
by definition of |=, we have CM(Σ;M; Γ; ∆) |= x : p.

Case. ϕ = >. Here, CM(Σ;M; Γ; ∆) |= x : > is trivial by the definition of |=.

Case. ϕ = ⊥. Then the pre-condition T (⊥) ∈ Sfor(x) or, equivalently, x : ⊥ ∈ ∆ is impossible by
clause (3) of the definition of saturated history. So this case is vacuous.

Case. ϕ = α ∧ β. We are given that T (α ∧ β) ∈ Sfor(x) or, equivalently, that x : α ∧ β ∈ Γ. By
clause (5) of the definition of saturated history, x : α ∈ Γ and x : β ∈ Γ. Hence, T (α) ∈ Sfor(x)
and T (β) ∈ Sfor(x). By the i.h., CM(Σ;M; Γ; ∆) |= x : α and CM(Σ;M; Γ; ∆) |= x : β. Hence,
CM(Σ;M; Γ; ∆) |= x : α ∧ β, as required.

Case. ϕ = α ∨ β. We are given that T (α ∨ β) ∈ Sfor(x) or, equivalently, that x : α ∨ β ∈ Γ.
By clause (7) of the definition of saturated history, either x : α ∈ Γ or x : β ∈ Γ. Hence,
either T (α) ∈ Sfor(x) or T (β) ∈ Sfor(x). By the i.h., either CM(Σ;M; Γ; ∆) |= x : α or
CM(Σ;M; Γ; ∆) |= x : β. In either case, CM(Σ;M; Γ; ∆) |= x : α ∧ β, as required.

Case. ϕ = α → β. We are given that T (α → β) ∈ Sfor(x). We need to show that for any y
such that x ≤ y in the model and CM(Σ;M; Γ; ∆) |= y : α, we have CM(Σ;M; Γ; ∆) |= y : β. Pick
any y such that x ≤ y in the model and CM(Σ;M; Γ; ∆) |= y : α. From the definition of SCR,
clause (4), it follows that x(≤ ∪ C)∗y, where the ≤ relations are in M. Hence, there is a chain
x = x0(≤ ∪ C)x1 . . . (≤ ∪ C)xn = y, where the ≤ relations are in M. We induct on i to prove that
T (α→ β) ∈ Sfor(xi) for each i.
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• For i = 0, x0 = x and we are given that T (α→ β) ∈ Sfor(x), so we are done.

• For the inductive case, assume that T (α → β) ∈ Sfor(xi) for some i. We show that T (α →
β) ∈ Sfor(xi+1). We consider two possible cases on the relation xi(≤ ∪ C)xi+1:

– xi ≤ xi+1 ∈ M: From the i.h., we know that T (α → β) ∈ Sfor(xi). Hence, there
is a z′ such that z′ ≤ xi ∈ M and z′ : α → β ∈ Γ. Clearly, z′ ≤ xi+1 ∈ M, so
T (α→ β) ∈ Sfor(xi+1).

– (xi, xi+1) ∈ C: Because of the definition of C, Sfor(xi) ⊆ Sfor(xi+1), so T (α → β) ∈
Sfor(xi) immediately implies T (α→ β) ∈ Sfor(xi+1).

This completes the inductive proof. It follows, in particular, that T (α → β) ∈ Sfor(xn). Conse-
quently, there is some z′ such that z′ ≤ xn = y ∈ M and z′ : α → β ∈ Γ. Hence, by clause (9)
of the definition of saturated history, we must have either y : α ∈ ∆ or y : β ∈ Γ. The for-
mer implies, by the i.h., that CM(Σ;M; Γ; ∆) 6|= y : α, which contradicts our assumption that
CM(Σ;M; Γ; ∆) |= y : α. So, we must have y : β ∈ Γ. This implies T (β) ∈ Sfor(y) and hence, by
the i.h., that CM(Σ;M; Γ; ∆) |= y : β.

Case. ϕ = A nec α. We are given that T (A nec α) ∈ Sfor(x). We need to show that
CM(Σ;M; Γ; ∆) |= x : A nec α, i.e., for any y such that xNAy in the model, we have CM(Σ;M; Γ; ∆) |=
y : α. Pick any y such that xNAy in the model. Because of the definition of SCR, clause (3), we
have x((R(A)∪C)∗◦NA◦≤)y, where the relations R(A) and NA are in M. So there are x0, . . . , xn, y

′

such that x = x0(R(A) ∪ C)x1 . . . (R(A) ∪ C)xnNAy
′ ≤ y. We now prove, by induction on i, that

T (A nec α) ∈ Sfor(xi) for each i.

• For i = 0, x0 = x and we are given that T (A nec α) ∈ Sfor(x).

• For the inductive case, assume that T (A nec α) ∈ Sfor(xi) for some i. We show that T (A nec
α) ∈ Sfor(xi+1) by case analyzing the relation xi(R(A) ∪ C)xi+1.

– xi(R(A))xi+1 ∈ M: By the i.h., T (A nec α) ∈ Sfor(xi) so there is some z such that
z(R(A))∗xi ∈ M and z : A nec α ∈ Γ. Clearly, we have z(R(A))∗xi+1 ∈ M, so T (A nec
α) ∈ Sfor(xi+1).

– (xi, xi+1) ∈ C: Because of the definition of C, Sfor(xi+1) ⊇ Sfor(xi). Thus, T (A nec
α) ∈ Sfor(xi) immediately implies T (A nec α) ∈ Sfor(xi+1).

Since we just proved that T (A nec α) ∈ Sfor(xi), it follows, in particular, that T (A nec α) ∈
Sfor(xn). Consequently, there is some z′ such that z′(R(A))∗xn ∈ M and z′ : A nec α ∈ Γ.
Then, we also have (within M) that: z′(R(A))∗xnNAy

′. So, by clause (2) of the definition of
SCR, z′NAy

′ ∈ M. Hence, by clause (11) of the definition of saturated history, we must have
y′ : α ∈ Γ. Therefore, T (α) ∈ Sfor(y′) and by the i.h., CM(Σ;M; Γ; ∆) |= y′ : α. Since
y′ ≤ y ∈ CM(Σ;M; Γ; ∆), by Lemma 2.3, CM(Σ;M; Γ; ∆) |= y : α.

Proof of B.

Case. ϕ = p. We are given that F (p) ∈ Sfor(x) or, equivalently, that x : p ∈ ∆. Suppose,
for the sake of contradiction, that CM(Σ;M; Γ; ∆) |= x : p. Then, x ∈ h(p) and hence, from the
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construction of the countermodel, there is a z such that z ≤ x ∈M and z : p ∈ Γ. This immediately
contradicts clause (2) of the definition of saturated history because we have z ≤ x ∈ M, z : p ∈ Γ
and x : p ∈ ∆. Hence we must have CM(Σ;M; Γ; ∆) 6|= x : p.

Case. ϕ = >. Then the pre-condition F (>) ∈ Sfor(x) or, equivalently, x : > ∈ ∆ is impossible by
clause (3) of the definition of saturated history. So this case is vacuous.

Case. ϕ = ⊥. Here, CM(Σ;M; Γ; ∆) 6|= x : ⊥ is trivial by the definition of |=.

Case. ϕ = α ∧ β. Suppose F (α ∧ β) ∈ Sfor(x). Then, x : α ∧ β ∈ ∆. Hence, by clause (6) of the
definition of saturated history, either x : α ∈ ∆ or x : β ∈ ∆. Therefore, either F (α) ∈ Sfor(x) or
F (β) ∈ Sfor(x). By i.h., either CM(Σ;M; Γ; ∆) 6|= x : α or CM(Σ;M; Γ; ∆) 6|= x : β. In either case,
CM(Σ;M; Γ; ∆) 6|= x : α ∧ β.

Case. ϕ = α ∨ β. Suppose F (α ∨ β) ∈ Sfor(x). Then, x : α ∨ β ∈ ∆. Hence, by clause (8)
of the definition of saturated history, x : α ∈ ∆ and x : β ∈ ∆. Therefore, F (α) ∈ Sfor(x) and
F (β) ∈ Sfor(x). By i.h., CM(Σ;M; Γ; ∆) 6|= x : α and CM(Σ;M; Γ; ∆) 6|= x : β. By definition of |=,
we have CM(Σ;M; Γ; ∆) 6|= x : α ∨ β.

Case. ϕ = α → β. Suppose F (α → β) ∈ Sfor(x). This implies, by definition of Sfor, that
x : α→ β ∈ ∆. By clause (10) of the definition of saturated history, we have that either:

1. There is a y such that x ≤ y ∈M, y : α ∈ Γ and y : β ∈ ∆ or

2. There is a y such that y 6= x, y � x and x 4 y.

If (a) holds, then by the i.h., CM(Σ;M; Γ; ∆) |= y : α and CM(Σ;M; Γ; ∆) 6|= y : β. Further,
x ≤ y, so CM(Σ;M; Γ; ∆) 6|= x : α→ β.

If (b) holds, then since x 4 y, F (α→ β) ∈ Sfor(y). By the i.h. on the world y, which is strictly
smaller than x in the relation � (since y 6= x), it follows that CM(Σ;M; Γ; ∆) 6|= y : α→ β. Note
that in CM(Σ;M; Γ; ∆), x ≤ y. So, by Lemma 2.3, CM(Σ;M; Γ; ∆) 6|= x : α→ β, as required.

Case. ϕ = A nec α. Suppose F (A nec α) ∈ Sfor(x). This implies, by definition of Sfor that
x : A nec α ∈ ∆. By clause (12) of the definition of saturated history, we have that either:

(a) There is a y such that xNAy ∈M and y : α ∈ ∆ or

(b) There is a y such that y 6= x, y � x and x 4 y.

If (a) holds, then by the i.h., CM(Σ;M; Γ; ∆) 6|= y : α. Since xNAy, it immediately follows that
CM(Σ;M; Γ; ∆) 6|= x : A nec α.

If (b) holds, then since x 4 y, F (A nec α) ∈ Sfor(y). By the i.h. on the world y, which is
strictly smaller in the order � (since x 6= y), it follows that CM(Σ;M; Γ; ∆) 6|= y : A nec α. Since
in CM(Σ;M; Γ; ∆) we have x ≤ y, Lemma 2.3 immediately implies CM(Σ;M; Γ; ∆) 6|= x : A nec α,
as required.

Lemma A.3 (Comprehensiveness 1). Suppose ` (Σ;M; Γ ⇒χ
CM ∆ ↘ S). Suppose x and p are

such that ∀M ∈ S.M |= x : p. Then, ` (Σ;M; Γ⇒χ
CM x : p,∆↘ {}).
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Proof. By induction on the given derivation of Σ;M; Γ ⇒χ
CM ∆ ↘ S and case analysis of its last

rule (the rules are listed in Figure 2).

Case.
Σ;M; Γ; ∆ is a saturated history

Σ;M; Γ⇒χ
CM ∆↘ {CM(Σ;M; Γ; ∆)}

CM

Here S = {CM(Σ;M; Γ; ∆)}. The given condition ∀M ∈ S. M |= x : p implies (by def-
inition of CM) that there is a z such that z ≤ x and z : p ∈ Γ. Therefore, by rule (init),
` (Σ;M; Γ⇒χ

CM x : p,∆↘ {}), as required.

Case.
Σ;M, y′ ≤ y; Γ, y′ : q ⇒χ

CM y : q,∆↘ {}
init

By rule (init), we have ` (Σ;M, y′ ≤ y; Γ, y′ : q ⇒χ
CM x : p, y : q,∆ ↘ {}), which is what we

need to prove.

Case.
Σ;M; Γ, y : ⊥ ⇒χ

CM ∆↘ {}
⊥L

By rule (⊥L), ` (Σ;M; Γ, y : ⊥ ⇒χ
CM x : p,∆↘ {}), as required.

Case.
Σ;M; Γ⇒χ

CM y : >,∆↘ {}
>R

By rule (>R), ` (Σ;M; Γ⇒χ
CM x : p, y : >,∆↘ {}), as required.

Case.
Σ;M; Γ⇒χ

CM y : α, y : α ∧ β,∆↘ S1 Σ;M; Γ⇒χ
CM y : β, y : α ∧ β,∆↘ S2

Σ;M; Γ⇒χ
CM y : α ∧ β,∆↘ S1, S2

∧R

Here, S = S1, S2. We are given that ∀M ∈ (S1, S2).M |= x : p.

1. ∀M ∈ S1.M |= x : p (From assumption ∀M ∈ (S1, S2).M |= x : p)

2. ` (Σ;M; Γ⇒χ
CM x : p, y : α, y : α ∧ β,∆↘ {}) (i.h. on 1st premise and (1))

3. ∀M ∈ S2.M |= x : p (From assumption ∀M ∈ (S1, S2).M |= x : p)

4. ` (Σ;M; Γ⇒χ
CM x : p, y : β, y : α ∧ β,∆↘ {}) (i.h. on 2nd premise and (2))

5. ` (Σ;M; Γ⇒χ
CM x : p, y : α ∧ β,∆↘ {}) (Rule (∧R) on 2,4)

Case. All other cases are similar to the case of (∧R) above: We apply the i.h. to the premises and
reapply the rule.

Lemma A.4 (Comprehensiveness 2). Suppose ` (Σ;M; Γ ⇒χ
CM ∆ ↘ S). Suppose x and p are

such that ` (Σ;M; Γ⇒χ
CM x : p,∆↘ {}). Then, ∀M ∈ S.M |= x : p.

Proof. SupposeM∈ S. From Theorem 3.9, we know that (1) ∀w,w′ ∈ Σ. (wRw′ ∈M)⇒ (wRw′ ∈
M), (2) ∀(w : ϕ) ∈ Γ.M |= w : ϕ and (3) ∀(w : ϕ) ∈ ∆.M 6|= w : ϕ. By Theorem 3.8 applied to
the assumption ` (Σ;M; Γ ⇒χ

CM x : p,∆ ↘ {}), we know that ` (Σ;M; Γ ⇒χ x : p,∆). Applying
Theorem 2.5, we get thatM, ρ |= (Σ;M; Γ⇒χ x : p,∆) for every ρ and, in particular, for ρ(x) = x.
Using (1)–(3) and the definition of |= on sequents, we immediately getM |= x : p, as required.
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Theorem A.5 (Comprehensivenss, Theorem 3.16). Suppose ` (Σ;M; Γ ⇒χ
CM ∆ ↘ S). Then

` (Σ;M; Γ⇒χ
CM x : p,∆↘ {}) iff ∀M ∈ S.M |= x : p.

Proof. Lemmas A.3 and A.4 each state one direction of this theorem.

B Constructive Decidability for Classical Multi-Modal Logic

This section re-develops our method for classical logic instead of intuitionistic logic. To eliminate
confusion between names the classical logic with frame conditions χ is written MMχ, not MMIχ.

Syntax. The syntax of the formulas of the logic MMχ is shown below. I = {A,B, . . .} is a finite
set of indices for modalities and p denotes an atomic formula, drawn from a countable set of such
formulas.

Formulas ϕ, α, β ::= p | > | α ∧ β | ¬α | A nec α

Other standard connectives not listed above can be defined: ⊥ = ¬>, α ∨ β = ¬((¬α) ∧ (¬β)),
α→ β = (¬α) ∨ β and A pos α = ¬(A nec (¬α)). A pos α is the possibility modality of index A.

B.1 Semantics

We provide Kripke (frame) semantics to formulas of MMχ and assume in our presentation that the
reader has basic familiarity with this style of semantics.

Definition B.1 (Kripke model). A classical model, Kripke model or, simply, model, M is a tuple
(W, {NA}A∈I , h) where,

• W is a set, whose elements x, y, z, w are called worlds.

• Each NA is a binary relation on W

• h assigns to each atom p the set of worlds h(p) ⊆W where p holds.

A model without the assignment, i.e., the tuple (W, {NA}A∈I) is also called a frame.

The frame conditions χ. We allow a countable number of additional frame conditions denoted
by rules of the following form: ∀~x.((∧i=1,...,n xiRix

′
i)→ (xRx′)), where R1, . . . , Rn, R are from the

set {NA | A ∈ I} and all variables xi, x
′
i, x, x

′ are in ~x. A set of such additional frame conditions
is denoted χ. MMχ is the logic whose valid formulas are exactly those that are valid (in the sense
defined below) in frames that satisfy all conditions in χ.

Definition B.2 (Satisfaction). Given a model M = (W, {NA}A∈I , h) and a world w ∈ W , we
define the satisfaction relation M |= w : α, read “the world w satisfies formula α in model M” by
induction on α as follows:

M |= w : p iff w ∈ h(p)

M |= w : > (unconditionally)

M |= w : α ∧ β iff M |= w : α and M |= w : β
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Axiom Rules

Σ;M; Γ, x : p→χ x : p,∆
init

Logical Rules

Σ;M; Γ→χ x : >,∆
>R

Σ;M; Γ→χ x : α, x : α ∧ β,∆ Σ;M; Γ→χ x : β, x : α ∧ β,∆
Σ;M; Γ→χ x : α ∧ β,∆

∧R

Σ;M; Γ, x : α ∧ β, x : α, x : β →χ ∆

Σ;M; Γ, x : α ∧ β →χ ∆
∧L

Σ;M; Γ, x : α→χ x : ¬α,∆
Σ;M; Γ→χ x : ¬α,∆

¬R
Σ;M; Γ, x : ¬α→χ x : α,∆

Σ;M; Γ, x : ¬α→χ ∆
¬L

Σ, y;M, xNAy; Γ→χ y : α, x : A nec α∆

Σ;M; Γ→χ x : A nec α,∆
necR

Σ;M, xNAy; Γ, x : A nec α, y : α→χ ∆

Σ;M, xNAy; Γ, x : A nec α→χ ∆
necL

Frame Rules

(∀~x.((∧i (xiRix
′
i))→ (xRx′))) ∈ χ xiRix

′
i ∈M Σ;M, xRx′; Γ→χ ∆

Σ;M; Γ→χ ∆
χ

Figure 5: Seq-MMχ: A labeled sequent calculus for MMχ

M |= w : ¬α iff M 6|= w : α

M |= w : A nec α iff for every w′ such that wNAw
′, we have M |= w′ : α.

Note that for every M and every w, M 6|= w : ⊥.

A formula α is true in a model M, written M |= α, if for every world w ∈ M, M |= w : α.
A formula α is valid in MMχ, written |= α, if M |= α for every model M satisfying all conditions
in χ.

B.2 Seq-MMχ: A Labeled Sequent Calculus for MMχ

As a first step towards building a constructively complete decision procedure for logics MMχ, we
build a sound, complete, cut-free sequent calculus for MMχ. Our calculus is presented in the so-
called “labeled” style of calculi for modal logics, which means that the calculus proves formulas
labeled with symbolic worlds. A labeled formula contains a symbol x, y, z, w, u denoting a world
and a formula α, written together as x : α. A sequent in our calculus has the form Σ;M; Γ→χ ∆,
where

- Σ is a finite set of world symbols appearing in the rest of the sequent. World symbols are
also called labels.

- M is a finite set of relations between labels in Σ. Relations have the forms x ≤ y and xNAy.

- Γ is a finite set of labeled formulas.

- ∆ is a finite set of labeled formulas.
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The intuition is that if Σ;M; Γ→χ ∆ is valid, then every model with a world set containing at
least Σ, satisfying all relations in M and all labeled formulas in Γ must satisfy at least one labeled
formula in ∆. This is formalized in the following definition.

Definition B.3 (Sequent satisfaction and validity). A model M and a mapping ρ from elements
of Σ to worlds of M satisfy a (possibly non-provable) sequent Σ;M; Γ →χ ∆, written M, ρ |=
(Σ;M; Γ→χ ∆), if one of the following holds:

- There is an xRy ∈M with R ∈ {NA | A ∈ I} such that ρ(x) R ρ(y) 6∈ M.

- There is an x : α ∈ Γ such that M 6|= ρ(x) : α.

- There is an x : α ∈ ∆ such that M |= ρ(x) : α.

A model M satisfies a sequent Σ;M; Γ →χ ∆, written M |= (Σ;M; Γ →χ ∆), if for every
mapping ρ, we have M, ρ |= (Σ;M; Γ →χ ∆). Finally, a sequent Σ;M; Γ →χ ∆ is valid, written
|= (Σ;M; Γ→χ ∆) if for every model M, we have M |= (Σ;M; Γ→χ ∆).

Rules of the sequent calculus. The sequent calculus for MMχ is shown in Figure 5. Following
standard approach in labeled calculi, the rules for each connective mimic the (Kripke) semantic
definition of the connective. For example, in the rule (∧R), to prove x : α ∧ β in the conclusion, we
prove x : α and x : β in the premises. The rule (necR) introduces fresh worlds into Σ, consistent
with the semantic definition (Definition B.2).

Theorem B.4 (Soundness). If ` (Σ;M; Γ→χ ∆), then |= (Σ;M; Γ→χ ∆).

Proof. Fix an M. It is easily proved by induction on the given derivation of Σ;M; Γ →χ ∆ that
for every mapping ρ, M, ρ |= (Σ;M; Γ→χ ∆).

The converse of Theorem B.4, completeness, also holds. It can be proved using a Henkin-style
argument, but we do not need this result in the rest of our development so we do not present the
proof here. For those logics MMχ to which our method applies, completeness is also a consequence
of the completeness of our decision procedure, which we prove later. The following property is
critical to the design and correctness of our constructively complete decision procedure.

Theorem B.5 (Weak subformula property). If a formula ϕ appears in any proof tree (possibly
infinite) obtained by applying the rules of Figure 5 backwards starting from a concluding sequent
Σ;M; Γ→χ ∆, then ϕ is a subformula of some formula in either Γ or ∆.

Proof. By induction on the distance (in the proof tree) of the occurrence of ϕ from the conclusion
Σ;M; Γ→χ ∆.

B.3 Suitable Closure Relations (SCRs)

We start the technical presentation of our constructively complete decision procedure by defining
suitable closure relations (SCRs) for frame conditions χ. Our constructive decision procedure
applies to any logic MMχ whose χ has a SCR. Call a frame M closed if it is closed under the frame
conditions χ. Let C denote a set of pairs of worlds in a frame M. Define M(C) as the set obtained
by closing M simultaneously under the frame conditions χ and the condition ∀x, y, z. ((x, y) ∈ C ∧
yNAz)→ xNAz.
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Definition B.6 (Suitable closure relation (SCR)). A family of binary relations (R(A))A∈I is called
a suitable closure relation or SCR for χ if the following hold:

0. Each R(A) is defined in terms of the relations {NA | A ∈ I}.

1. For a finite frame M and x, y ∈M, it can be decided whether x(R(A))y or not.

2. ((R(A))∗ ◦NA) ⊆ NA can be derived from the frame conditions χ.

3. For any closed frame M and any C ⊆ {(x, y) | x, y ∈ M}, if xNAy ∈ M(C), then x((R(A) ∪
C)∗ ◦NA)y, where all relations R(A) and NA on the right are in M.

SCRs for many different χ are listed in Section B.9, but we describe one in the following example
for illustration.

Example B.7 (SCR for transitivity). Let trans(A) be the frame condition ∀x, y, z.(((xNAy) ∧
(yNAz)) → (xNAz)) and let χ = {trans(A) | A ∈ I}. Then, the relation R(A) = NA is a SCR
for χ. To prove this, we verify each of the conditions (0)–(3) in the definition of SCR. Conditions
(0) and (1) are trivially true. (2) is equivalent to (N∗A ◦NA) ⊆ NA, which follows from the frame
conditions χ. To prove (3), suppose that xNAy ∈M(C). Then, we prove that x((NA ∪C)∗ ◦NA)y
in M by induction on the recursive process that derives xNAy ∈ M(C). There are three ways to
derive xNAy ∈ M(C): (a) xNAy exists in M (base case), (b) (x, z) ∈ C and zNAy ∈ M(C), or (c)
xNAz ∈M(C) and zNAy ∈M. In case (a), we trivially have x((NA ∪C)∗ ◦NA)y in M by choosing
0 steps for the (NA∪C)∗. In case (b), by the i.h. we get z((NA∪C)∗ ◦NA)y in M and, hence, from
(x, z) ∈ C, that x((NA ∪C)∗ ◦NA)y in M. In case (c), the i.h. yields both x((NA ∪C)∗ ◦NA)z and
z((NA ∪ C)∗ ◦NA)y in M. This immediately implies x(((NA ∪ C)∗ ◦NA) ◦ ((NA ∪ C)∗ ◦NA))y in
M and, therefore, x((NA ∪ C)∗ ◦NA)y in M.

B.4 Saturated Histories

Our method applies only to those logics MMχ, whose χ has a SCR, so in the sequel we fix a set
of frame conditions χ and assume there is a SCR (R(A))A∈I for this χ. Although we present the
technical material generically with respect to an abstract χ and SCR, we strongly advise the reader
to choose a specific χ and its SCR (for instance, those from Example B.7), and instantiate our
definitions and theorems on them.

A history is a tuple Σ;M; Γ; ∆ (equivalently, a sequent Σ;M; Γ →χ ∆) such that all labels in
M, Γ and ∆ occur in Σ. Let T (ϕ) and F (ϕ) be two uninterpreted unary relations. Informally, we
read T (ϕ) as “ϕ should be true” and F (ϕ) as “ϕ should be false”. Given a history Σ;M; Γ; ∆ and
x ∈ Σ, the signed formulas of x, written Sfor(Σ;M; Γ; ∆, x) are defined as follows:

Sfor(Σ;M; Γ; ∆, x) =
{T (ϕ) | x : ϕ ∈ Γ}∪
{F (ϕ) | x : ϕ ∈ ∆}∪

{T (A nec ϕ) | ∃y. y(R(A))∗x ∈M and y : A nec ϕ ∈ Γ}
When Σ,M,Γ,∆ are clear from context, we abbreviate Sfor(Σ;M; Γ; ∆, x) to Sfor(x). We say

that x 4 y iff Sfor(x) ⊆ Sfor(y).
We call a frame M tree-like if it can be derived from a finite tree of the relations NA and

(possibly partial) closure by frame rules. This tree is called the underlying tree of M and we say
that x� y (in M) iff there is a directed path from x to y in the tree underlying M.
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The key definition in our method is that of a saturated history. Intuitively, this definition
characterizes those histories Σ;M; Γ; ∆ for which we can directly define a countermodel for the
sequent Σ;M; Γ→χ ∆. (The definition of this countermodel is given soon after the definition of a
saturated history.)

Definition B.8 (Saturated history). A history Σ;M; Γ; ∆ is called saturated if the following hold:

1. M is tree-like and saturated with respect to the frame conditions χ. (In particular, because
M is tree-like, it has a relation � defined on it.)

2. If x : p ∈ Γ, then x : p 6∈ ∆.

3. There is no x such that x : > ∈ ∆.

4. If x : α ∧ β ∈ Γ, then x : α ∈ Γ and x : β ∈ Γ.

5. If x : α ∧ β ∈ ∆, then either x : α ∈ ∆ or x : β ∈ ∆.

6. If x : ¬α ∈ Γ, then x : α ∈ ∆.

7. If x : ¬α ∈ ∆, then x : α ∈ Γ.

8. If x : A nec α ∈ Γ and xNAy ∈M, then y : α ∈ Γ.

9. If x : A nec α ∈ ∆, then either:

(a) There is a y such that xNAy ∈M and y : α ∈ ∆ or

(b) There is a y such that y 6= x, y � x and x 4 y.

Definition B.9 (Countermodel of a saturated history). For a saturated history Σ;M; Γ; ∆, the
countermodel of the history, CM(Σ;M; Γ; ∆) is defined as follows:

- The worlds of CM(Σ;M; Γ; ∆) are exactly those in Σ.

- The relations of CM(Σ;M; Γ; ∆) are M(C), where C = {(x, y) | x 4 y}.

- h(p) = {x | x : p ∈ Γ}.

The next Lemma states the central property of our method. In particular, the Lemma imme-
diately implies that if Σ;M; Γ; ∆ is a saturated history, then CM(Σ;M; Γ; ∆) is a countermodel to
the sequent Σ;M; Γ→χ ∆.

Lemma B.10. The following hold for any saturated history Σ;M; Γ; ∆:

A. If T (ϕ) ∈ Sfor(Σ;M; Γ; ∆, x), then CM(Σ;M; Γ; ∆) |= x : ϕ

B. If F (ϕ) ∈ Sfor(Σ;M; Γ; ∆, x), then CM(Σ;M; Γ; ∆) 6|= x : ϕ

Proof. We prove both properties simultaneously by lexicographic induction, first on ϕ, and then on
the partial (tree-like) order � of M. (Note that we cannot induct on either M or the relation in
CM(Σ;M; Γ; ∆), because both of these may potentially be cyclic.) Since the context Σ;M; Γ; ∆ is
fixed here, we abbreviate Sfor(Σ;M; Γ; ∆, x) to Sfor(x). Let C be the set {(x, y) | x 4 y}.
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Proof of A.

Case. ϕ = p. We are given that T (p) ∈ Sfor(x) and want to prove that CM(Σ;M; Γ; ∆) |= x : p.
Since T (p) ∈ Sfor(x), we know from definition of the function Sfor that x : p ∈ Γ. Therefore,
x ∈ h(p). So, CM(Σ;M; Γ; ∆) |= x : p.

Case. ϕ = >. Here, CM(Σ;M; Γ; ∆) |= x : > is trivial by the definition of |=.

Case. ϕ = α ∧ β. We are given that T (α ∧ β) ∈ Sfor(x) or, equivalently, that x : α ∧ β ∈ Γ. By
clause (4) of the definition of saturated history, x : α ∈ Γ and x : β ∈ Γ. Hence, T (α) ∈ Sfor(x)
and T (β) ∈ Sfor(x). By the i.h., CM(Σ;M; Γ; ∆) |= x : α and CM(Σ;M; Γ; ∆) |= x : β. Hence,
CM(Σ;M; Γ; ∆) |= x : α ∧ β, as required.

Case. ϕ = ¬α. We are given that T (¬α) ∈ Sfor(x) and want to show that CM(Σ;M; Γ; ∆) |= x :
¬α. Since T (¬α) ∈ Sfor(x), we also have x : ¬α ∈ Γ, so by clause (6) of the definition of saturated
history, x : α ∈ ∆. So, F (α) ∈ Sfor(x) and by the i.h., CM(Σ;M; Γ; ∆) 6|= x : α. This implies
CM(Σ;M; Γ; ∆) |= x : ¬α by definition of |=.

Case. ϕ = A nec α. We are given that T (A nec α) ∈ Sfor(x). We need to show that
CM(Σ;M; Γ; ∆) |= x : A nec α, i.e., for any y such that xNAy in the model, we have CM(Σ;M; Γ; ∆) |=
y : α. Pick any y such that xNAy in the model. Because of the definition of SCR, clause (3), we
have x((R(A) ∪ C)∗ ◦ NA)y, where the relations R(A) and NA are in M. So there are x0, . . . , xn
such that x = x0(R(A) ∪ C)x1 . . . (R(A) ∪ C)xnNAy. We now prove, by induction on i, that
T (A nec α) ∈ Sfor(xi) for each i.

• For i = 0, x0 = x and we are given that T (A nec α) ∈ Sfor(x).

• For the inductive case, assume that T (A nec α) ∈ Sfor(xi) for some i. We show that T (A nec
α) ∈ Sfor(xi+1) by case analyzing the relation xi(R(A) ∪ C)xi+1.

– xi(R(A))xi+1 ∈ M: By the i.h., T (A nec α) ∈ Sfor(xi) so there is some z such that
z(R(A))∗xi ∈ M and z : A nec α ∈ Γ. Clearly, we have z(R(A))∗xi+1 ∈ M, so T (A nec
α) ∈ Sfor(xi+1).

– (xi, xi+1) ∈ C: Because of the definition of C, Sfor(xi+1) ⊇ Sfor(xi). Thus, T (A nec
α) ∈ Sfor(xi) immediately implies T (A nec α) ∈ Sfor(xi+1).

Since we just proved that T (A nec α) ∈ Sfor(xi), it follows, in particular, that T (A nec α) ∈
Sfor(xn). Consequently, there is some z′ such that z′(R(A))∗xn ∈ M and z′ : A nec α ∈ Γ.
Then, we also have (within M) that: z′(R(A))∗x′nNAy. So, by clause (2) of the definition of SCR,
z′NAy ∈ M. Hence, by clause (7) of the definition of saturated history, we must have y : α ∈ Γ.
Therefore, T (α) ∈ Sfor(y) and by the i.h., CM(Σ;M; Γ; ∆) |= y : α.

Proof of B.

Case. ϕ = p. We are given that F (p) ∈ Sfor(x) or, equivalently, that x : p ∈ ∆. Suppose, for the
sake of contradiction, that CM(Σ;M; Γ; ∆) |= x : p. Then, x ∈ h(p) and hence, x : p ∈ Γ. This
immediately contradicts clause (2) of the definition of saturated history because we have x : p ∈ Γ
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and x : p ∈ ∆. Hence we must have CM(Σ;M; Γ; ∆) 6|= x : p.

Case. ϕ = >. Then the pre-condition F (>) ∈ Sfor(x) or, equivalently, x : > ∈ ∆ is impossible by
clause (3) of the definition of saturated history. So this case is vacuous.

Case. ϕ = α ∧ β. Suppose F (α ∧ β) ∈ Sfor(x). Then, x : α ∧ β ∈ ∆. Hence, by clause (5) of the
definition of saturated history, either x : α ∈ ∆ or x : β ∈ ∆. Therefore, either F (α) ∈ Sfor(x) or
F (β) ∈ Sfor(x). By i.h., either CM(Σ;M; Γ; ∆) 6|= x : α or CM(Σ;M; Γ; ∆) 6|= x : β. In either case,
CM(Σ;M; Γ; ∆) 6|= x : α ∧ β.

Case. ϕ = ¬α. We are given that F (¬α) ∈ Sfor(x) and want to show that CM(Σ;M; Γ; ∆) 6|= x :
¬α. Since F (¬α) ∈ Sfor(x), we also have x : ¬α ∈ ∆, so by clause (7) of the definition of saturated
history, x : α ∈ Γ. So, T (α) ∈ Sfor(x) and by the i.h., CM(Σ;M; Γ; ∆) |= x : α. This implies
CM(Σ;M; Γ; ∆) 6|= x : ¬α by definition of |=.

Case. ϕ = A nec α. Suppose F (A nec α) ∈ Sfor(x). This implies, by definition of Sfor that
x : A nec α ∈ ∆. By clause (9) of the definition of saturated history, we have that either:

(a) There is a y such that xNAy ∈M and y : α ∈ ∆ or

(b) There is a y such that y 6= x, y � x and x 4 y.

If (a) holds, then by the i.h., CM(Σ;M; Γ; ∆) 6|= y : α. Since xNAy, it immediately follows that
CM(Σ;M; Γ; ∆) 6|= x : A nec α.

If (b) holds, then since x 4 y, F (A nec α) ∈ Sfor(y). By the i.h. on the world y, which is
strictly smaller in the order � (since x 6= y), it follows that CM(Σ;M; Γ; ∆) 6|= y : A nec α. So,
there is a world z such that yNAz (in CM(Σ;M; Γ; ∆)) and CM(Σ;M; Γ; ∆) 6|= z : α. Note that in
CM(Σ;M; Γ; ∆) we also have xNAy (because x 4 y and yNAz). So, by definition of |=, we have
CM(Σ;M; Γ; ∆) 6|= x : A nec α, as required.

Corollary B.11 (Existence of countermodel). If Σ;M; Γ; ∆ is a saturated history, then CM(Σ;M; Γ; ∆) 6|=
(Σ;M; Γ→χ ∆).

Proof. Lemma B.10 immediately implies that CM(Σ;M; Γ; ∆), ρ 6|= (Σ;M; Γ→χ ∆), where ρ : Σ→
Σ is the identity substitution.

B.5 Seq-MMχ
CM: Countermodels for MMχ

Having defined a saturated history, i.e., a sequent for which a countermodel exists (Corollary B.11),
we now define a sequent calculus Seq-MMχ

CM, written →χ
CM, which uses this fact to emit counter-

models from unprovable sequents. Although this calculus is not a decision procedure, we find it a
useful step in proving several results, in particular, the results of Section B.7.

Sequents of Seq-MMχ
CM have the form Σ;M; Γ →χ

CM ∆ ↘ S, where S is a finite set of finite
models. We write ` (Σ;M; Γ →χ

CM ∆ ↘ S) if Σ;M; Γ →χ
CM ∆ ↘ S has a proof. The meaning of

Σ;M; Γ →χ
CM ∆ ↘ S depends on S. If ` (Σ;M; Γ →χ

CM ∆ ↘ {}), then ` (Σ;M; Γ →χ ∆) and if
` (Σ;M; Γ→χ

CM ∆↘ S) with S 6= {}, then every modelM∈ S is a countermodel to Σ;M; Γ→χ ∆
in the sense of (the converse of) Definition B.3.
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Axiom Rules

Σ;M; Γ; ∆ is a saturated history

Σ;M; Γ→χ
CM ∆↘ {CM(Σ;M; Γ; ∆)}

CM
Σ;M; Γ, x : p→χ

CM x : p,∆↘ {}
init

Logical Rules

Σ;M; Γ→χ
CM x : >,∆↘ {}

>R

Σ;M; Γ→χ
CM x : α, x : α ∧ β,∆↘ S1 Σ;M; Γ→χ

CM x : β, x : α ∧ β,∆↘ S2

Σ;M; Γ→χ
CM x : α ∧ β,∆↘ S1, S2

∧R

Σ;M; Γ, x : α ∧ β, x : α, x : β →χ
CM ∆↘ S

Σ;M; Γ, x : α ∧ β →χ
CM ∆↘ S

∧L
Σ;M; Γ, x : α→χ x : ¬α,∆↘ S

Σ;M; Γ→χ x : ¬α,∆↘ S
¬R

Σ;M; Γ, x : ¬α→χ x : α,∆↘ S

Σ;M; Γ, x : ¬α→χ ∆↘ S
¬L

Σ, y;M, xNAy; Γ→χ
CM y : α, x : A nec α,∆↘ S

Σ;M; Γ→χ
CM x : A nec α,∆↘ S

necR

Σ;M, xNAy; Γ, x : A nec α, y : α→χ
CM ∆↘ S

Σ;M, xNAy; Γ, x : A nec α→χ
CM ∆↘ S

necL

Frame Rules

(∀~x.((∧i (xiRix
′
i))→ (xRx′))) ∈ χ xiRix

′
i ∈M Σ;M, xRx′; Γ→χ

CM ∆↘ S

Σ;M; Γ→χ
CM ∆↘ S

χ

Figure 6: Seq-MMχ
CM: Countermodel producing sequent calculus for MMχ

The rules of the sequent calculus Seq-MMχ
CM are shown in Figure 6. First, every rule in

the ordinary sequent calculus (Figure 5) is modified to have in the conclusion the union of the
(counter)models in the premises. This is sound because the rules of the sequent calculus are
invertible (i.e., the conclusion of each rule holds iff the premises hold). Second, there is a new rule
(CM) that produces the countermodel CM(Σ;M; Γ; ∆) when Σ;M; Γ; ∆ is a saturated history.

We emphasize again that this calculus is not necessarily a decision procedure because it includes
all rules of →χ and hence admits all of the latter’s infinite backwards derivations as well.

Theorem B.12 (Soundness 1). If ` (Σ;M; Γ→χ
CM ∆↘ {}), then ` (Σ;M; Γ→χ ∆).

Proof. By induction on the given derivation of Σ;M; Γ →χ
CM ∆ ↘ {}. Note that the case of

rule (CM) does not apply because the set of countermodels in it is non-empty. The proof is
straightforward because the rules of →χ

CM mimic those of →χ.

Theorem B.13 (Soundness 2). If ` (Σ;M; Γ →χ
CM ∆ ↘ S), then for every model M ∈ S,

M 6|= (Σ;M; Γ→χ ∆).

Proof. By induction on the given derivation of Σ;M; Γ →χ
CM ∆ ↘ S and case analysis of its last

rule. The rules (init), (⊥L), and (>R) are vacuous because they have empty S. For all other rules,
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except (CM), we simply observe that contexts in all major premises are a superset of corresponding
contexts in the conclusion and hence we can trivially conclude by induction on one of the premises.
The case of rule (CM) is shown below:

Case.
Σ;M; Γ; ∆ is a saturated history

Σ;M; Γ→χ
CM ∆↘ {CM(Σ;M; Γ; ∆)}

CM

Here M = CM(Σ;M; Γ; ∆). So, the result follows by Corollary B.11.

B.6 Seq-MMχ
T: Termination and Countermodel Extraction for MMχ

Next, we describe a particular backwards proof search strategy in Seq-MMχ
CM that always ter-

minates without losing completeness, thus obtaining a countermodel producing decision proce-
dure for MMχ. This strategy is described as a calculus Seq-MMχ

T, with sequents of the form
Σ;M; Γ →χ

T ∆ ↘ S. Operationally, the rules of the calculus can be interpreted backwards as
a decision procedure with inputs Σ, M, Γ, and ∆ and output S. For a given Σ, M, Γ, and ∆,
(Σ;M; Γ→χ ∆) is provable iff S = {}, else every model in S is a countermodel to the sequent.

The rules of the calculus Seq-MMχ
T are shown in Figure 7. Each rule in the calculus corresponds

to a rule of the same name in Seq-MMχ
CM (Figure 6). The only significant difference between the two

calculi is that the premise of the rule (CM) in Seq-MMχ
CM requires that Σ;M; Γ; ∆ be a saturated

history, but the rule (CM) applies in Seq-MMχ
T only when no other rule applies. To ensure that

“no other rule applies” implies that Σ;M; Γ; ∆ is a saturated history, we spread the negations of
the conditions (1) and (4)–(9) from the definition of saturated history as pre-conditions, called
applicability conditions, to the other rules. Conditions (2) and (3) obviously hold when the rules
(init) and (>R) do not apply, respectively. Hence, when no rule other than (CM) applies, all 9
conditions of the definition of saturated history must hold, so Σ;M; Γ; ∆ must be a saturated history.
The conditions are spread to the obvious rules; for example, the negation of condition (4) is applied

to the rule (∧R). In Figure 7, applicability conditions are highlighted using boxes . It only remains
to show that the calculus with these applicability conditions does not admit infinite backwards
derivations. This follows from a straightforward combinatorial argument in Theorem B.16.

Lemma B.14 (Correctness of CM). Let Σ, M, Γ and ∆ be such that M is tree-like and no rule
except (CM) applies backwards to Σ;M; Γ→χ

T ∆↘ . . .. Then, Σ;M; Γ; ∆ is a saturated history.

Proof. We verify all conditions in the definition of a saturated history. Each condition corresponds
to the negation of premises of one of the rules of Figure 7.

Lemma B.15 (Tree-like M). Let M be tree-like. Then, the M′ in any sequent Σ′;M′; Γ′ →χ
T ∆′ ↘

. . . appearing in a backwards search starting from Σ;M; Γ→χ
T ∆↘ . . . is tree-like.

Proof. By backwards analysis of each rule observing that the M in the premises of each rule is
tree-like if that in the conclusion is.

Note that the underlying tree of M in any sequent of a backward proof search starting from a
single formula consists of exactly those edges that are introduced in the rule (necR).

Theorem B.16 (Termination). The following hold:

1. Any backwards derivation in Seq-MMχ
T starting from a sequent Σ;M; Γ→χ

T ∆ with M tree-like
terminates.
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Axiom Rules

No other rule applies

Σ;M; Γ→χ
T ∆↘ {CM(Σ;M; Γ; ∆)}

CM
Σ;M; Γ, x : p→χ

T x : p,∆↘ {}
init

Logical Rules

Σ;M; Γ→χ
T x : >,∆↘ {}

>R

x : α 6∈ ∆ and x : β 6∈ ∆ Σ;M; Γ→χ
T x : α, x : α ∧ β,∆↘ S1 Σ;M; Γ→χ

T x : β, x : α ∧ β,∆↘ S2

Σ;M; Γ→χ
T x : α ∧ β,∆↘ S1, S2

∧R

x : α 6∈ Γ or x : β 6∈ Γ Σ;M; Γ, x : α ∧ β, x : α, x : β →χ
T ∆↘ S

Σ;M; Γ, x : α ∧ β →χ
T ∆↘ S

∧L

x : α 6∈ Γ Σ;M; Γ, x : α→χ x : ¬α,∆↘ S

Σ;M; Γ→χ x : ¬α,∆↘ S
¬R

x : α 6∈ ∆ Σ;M; Γ, x : ¬α→χ x : α,∆↘ S

Σ;M; Γ, x : ¬α→χ ∆↘ S
¬L

∀y ∈ Σ.(xNAy ∈ M)⇒ y : α 6∈ ∆

∀y ∈ Σ.(y � x)⇒ (x = y or x 64 y) Σ, y;M, xNAy; Γ→χ
T y : α, x : A nec α,∆↘ S

Σ;M; Γ→χ
T x : A nec α,∆↘ S

necR

y : α 6∈ Γ Σ;M, xNAy; Γ, x : A nec α, y : α→χ
T ∆↘ S

Σ;M, xNAy; Γ, x : A nec α→χ
T ∆↘ S

necL

Frame Rules

(∀~x.((∧i (xiRix
′
i))→ (xRx′))) ∈ χ xiRix

′
i ∈ M xRx′ 6∈ M Σ;M, xRx′; Γ→χ

T ∆↘ S

Σ;M; Γ→χ
T ∆↘ S

χ

Figure 7: Seq-MMχ
T: Terminating, countermodel producing sequent calculus for MMχ. Applica-

bility conditions are written in boxes . Wherever mentioned, the relation 4 is the equivalence
relation of the contexts Σ;M; Γ; ∆ in the conclusion of the rule. Similarly, � is the order of the
underlying tree of M.
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2. For any Σ;M; Γ; ∆ with M tree-like, there is an S such that ` (Σ;M; Γ→χ
T ∆↘ S) and such

an S can be finitely computed.

Proof. Proof of (1): Suppose, for the sake of contradiction, that there is an infinite backward proof
starting from Σ;M; Γ→χ

T ∆. Since the proof is finitely branching (every rule has a bounded number
of premises), it must have an infinite path. Observe that Γ,∆ are monotonic backwards, so the
applicability conditions in the rules prevent application of the same rule on the same principal
labeled formula more than once in any branch. Since there are only a finite number of formulas
that can appear in any search (weak subformula property, Theorem B.5), it follows that in the
infinite path there must be an infinite number of labels. Let T be the underlying tree of this entire
path (i.e., the underlying tree of the union of M for each sequent on this path). Since the tree is
finitely branching (because we cannot apply (necR) to the same label infinitely often), it must have
an infinite path. Let this path be x0 � x1 � . . .. Let Si be the value of Sfor(xi) when the rule
(necR) is applied to create xi+1. Note that for i < j, Si 6⊇ Sj , because if Si ⊇ Sj , then at the time
that xj+1 is created, Sfor(xi) ⊇ Si ⊇ Sj = Sfor(xj), so the application of the rule (necR) on xj
would be blocked, so xj+1 could not have been created. Hence, i < j, Si 6⊇ Sj . Call this fact (A).
(The reader may note that the deduction Sfor(xi) ⊇ Si two sentences ago relies on the fact that
Sfor(x) increases monotonically as we move backwards in a derivation.)

If Φ is the set of all subformulas of the original sequent we start from, then by Theorem B.5,
each Si ⊆ {T (α) | α ∈ Φ} ∪ {F (α) | α ∈ Φ}. Note that the right hand side is a finite set, so its
subsets form a finite partial order under set inclusion. Call this partial order P . Since P is finite,
it has a finite number of chains and since the sequence S1, S2, . . . is infinite, at least one infinite
subsequence R of S1, S2, . . . must contain elements from only a single chain in P . On any two
elements Si and Sj of R with i < j, fact (A) forces Si ( Sj . This is a contradiction because R is a
strictly ascending, infinite chain in a finite partial order P .

Proof of (2): Follows immediately from (1), Lemma B.15, and the observation that all applicability
conditions are finitely computable. The latter follows from condition (1) of the definition of SCRs.

Note that Theorem B.16(2) does not stipulate that the S be unique. Indeed, depending on the
order in which the rules of the calculus →χ

T are applied to a given sequent, S may be different.
However, the fact that at least one such S exists and can be computed is enough to get decidability
for MMχ.

Lemma B.17 (Simulation). If M is tree-like and ` (Σ;M; Γ →χ
T ∆ ↘ S), then ` (Σ;M; Γ →χ

CM

∆↘ S).

Proof. By induction on the given derivation of Σ;M; Γ→χ
T ∆↘ S. The case of rule (CM) follows

from Lemma B.14. The rest of the cases are immediate from the i.h. The only fact to take care of
is that the tree-like property holds for each i.h. application. This follows from Lemma B.15.

Theorem B.18 (Decidability). For a tree-like M, suppose that S is such that ` (Σ;M; Γ→χ
T ∆↘

S) (such an S must exist and can be computed using Theorem B.16). Then:

1. If S = {}, then |= (Σ;M; Γ→χ ∆).

2. If S 6= {}, then every modelM in S is a countermodel to the sequent, i.e., M 6|= (Σ;M; Γ→χ

∆).
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Proof. By Lemma B.17, we have that ` (Σ;M; Γ →χ
CM ∆ ↘ S). Now, (1) follows from Theo-

rems B.12 and B.4 and (2) follows from Theorem B.13.

Corollary B.19 (Decidability and finite model property). If a SCR exists for χ, then MMχ is
decidable, has the finite model property and has a constructive decision procedure.

Proof. Immediate from Theorem B.18.

B.7 Comprehensiveness of Seq-MMχ
CM and Seq-MMχ

T Countermodels

Countermodels generated by Seq-MMχ
CM (and Seq-MMχ

T) have an interesting property: If ` (Σ;M; Γ→χ
CM

∆ ↘ S), then ` (Σ;M; Γ →χ
CM x : p,∆ ↘ {}) if and only if ∀M ∈ S. M |= x : p. Thus, if we

can produce a set of countermodels S by running without an actual goal (like x : p), then the set
of atoms that are actually true are exactly those that are in the intersection of the valuation of all
models in the set S. Further, because the result applies to derivations in Seq-MMχ

CM, it also applies
to derivations in Seq-MMχ

T due to Lemma B.17 and the latter can be used to actually produce the
set S. We prove this result below.

Lemma B.20 (Comprehensiveness 1). Suppose ` (Σ;M; Γ →χ
CM ∆ ↘ S). Suppose x and p are

such that ∀M ∈ S.M |= x : p. Then, ` (Σ;M; Γ→χ
CM x : p,∆↘ {}).

Proof. By induction on the given derivation of Σ;M; Γ →χ
CM ∆ ↘ S and case analysis of its last

rule (the rules are listed in Figure 6).

Case.
Σ;M; Γ; ∆ is a saturated history

Σ;M; Γ→χ
CM ∆↘ {CM(Σ;M; Γ; ∆)}

CM

Here S = {CM(Σ;M; Γ; ∆)}. The given condition ∀M ∈ S.M |= x : p implies (by definition of
CM) that x : p ∈ Γ. Therefore, by rule (init), ` (Σ;M; Γ→χ

CM x : p,∆↘ {}), as required.

Case.
Σ;M; Γ, y : q →χ

CM y : q,∆↘ {}
init

By rule (init), we have ` (Σ;M; Γ, y : q →χ
CM x : p, y : q,∆ ↘ {}), which is what we need to

prove.

Case.
Σ;M; Γ→χ

CM y : >,∆↘ {}
>R

By rule (>R), ` (Σ;M; Γ→χ
CM x : p, y : >,∆↘ {}), as required.

Case.
Σ;M; Γ→χ

CM y : α, y : α ∧ β,∆↘ S1 Σ;M; Γ→χ
CM y : β, y : α ∧ β,∆↘ S2

Σ;M; Γ→χ
CM y : α ∧ β,∆↘ S1, S2

∧R

Here, S = S1, S2. We are given that ∀M ∈ (S1, S2).M |= x : p.

1. ∀M ∈ S1.M |= x : p (From assumption ∀M ∈ (S1, S2).M |= x : p)

2. ` (Σ;M; Γ→χ
CM x : p, y : α, y : α ∧ β,∆↘ {}) (i.h. on 1st premise and (1))

3. ∀M ∈ S2.M |= x : p (From assumption ∀M ∈ (S1, S2).M |= x : p)
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4. ` (Σ;M; Γ→χ
CM x : p, y : β, y : α ∧ β,∆↘ {}) (i.h. on 2nd premise and (2))

5. ` (Σ;M; Γ→χ
CM x : p, y : α ∧ β,∆↘ {}) (Rule (∧R) on 2,4)

Case. All other cases are similar to the case of (∧R) above: We apply the i.h. to the premises and
reapply the rule.

Lemma B.21 (Comprehensiveness 2). Suppose ` (Σ;M; Γ →χ
CM ∆ ↘ S). Suppose x and p are

such that ` (Σ;M; Γ→χ
CM x : p,∆↘ {}). Then, ∀M ∈ S.M |= x : p.

Proof. Suppose M ∈ S. From Theorem B.13, we know that (1) ∀w,w′ ∈ Σ. (wRw′ ∈ M) ⇒
(wRw′ ∈ M), (2) ∀(w : ϕ) ∈ Γ.M |= w : ϕ and (3) ∀(w : ϕ) ∈ ∆.M 6|= w : ϕ. By Theorem B.12
applied to the assumption ` (Σ;M; Γ →χ

CM x : p,∆ ↘ {}), we know that ` (Σ;M; Γ →χ x : p,∆).
Applying Theorem B.4, we get that M, ρ |= (Σ;M; Γ →χ x : p,∆) for every ρ and, in particular,
for ρ(x) = x. Using (1)–(3) and the definition of |= on sequents, we immediately getM |= x : p, as
required.

Theorem B.22 (Comprehensiveness). Suppose ` (Σ;M; Γ →χ
CM ∆ ↘ S). Then ` (Σ;M; Γ →χ

CM

x : p,∆↘ {}) iff ∀M ∈ S.M |= x : p.

Proof. Lemmas B.20 and B.21 each state one direction of this theorem.

Corollary B.23 (Comprehensiveness in Seq-MMχ
T). Suppose ` (Σ;M; Γ →χ

T ∆ ↘ S). Then,
` (Σ;M; Γ→χ x : p,∆) iff ∀M ∈ S.M |= x : p.

Proof. From ` (Σ;M; Γ →χ
T ∆ ↘ S) we derive ` (Σ;M; Γ →χ

CM ∆ ↘ S) using Lemma B.17. The
result then follows from Theorem B.22.

B.8 Adding Seriality

In this section, we show that if χ has a SCR, then our method applies not only to the logic MMχ

(Corollary B.19), but also to the logic whose valid formulas are exactly those that are true in all
frames satisfying χ as well as a condition known as seriality : ∀A, x.∃y.(xNAy). This standard
condition corresponds to the axiom ¬(A nec ⊥), also called (D) in literature [5]. Note that seriality
does not fit our definition of χ because frame conditions in χ cannot contain existentials, so it
cannot be handled in the method described so far. Consequently, we must modify our method
slightly to include seriality as a frame condition. The only new challenge is to control creation of
worlds due to the seriality condition during backwards search; for this we use an approach similar
to that for controlling the use of the rule (necR). Proofs not related to termination do not change
significantly.

To accommodate the seriality condition in our method, we must first add the following rule to
our sequent calculus Seq-MMχ (Figure 5):

Σ, x, y;M, xPAy, xNAy; Γ→χ ∆

Σ, x;M; Γ→χ ∆
D

The resulting calculus is sound and complete with respect to the semantics of the modal logic MMχ

with the additional frame condition (D). Next, we change clause (1) of the definition of saturated
history not to require closure under this new frame condition, which would cause infinite models,
but instead new conditions based on 4:
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Logic Frame conditions χ Additional Axioms SCR

K {} – R(A) = {}
T ∀A, x. xNAx (A nec α)→ α R(A) = {}
K4 ∀A, x, y, z. ((xNAy) ∧ (yNAz))→ (xNAz) (A nec α)→ (A nec A nec α) R(A) = NA
S4 Conditions of K4 and T Axioms of K4 and T R(A) = NA
– ∀x, y. (xNAy)→ (xNBy) (B nec α)→ (A nec α) R(A) = {}

Figure 8: SCRs for some multi-modal classical logics. All these logics are constructively decidable
by our method.

1. M is tree-like and saturated with respect to the rules (refl), (trans), (mon-N) and χ. In
addition, at least one of the following must hold for each x ∈ Σ and each index A ∈ I:

(a) There is a y ∈ Σ such that xNAy ∈M
(b) There is a y ∈ Σ such that y 6= x, y � x and x 4 y.

With this new clause (1), we can show by induction on � that CM(Σ;M; Γ; ∆) is closed under
(D), hence it is a model of our (modified) logic. Next, we add the following rule to the terminating
calculus Seq-MMχ

T and a corresponding rule without the applicability conditions to Seq-MMχ
CM.

∀y ∈ Σ. (xNAy 6∈M) ∀y ∈ Σ.(y � x)⇒ (y = x or x 64 y) Σ, x, y;M, xPAy, xNAy; Γ→χ
T ∆↘ S

Σ, x;M; Γ→χ
T ∆↘ S

D

With these changes, our entire development works with only two minor changes to the proofs
(interestingly, the proof of Lemma B.10 does not change): (1) We must change the termination
argument in Theorem B.16 to also include the rule (D). This is trivial. (2) We must add a case for
rule (D) to every proof that inducts on sequent derivations, but every such case is trivial.

Theorem B.24 (Constructive decidability with seriality). Suppose the frame conditions χ have a
SCR. Then the logic MMχ,D is constructively decidable by our method.

B.9 Constructive Decidability for Common Logics

In Figure 8, we list some common sets of frame conditions with their SCRs, thus showing that the
classical logics corresponding to each of them is constructively decidable by our method. We note
two things: (1) This list is not exhaustive, but merely representative, and (2) Our method also
applies to any of these logics combined with seriality from Section B.8 due to Theorem B.24.

Theorem B.25 (Decidability of Common Logics). The classical logics shown in Figure 8 have
the SCRs also shown in that figure. Consequently, all these logics (and their combination with the
seriality condition from Section B.8) are constructively decidable by our method.
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