
21

A Relational Logic for Higher-Order Programs

ALEJANDRO AGUIRRE, IMDEA Software Institute, Spain

GILLES BARTHE, IMDEA Software Institute, Spain

MARCO GABOARDI, University at Buffalo, SUNY, USA

DEEPAK GARG, MPI-SWS, Germany

PIERRE-YVES STRUB, École Polytechnique, France

Relational program verification is a variant of program verification where one can reason about two programs

and as a special case about two executions of a single program on different inputs. Relational program

verification can be used for reasoning about a broad range of properties, including equivalence and refinement,

and specialized notions such as continuity, information flow security or relative cost. In a higher-order setting,

relational program verification can be achieved using relational refinement type systems, a form of refinement

types where assertions have a relational interpretation. Relational refinement type systems excel at relating

structurally equivalent terms but provide limited support for relating terms with very different structures.

We present a logic, called Relational Higher Order Logic (RHOL), for proving relational properties of a

simply typed λ-calculus with inductive types and recursive definitions. RHOL retains the type-directed flavour

of relational refinement type systems but achieves greater expressivity through rules which simultaneously

reason about the two terms as well as rules which only contemplate one of the two terms. We show that

RHOL has strong foundations, by proving an equivalence with higher-order logic (HOL), and leverage this

equivalence to derive key meta-theoretical properties: subject reduction, admissibility of a transitivity rule

and set-theoretical soundness. Moreover, we define sound embeddings for several existing relational type

systems such as relational refinement types and type systems for dependency analysis and relative cost, and

we verify examples that were out of reach of prior work.

CCS Concepts: • Theory of computation→ Logic and verification; Higher order logic;

Additional Key Words and Phrases: Relational Logic, Formal Verification, Refinement Types

ACM Reference format:
Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub. 2017. A Relational

Logic for Higher-Order Programs. Proc. ACM Program. Lang. 1, ICFP, Article 21 (September 2017), 29 pages.

https://doi.org/10.1145/3110265

1 INTRODUCTION
Many important aspects of program behavior go beyond the traditional characterization of program

properties as sets of traces [Alpern and Schneider 1985]. Hyperproperties [Clarkson and Schneider

2008] generalize properties and capture a larger class of program behaviors, by focusing on sets of

sets of traces. As an intermediate point in this space, relational properties are sets of pairs of traces.

Relational properties encompass many properties of interest, including program equivalence and

refinement, as well as more specific notions such as non-interference and continuity.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2017 Copyright held by the owner/author(s).

2475-1421/2017/9-ART21

https://doi.org/10.1145/3110265

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 21. Publication date: September 2017.

https://doi.org/10.1145/3110265
https://doi.org/10.1145/3110265

21:2 Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub

Relational verification is an instance of program verification that targets relational properties.

Expectedly, standard verification methods such as type systems, program logics, and program

analyses can be lifted to a relational setting. However, it remains a challenge to devise sufficiently

powerful methods that can be used to verify a broad range of examples. In effect, most existing

relational verification methods are limited in the examples that they can naturally verify, due

to the fundamental tension between the syntax-directed nature of program verification, and the

need to relate structurally different programs. Moreover, approaches to resolve this tension highly

depend on the programming paradigm, on the class of program properties considered, and on the

verification method. In the (arguably simplest) case of deductive verification of general properties

of imperative programs, one approach to reduce this tension is to use self-composition [Barthe et al.

2004], which reduces relational verification to standard verification. However, reasoning about

self-composed programs might be cumbersome. Alternatively, there exist expressive relational

program logics that rely on an intricate set of rules to reason about a pair of programs. These

logics combine two-sided rules, in which the two programs have the same top-level structure,

and one-sided rules, which operate on a single program. Rules for loops are further divided into

synchronous, in which both programs perform the same number of iterations, and asynchronous

rules, that do not have this restriction but introduce more complexity [Barthe et al. 2017; Benton

2004].

In contrast, deductive verification of general properties of (pure) higher-order programs is less

developed. One potential approach to solve the tension between the syntax-directedness, and the

need to relate structurally different programs, is to reduce relational verification of pure higher-

order programs to proofs in higher-order logic. There are strong similarities between this approach

and self-composition: it reduces relational verification to standard verification, but this approach is

very difficult to use in practice. A better alternative is to use relational refinement types such as

rF
∗
[Barthe et al. 2014], HOARe

2
[Barthe et al. 2015], DFuzz [Gaboardi et al. 2013] or RelCost [Çiçek

et al. 2017]. Informally, relational refinement type systems use assertions to capture relationships

between inputs and outputs of two higher-order programs. They are appealing for two reasons:

• They capture many important properties of programs in a direct and intuitive manner. For

instance, the type {x :: N | x1 ≤ x2} → {y :: N | y1 ≤ y2} captures the set of pairs of functions
that preserve the natural order on natural numbers, i.e. pairs of functions f1, f2 : N → N
such that for every x1,x2 ∈ N, x1 ≤ x2 implies f1 (x1) ≤ f2 (x2). (The subscripts 1 and 2 on a

variable refer to its values in the two runs.)

• They can potentially benefit from a long and successful line of foundational [Dunfield and

Pfenning 2004; Freeman and Pfenning 1991; Melliès and Zeilberger 2015; Xi and Pfenning

1999] and practical [Swamy et al. 2016; Vazou et al. 2014] research on refinement types.

Unfortunately, existing relational refinement type systems fail to support the verification of several

examples. Broadly speaking, the two programs in a relational judgment may be required to have

the same type and the same control flow; moreover, this requirement must be satisfied by their

subprograms: if the two programs are applications, then the two sub-programs in argument position

(resp. in function position) must have the same type and the same control flow; if the two programs

are case expressions, they must enter the same branch, and their branches must themselves have

the same control flow; if the two programs are recursive definitions, then their bodies must perform

the same sequence of recursive calls; etc. This restriction, which can be found in more or less strict

forms in the different relational type systems, limits the ability to carry fine-grained reasoning about

terms that are structurally different. This raises the question whether the type-directed form of

reasoning purported by refinement types can be reconciled with an expressive relational verification

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 21. Publication date: September 2017.

A Relational Logic for Higher-Order Programs 21:3

of higher-order programs. We provide a positive answer for pure higher-order programs; extending

our results to effectful programs is an important goal, but we leave it for future work.

Our starting point is the observation that relational refinement type systems are inherently

restricted to reasoning about two structurally similar programs, because relational assertions are

embedded into types. In order to provide broad support for one-sided rules (i.e., rules that contem-

plate only one of the two expressions), it is therefore necessary to consider relational assertions at

the top-level, since one-sided rules have a natural formulation in this setting. Considering relational

assertions at the top-level can be done in two different ways: either by supporting a rich theory

of subtyping for relational refinement types, in such a way that each type admits a normal form

where refinements only arise at the top-level, or simply by adapting the definitions and rules of

refinement type systems so that only the top-level refinements are considered. Although both

approaches are feasible, we believe that the second approach is more streamlined and leads to

friendlier verification environments.

Contributions. We present a new logic, called Relational Higher Order Logic (RHOL, § 5), for

reasoning about relational properties of higher-order programs written in a variant of Plotkin’s

PCF (§ 2). The logic manipulates judgments of the form:

Γ | Ψ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ

where Γ is a simply typed context, σ1 and σ2 are (possibly different) simple types, t1 and t2 are terms,

Ψ is a set of assertions, and ϕ is an assertion. Our logic retains the type-directed nature of (relational)

refinement type systems, and features typing rules for reasoning about structurally similar terms.

However, disentangling types from assertions also makes it possible to define type-directed rules

operating on a single term (left or right) of the judgment. This confers great expressivity to the

logic, without significantly affecting its type-directed nature, and opens the possibility to alternate

freely between two-sided and one-sided reasoning, as done in first-order imperative languages.

The validity of judgments is expressed relative to a set-theoretical semantics—our variant of PCF

is restricted to terms which admit a set-theoretical semantics, including strongly normalizing terms.

More precisely, a judgment Γ | Ψ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ is valid if for every valuation ρ (mapping

variables in the context Γ to elements in the interpretation of their types), the interpretation of ϕ is

true whenever the interpretation of (all the assertions in) Ψ is true. Soundness of the logic can be

proved through a standard model-theoretic argument; however, we provide an alternative proof

based on a sound and complete embedding into Higher-Order Logic (HOL, § 3). We leverage this

equivalence to establish several meta-theoretical properties of the logic, notably subject reduction.

Moreover, we demonstrate that RHOL can be used as a general framework, by defining sound

embedding for several relational type systems: relational refinement types (§ 6.2), the Dependency

Core Calculus (DCC) for many dependency analyses, including those for information flow security

(§ 6.3), and the RelCost (§ 6.4) type system for relative cost. The embedding of RelCost is particu-

larly interesting, since it exercises the ability of our logic to alternate between synchronous and

asynchronous reasoning. Finally, we verify several examples that go beyond the capabilities of

previous systems (§ 7).

Related Work. While dependent type theory is the prevailing approach to reason about (pure)

higher-order programs, several authors have explored another approach, which is crisply summa-

rized by Jacobs [1999]: “A logic is always a logic over a type theory”. Formalisms following this

approach are defined in two stages; the first stage introduces a (dependent) type theory for writing

programs, and the second stage introduces a predicate logic to reason about programs. This ap-

proach has been pursued independently in a series of works on logic-enriched type theories [Aczel

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 21. Publication date: September 2017.

21:4 Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub

and Gambino 2000, 2006; Adams and Luo 2010; Belo 2007], and on refinement types Pfenning

[2008]; Zeilberger [2016]. In the latter line of work, programs are written in an intrinsically typed

λ-calculus à la Church; then, a system of sorts (a.k.a. refinements) is used to establish properties of

programs typable in the first system. Our approach is similar; however, these works are developed

in a unary setting, and do not consider the problem of relational verification. A further approach

consists of developing a logic in an untyped setting, as is the case of LTC [Dybjer 1985].

Moreover, there is a large body of work on relational verification; we focus on type-based

methods and deductive methods. Relational Hoare Logic [Benton 2004] and Relational Separation

Logic [Yang 2007] are two program logics, respectively based on Hoare Logic and Separation Logic,

for reasoning about relational properties of (first-order) imperative programs. These logics have

been used for a broad range of examples and applications, ranging from program equivalence to

compiler verification and information flow analysis. Moreover, they have been extended in several

directions. For example, Probabilistic Relational Hoare Logic [Barthe et al. 2009] and approximate

probabilistic Relational Hoare Logic [Barthe et al. 2012] are generalizations of Relational Hoare logic

for reasoning about relational properties of (first-order) probabilistic programs. These logics have

been used for a broad range of applications, including probabilistic information flow, side-channel

security, proofs of cryptographic strength (reductionist security) and differential privacy. Cartesian

Hoare Logic [Sousa and Dillig 2016] is also a recent generalization of Relational Hoare Logic for

reasoning about bounded safety (i.e. k-safety for arbitrary but fixed k) properties of (first-order)
imperative programs. This logic has been used for analyzing standard libraries. Experiments have

demonstrated that such logics can be very effective in practice. Our formalism can be seen as a

proposal to adapt their flexibility to pure higher-order programs.

Product programs [Barthe et al. 2011, 2004; Terauchi and Aiken 2005; Zaks and Pnueli 2008] are

a general class of constructions that emulate the behavior of two programs and can be used for

reducing relational verification to standard verification. While product programs naturally achieve

(relative) completeness, they are often difficult to use since they require global reasoning on the

obtained program—however recent works [Blatter et al. 2017] show how this approach can be

automated in specific settings. Building product programs for (pure) higher-order languages is

an intriguing possibility, and it might be possible to instrument RHOL using ideas from Barthe

et al. [2017] to this effect; however, the product programs constructed in [Barthe et al. 2017] are a

consequence, rather than a means, of relational verification.

Several type systems have been designed to support formal reasoning about relational properties

for functional programs. Some of the earlier works in this direction have focused on the semantics

foundations of parametricity, like the work by Abadi et al. [1993] on System R, a relational version

of System F. The recent work by Ghani et al. [2016a] has further extended this approach to give

better foundations to a combination of relational parametricity and impredicative polymorphism.

Interestingly, similarly to RHOL, System R also supports relations between expressions at different

types, although, since System R does not support refinement types, the only relations that System R

can support are the parametric ones on polymorphic terms. In RHOL, we do not support parametric

polymorphism à la System F currently but the relations that we support are more general. Adding

parametric polymorphism will require foregoing the set-theoretical semantics, but it should still be

possible to prove equivalence with a polymorphic variant of higher-order logic.

Several type systems have been proposed to reason about information flow security, a prime

example of a relational property. Some examples include SLAM [Heintze and Riecke 1998], the type

system underlying Flow Caml [Pottier and Simonet 2002] and DCC [Abadi et al. 1999]. Most of

these type systems consider only one expression but they allow the use of information flow labels

to specify relations between two different executions of the expression. As we show in this paper,

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 21. Publication date: September 2017.

A Relational Logic for Higher-Order Programs 21:5

this approach can also be implemented in RHOL. We show how to translate DCC since it is one of

the most general type systems; however, similar translations can also be provided for the other

type systems.

Relational Hoare Type Theory (RHTT) [Nanevski et al. 2013; Stewart et al. 2013] is a formalism

for relational reasoning about stateful higher-order programs. RHTTwas designed to verify security

properties like authorization and information flow policies but was used for the verification of

hetergenous pointer data structures as well. RHTT uses a monad to separate stateful computations

and relational refinements on the monadic type express relational pre- and post-conditions. RHTT

supports reasoning about two different programs but the programs must have the same types at the

top-level. RHTT’s rules support both two- and one-sided reasoning similar to RHOL, but the focus

of RHTT is on verifying properties of the program state. In particular, examples such as those in §7

or embeddings such as those in §6 were not considered in RHTT. RHTT is proved sound over a

domain-theoretic model and continuity must be proven explicitly during the verification of recursive

functions (rules are provided to prove continuity in many cases). In contrast, RHOL’s set-theoretic

model is simpler, but admits only those recursive functions that have a unique interpretation in

set-theory.

Logical relations [Plotkin 1973; Statman 1985; Tait 1967] provide a fundamental tool for reasoning

about programs. They have been used for a broad range of purposes, including proving unary

properties (for instance strong normalization or complexity) and relational properties (for instance

equivalence or information flow security). Our work can be understood as an attempt to internalize

the versatility of relational logical relations in a syntactic framework. There is a large body of

works on logic for logical relations, from the early works by Plotkin and Abadi [1993] to more

recent works on logics for reasoning about states and concurrency by Ahmed, Birkedal, Dreyer,

and collaborators among others [Dreyer et al. 2011, 2010; Jung et al. 2015; Krogh-Jespersen et al.

2017]. In particular, the IRIS logic [Jung et al. 2015] can be seen as a powerful reasoning framework

for logical relations, as shown recently by Krogh-Jespersen et al. [2017] . Even if we also aim at

internalize the logical relations, the goal of RHOL differ from the one of IRIS in the fact that we

aim for syntax-driven relational verification.

We have already mentioned the works on relational refinement type systems for verifying

cryptographic constructions [Barthe et al. 2014], for differential privacy [Barthe et al. 2015; Gaboardi

et al. 2013] and for relational cost analysis [Çiçek et al. 2017]. This line of works is probably the

most related to our work, however RHOL improves over all of them, as also shown by some of

the embedding we give in Section 6. Another work related to this direction is the one by Asada

et al. [2016]. This work proposes a technique to reduce relational refinement to standard first order

refinements. Their technique is incomplete but it works well on some concrete examples. As we

discussed before, we believe that some technique of this kind can be applied also to RHOL however

this is orthogonal to our goal and we leave it for future investigations.

2 (A VARIANT OF) PCF
We consider a variant of PCF [Plotkin 1977] with booleans, natural numbers, lists and recursion,

and recursive definitions. For the latter, we require that all recursive calls are performed on strictly

smaller elements—as a consequence, the fixpoint equation derived from the definition has a unique

set-theoretical solution. The precise method to enforce this requirement is orthogonal to our

purposes, and could for instance be based on a syntactic guard predicate, or on sized types.

Types are defined by the grammar:

τ ,σ ::= B | N | listτ | τ × τ | τ → τ

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 21. Publication date: September 2017.

21:6 Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub

We let I range over inductive types.
Terms of the language are defined by the grammar:

t ::= x | ⟨t , t⟩ | π1 t | π2 t | t t | λx : τ .t | c | S t | t :: t | case t of 0 7→ t ; S 7→ t

| case t of tt 7→ t ;ff 7→ t | case t of [] 7→ t ; _ :: _ 7→ t | letrec f x = t

where x ranges over a set V of variables, c ranges over the set {tt,ff, 0, []} of constants, and λ-
abstractions are à la Church. The operational behavior of terms is captured by βιµ-reduction
→βιµ=→β ∪ →ι ∪ →µ , where β-reduction, ι-reduction and µ-reduction are defined as the contex-

tual closure of:

(λx .t) u →β t[u/x] case tt of tt 7→ u;ff 7→ v →ι u
πi ⟨t1, t2⟩ →β ti case ff of tt 7→ u;ff 7→ v →ι v

case 0 of 0 7→ u; S 7→ v →ι u case [] of [] 7→ u; _ :: _ 7→ v →ι u
case St of 0 7→ u; S 7→ v →ι (v t) case h :: t of [] 7→ u; _ :: _ 7→ v →ι (v h t)

(letrec f x = t) (C t⃗) →µ t[C t⃗/x][letrec f x = t/f]

where t[u/x] denotes the usual (capture-free) notion of substitution on terms (replace x by u in t).
As usual, we let =βιµ denote the reflexive-symmetric-transitive closure of→βιµ . In particular, we

only allow reduction of letrec when the argument has a constructor C ∈ {tt,ff, 0, S, [], ::} in head

position.

Judgments are of the form Γ ⊢ t : τ , where Γ is a set of typing declarations of the form x : σ ,
such that variables are declared at most once. The typing rules are standard, except for recursive

functions. In this case, the typing rule requires that the domain of the recursive function is an

inductive type (booleans, naturals, or lists here) and that the body of the recursive definition

letrec f x = e satisfies a predicate Def (f ,x , e) which ensures that all recursive calls are performed

on smaller arguments. The typing rule for recursive definitions is thus:

Γ, f : I → σ ,x : I ⊢ e : σ Def (f ,x , e) I ∈ {N, listτ }

Γ ⊢ letrec f x = e : I → σ

The other rules are standard. We give set-theoretical semantics to this system. For each type τ , its
interpretation Jτ K is the set of its values:

JBK ≜ B JNK ≜ N Jlistτ K ≜ listJτ K Jσ → τ K ≜ JσK→ Jτ K

where JσK→ Jτ K is the set of total functions with domain JσK and codomain Jτ K.
A valuation ρ for a context Γ (written ρ |= Γ) is a partial map such that ρ (x) ∈ Jτ K whenever

(x : τ) ∈ Γ. Given a valuation ρ for Γ, every term t such that Γ ⊢ t : τ has an interpretation LtMρ :

LxMρ ≜ ρ (x) L⟨t ,u⟩Mρ ≜ ⟨LtMρ , LuMρ ⟩ Lπi tMρ ≜ πi (LtMρ)

Lλx : τ .tMρ ≜ λv : Jτ K.LtMρ[LvMρ /x] LcMρ ≜ c LS tMρ ≜ S LtMρ Lt :: uMρ ≜ LtMρ :: LuMρ

Lcase t of [] 7→ u; _ :: _ 7→ vMρ ≜

LuMρ if LtMρ = []

LvMρ M N if LtMρ = M :: N
Lletrec f x = tMρ ≜ F

In the case of letrec f x = e , we require that F is the unique solution of the fixpoint equation

extracted from the recursive definition—existence and unicity of the solution follows from the

validity of the Def (f ,x , e) predicate.
The interpretation of well-typed terms is sound. Moreover, the interpretation equates convertible

terms. (This extends to η-conversion.)

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 21. Publication date: September 2017.

A Relational Logic for Higher-Order Programs 21:7

Theorem 1 (Soundness of set-theoretic semantics).
• If Γ ⊢ t : τ and ρ |= Γ, then LtMρ ∈ Jτ K.
• If Γ ⊢ t : τ and Γ ⊢ u : τ and t =βιµ u and ρ |= Γ, then LtMρ = LuMρ .

3 HIGHER-ORDER LOGIC
Higher-Order Logic is defined as a calculus in natural deduction for a predicate logic over simply-

typed terms. More specifically, its assertions are formulae over typed terms, and are defined by the

following grammar:

ϕ ::= P (t1, . . . , tn) | ⊤ | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ ⇒ ϕ | ∀x : τ .ϕ | ∃x : τ .ϕ

where P ranges over basic predicates (as usual, we will often omit the types of bound variables,

when clear from the context). We assume that predicates come equipped with an axiomatization.

For instance, the predicate All(l , λx .ϕ) is defined to capture lists whose elements satisfies ϕ. This
can be defined axiomatically:

All([], λx .ϕ) ∀ht .All(t , λx .ϕ) ⇒ ϕ (h) ⇒ All(h :: t , λx .ϕ)

We use the notation λx .ϕ for simplicity, although we have not introduced formally a type for

propositions—adding such a type is straightforward and orthogonal to our work: another alternative

would be to use axiom scheme.

We define well-typed assertions using a judgment of the form Γ ⊢ ϕ. The typing rules are standard.
A HOL judgment is then of the form Γ | Ψ ⊢ ϕ, where Γ is a simply typed context, Ψ is a set of

assertions, and ϕ is an assertion, and such that Γ ⊢ ψ for everyψ ∈ Ψ, and Γ ⊢ ϕ. The rules of the
logic are given in Figure 1, where the notation ϕ[t/x] denotes the (capture-free) substitution of x
by t in ϕ. In addition to the usual rules for equality, implication and universal quantification, there

are rules for inductive types (only the rules for lists are displayed; similar rules exist for booleans

and natural numbers): the rule [LIST] models the induction principle for lists; the rules [NC] and
[CONS] formalise injectivity and non overlap of constructors. A rule for strong induction [SLIST]
can be considered as well, and is in fact derivable from simple induction.

ϕ ∈ Ψ

Γ | Ψ ⊢ ϕ
AX

Γ ⊢ t : τ Γ ⊢ t ′ : τ t =βιµ t
′

Γ | Ψ ⊢ t = t ′
CONV

Γ | Ψ ⊢ ϕ[t/x] Γ | Ψ ⊢ t = u

Γ | Ψ ⊢ ϕ[u/x]
SUBST

Γ | Ψ,ψ ⊢ ϕ

Γ | Ψ ⊢ ψ ⇒ ϕ
⇒I

Γ | Ψ ⊢ ψ ⇒ ϕ Γ | Ψ ⊢ ψ

Γ | Ψ ⊢ ϕ
⇒E

Γ,x : σ | Ψ ⊢ ϕ

Γ | Ψ ⊢ ∀x : σ .ϕ
∀I

Γ | Ψ ⊢ ∀x : σ .ϕ Γ ⊢ t : σ

Γ | Ψ ⊢ ϕ[t/x]
∀E Γ | Ψ ⊢ ⊤

⊤I
Γ | Ψ ⊢ ⊥ Γ ⊢ ϕ

Γ | Ψ ⊢ ϕ
⊥E

Γ | Ψ ⊢ ϕ[[]/t] Γ,h : σ , t : listσ | Ψ,ϕ ⊢ ϕ[h :: t/t]

Γ | Ψ ⊢ ∀t : listσ .ϕ
LIST

Γ ⊢ h :: t : listτ
Γ | ∅ ⊢ [],h :: t

NC

Γ | Ψ ⊢ t1 :: t2=t
′
1
:: t ′

2

Γ | Ψ ⊢ ti = t ′i
CONSi

Γ, t : listτ | Ψ,∀u : listτ .|u | < |t | ⇒ ϕ[u/t] ⊢ ϕ

Γ | Ψ ⊢ ∀t : listτ .ϕ
SLIST

Fig. 1. Selected rules for HOL

Higher-Order Logic inherits a set-theoretical interpretation from its underlying simply-typed

λ-calculus. We assume given for each predicate P an interpretation JPK which is compatible with

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 21. Publication date: September 2017.

21:8 Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub

the type of P and its axioms. The interpretation of assertions is then defined in the usual way.

Specifically, the interpretation LϕMρ of an assertion ϕ w.r.t. a valuation ρ includes the clauses:

LP (t1, . . . , tn)Mρ ≜ (Jt1Kρ , . . . , JtnKρ) ∈ JPK L⊤Mρ ≜ ⊤̃ L⊥Mρ ≜ ⊥̃

Lϕ1 ∧ ϕ2Mρ ≜ Lϕ1Mρ ∧̃ Lϕ2Mρ Lϕ1 ⇒ ϕ2Mρ ≜ Lϕ1Mρ ⇒̃ Lϕ2Mρ

L∀x : τ .ϕMρ ≜ ˜∀v .v ∈ Jτ K ⇒̃ LϕMρ[v/x]

Higher-order logic is sound with respect to this semantics.

Theorem 2 (Soundness of set-theoretical semantics). If Γ | Ψ ⊢ ϕ, then for every valuation ρ |= Γ,∧
ψ ∈ΨLψ Mρ implies LϕMρ .

In particular, higher-order logic is consistent, i.e. there is no derivation of Γ | ∅ ⊢ ⊥ for any Γ.

4 UNARY HIGHER-ORDER LOGIC
As a stepping stone towards Relational Higher-Order Logic, we define Unary Higher-Order Logic

(UHOL). UHOL retains the flavor of refinement types, but dissociates typing from assertions;

judgments of UHOL are of the form:

Γ | Ψ ⊢ t : τ | ϕ

where a distinguished variable r, which doesn’t appear in Γ, may appear (free) in ϕ as a synonym

of t . A judgment is well-formed if t has type τ , Ψ is a valid set of assertions in the context Γ, and
ϕ is a valid assertion in the context Γ, r : τ . Figure 2 presents selected typing rules. The [ABS]
rule allows proving formulas that refer to λ-abstractions, expressing that if the argument satisfies

a precondition ϕ ′, then the result satisfies a postcondition ϕ. The [APP] rule, dually, proves a
condition ϕ on an application t u provided that the argument u satisfies the precondition ϕ ′ of
the function t . The [VAR] rule introduces a variable from the context with a formula proven in

HOL. Rules for constants (e.g. [NIL]) work in the same way. Rule [CONS] proves a formula ϕ for

a non-empty list, provided that ϕ is a consequence of some conditions ϕ ′,ϕ ′′ on its head and its

tail. Rule [PAIR] allows the construction of judgments about pairs in a similar manner. The rules

[PROJi] prove judgments about the projections of a pair. The rule [SUB] (subsumption) allows

strengthening the assumed assertions Ψ and weakening the concluding assertion ϕ. It generates
a HOL proof obligation. The rule [CASE] can be used for a case analysis over the constructor

of a term. Finally, the rule [LETREC] supports inductive reasoning about recursive definitions.

Recall that the domain of a recursive definition is an inductive type, for which a natural notion

of size exists. If, assuming that a proposition holds for all elements smaller than the argument,

we can prove that the proposition holds for the body, then the proposition must hold as well for

the function. Furthermore, we require that the function we are verifying satisfies the predicate

Def (f ,x , i), as was the case in HOL. The induction is performed over the < order, which varies

depending on the type of the argument.

We now discuss the main meta-theoretic results of UHOL. The following result establishes that

every HOL judgment can be proven in UHOL and vice versa.

Theorem 3 (Equivalence with HOL). For every context Γ, simple type σ , term t , set of assertions
Ψ and assertion ϕ, the following are equivalent:

• Γ | Ψ ⊢ t : σ | ϕ
• Γ | Ψ ⊢ ϕ[t/r]

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 21. Publication date: September 2017.

A Relational Logic for Higher-Order Programs 21:9

Γ ⊢ x : σ Γ | Ψ ⊢ ϕ[x/r]
Γ | Ψ ⊢ x : σ | ϕ

VAR
Γ,x : τ | Ψ,ϕ ′ ⊢ t : σ | ϕ

Γ | Ψ ⊢ λx : τ .t : τ → σ | ∀x .ϕ ′ ⇒ ϕ[r x/r]
ABS

Γ | Ψ ⊢ t : τ → σ | ∀x .ϕ ′[x/r]⇒ ϕ[r x/r] Γ | Ψ ⊢ u : τ | ϕ ′

Γ | Ψ ⊢ t u : σ | ϕ[u/x]
APP

Γ | Ψ ⊢HOL ϕ[[]/r]
Γ | Ψ ⊢ [] : listσ | ϕ

NIL

Γ | Ψ ⊢ h : σ | ϕ ′ Γ | Ψ ⊢ t : listσ | ϕ ′′

Γ | Ψ ⊢HOL ∀xy.ϕ
′
[x/r]⇒ ϕ ′′[y/r]⇒ ϕ[x :: y/r]

Γ | Ψ ⊢ h :: t : listσ | ϕ
CONS

Γ | Ψ ⊢ t : σ × τ | ϕ[πi (r)/r]
Γ | Ψ ⊢ πi (t) : σ | ϕ

PROJi

Γ | Ψ ⊢ t : σ | ϕ ′ Γ | Ψ ⊢ u : τ | ϕ ′′

Γ | Ψ ⊢HOL ∀xy.ϕ
′
[x/r]⇒ ϕ ′′[y/r]⇒ ϕ[⟨x ,y⟩/r]

Γ | Ψ ⊢ ⟨t ,u⟩ : σ × τ | ϕ
PAIR

Γ | Ψ ⊢ t : σ | ϕ ′ Γ | Ψ ⊢HOL ϕ
′
[t/r]⇒ ϕ[t/r]

Γ | Ψ ⊢ t : σ | ϕ
SUB

Γ ⊢ l : listτ
Γ | Ψ, l = [] ⊢ u : σ | ϕ

Γ | Ψ ⊢ v : τ → listτ → σ | ∀ht .l = h :: t ⇒ ϕ[r h t/r]

Γ | Ψ ⊢ case l of [] 7→ u; _ :: _ 7→ v : σ | ϕ
LISTCASE

Def (f ,x , e)
Γ,x : I , f : I → σ | Ψ,ϕ ′,∀m.|m | < |x | ⇒ ϕ ′[m/x]⇒ ϕ[m/x][f m/r] ⊢ e : σ | ϕ

Γ | Ψ ⊢ letrec f x = e : I → σ | ∀x .ϕ ′ ⇒ ϕ[r x/r]
LETREC

where I ∈ {N, listτ }

Fig. 2. Unary Higher-Order Logic rules

The forward implication follows by induction on the derivation of Γ | Ψ ⊢ t : σ | ϕ. The reverse
implication is immediate from the rule [SUB] and the observation that Γ | Ψ ⊢ t : σ | ⊤ whenever t
is a term of type σ .
We lift the HOL semantics to UHOL. Terms, types and formulas are interpreted as before.

Additionally, for every valuation ρ let ρ[v/x] denote its unique extension ρ ′ such that ρ ′(y) = v if

x = y and ρ ′(y) = ρ (y) otherwise. The following corollary states the soundness of UHOL.

Corollary 4 (Set-theoretical soundness and consistency). If Γ | Ψ ⊢ t : σ | ϕ, then for every

valuation ρ |= Γ,
∧
ψ ∈ΨLψ Mρ implies LϕMρ[LtMρ /r]. In particular, there is no proof of Γ | ∅ ⊢ t : σ | ⊥

in UHOL.

Next, we prove subject conversion for UHOL. The result follows immediately from Theorem 3

and subject conversion of HOL, which is itself a direct consequence of the [CONV] and [SUBST]
rules.

Corollary 5 (Subject conversion). Assume that t =βιµ t ′ and Γ | Ψ ⊢ t : σ | ϕ. If Γ ⊢ t ′ : σ then

Γ | Ψ ⊢ t ′ : σ | ϕ.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 21. Publication date: September 2017.

21:10 Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub

5 RELATIONAL HIGHER-ORDER LOGIC
Relational Higher-Order Logic (RHOL) extends UHOL’s separation of assertions from types to a

relational setting. Formally, RHOL is a relational type system which manipulates judgments of the

form

Γ | Ψ ⊢ t1 : τ1 ∼ t2 : τ2 | ϕ

which combine a typing judgment for a pair of PCF terms and permit reasoning about the relation

between them. We therefore require that t1 and t2 respectively have types τ1 and τ2 in Γ. Well-

formedness of the judgment requires Ψ to be a valid set of assertions in Γ and ϕ to be a valid

assertion in Γ, r1 : τ1, r2 : τ2, where the special variables r1 and r2 are used as synonyms for t1 and
t2 in ϕ. The informal meaning of the judgment is the expected one: If the variables in Γ are related

by the assertions in Ψ, then the terms t1 and t2 are related by the assertion ϕ.

5.1 Proof Rules
The type system combines two-sided rules (Figure 3), which apply when the two terms have the

same top-level constructors and one-sided rules (Figure 5), which analyze either one of the two

terms. For instance, the [APP] rule applies when the two terms are applications, and requires that

the functions t1 and t2 relate and the arguments u1 and u2 relate. Specifically, t1 and t2 must map

values related by ϕ ′ to values related by ϕ, and u1 and u2 must be related by ϕ ′. The [ABS] rule is
dual. The [PAIR] rule requires that the left and right components of a pair relate independently (a

stronger rule is discussed at the end of the section). The [PROJi] rules require in their premise an

assertion that only refers to the the first or the second component of the pair. The rules for lists

require that the two lists are either both empty, or both non-empty. The rule [CONS] requires that
the two heads and the two tails relate independently. The [CASE] rule derives judgments about

two case constructs when the terms over which the matching happens reduce to the same branch

(i.e. have the same constructor) on both sides.

In contrast, one-sided typing rules only analyze one term; therefore, they come in two flavours:

left rules (shown in Figure 5) and right rules (omitted but similar). Rule [ABS-L] considers the case
where the left term is a λ-abstraction, and requires the body of the abstraction to be related to

the right term u2 whenever the argument (on the left side) satisfies a non-relational assertion ϕ ′.
Dually, rule [APP-L] considers the case where the left term is of the form t1 u1, and t1 is related
to the right term u2; specifically, t1 should map every value satisfying ϕ ′ to a value satisfying ϕ.
Moreover, u1 should satisfy ϕ ′. Since ϕ ′ is a non-relational assertion, we demand that it can be

established using UHOL, not RHOL. One-sided rules for pairs and lists follow a similar pattern.

In addition, RHOL has structural rules (Figure 4). The rule [SUB] can be used for strengthening

the assumed assertions and for weakening the concluding assertion; the ensuing side-conditions

are discharged in HOL. Other structural rules assimilate rules of HOL. For instance, if we can prove

two different assertions for the same terms we can prove the conjunction of the assertions ([∧I]).

Other logical connectives have similar rules. Finally, the rule [UHOL-L] (and a dual rule [UHOL-R])
allow falling back to UHOL in a RHOL proof.

Rules [LETREC] and [LETREC-L] introduce recursive function definitions (Figure 6). These rules

allow for a style of reasoning very similar to strong induction. If, assuming that the function’s

specification holds for all smaller arguments, we can prove that the functions specification holds,

then the specification must hold for all arguments. We require that the two functions we are relating

satisfy the predicatesDef (fi ,xi , ei), as was the case in HOL and UHOL. The induction is performed

over the order (a,b) < (c,d), which holds whenever both a ≤ b and c ≤ d , and at least one of the

inequalities is strict.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 21. Publication date: September 2017.

A Relational Logic for Higher-Order Programs 21:11

Γ,x1 : τ1,x2 : τ2 | Ψ,ϕ
′ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ

Γ | Ψ ⊢ λx1 : τ1.t1 : τ1 → σ1 ∼ λx2 : τ2.t2 : τ2 → σ2 | ∀x1,x2.ϕ
′ ⇒ ϕ[r1 x1/r1][r2 x2/r2]

ABS

Γ | Ψ ⊢ t1 : τ1 → σ1 ∼ t2 : τ2 → σ2 | ∀x1,x2.ϕ
′
[x1/r1][x2/r2]⇒ ϕ[r1 x1/r1][r2 x2/r2]

Γ | Ψ ⊢ u1 : τ1 ∼ u2 : τ2 | ϕ
′

Γ | Ψ ⊢ t1u1 : σ1 ∼ t2u2 : σ2 | ϕ[u1/x1][u2/x2]
APP

Γ ⊢ x1 : σ1 Γ ⊢ x2 : σ2 Γ | Ψ ⊢ ϕ[x1/r1][x2/r2]
Γ | Ψ ⊢ x1 : σ1 ∼ x2 : σ2 | ϕ

VAR
Γ | Ψ ⊢HOL ϕ[tt/r1][tt/r2]
Γ | Ψ ⊢ tt : B ∼ tt : B | ϕ

TRUE

Γ | Ψ ⊢HOL ϕ[[]/r1][[]/r2]
Γ | Ψ ⊢ [] : listσ1 ∼ [] : listσ2 | ϕ

NIL

Γ | Ψ ⊢ h1 : σ1 ∼ h2 : σ2 | ϕ
′ Γ | Ψ ⊢ t1 : listσ1 ∼ t2 : listσ2 | ϕ

′′

Γ | Ψ ⊢HOL ∀x1x2y1y2.ϕ
′
[x1/r1][x2/r2]⇒ ϕ ′′[y1/r1][y2/r2]⇒ ϕ[x1 :: y1/r1][x2 :: y2/r2]

Γ | Ψ ⊢ h1 :: t1 : listσ1 ∼ h2 :: t2 : listσ2 | ϕ
CONS

Γ | Ψ ⊢ l1 : listτ1 ∼ l2 : listτ2 | r1 = []⇔ r2 = []

Γ | Ψ, l1 = [], l2 = [] ⊢ u1 : σ1 ∼ u2 : σ2 | ϕ
Γ | Ψ ⊢ v1 : τ1 → listτ1 → σ1 ∼ v2 : τ2 → listτ2 → σ2 |

∀h1h2t1t2.l1 = h1 :: t1 ⇒ l2 = h2 :: t2 ⇒ ϕ[r1 h1 t1/r1][r2 h2 t2/r2]

Γ | Ψ ⊢ case l1 of [] 7→ u1; _ :: _ 7→ v1 : σ1 ∼ case l2 of [] 7→ u2; _ :: _ 7→ v2 : σ2 | ϕ
LISTCASE

Γ | Ψ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ
′ Γ | Ψ ⊢ u1 : τ1 ∼ u2 : τ2 | ϕ

′′

Γ | Ψ ⊢HOL ∀x1x2y1y2.ϕ
′
[x1/r1][x2/r2]⇒ ϕ ′′[y1/r1][y2/r2]⇒ ϕ[⟨x1,y1⟩/r1][⟨x2,y2⟩/r2]

Γ | Ψ ⊢ ⟨t1,u1⟩ : σ1 × τ1 ∼ ⟨t2,u2⟩ : σ2 × τ2 | ϕ
PAIR

Γ | Ψ ⊢ t1 : σ1 × τ1 ∼ t2 : σ2 × τ2 | ϕ[πi (r1)/r1][πi (r2)/r2]
Γ | Ψ ⊢ πi (t1) : σ1 ∼ πi (t2) : σ2 | ϕ

PROJi

Fig. 3. Two-sided rules

Γ | Ψ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ
′ Γ | Ψ ⊢HOL ϕ

′
[t1/r1][t2/r2]⇒ ϕ[t1/r1][t2/r2]

Γ | Ψ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ
SUB

Γ | Ψ ⊢ t1 : σ2 ∼ t2 : σ2 | ϕ Γ | Ψ ⊢ t1 : σ2 ∼ t2 : σ2 | ϕ
′

Γ | Ψ ⊢ t1 : σ2 ∼ t2 : σ2 | ϕ ∧ ϕ
′

∧I

Γ | Ψ,ϕ ′[t1/r1][t2/r2] ⊢ t1 : σ2 ∼ t2 : σ2 | ϕ

Γ | Ψ ⊢ t1 : σ2 ∼ t2 : σ2 | ϕ
′ ⇒ ϕ

⇒I

Γ | Ψ ⊢ t1 : σ1 | ϕ[r/r1][t2/r2] Γ ⊢ t2 : σ2

Γ | Ψ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ
UHOL − L

Fig. 4. Structural rules

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 21. Publication date: September 2017.

21:12 Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub

Γ,x1 : τ1 | Ψ,ϕ
′ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ

Γ | Ψ ⊢ λx1 : τ1.t1 : τ1 → σ1 ∼ t2 : σ2 | ∀x1.ϕ
′ ⇒ ϕ[r1 x1/r1]

ABS−L

Γ | Ψ ⊢ t1 : τ1 → σ1 ∼ u2 : σ2 | ∀x1.ϕ
′
[x1/r1]⇒ ϕ[r1 x1/r1]

Γ | Ψ ⊢ u1 : τ1 | ϕ
′

Γ | Ψ ⊢ t1u1 : σ1 ∼ u2 : σ2 | ϕ[u1/x1]
APP−L

ϕ[x1/r1] ∈ Ψ r2 < FV (ϕ) Γ ⊢ t2 : σ2

Γ | Ψ ⊢ x1 : σ1 ∼ t2 : σ2 | ϕ
VAR−L

Γ | Ψ ⊢ ϕ[[]/r1][t2/r2] Γ ⊢ t2 : σ2

Γ | Ψ ⊢ [] : listσ1 ∼ t2 : σ2 | ϕ
NIL−L

Γ | Ψ ⊢ h1 : σ1 ∼ t2 : σ2 | ϕ
′ Γ | Ψ ⊢ t1 : listσ1 ∼ t2 : σ2 | ϕ

′′

Γ | Ψ ⊢HOL ∀x1x2y1.ϕ
′
[x1/r1][x2/r2]⇒ ϕ ′′[y1/r1][x2/r2]⇒ ϕ[x1 :: y1/r1][x2/r2]

Γ | Ψ ⊢ h1 :: t1 : listσ1 ∼ t2 : σ2 | ϕ
CONS−L

Γ ⊢ t1 : listτ
Γ | Ψ, t1 = [] ⊢ u1 : σ1 ∼ t2 : σ2 | ϕ

Γ | Ψ ⊢ v1 : τ → listτ → σ1 ∼ t2 : σ2 | ∀h1l1.t1 = h1 :: l1 ⇒ ϕ[r1 h1 l1/r1]

Γ | Ψ ⊢ case t1 of [] 7→ u1; _ :: _ 7→ v1 : σ1 ∼ t2 : σ2 | ϕ
LISTCASE − L

Γ | Ψ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ
′ Γ | Ψ ⊢ u1 : τ1 ∼ t2 : σ2 | ϕ

′′

Γ | Ψ ⊢HOL ∀x1x2y1.ϕ
′
[x1/r1][x2/r2]⇒ ϕ ′′[y1/r1][x2/r2]⇒ ϕ[⟨x1,y1⟩/r1][x2/r2]

Γ | Ψ ⊢ ⟨t1,u1⟩ : σ1 × τ1 ∼ t2 : σ2 | ϕ
PAIR−L

Γ | Ψ ⊢ t1 : σ1 × τ1 ∼ t2 : σ2 | ϕ[π1 (r1)/r1]
Γ | Ψ ⊢ π1 (t1) : σ1 ∼ t2 : σ2 | ϕ

PROJ1−L

Fig. 5. One-sided rules

Def (f1,x1, e1) Def (f2,x2, e2)
Γ,x1 : I1,x2 : I2, f1 : I1 → σ1, f2 : I2 → σ2 |

Ψ,ϕ ′,∀m1m2.(|m1 |, |m2 |) < (|x1 |, |x2 |) ⇒ ϕ ′[m1/x1][m2/x2]⇒
ϕ[m1/x1][m2/x2][f1 m1/r1][f2 m2/r2] ⊢ e1 : σ1 ∼ e2 : σ2 | ϕ

Γ | Ψ ⊢
letrec f1 x1 = e1 : I1 → σ1 ∼
letrec f2 x2 = e2 : I2 → σ2

| ∀x1x2.ϕ
′ ⇒ ϕ[r1 x1/r1][r2 x2/r2]

LETREC

Def (f1,x1, e1)
Γ,x1 : I1, f1 : I1 → σ | Ψ,ϕ ′,∀m1.|m1 | < |x1 | ⇒ ϕ ′[m1/x1]⇒

ϕ[m1/x1][f1 m1/r1][t2/r2] ⊢ e1 : σ1 ∼ t2 : σ2 | ϕ

Γ | Ψ ⊢ letrec f1 x1 = e1 : I1 → σ2 ∼ t2 : σ2 | ∀x1.ϕ
′ ⇒ ϕ[r1 x1/r1]

LETREC − L

where I1, I2 ∈ {N, listτ }

Fig. 6. Recursion rules

5.2 Discussion
Our choice of the rules is guided by the practical considerations of being able to verify examples

easily, without specifically aiming for minimality or exhaustiveness. In fact, many of our rules can

be derived from others, or reduced to a more elementary form. For instance:

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 21. Publication date: September 2017.

A Relational Logic for Higher-Order Programs 21:13

Γ | Ψ ⊢ t1 : τ1 → σ1 ∼ t2 : τ2 → σ2 | ϕ[r1 u1/r1][r2 u2/r2]
Γ | Ψ ⊢ t1 u1 : σ1 ∼ t2 u2 : σ2 | ϕ

APP − FUN

Γ | Ψ ⊢ u1 : τ1 ∼ u2 : τ2 | ϕ[t1 r1/r1][t2 r2/r2]
Γ | Ψ ⊢ t1 u1 : σ1 ∼ t2 u2 : σ2 | ϕ

APP − ARG

Γ | Ψ ⊢ t1 : τ1 ∼ t2 : τ2 | ϕ[⟨r1,u1⟩/r1][⟨r2,u2⟩/r2]
Γ | Ψ ⊢ ⟨t1,u1⟩ : τ1 × σ1 ∼ ⟨t2,u2⟩ : τ2 × σ2 | ϕ

PAIR − FST

Γ | Ψ ⊢ t1 : listτ1 ∼ t2 : listτ2 | ⊤
Γ | Ψ, t1 = [], t2 = [] ⊢ u1 : σ1 ∼ u2 : σ2 | ϕ

Γ | Ψ, t2 = [] ⊢ v1 : τ1 → listτ1 → σ1 ∼ u2 : σ2 | ∀h1l1.t1 = h1 :: l1 ⇒ ϕ[r1 h1 l1/r1]
Γ | Ψ, t1 = [] ⊢ u1 : σ1 ∼ v2 : τ2 → listτ2 → σ2 | ∀h2l2.t2 = h2 :: l2 ⇒ ϕ[r2 h2 l2/r2]

Γ | Ψ ⊢ v1 : τ1 → listτ1 → σ1 ∼ v2 : τ2 → listτ2 → σ2 |
∀h1h2l1l2.t1 = h1 :: l1 ⇒ t2 = h2 :: l2 ⇒ ϕ[r1 h1 l1/r1][r2 h2 l2/r2]

Γ | Ψ ⊢ case t1 of [] 7→ u1; _ :: _ 7→ v1 : σ1 ∼ case t2 of [] 7→ u2; _ :: _ 7→ v2 : σ2 | ϕ
LLCASE − A

Fig. 7. Some derived rules

• The structural rules to reason about logical connectives, such as [∧I], can be derived by

induction on the length of derivations with the help of [SUB].
• The [VAR-L] (similarly, [NIL-L]) rule can be weakened, without affecting the strength of the

system,

ϕ[x1/r1] ∈ Ψ r2 < FV (ϕ)

Γ | Ψ ⊢ x1 : σ1 ∼ x2 : σ2 | ϕ
VAR−L

• The premise of the [VAR] rule (and similarly, [NIL]) can be changed to ϕ[x/r] ∈ Ψ. We can

recover the original rule by one application of [SUB].
• The rules [APP-FUN] and [APP-ARG] in Figure 7 (adapted from Ghani et al. [2016b]) can be

derived from the rule [APP]. To derive [APP-FUN], instantiate ϕ ′ to r1 = u1∧r2 = u2 in [APP].
To derive [APP-ARG], we have to prove a trivial condition ∀x1x2.ϕ[t1 x1/r1][t2 x2/r2] ⇒
ϕ[t1 x1/r1][t2 x2/r2] on t1, t2.
• The [PAIR-FST] and [PAIR-SND] rules in Figure 7 can be derived in a similar way. These

rules overcome a limitation of the original [PAIR] rule, namely, that the relations for the two

components of the pair must be independent. [PAIR-FST] and [PAIR-SND] allow relating, for

instance, pairs of integers ⟨m1,n1⟩ and ⟨m2,n2⟩ such thatm1 + n1 =m2 + n2.
• The [LLCASE-A] rule can be used to reason about case constructs when the terms over which

we discriminate do not necessarily reduce to the same branch. It is equivalent to applying

[CASE-L] followed by [CASE-R].

5.3 Meta-theory
RHOL retains the expressiveness of HOL, as formalized in the following theorem.

Theorem 6 (Equivalence with HOL). For every context Γ, simple types σ1 and σ2, terms t1 and t2,
set of assertions Ψ and assertion ϕ, if Γ ⊢ t1 : σ1 and Γ ⊢ t2 : σ2, then the following are equivalent:

• Γ | Ψ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ
• Γ | Ψ ⊢ ϕ[t1/r1][t2/r2]

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 21. Publication date: September 2017.

21:14 Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub

The proof of the forward implication proceeds by induction on the structure of derivations.

The proof of the reverse implication is immediate from the rule [SUB] and the observation that

Γ | ∅ ⊢ t1 : σ1 ∼ t2 : σ2 | ⊤ whenever t1 and t2 are typable terms of types σ1 and σ2 respectively.
This immediately entails soundness of RHOL, which is expressed in the following result:

Corollary 7 (Set-theoretical soundness and consistency). If Γ | Ψ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ, then for

every valuation ρ |= Γ,
∧
ψ ∈ΨLψ Mρ implies LϕMρ[Lt1Mρ /r1],[Lt2Mρ /r2]. In particular, there is no proof of

Γ | ∅ ⊢ t1 : σ1 ∼ t2 : σ2 | ⊥ for any Γ.

The equivalence also entails subject conversion (and as special cases subject reduction and

subject expansion). This follows immediately from subject conversion of HOL (which, as stated

earlier, is itself a direct consequence of the [CONV] and [SUBST] rules).

Corollary 8 (Subject conversion). Assume that t1 =βιµ t
′
1
and t2 =βιµ t

′
2
and Γ | Ψ ⊢ t1 : σ1 ∼ t2 :

σ2 | ϕ. If Γ ⊢ t
′
1
: σ1 and Γ ⊢ t ′

2
: σ2 then Γ | Ψ ⊢ t ′

1
: σ1 ∼ t ′

2
: σ2 | ϕ.

Another useful consequence of the equivalence is the admissibility of the transitivity rule.

Corollary 9 (Admissibility of transitivity rule). Assume that:

• Γ | Ψ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ
• Γ | Ψ ⊢ t2 : σ2 ∼ t3 : σ3 | ϕ

′

Then, Γ | Ψ ⊢ t1 : σ1 ∼ t3 : σ3 | ϕ[t2/r2] ∧ ϕ ′[t2/r1].

Finally, we prove an embedding lemma for UHOL. The proof can be carried by induction on the

structure of derivations, or using the equivalence between UHOL and HOL (Theorem 3).

Lemma 10 (Embedding lemma). Assume that:

• Γ | Ψ ⊢ t1 : σ1 | ϕ
• Γ | Ψ ⊢ t2 : σ2 | ϕ

′

Then Γ | Ψ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ[r1/r] ∧ ϕ ′[r2/r].

The embedding is reminiscent of the approach of Beringer and Hofmann [2007] to encode

information flow properties in Hoare logic.

6 EMBEDDINGS
In this section, we establish the expressiveness of RHOL and UHOL by embedding several exist-

ing refinement type systems (3 relational and 1 non-relational) from a variety of domains. All

embeddings share the common idea of separating the simple typing information from the more

fine-grained refinement information in the translation. We use uniform notation to represent similar

ideas across the different embeddings. In particular, we use vertical bars | · | to denote the erasure

of a type into a simple type, and floor bars ⌊·⌋ to denote the embedding of the refinement of a type

in a HOL formula.

For the clarity of exposition, we often present fragments or variants of systems that appear in the

literature, notably excluding recursive functions that do not satisfy our well-definedness predicate.

Moreover, the embeddings are given for a version of RHOL à la Curry, in which λ-abstractions do
not carry the type of their bound variable.

6.1 Refinement Types
Refinement types [Freeman and Pfenning 1991; Swamy et al. 2016; Vazou et al. 2014] are a variant

of simple types where for every basic type τ , there is a type {x : τ | ϕ} which is inhabited by

the elements t of τ that satisfy the logical assertion ϕ[t/x]. This includes dependent refinements

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 21. Publication date: September 2017.

A Relational Logic for Higher-Order Programs 21:15

Γ ⊢ τ

Γ ⊢ τ ⪯ τ

Γ ⊢ τ1 ⪯ τ2 Γ ⊢ τ2 ⪯ τ3

Γ ⊢ τ1 ⪯ τ3

Γ ⊢ τ1 ⪯ τ2

Γ ⊢ listτ1 ⪯ listτ2

Γ ⊢ {x : τ | ϕ}

Γ ⊢ {x : τ | ϕ} ⪯ τ

Γ ⊢ τ ⪯ σ Γ, r : τ ⊢ ϕ

Γ ⊢ τ ⪯ {x : σ | ϕ}

Γ ⊢ σ2 ⪯ σ1 Γ,x : σ2 ⊢ τ1 ⪯ τ2

Γ ⊢ Π(x : σ1).τ1 ⪯ Π(x : σ2).τ2

Γ,x : τ ⊢ x : τ

Γ,x : τ ⊢ t : σ

Γ ⊢ λx .t : Π(x : τ).σ

Γ ⊢ t1 : Π(x : τ).σ Γ ⊢ t2 : τ

Γ ⊢ t1 t2 : σ [t2/x]

Γ ⊢ t : listτ Γ ⊢ t1 : σ Γ ⊢ t2 : Π(h : τ).Π(l : listτ).σ

Γ ⊢ case t of [] 7→ t1; _ :: _ 7→ t2 : σ

Γ ⊢ τ ⪯ σ Γ ⊢ t : τ

Γ ⊢ t : σ

Γ,x : τ , f : Π({y : τ | y < x }).σ [y/x] ⊢ t : σ Def (f ,x , t)

Γ ⊢ letrec f x = t : Π(x : τ).σ

Fig. 8. Refinement types rules (subtyping and typing)

Π(x : τ).σ , in which the variable x is also bound in the refinement formulas appearing in σ . Here
we present a simplified variant of these systems. (Refined) types are defined by the grammar

τ := B | N | listτ | {x : τ | ϕ} | Π(x : τ).τ

As usual, we shorten Π(x : τ).σ to τ → σ if x < FV (σ). We also shorten bindings of the form

x : {x : τ | ϕ} to {x : τ | ϕ}. Typing rules are presented in Figure 8; note that the [LETREC] rule
requires that recursive definitions satisfy the well-definedness predicate. Judgments of the form

Γ ⊢ τ are well-formedness judgments. Judgments of the form Γ ⊢ ϕ are logical judgments; we omit

a formal description of the rules, but assume that the logic of assertions is consistent with HOL, i.e.

Γ ⊢ ϕ implies |Γ | | ⌊Γ⌋ ⊢ ϕ, where the erasure functions are defined below.

This system can be embedded into UHOL in a straightforward manner. The embedding highlights

the relation between these two systems, i.e. between logical assertions embedded in the types (as in

refinement types) and logical assertions at the top-level, separate from simple types (as in UHOL).

The intuitive idea behind the embedding is therefore to separate refinement assertions from types.

Specifically, from every refinement type we can obtain a simple type by repeatedly extracting the

type τ from {x : τ | ϕ}. We will denote this extraction by the translation function |τ |:

|B| ≜ B |N| ≜ N |listτ | ≜ list |τ | |{x : τ | ϕ}| ≜ |τ | |Π(x : τ).σ | ≜ |τ | → |σ |

Since |τ | loses refinement information, we define a second translation that extracts the refinement

as a logical predicate over a variable x that names the typed expression. This second translation is

written ⌊τ ⌋ (x).

⌊B⌋ (x), ⌊N⌋ (x) ≜ ⊤ ⌊listτ ⌋ (x) ≜ All(x , λy.⌊τ ⌋ (y)) ⌊{y : τ | ϕ}⌋ (x) ≜ ⌊τ ⌋ (x) ∧ ϕ[x/y]

⌊Π(x : τ).σ ⌋ (x) ≜ ∀y.⌊τ ⌋ (y) ⇒ ⌊σ ⌋ (xy)

The refinement of simple types is trivial. If t is an expression of type {x : τ | ϕ}, then t must satisfy

both the refinement formula ϕ and the refinement of τ . A function with a refinement type can be

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 21. Publication date: September 2017.

21:16 Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub

interpreted in two different ways: 1) As a map whose domain is the domain type restricted to its

(the type’s) refinement, or 2) As a map whose domain is the entire domain type (disregarding the

refinement), but whose result satisfies the co-domain’s refinement only if the argument satisfies

the domain’s refinement. We use the second interpretation, while some prior work uses the first.

Therefore, if t is an expression of type Π(x : τ).σ , then it must be the case that for every x satisfying

the refinement of τ , (t x) satisfies the refinement of σ .
The refinement of a list uses the predicate All, which as defined in §3, means that all elements of

a list satisfy a given formula.

The syntax of assertions and expressions is exactly the same as in HOL, and therefore there is

no need for a translation. Embedding of types can be lifted to contexts in the natural way.

|x : τ , Γ | ≜ x : |τ |, |Γ | ⌊x : τ , Γ⌋ ≜ ⌊τ ⌋ (x), ⌊Γ⌋

To encode judgments, all that remains is to put the previous definitions together. The main result

about embedding typing judgments is the following:

Theorem 11. If Γ ⊢ t : τ is derivable in the refinement type system, then |Γ | | ⌊Γ⌋ ⊢ t : |τ | | ⌊τ ⌋ (r)
is derivable in UHOL.

The proof is performed by induction on the structure of derivations, using as helper result the

embedding of subtyping judgments into HOL. Since it can be proven by induction that, whenever

τ ⪯ σ , the type extractions |τ | and |σ | coincide, all that needs to be checked is that ⌊σ ⌋ is a
consequence of ⌊τ ⌋. This is captured by the following statement.

Theorem 12. If Γ ⊢ τ ⪯ σ is derivable in a refinement type system, then |Γ |,x : |τ | | ⌊Γ⌋, ⌊τ ⌋ (x) ⊢
⌊σ ⌋ (x) is derivable in HOL.

Soundness of refinement types w.r.t. the set-theoretic semantics follows immediately from

Theorem 11 and the set-theoretic soundness of UHOL (Corollary 4).

6.2 Relational Refinement Types
Relational refinement types [Barthe et al. 2014, 2015] are a variant of refinement types that can be

used to express relational properties via a syntax of the form {r :: τ | ϕ} where ϕ is a relational

assertion—i.e. it may contain a left and right copy of r, which are denoted as r1 and r2 respectively,
as well as a left and a right copy of every variable in the context. In this section, we introduce a

simple relational refinement type system and establish a type-preserving translation to RHOL—we

compare with existing type systems at the end of the paragraph.

The syntax of relational refinement types is given by the grammar:

τ ::= B | N | τ → τ
T ,U ::= τ | listT | Π(x :: T).U | {x :: T | ϕ}

Relational refinement types are naturally ordered by a subtyping relation Γ ⊢ T ⪯ U , where Γ is

a sequence of variables declarations of the form x :: U .

Typing judgments are of the form Γ ⊢ t1 ∼ t2 :: T . We present selected typing rules in Figure 9.

Note that the form of judgments requires that t1 and t2 must have the same simple type, and the

typing rules require that t1 and t2 have the same structure
1
. In the [CASELIST] rule, we require

that both terms reduce to the same branch; the case rule for natural numbers is similar. The

1
The typing rules displayed in the figure will in fact force t1 and t2 to be the same term modulo renaming. This is not the

case in existing relational refinement type systems; however, rules that introduce different terms on the right and on the

left are limited, since both terms still need to have the same type and most one-sided rules break this invariant. For instance,

in [Barthe et al. 2014] there is a rule similar to [LLCASE-A], and a rule for reducing one of the terms of a judgment.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 21. Publication date: September 2017.

A Relational Logic for Higher-Order Programs 21:17

VAR-RT

(x : T) ∈ Γ

Γ ⊢ x1 ∼ x2 :: T
ABS-RT

Γ,x :: T ⊢ u1 ∼ u2 :: U

Γ ⊢ λx1.u1 ∼ λx2.u2 :: Π(x :: T).U

APP-RT

Γ ⊢ t1 ∼ t2 :: Π(x :: T).U Γ ⊢ u1 ∼ u2 :: T

Γ ⊢ t1 u1 ∼ t2 u2 :: U [u1/x1][u2/x2]
NIL

Γ ⊢ T

Γ ⊢ [] ∼ [] :: listT

CONS

Γ ⊢ h1 ∼ h2 :: T Γ ⊢ t1 ∼ t2 :: listT
Γ ⊢ h1 :: t1 ∼ h2 :: t2 :: listT

Sub

Γ ⊢ t1 ∼ t2 :: T Γ ⊢ T ⪯ U

Γ ⊢ t1 ∼ t2 :: U

LETREC-RT

Γ,x :: T , f :: Π({y :: T | (y1,y2) < (x1,x2)}).U [y/x] ⊢ t1 ∼ t2 :: U
Γ ⊢ Π(x :: T).U Def (f ,x , t)

Γ ⊢ letrec f1 x1 = t1 ∼ letrec f2 x2 = t2 :: Π(x :: T).U

CASELIST

Γ ⊢ t1 ∼ t2 :: listτ
Γ ⊢ t1 = []⇔ t2 = [] Γ ⊢ u1 ∼ u2 :: T Γ ⊢ v1 ∼ v2 :: Π(h :: τ).Π(t :: listτ).T

Γ ⊢ case t1 of [] 7→ u1; _ :: _ 7→ v1 ∼ case t2 of [] 7→ u2; _ :: _ 7→ v2 :: T

Fig. 9. Relational Typing (Selected Rules)

[LETREC] rule uses (a straightforward adaptation of) the Def (f ,x , t) predicate from our simply-

typed language, and requires that the two recursive definitions perform exactly the same recursive

calls.

Subtyping rules are the same as in the unary case, and therefore we refer to Figure 8 for them

(allowing their instantiation for relational types T ,U as well as unary types σ ,τ).
The embedding of refinement types into UHOL can be adapted to the relational setting. From

each relational refinement typeT we can extract a simple type |T |. On the other hand, we can erase

every relational refinement type T into a relational formula TTU, which is parametrized by two

expressions and defined as follows:

Tlistτ U(x1,x2) ≜
∧

i ∈{1,2}

All(xi , λy.⌊τ ⌋ (y)) TlistT U(x1,x2) ≜ All2(x1,x2, λy1.λy2.TTU(y1,y2))

T{y : τ | ϕ}U(x1,x2) ≜
∧

i ∈{1,2}

⌊τ ⌋ (xi) ∧ ϕ[xi/y]

T{y :: T | ϕ}U(x1,x2) ≜ TTU(x1,x2) ∧ ϕ[x1/y1][x2/y2]

TΠ(y : τ).σU(x) ≜
∧

i ∈{1,2}

∀y.⌊τ ⌋ (y) ⇒ ⌊σ ⌋ (xy)

TΠ(y :: T).UU(x1,x2) ≜ ∀y1y2.TTU(y1,y2) ⇒ TσU(x1y1, x2y2)

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 21. Publication date: September 2017.

21:18 Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub

The predicate All2 relates two lists elementwise and is defined axiomatically:

All2([], [], λx1.λx2.ϕ)

∀h1h2t1t2.All(t1, t2, λx1.λx2.ϕ) ⇒ ϕ (h1,h2) ⇒ All(h1 :: t1,h2 :: t2, λx1.λx2.ϕ)

To extend the embedding to contexts, we need to duplicate every variable in them:

|x :: T , Γ | ≜ x1,x2 : |T |, |Γ | Tx :: T , ΓU ≜ TTU(x1,x2),TΓU

Now we state the main result:

Theorem 13 (Soundness of embedding). If Γ ⊢ t1 ∼ t2 :: T , then |Γ | | TΓU ⊢ t1 : |T | ∼ t2 : |T | |
TTU(r1, r2) Also, if Γ ⊢ T ⪯ U then |Γ |,x1,x2 : |T | | TΓU,TTU(x1,x2) ⊢ TUU(x1.x2).

Proof. The proof proceeds by induction on the structure of derivations. □

Soundness of relational refinement types w.r.t. set-theoretical semantics follows immediately

from Theorem 13 and the set-theoretical soundness of RHOL (Corollary 7).

Corollary 14 (Soundness of relational refinement types). If Γ ⊢ t1 ∼ t2 :: T , then for every

valuation θ |= Γ we have (Lt1Mθ , Lt2Mθ) ∈ LT Mθ .

6.3 Dependency Core Calculus
The Dependency Core Calculus (DCC) [Abadi et al. 1999] is a higher-order calculus with a type

system that tracks data dependencies. DCC was designed as a unifying framework for dependency

analysis and it was shown that many other calculi for information flow analysis [Heintze and Riecke

1998; Volpano et al. 1996], binding-time analysis [Hatcliff and Danvy 1997], and program slicing,

all of which track dependencies, can be embedded in DCC. Here, we show how a fragment of DCC

can be embedded into RHOL. Transitively, the corresponding fragments of all the aforementioned

calculi can also be embedded in RHOL. (The fragment of DCC we consider excludes recursive

functions. DCC admits general recursive functions, while our definition of RHOL only admits a

subset of these. Extending the embedding to recursive functions admitted by RHOL is not difficult.)

DCC is an extension of the simply typed lambda-calculus with a monadic type family Tℓ (τ),
indexed by labels ℓ, which are elements of a lattice. Unlike other uses of monads, DCC’s monad

does not encapsulate any effects. Instead, its only goal is to track dependence. The type system

forces that the result of an expression of type Tℓ (τ) can depend on an expression of type Tℓ′ (τ
′)

only if ℓ′ ⊑ ℓ in the lattice. Dually, if ℓ′ @ ℓ, then even if an expression e of type Tℓ (τ) mentions a

variable x of type Tℓ′ (τ
′), then e’s result must be independent of the substitution provided for x

during evaluation.

For simplicity and without any loss of generality, we consider here only a two point lattice {L,H }
with L ⊏ H . The syntax of DCC’s types and expressions is shown below. We use e to denote DCC

expressions, to avoid confusion with HOL’s expressions.

τ ::= B | τ → τ | τ × τ | Tℓ (τ)
e ::= x | λx .e | e1 e2 | tt | ff | case e of tt 7→ et ;ff 7→ ef | ⟨e1, e2⟩ | π1 (e) | π2 (e) | ηℓ (e)

| bind(e1,x .e2)

Here, ηℓ (e) and bind(e1,x .e2) are respectively the return and bind constructs for the monad Tℓ (τ).
Typing rules for these two constructs are shown below. Typing rules for the remaining constructs

are the standard ones.

Γ ⊢ e : τ

Γ ⊢ ηℓ (e) : Tℓ (τ)

Γ ⊢ e1 : Tℓ (τ1) Γ,x : τ1 ⊢ e2 : τ2 τ2 ↘ ℓ

Γ ⊢ bind(e1,x .e2) : τ2

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 21. Publication date: September 2017.

A Relational Logic for Higher-Order Programs 21:19

The crux of the dependency tracking is the relation τ2 ↘ ℓ in the premise of the rule for bind.
The relation, read “τ2 protected at level ℓ” and defined below, informally means that all primitive

(boolean) values extractable from e2 are protected by a monadic construct of the form Tℓ′ (τ), with
ℓ ⊑ ℓ′. Hence, the rule forces that the result obtained by eliminating the type Tℓ (τ1) flow only into

types protected at ℓ in this sense.

ℓ ⊑ ℓ′

Tℓ′ (τ) ↘ ℓ

τ ↘ ℓ

Tℓ′ (τ) ↘ ℓ

τ1 ↘ ℓ τ2 ↘ ℓ

τ1 × τ2 ↘ ℓ

τ2 ↘ ℓ

τ1 → τ2 ↘ ℓ

This fragment of DCC has a relational set-theoretic interpretation. For every type τ , we define a
carrier set |τ |:

|B| ≜ B |τ1 → τ2 | ≜ |τ1 | → |τ2 | |τ1 × τ2 | ≜ |τ1 | × |τ2 | |Tℓ (τ) | ≜ |τ |

Next, every type τ is interpreted as a lattice-indexed family of relations ⌊τ ⌋a ⊆ |τ | × |τ |. The role of
the lattice element a is that it defines what can be observed in the system. Specifically, an expression

of type Tℓ (τ) can be observed only if ℓ ⊑ a. When ℓ @ a, expressions of type Tℓ (τ) look like

“black-boxes”. Technically, we force ⌊Tℓ (τ)⌋a = |τ | × |τ | when ℓ @ a. DCC’s typing rules are sound

with respect to this model. The soundness implies that if ℓ @ ℓ′ and x : Tℓ (B) ⊢ e : Tℓ′ (B), then for

e1, e2 : Tℓ (B), e[e1/x] and e[e2/x] are equal booleans in the set-theoretic model. This result, called

noninterference, formalizes that DCC’s dependency tracking is correct.

To translate DCC to RHOL, we actually embed this set-theoretic model in RHOL. We start by

defining an erasing translation, |τ |, from DCC’s types into RHOL’s simple types. This translation is

exactly the same as the definition of carrier sets shown above, except that we treat × and→ as

RHOL’s syntactic type constructs instead of set-theoretic constructs. Next, we define an erasure of

terms:

|tt| ≜ tt |ff | ≜ ff |case e of tt 7→ et ;ff 7→ ef | ≜ case |e | of tt 7→ |et |;ff 7→ |ef | |x | ≜ x

|λx .e | ≜ λx .|e | |e1 e2 | ≜ |e1 | |e2 | |⟨e1, e2⟩| ≜ ⟨|e1 |, |e2 |⟩ |π1 (e) | ≜ π1 (|e |)

|π2 (e) | ≜ π2 (|e |) |ηℓ (e) | ≜ |e | |bind(e1,x .e2) | ≜ (λx .|e2 |) |e1 |

It is fairly easy to see that if ⊢ e : τ in DCC, then ⊢ |e | : |τ |. Next, we define the lattice-indexed family

of relations ⌊τ ⌋a in HOL. For technical convenience, we write the relations as logical assertions,

indexed by variables x ,y representing the two terms to be related.

⌊B⌋a (x ,y) ≜ (x = tt ∧ y = tt) ∨ (x = ff ∧ y = ff)

⌊τ1 → τ2⌋a (x ,y) ≜ ∀v,w . ⌊τ1⌋a (v,w) ⇒ ⌊τ2⌋a (x v,y w)

⌊τ1 × τ2⌋a (x ,y) ≜ ⌊τ1⌋a (π1 (x),π1 (y)) ∧ ⌊τ2⌋a (π2 (x),π2 (y))

⌊Tℓ (τ)⌋a (x ,y) ≜

{
⌊τ ⌋a (x ,y) ℓ ⊑ a
⊤ ℓ @ a

The most important clause is the last one: When ℓ @ a, any two x ,y are in the relation ⌊Tℓ (τ)⌋a .
This generalizes to all protected types in the following sense.

Lemma 15. If ℓ @ a and τ ↘ ℓ, then ⊢ ∀x ,y.(⌊τ ⌋a (x ,y) ≡ ⊤) in HOL.

The translations extend to contexts as follows:

|x1 : τ1, . . . ,x
n
: τn | ≜ x1

1
: |τ1 |,x

1

2
: |τ1 |, . . . ,x

n
1
: |τn |,x

n
2
: |τn |

⌊x1 : τ1, . . . ,x
n
: τn⌋a ≜ ⌊τ1⌋a (x11 ,x

1

2
), . . . , ⌊τn⌋a (x

n
1
,xn

2
)

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 21. Publication date: September 2017.

21:20 Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub

The following theorem states that the whole translation is sound: It preserves well-typedness. In

the statement of the theorem, |e |1 and |e |2 replace each variable x in |e | with x1 and x2, respectively.

Theorem 16 (Soundness of embedding). If Γ ⊢ e : τ in DCC, then for all a ∈ {L,H }: |Γ | | ⌊Γ⌋a ⊢
|e |1 : |τ | ∼ |e |2 : |τ | | ⌊τ ⌋a (r1, r2).

DCC’s noninterference theorem is a corollary of this theorem and the soundness of RHOL in set

theory.

6.4 Relational Cost
RelCost [Çiçek et al. 2017] is a relational refinement type-and-effect system designed to reason

about relative cost—the difference in the execution costs of two similar programs or of two runs

of the same program on two different inputs. RelCost combines reasoning about the maximum

and minimum costs of a single program with relational reasoning about the relative cost of two

programs. RelCost is based on the observation that relational reasoning about structurally related

expressions can improve precision in reasoning about the relative cost, but if this approach fails

one can always fall back to establishing an upper bound on the relative cost the difference of the

maximum cost of one program and the minimum cost of the other. Here, we show how a fragment

of RelCost can be embedded into RHOL. Similar to what we did for DCC, to just convey the main

intuition, we consider a fragment of RelCost excluding recursive functions. The syntax of RelCost

is based on two sorts of types:

A ::= N | listA[n] | A
exec(k,l)
−−−−−−−→ A | ∀i

exec(k,l)
:: S .A (unary types)

τ ::= Nr | listτ [n]α | τ
diff(k)
−−−−−→ τ | ∀i

diff(k)
:: S . τ | UA | □τ (relational types)

Unary types are used to type one program and they are mostly standard except for the effect

annotation exec(k, l) on arrow types and universally quantified types representing the min and

max cost k and l of the body of the closure, respectively. Relational types ascribe two programs,

so they are interpreted as pairs of expressions. In relational types, arrow types and universally

quantified types have an effect annotation diff(k) representing the relative cost k of the two closures.

Besides, the superscript α refines list types with the number of elements that can differ in two lists.

The type UA is the weakest relation over elements of the unary type A, i.e. it can be used to type

two arbitrary terms, while the type □τ is the diagonal subrelation of τ , i.e. it can be used to type

only two terms that are equal. There are two kinds of typing judgments, unary and relational:

∆;Φ;Ω ⊢lk t : A ∆;Φ; Γ ⊢ t1 ⊖ t2 ≲ l : τ

The unary judgment states that the execution cost of t is lower bounded by k and upper bounded

by l , and the expression t has the unary type A. The relational judgment states that the relative

cost of t1 with respect to t2 is upper bounded by l and the two expressions have the relational type

τ . Here Ω is a unary type environment, Γ is a relational type environment, ∆ is an environment for

index variables and Φ for assumed constraints over the index terms. Figure 10 shows selected rules.

To embed RelCost in RHOL, we define a monadic-style cost-instrumented translation of RelCost

types. The translation is given in two-steps: First, we define an erasure of cost and size information

into simple types and then we define a cost-passing style translation of simple types with a value-

translation and an expression-translation. The erasure function is defined as follows:

|N| ≜ |Nr | ≜ N |listA[n]| ≜ |listA[n]α | ≜ list |A | |UA| ≜ |□A| ≜ |A|

|∀i
exec(k,l)

:: S .A| ≜ |∀i
diff(k)
:: S .A| ≜ N→ |A| |A

diff(k)
−−−−−→ B | ≜ |A

exec(k,l)
−−−−−−−→ B | ≜ |A| → |B |

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 21. Publication date: September 2017.

A Relational Logic for Higher-Order Programs 21:21

var

Ω(x) = A

∆;Φa ;Ω ⊢
0

0
x : A

const

∆;Φa ;Ω ⊢
0

0
n : int

lam

∆;Φa ;x : A1,Ω ⊢
l
k t : A2

∆;Φa ;Ω ⊢
0

0
λx .t : A1

exec(k,l)
−−−−−−−→ A2

app

∆;Φa ;Ω ⊢
l1
k1

t1 : A1

exec(k,l)
−−−−−−−→ A2 ∆;Φa ;Ω ⊢

l2
k2

t2 : A1

∆;Φa ;Ω ⊢
l1+l2+l+capp
k1+k2+k+capp

t1 t2 : A2

r-var

Γ(x) = τ

∆;Φa ; Γ ⊢ x ⊖ x ≲ 0 : τ
r-const

∆;Φa ; Γ ⊢ n ⊖ n ≲ 0 : intr

r-cons1

∆;Φa ; Γ ⊢ t1 ⊖ t
′
1
≲ l1 : τ ∆;Φa ; Γ ⊢ t2 ⊖ t

′
2
≲ l2 : listτ [n]α

∆;Φa ; Γ ⊢ cons(t1, t2) ⊖ cons(t ′
1
, t ′
2
) ≲ l1 + l2 : listτ [n + 1]α+1

r-cons2

∆;Φa ; Γ ⊢ t1 ⊖ t
′
1
≲ l1 : □τ ∆;Φa ; Γ ⊢ t2 ⊖ t

′
2
≲ l2 : listτ [n]α

∆;Φa ; Γ ⊢ cons(t1, t2) ⊖ cons(t ′
1
, t ′
2
) ≲ l1 + l2 : listτ [n + 1]α

r-caseL

∆;Φa ; Γ ⊢ t ⊖ t
′ ≲ l : listτ [n]α ∆;Φa ∧ n = 0; Γ ⊢ t1 ⊖ t

′
1
≲ l ′ : τ ′

i,∆;Φa ∧ n = i + 1;h : □τ , tl : listτ [i]α , Γ ⊢ t2 ⊖ t ′2 ≲ l ′ : τ ′

i, β,∆;Φa ∧ n = i + 1 ∧ α = β + 1;h : τ , tl : listτ [i]β , Γ ⊢ t2 ⊖ t ′2 ≲ l ′ : τ ′

∆;Φa ; Γ ⊢
case t of nil → t1

| h :: tl → t2
⊖

case t ′ of nil → t ′
1

| h :: tl → t ′
2

≲ l + l ′ : τ ′

r-lam

∆;Φa ;x : τ1, Γ ⊢ t1 ⊖ t2 ≲ l : τ2

∆;Φa ; Γ ⊢ λx .t1 ⊖ λx .t2 ≲ 0 : τ1
diff(l)
−−−−→ τ2

r-app

∆;Φa ; Γ ⊢ t1 ⊖ t
′
1
≲ l1 : τ1

diff(l)
−−−−→ τ2

∆;Φa ; Γ ⊢ t2 ⊖ t
′
2
≲ l2 : τ1

∆;Φa ; Γ ⊢ t1 t2 ⊖ t
′
1
t ′
2
≲ l1 + l2 + l : τ2

r-iLam

i :: S,∆;Φa ; Γ ⊢ t ⊖ t
′ ≲ l : τ

i < FIV(Φa ; Γ)

∆;Φa ; Γ ⊢ Λt ⊖ Λt ′ ≲ 0 : ∀i
diff(l)
:: S . τ

r-iApp

∆;Φa ; Γ ⊢ t ⊖ t
′ ≲ l : ∀i

diff(l ′)
:: S . τ

∆ ⊢ J : S

∆;Φa ; Γ ⊢ t[] ⊖ t
′
[] ≲ l + l ′[J/i] : τ {J/i}

nochange

∆;Φa ; Γ ⊢ t ⊖ t ≲ l : τ
∀x ∈ dom(Γ). ∆;Φa |= Γ(x) ⊑ □ Γ(x)

∆;Φa ; Γ, Γ
′
;Ω ⊢ t ⊖ t ≲ 0 : □τ

switch

∆;Φa ; Γ ⊢
l1
k1

t1 : A ∆;Φa ; Γ ⊢
l2
k2

t2 : A

∆;Φa ; Γ ⊢ t1 ⊖ t2 ≲ l1 − k2 : U A

Fig. 10. RelCost Unary and Relational Typing (Selected Rules)

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 21. Publication date: September 2017.

21:22 Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub

LxM ≜ (x , 0) Lλx .tM ≜ (λx .LtM, 0) LΛ.tM ≜ (λ_.LtM, 0)

LtuM ≜ letx = LtM in lety = LuM in let z = π1 (x) π1 (y) in (π1 (z),π2 (x) + π2 (y) + π2 (z) + capp)

Lt[]M ≜ letx = LtM in lety = π1 (x) 0 in (π1 (y),π2 (x) + π2 (y) + ciapp) LnilM ≜ (nil, 0)

Lcons(t1, t2)M ≜ letx = Lt1M in lety = Lt2M in (π1 (x) :: π1 (y),π2 (x) + π2 (y))

L case t ′ of nil → t ′
1
| h :: tl → t ′

2
M ≜

letx = Lt ′M in case π1 (x) of
nil → lety = Lt ′

1
M in (π1 (y),π2 (x) + π2 (y) + ccase)

| h :: tl → lety = Lt ′
2
M in (π1 (y),π2 (x) + π2 (y) + ccase)

Fig. 11. Cost-instrumented translation of expressions.

The cost-passing style translation of simple types is

LNMv ≜ N LlistAMv ≜ listLAMv LA→ BMv ≜ LAMv → LBMe LAMe ≜ LAMv × N

Guided by the translation of types above we can provide a cost-instrumented translation of simply-

typed λ-expressions (Figure 11). This translation maps an expression of the simple type τ to an

expression of type τ × N, where the second component is the number of reduction steps under an

eager, call-by-value reduction strategy (which is the semantics of RelCost). It is fairly easy to see

that this translation preserves typability and that it counts steps accurately.

However, this translation forgets the cost and size information in types. To recover these,

we define a HOL formula for every unary type. But, first, we define axiomatically a predicate

listU(n, l , P) that captures size information about lists:

∀l , P .listU(0, l , P) ≡ l = []

∀n, l , P .listU(n + 1, l , P) ≡ ∃w1,w2.l = w1 :: w2 ∧ P (w1) ∧ listU(n,w2, P)

We can now define a HOL formula inductively on unary types.

⌊N⌋v (x) ≜ ⊤ ⌊listA[n]⌋v (x) ≜ listU(n,x , ⌊A⌋v)

⌊A
exec(k,l)
−−−−−−−→ B⌋v (x) ≜ ∀y.⌊A⌋v (y) ⇒ ⌊B⌋

k,l
e (xy)

⌊∀i
exec(k,l)

:: S .A⌋v (x) ≜ ∀y.⊤ ⇒ ∀i .⌊A⌋
k,l
e (xy) ⌊A⌋k,le (x) ≜ ⌊A⌋v (π1x) ∧ k ≤ π2x ≤ l

The type translation can also be extended to type environments: L|x1 : A1, . . . ,xn : An |M = x1 :

L|A1 |Mv , . . . ,xn : L|An |Mv Similarly, we can associate to a type environment an HOL context that we

can use to recover the cost and size information: ⌊x1 : A1, . . . ,xn : An⌋ = ⌊A1⌋v (x1), . . . , ⌊An⌋v (xn).
Now we can provide a cost-instrumented translation of unary judgments.

Theorem 17. If ∆;Φ;Ω ⊢lk t : A, then: L|Ω |M,∆ | Φ, ⌊Ω⌋ ⊢ LtM : L|A|Me | ⌊A⌋k,le (r)

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 21. Publication date: September 2017.

A Relational Logic for Higher-Order Programs 21:23

For the embedding of cost and size information in the relational case we first define a predicate

listR(n, l1, l2,a, P) in HOL axiomatically:

∀l1, l2,a, P .listR(0, l1, l2,a, P) ≡ l1 = l2 = []

∀n, l1, l2,a, P .listR(n + 1, l1, l2,a, P) ≡
∃w1, z1,w2, z2.l1 = w1 :: w2 ∧ l2 = z1 :: z2 ∧ P (w1, z1)∧

(((w1 = z1) ∧ listR(n,w2, z2,a, P))∨
(a > 0 ∧ ∃b . a = b + 1 ∧ listR(n,w2, z2,b, P)))

Let τ denote RelCost’s erasure of the binary type τ to a unary type.
2
This erasure maps listτ [n]α

to listτ [n], τ
diff(l)
−−−−→ σ to τ

exec(0,∞)
−−−−−−−→ σ , etc. Next, we define HOL formulas for the binary types.

TNUv (x ,y) ≜ x = y TUAUv (x ,y) ≜ ⌊A⌋v (x) ∧ ⌊A⌋v (y)

T□τUv (x ,y) ≜ (x = y) ∧ (TτUv (x ,y)) Tτ
diff(l)
−−−−→ σUv (x ,y) ≜

⌊τ
exec(0,∞)
−−−−−−−→ σ ⌋v (x) ∧ ⌊τ

exec(0,∞)
−−−−−−−→ σ ⌋v (y) ∧ (∀z1, z2.TτUv (z1, z2) ⇒ TσUle (xz1,yz2))

T∀i
diff(l)
:: S . τUv (x ,y) ≜

⌊∀i
exec(0,∞)

:: S . τ ⌋v (x) ∧ ⌊∀i
exec(0,∞)

:: S . τ ⌋v (y) ∧ (∀z1z2.⊤ ⇒ ∀i .TτUle (xz1,yz2))

Tlistτ [n]αUv (x ,y) ≜ listR(n,x ,y,α ,TτUv) TτUle (x ,y) ≜ TτUv (π1x ,π1y) ∧ (π2x − π2y ≤ l)

The type translation can also be extended to relational type environments pointwise: ∥x1 :

τ1, . . . ,x
n
: τn ∥ ≜ x1

1
: L|τ1 |Mv ,x12 : L|τ1 |Mv , . . . ,xn

1
: L|τn |Mv ,xn

2
: L|τn |Mv We also need to derive

from a type relational environment an HOL context that remembers the cost and size information:

Tx1 : τ1, . . . ,x
n
: τnU≜Tτ1Uv (x11 ,x

1

2
), . . . ,TτnUv (xn

1
,xn

2
). Now we can provide the translation of

relational judgments.

Theorem 18. If ∆;Φ; Γ ⊢ t1 ⊖ t2 ≲ l : τ , then: ∥Γ∥,∆ | Φ,TΓU ⊢ Lt1M1 : L|τ |Me ∼ Lt2M2 : L|τ |Me |
TτUle (r1, r2), where Lti Mj is a copy of ti where each variable x is replaced by a variable x j for
j ∈ {1, 2}.

RelCost’s type-soundness theorem can be derived from Theorem 18 and the soundness of RHOL

in set theory.

7 EXAMPLES
We present some illustrative examples to show how RHOL’s rules work in practice. Our first

example shows the functional equivalence of two recursive functions that are synchronous—they

perform the same number of recursive calls. The second example shows the equivalence of two

asynchronous recursive functions. Our third example illustrates reasoning about the relative cost

of two programs, using an encoding similar to that of RelCost, but the example cannot be verified

in RelCost itself.

2
In RelCost, this erasure is written |τ |. We use a different notation to avoid confusion with our own erasure function from

RelCost’s types to simple types.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 21. Publication date: September 2017.

21:24 Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub

7.1 First Example: Factorial
We show that the two following standard implementations of factorial, with and without an

accumulator, are functionally equivalent:

fact1 ≜ letrec f1 n1 = case n1 of 0 7→ 1; S 7→ λx1.(S x1) ∗ (f1 x1)

fact2 ≜ letrec f2 n2 = λacc .case n2 of 0 7→ acc; S 7→ λx2. f2 x2 ((S x2) ∗ acc)

Our goal is to prove that:

∅ | ∅ ⊢ fact1 : N→ N ∼ fact2 : N→ N→ N | ∀n1n2.n1 = n2 ⇒ ∀acc .(r1 n1) ∗ acc = r2 n2 acc

The proof starts by applying [LETREC] rule, which has its main premise:

Ψ ⊢
case n1 of
0 7→ 1;

S 7→ λx1.(S x1) ∗ (f1 x1)
∼

λacc . case n2 of
0 7→ acc;
S 7→ λx2. f2 x2 ((S x2) ∗ acc)

| ∀acc .r1 ∗ acc = r2 acc

where Ψ ≜ n1 = n2,∀y1y2.(y1,y2) < (n1,n2) ⇒ y1 = y2 ⇒ ∀a.(f1 y1) ∗ a = f2 y2 a.
To prove this, we start by applying the one-sided [ABS-R] rule, with a trivial condition on acc .

Then we can apply a two-sided [CASE] rule, which has 3 premises:

• Ψ ⊢ n1 = 0⇔ n2 = 0

• Ψ,n1 = 0,n2 = 0 ⊢ 1 ∼ acc | r1 ∗ acc = r2
• Ψ ⊢ λx1.(S x1) ∗ (f1 x1) ∼ λx2. f2 x2 ((S x2) ∗ acc) | ∀x1x2.n1 = S x1 ⇒ n2 = S x2 ⇒
(r1 x1) ∗ acc = r2 x2

Premise 1 is a direct consequence of the assertion n1 = n2 in Ψ. Premise 2 is a trivial arithmetic

identity which can be proven in HOL (using rule SUB or by invoking Theorem 6). To prove premise

3, we first apply the (two-sided) [ABS] rule, which leaves the following proof obligation:

Ψ,n1 = S x1,n2 = S x2 ⊢ (S x1) ∗ (f1 x1) ∼ f2 x2 ((S x2) ∗ acc) | r1 ∗ acc = r2

This is proven in HOL by instantiating the inductive hypothesis in Ψ with y1 7→ x1,y2 7→ x2,a 7→
(S x1) ∗ acc .

7.2 Second Example: Take and Map
This example establishes the equivalence of two programs that compute the same result, but using

different number of recursive calls. Consider the following function take that takes a list l and a

natural number n and returns the first n elements of the list (or the whole list if its length is less

than n).

take ≜ letrec f1 l1 = λn1. case l1 of [] 7→ []

_ :: _ 7→ λh1t1. case n1 of 0 7→ []

S 7→ λy1.h1 :: (f1 t1 y1)

Next, consider the standard function map that applies a function д to every element of a list l
pointwise.

map ≜ letrec f2 l2 = λд2. case l2 of [] 7→ []

; _ :: _ 7→ λh2t2.(д2 h2) :: (f2 t2 д2)

Intuitively, it should be clear that for all д,n, l ,map (take l n) д = take (map l д) n (mapping д
over the first n elements of the list is the same as mapping over the whole list and then taking the

first n elements). However, the computations on the two sides of the equality are very different:

For a list l of length more than n,map (take l n) д only examines the first n elements, whereas

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 21. Publication date: September 2017.

A Relational Logic for Higher-Order Programs 21:25

take (map l д) n traverses the whole list. In the following we formalize this property in RHOL

(Theorem 19) and outline the high-level idea of the proof. The full proof is in the appendix.

Theorem 19. l1, l2 : listN,n1,n2 : N,д1,д2 : N→ N | l1 = l2,n1 = n2,д1 = д2 ⊢
map (take l1 n1) д1 : listN ∼ take (map l2 д2) n2 : listN | r1 = r2

Proof idea. Since the two sides make an unequal number of recursive calls, we need to reason

asynchronously on the two sides (specifically, we use the rule [LLCASE-A]). However, equality
cannot be established inductively with asynchronous reasoning: If two function applications are to

be shown equal, and a recursion step is taken in only one of them, then the induction hypothesis

cannot be applied. So, we strengthen the induction hypothesis, replacing the assertion r1 = r2 in
the theorem statement with r1 ⊑ r2 ∧ |r1 | = min(n1, |l1 |) ∧ |r2 | = min(n2, |l2 |) where ⊑ denotes the

prefix ordering on lists and | · | is the list length function. This assertion implies r1 = r2 and can be

established inductively. The full proof is in the appendix, but at a high-level, the proof requires

proving two judgments, one for the inner map-take pair and another for the outer one:

• Ψ ⊢ take l1 n1 ∼map l2 д2 | r1 ⊑д2 r2
• Ψ ⊢ map ∼ take | ∀m1m2.m1 ⊑д2 m2 ⇒ (∀д1.д1 = д2 ⇒ ∀x2.x2 ≥ |m1 | ⇒ (r1 m1 д1) ⊑
(r2 m2 x2))

wherem1 ⊑д m2 is an axiomatically defined predicate equivalent to (mapm1 д) ⊑m2 and Ψ are the

assumptions in the statement of the theorem (in particular, l1 = l2). The proof of the first premise

proceeds by an analysis ofmap using synchronous rules. For the second premise, after applying

[LETREC] we apply the asynchronous [LLCASE-A] rule, and then prove the following premises:

(1) Ψ,Φ,x2 ≥ |m1 |,д1 = д2,m1 = [],m2 = [] ⊢ [] ∼ [] | r1 ⊑ r2
(2) Ψ,Φ,x2 ≥ |m1 |,д1 = д2,m1 = [] ⊢ [] ∼ λh2t2.case x2 of 0 7→ []; S 7→ λy2.h2 :: f2 t2 y2 |
∀h2t2.m2 = h2 :: t2 ⇒ r1 ⊑ (r2 h2 t2)

(3) Ψ,Φ,x2 ≥ |m1 |,д1 = д2,m2 = [] ⊢ λh1t1.(д1 h1) :: (f1 t1 д1) ∼ [] | ∀h1t1.m1 = h1 :: t1 ⇒
(r1 h1 t1) ⊑ r2

(4) Ψ,Φ,x2 ≥ |m1 |,д1 = д2 ⊢ λh1t1.(д1 h1) :: (f1 t1 д1) ∼ λh2t2.case x2 of 0 7→ []; S 7→ λy2.h2 ::
f2 t2 y2 | ∀h1t1h2t2.m1 = h1 :: t1 ⇒m2 = h1 :: t1 ⇒ (r1 h1 t1) ⊑ (r2 h2 t2)

where Φ is the inductive hypothesis obtained from the [LETREC] application. The first two premises

follow directly from the definition of ⊑, while the third one follows from the contradictory as-

sumptionsm1 ⊑д m2,m1 = h1 :: t1 andm2 = []. The last premise is proved by first applying the

[NATCASE-R] rule and then applying the induction hypothesis. □

7.3 Third Example: Insertion Sort
Insertion sort is a standard sorting algorithm that sorts a list h :: t by sorting the tail t recursively
and then inserting h at the appropriate position in the sorted tail. Consider the following imple-

mentations of the insertion function, insert, and the insertion sort function, isort, each returning a

pair, whose first element is the usual output list (inserted list for insert and sorted list for isort) and
whose second element is the number of comparisons made during the execution (assuming an eager,

call-by-value evaluation strategy).

insert ≜ λx . letrec insert l = case l of [] 7→ ([x], 0);
_ :: _ 7→ λh t . case x ≤ h of

tt 7→ (x :: l , 1);
ff 7→ let s = insert t in

(h :: (π1 s), 1 + (π2 s))

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 21. Publication date: September 2017.

21:26 Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub

isort ≜ letrec isort l = case l of [] 7→ ([], 0);
_ :: _ 7→ λh t . let s = isort t

let s ′ = insert h (π1 s) in
(π1 s

′, (π2 s) + (π2 s
′))

Using this implementation, we prove the following interesting fact about insertion sort: Among all

lists of the same length, insertion sort computes the fastest (with fewest comparisons) on lists that

are already sorted. This is a property about the relational cost of insertion sort (on two different

inputs), which cannot be established in RelCost. To state the property in RHOL, we define a list

predicate sorted(l) in HOL axiomatically:

sorted([]) ≡ ⊤ ∀h t . sorted(h :: t) ≡ (sorted(t) ∧ h ≤ lmin(t))

where the function lmin(l) returns the minimum element of l :

lmin ≜ letrec f l = case l of [] 7→ ∞; _ :: _ 7→ λh t .min(h, f t)

As in the previous example, let | · | be the standard list length function. The property of insertion sort

mentioned above is formalized in the following theorem. In words, the theorem says that if isort is
executed on lists x1 and x2 of the same length and x1 is sorted, then the number of comparisons

made during the sorting of x1 is no more than the number of comparisons made during the sorting

of x2.

Theorem 20. Let τ ≜ listN → listN. Then, • | • ⊢ isort : τ ∼ isort : τ | ∀x1 x2. (sorted(x1) ∧ |x1 | =
|x2 |) ⇒ π2 (r1 x1) ≤ π2 (r2 x2).

A full proof is shown in the appendix. The proof proceeds mostly synchronously in the two sides.

Following the structure of isort, we apply the rules [LETREC], [LISTCASE] and [APP] + [ABS] (for
the let binding, which, as usual, is defined as a function application), followed by an application

of the inductive hypothesis for the recursive call to isort . Eventually, we expose the call to insert
on both sides. At this point, the observation is that since x1 is already sorted, its head element

must be no greater than all elements in its tail, so insert must return immediately with at most 1

comparison on the x1 side. Formally, this last proof step can be completed by switching to either

UHOL or HOL and using subject conversion; we switch to HOL in the appendix.

8 CONCLUSION
We have developed Relational Higher-Order Logic, a new formalism to reason about relational

properties of (pure) higher-order programs written in a simply typed λ-calculus with inductive

types and recursive definitions. The system is expressive, has solid foundations via an equivalence

with Higher-Order Logic, and yet retains the (nice) “feel” of relational refinement type systems. An

important direction for future work is to extend Relational Higher-Order Logic to effectful programs.

Natural directions include integrating the state monad, and the Giry monad for probability sub-

distributions. One particularly exciting perspective is to broaden the scope of relational cost analysis

to probabilistic programs, and to prove relational costs for different data structures. There are also

many potential applications to security, differential privacy, machine learning, and probabilistic

programming.

For practical purposes, it will also be interesting to build prototype implementations of Relational

Higher-Order Logic. We believe that much of the technology developed for (relational) refinement

types, and in particular the automated generation of verification conditions (maybe with user hints

to switch between unary and binary modes of reasoning) and the connection to SMT-solvers can

be lifted without significant hurdle to Relational Higher-Order Logic.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 21. Publication date: September 2017.

A Relational Logic for Higher-Order Programs 21:27

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their helpful and thoughtful comments. This article is based

on research that has been supported, in part, by NSF under grant TWC-1565365.

REFERENCES
Martín Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. 1999. A Core Calculus of Dependency. In POPL ’99,

Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Antonio, TX,
USA, January 20-22, 1999. 147–160. DOI:http://dx.doi.org/10.1145/292540.292555

Martín Abadi, Luca Cardelli, and Pierre-Louis Curien. 1993. Formal Parametric Polymorphism. In Conference Record of
the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Charleston, South
Carolina, USA, January 1993. 157–170. DOI:http://dx.doi.org/10.1145/158511.158622

Peter Aczel and Nicola Gambino. 2000. Collection Principles in Dependent Type Theory. In Types for Proofs and Programs,
International Workshop, TYPES 2000, Durham, UK, December 8-12, 2000, Selected Papers (Lecture Notes in Computer
Science), Paul Callaghan, Zhaohui Luo, James McKinna, and Robert Pollack (Eds.), Vol. 2277. Springer, 1–23. DOI:
http://dx.doi.org/10.1007/3-540-45842-5_1

Peter Aczel and Nicola Gambino. 2006. The generalised type-theoretic interpretation of constructive set theory. J. Symb.
Log. 71, 1 (2006), 67–103. DOI:http://dx.doi.org/10.2178/jsl/1140641163

Robin Adams and Zhaohui Luo. 2010. Classical predicative logic-enriched type theories. Ann. Pure Appl. Logic 161, 11 (2010),
1315–1345. DOI:http://dx.doi.org/10.1016/j.apal.2010.04.005

Bowen Alpern and Fred B. Schneider. 1985. Defining Liveness. Inf. Process. Lett. 21, 4 (1985), 181–185. DOI:http://dx.doi.org/
10.1016/0020-0190(85)90056-0

Kazuyuki Asada, Ryosuke Sato, and Naoki Kobayashi. 2016. Verifying relational properties of functional programs by

first-order refinement. Science of Computer Programming (2016).

Gilles Barthe, Juan Manuel Crespo, and César Kunz. 2011. Relational Verification Using Product Programs. In FM 2011:
Formal Methods - 17th International Symposium on Formal Methods, Limerick, Ireland, June 20-24, 2011. Proceedings.
200–214. DOI:http://dx.doi.org/10.1007/978-3-642-21437-0_17

Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. 2004. Secure Information Flow by Self-Composition. In 17th IEEE
Computer Security Foundations Workshop, (CSFW-17 2004), 28-30 June 2004, Pacific Grove, CA, USA. 100–114. DOI:
http://dx.doi.org/10.1109/CSFW.2004.17

Gilles Barthe, Cédric Fournet, Benjamin Grégoire, Pierre-Yves Strub, Nikhil Swamy, and Santiago Zanella Béguelin. 2014.

Probabilistic relational verification for cryptographic implementations. In Proceedings of the 41st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL’14, Suresh Jagannathan and Peter Sewell (Eds.).

193–206.

Gilles Barthe, Marco Gaboardi, Emilio Jesús Gallego Arias, Justin Hsu, Aaron Roth, and Pierre-Yves Strub. 2015. Higher-order

approximate relational refinement types for mechanism design and differential privacy. In Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17,
2015, Sriram K. Rajamani and David Walker (Eds.). 55–68.

Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. 2009. Formal certification of code-based cryptographic

proofs. In Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2009,
Savannah, GA, USA, January 21-23, 2009. 90–101. DOI:http://dx.doi.org/10.1145/1480881.1480894

Gilles Barthe, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. 2017. Coupling proofs are probabilistic product

programs. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris,
France, January 18-20, 2017. 161–174. http://dl.acm.org/citation.cfm?id=3009896

Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella Béguelin. 2012. Probabilistic relational reasoning for

differential privacy. In Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2012, Philadelphia, Pennsylvania, USA, January 22-28, 2012. 97–110. DOI:http://dx.doi.org/10.1145/2103656.2103670

João Filipe Belo. 2007. Dependently Sorted Logic. In Types for Proofs and Programs, International Conference, TYPES 2007,
Cividale del Friuli, Italy, May 2-5, 2007, Revised Selected Papers (Lecture Notes in Computer Science), Marino Miculan, Ivan

Scagnetto, and Furio Honsell (Eds.), Vol. 4941. Springer, 33–50. DOI:http://dx.doi.org/10.1007/978-3-540-68103-8_3
Nick Benton. 2004. Simple relational correctness proofs for static analyses and program transformations.. In Proceedings of

the 31th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL’04, Neil D. Jones and Xavier

Leroy (Eds.). 14–25.

Lennart Beringer and Martin Hofmann. 2007. Secure information flow and program logics. In 20th IEEE Computer Security
Foundations Symposium, CSF 2007, 6-8 July 2007, Venice, Italy. IEEE Computer Society, 233–248. DOI:http://dx.doi.org/10.
1109/CSF.2007.30

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 21. Publication date: September 2017.

http://dx.doi.org/10.1145/292540.292555
http://dx.doi.org/10.1145/158511.158622
http://dx.doi.org/10.1007/3-540-45842-5_1
http://dx.doi.org/10.2178/jsl/1140641163
http://dx.doi.org/10.1016/j.apal.2010.04.005
http://dx.doi.org/10.1016/0020-0190(85)90056-0
http://dx.doi.org/10.1016/0020-0190(85)90056-0
http://dx.doi.org/10.1007/978-3-642-21437-0_17
http://dx.doi.org/10.1109/CSFW.2004.17
http://dx.doi.org/10.1145/1480881.1480894
http://dl.acm.org/citation.cfm?id=3009896
http://dx.doi.org/10.1145/2103656.2103670
http://dx.doi.org/10.1007/978-3-540-68103-8_3
http://dx.doi.org/10.1109/CSF.2007.30
http://dx.doi.org/10.1109/CSF.2007.30

21:28 Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub

Lionel Blatter, Nikolai Kosmatov, Pascale Le Gall, and Virgile Prevosto. 2017. Deductive Verification with Relational

Properties. In In Proc. of the 23th International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2017), Uppsala, Sweden. To Appear.

Ezgi Çiçek, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Jan Hoffmann. 2017. Relational cost analysis. In Proceedings of
the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France, January 18-20,
2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 316–329. http://dl.acm.org/citation.cfm?id=3009858

Michael R. Clarkson and Fred B. Schneider. 2008. Hyperproperties. In Proceedings of CSF’08. 51–65.
Derek Dreyer, Amal Ahmed, and Lars Birkedal. 2011. Logical Step-Indexed Logical Relations. Logical Methods in Computer

Science 7, 2 (2011). DOI:http://dx.doi.org/10.2168/LMCS-7(2:16)2011

Derek Dreyer, Georg Neis, Andreas Rossberg, and Lars Birkedal. 2010. A relational modal logic for higher-order stateful

ADTs. In Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2010,
Madrid, Spain, January 17-23, 2010. 185–198. DOI:http://dx.doi.org/10.1145/1706299.1706323

Joshua Dunfield and Frank Pfenning. 2004. Tridirectional typechecking. In Proceedings of the 31st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2004, Venice, Italy, January 14-16, 2004, Neil D. Jones and
Xavier Leroy (Eds.). ACM, 281–292. DOI:http://dx.doi.org/10.1145/964001.964025

Peter Dybjer. 1985. Program Verification in a Logical Theory of Constructions. In Functional Programming Languages and
Computer Architecture, FPCA 1985, Nancy, France, September 16-19, 1985, Proceedings (Lecture Notes in Computer Science),
Jean-Pierre Jouannaud (Ed.), Vol. 201. Springer, 334–349. DOI:http://dx.doi.org/10.1007/3-540-15975-4_46

Timothy S. Freeman and Frank Pfenning. 1991. Refinement Types for ML. In Proceedings of the ACM SIGPLAN’91 Conference
on Programming Language Design and Implementation (PLDI), Toronto, Ontario, Canada, June 26-28, 1991, David S. Wise

(Ed.). ACM, 268–277. DOI:http://dx.doi.org/10.1145/113445.113468
Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Narayan, and Benjamin C. Pierce. 2013. Linear dependent types for

differential privacy. In The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’13, Rome, Italy - January 23 - 25, 2013, Roberto Giacobazzi and Radhia Cousot (Eds.). ACM, 357–370. DOI:
http://dx.doi.org/10.1145/2429069.2429113

Neil Ghani, Fredrik Nordvall Forsberg, and Alex Simpson. 2016a. Comprehensive Parametric Polymorphism: Categorical

Models and Type Theory. In Foundations of Software Science and Computation Structures - 19th International Conference,
FOSSACS 2016, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven,
The Netherlands, April 2-8, 2016, Proceedings. 3–19. DOI:http://dx.doi.org/10.1007/978-3-662-49630-5_1

Neil Ghani, Fredrik Nordvall Forsberg, and Alex Simpson. 2016b. Comprehensive Parametric Polymorphism: Categorical

Models and Type Theory. In Foundations of Software Science and Computation Structures - 19th International Conference,
FOSSACS 2016, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven,
The Netherlands, April 2-8, 2016, Proceedings (Lecture Notes in Computer Science), Bart Jacobs and Christof Löding (Eds.),

Vol. 9634. Springer, 3–19. DOI:http://dx.doi.org/10.1007/978-3-662-49630-5_1
John Hatcliff and Olivier Danvy. 1997. A computational formalization for partial evaluation. Mathematical Structures in

Computer Science 7 (1997), 507–541.
Nevin Heintze and Jon G. Riecke. 1998. The SLam Calculus: Programming with Secrecy and Integrity. In POPL ’98, Proceedings

of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Diego, CA, USA, January
19-21, 1998. 365–377. DOI:http://dx.doi.org/10.1145/268946.268976

B. Jacobs. 1999. Categorical Logic and Type Theory. Number 141 in Studies in Logic and the Foundations of Mathematics.

North Holland, Amsterdam.

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris:

Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015.
637–650. DOI:http://dx.doi.org/10.1145/2676726.2676980

Morten Krogh-Jespersen, Kasper Svendsen, and Lars Birkedal. 2017. A relational model of types-and-effects in higher-order

concurrent separation logic. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, January 18-20, 2017. 218–231. http://dl.acm.org/citation.cfm?id=3009877

Paul-André Melliès and Noam Zeilberger. 2015. Functors are Type Refinement Systems. In Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17,
2015, Sriram K. Rajamani and David Walker (Eds.). ACM, 3–16. DOI:http://dx.doi.org/10.1145/2676726.2676970

Aleksandar Nanevski, Anindya Banerjee, and Deepak Garg. 2013. Dependent Type Theory for Verification of Information

Flow and Access Control Policies. ACM Trans. Program. Lang. Syst. 35, 2 (2013), 6:1–6:41. DOI:http://dx.doi.org/10.1145/
2491522.2491523

Frank Pfenning. 2008. Church and Curry: Combining Intrinsic and Extrinsic Typing. In Reasoning in Simple Type Theory:
Festschrift in Honor of Peter B. Andrews on His 70th Birthday, C.Benzmüller, C.Brown, J.Siekmann, and R.Statman (Eds.).

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 21. Publication date: September 2017.

http://dl.acm.org/citation.cfm?id=3009858
http://dx.doi.org/10.2168/LMCS-7(2:16)2011
http://dx.doi.org/10.1145/1706299.1706323
http://dx.doi.org/10.1145/964001.964025
http://dx.doi.org/10.1007/3-540-15975-4_46
http://dx.doi.org/10.1145/113445.113468
http://dx.doi.org/10.1145/2429069.2429113
http://dx.doi.org/10.1007/978-3-662-49630-5_1
http://dx.doi.org/10.1007/978-3-662-49630-5_1
http://dx.doi.org/10.1145/268946.268976
http://dx.doi.org/10.1145/2676726.2676980
http://dl.acm.org/citation.cfm?id=3009877
http://dx.doi.org/10.1145/2676726.2676970
http://dx.doi.org/10.1145/2491522.2491523
http://dx.doi.org/10.1145/2491522.2491523

A Relational Logic for Higher-Order Programs 21:29

College Publications, 303–338.

Gordon Plotkin. 1973. Lambda-definability and logical relations. (1973).

Gordon Plotkin. 1977. LCF considered as a programming language. Theoretical Computer Science 5, 3 (1977), 223 – 255. DOI:
http://dx.doi.org/10.1016/0304-3975(77)90044-5

Gordon D. Plotkin and Martín Abadi. 1993. A Logic for Parametric Polymorphism. In Typed Lambda Calculi and Applications,
International Conference on Typed Lambda Calculi and Applications, TLCA ’93, Utrecht, The Netherlands, March 16-18,
1993, Proceedings. 361–375. DOI:http://dx.doi.org/10.1007/BFb0037118

François Pottier and Vincent Simonet. 2002. Information flow inference for ML. In Conference Record of POPL 2002: The 29th
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Portland, OR, USA, January 16-18, 2002. 319–330.
DOI:http://dx.doi.org/10.1145/503272.503302

Marcelo Sousa and Isil Dillig. 2016. Cartesian hoare logic for verifying k-safety properties. In Proceedings of the 37th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2016, Santa Barbara, CA, USA, June
13-17, 2016. 57–69. DOI:http://dx.doi.org/10.1145/2908080.2908092

R. Statman. 1985. Logical relations and the typed λ-calculus. Information and Control 65, 2-3 (May 1985), 85–97. http:

//dx.doi.org/10.1016/s0019-9958(85)80001-2

Gordon Stewart, Anindya Banerjee, and Aleksandar Nanevski. 2013. Dependent types for enforcement of information

flow and erasure policies in heterogeneous data structures. In 15th International Symposium on Principles and Practice
of Declarative Programming, PPDP ’13, Madrid, Spain, September 16-18, 2013. 145–156. DOI:http://dx.doi.org/10.1145/
2505879.2505895

Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud, Simon Forest, Karthikeyan Bharga-

van, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss, Jean Karim Zinzindohoue, and Santiago Zanella Béguelin. 2016.

Dependent types and multi-monadic effects in F. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, Rastislav Bodík and

Rupak Majumdar (Eds.). ACM, 256–270. DOI:http://dx.doi.org/10.1145/2837614.2837655
William W. Tait. 1967. Intensional Interpretations of Functionals of Finite Type I. J. Symb. Log. 32, 2 (1967), 198–212. DOI:

http://dx.doi.org/10.2307/2271658

Tachio Terauchi and Alex Aiken. 2005. Secure Information Flow as a Safety Problem. In Static Analysis Symposium, Chris

Hankin and Igor Siveroni (Eds.), Vol. 3672. 352–367.

Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon L. Peyton Jones. 2014. Refinement types for Haskell.

In Proceedings of the 19th ACM SIGPLAN international conference on Functional programming, Gothenburg, Sweden,
September 1-3, 2014, Johan Jeuring and Manuel M. T. Chakravarty (Eds.). ACM, 269–282. DOI:http://dx.doi.org/10.1145/
2628136.2628161

Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. 1996. A sound type system for secure flow analysis. Journal of
Computer Security 4, 3 (1996), 1–21.

Hongwei Xi and Frank Pfenning. 1999. Dependent Types in Practical Programming. In POPL ’99, Proceedings of the 26th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Antonio, TX, USA, January 20-22, 1999,
Andrew W. Appel and Alex Aiken (Eds.). ACM, 214–227. DOI:http://dx.doi.org/10.1145/292540.292560

Hongseok Yang. 2007. Relational separation logic. 375, 1-3 (2007), 308–334.

Anna Zaks and Amir Pnueli. 2008. CoVaC: Compiler Validation by Program Analysis of the Cross-Product. In Formal
Methods (Lecture Notes in Computer Science), Jorge Cuéllar, T. S. E. Maibaum, and Kaisa Sere (Eds.), Vol. 5014. 35–51.

Noam Zeilberger. 2016. Principles of Type Refinement. (2016). http://noamz.org/oplss16/refinements-notes.pdf Notes for

OPLSS 2016 school.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 21. Publication date: September 2017.

http://dx.doi.org/10.1016/0304-3975(77)90044-5
http://dx.doi.org/10.1007/BFb0037118
http://dx.doi.org/10.1145/503272.503302
http://dx.doi.org/10.1145/2908080.2908092
http://dx.doi.org/10.1016/s0019-9958(85)80001-2
http://dx.doi.org/10.1016/s0019-9958(85)80001-2
http://dx.doi.org/10.1145/2505879.2505895
http://dx.doi.org/10.1145/2505879.2505895
http://dx.doi.org/10.1145/2837614.2837655
http://dx.doi.org/10.2307/2271658
http://dx.doi.org/10.1145/2628136.2628161
http://dx.doi.org/10.1145/2628136.2628161
http://dx.doi.org/10.1145/292540.292560
http://noamz.org/oplss16/refinements-notes.pdf

	Abstract
	1 Introduction
	2 (A variant of) PCF
	3 Higher-Order Logic
	4 Unary Higher-Order Logic
	5 Relational Higher-Order Logic
	5.1 Proof Rules
	5.2 Discussion
	5.3 Meta-theory

	6 Embeddings
	6.1 Refinement Types
	6.2 Relational Refinement Types
	6.3 Dependency Core Calculus
	6.4 Relational Cost

	7 Examples
	7.1 First Example: Factorial
	7.2 Second Example: Take and Map
	7.3 Third Example: Insertion Sort

	8 Conclusion
	Acknowledgments
	References

