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A SEMANTICS

Semantics of HOL
Types. The interpretation for the types corresponds directly to the usual representation of pairs, lists and

functions in set theory.

JBK ≜ {ff,tt}

JNK ≜ N

Jlistτ K ≜ listJτ K

Jτ1 × τ2K ≜ Jτ1K × Jτ2K

Jτ1 → τ2K ≜ Jτ1K→ Jτ2K

Terms. The terms are given an interpretation with respect to a valuation ρ which is a partial function mapping

variables to elements in the interpretation of their type. Given ρ, we use the notation ρ[v/x] to denote the unique
extension of ρ such that if y = x then ρ[v/x](y) = v and, otherwise, ρ[v/x](y) = ρ (y).
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LxMρ ≜ ρ (x ) L⟨t ,u⟩Mρ := ⟨LtMρ , LuMρ ⟩ Lπi tMρ ≜ πi (LtMρ ) Lλx : τ .tMρ ≜ λv : Jτ K.LxMρ[LvMρ /v]

LcMρ ≜ c LS tMρ ≜ S LtMρ Lt :: uMρ ≜ LtMρ :: LuMρ

Lcase t of [] 7→ u; _ :: _ 7→ vMρ ≜



LuMρ if LtMρ = []

LvMρ M N if LtMρ = M :: N

Lletrec f x = tMρ ≜ F where F is the unique solution of the fixpoint equation

Formulas. We assume that for predicate P of arity τ1 × · · · ×τn , we have an interpretation JPK ∈ Jτ1K× · · · × JτnK
that satisfies the axioms for P. The interpretation of a formula is defined as follows:

LP (t1, . . . , tn )Mρ ≜ (Jt1Kρ , . . . , JtnKρ ) ∈ JPK

L⊤Mρ ≜ ⊤̃

L⊥Mρ ≜ ⊥̃

Lϕ1 ∧ ϕ2Mρ ≜ Lϕ1Mρ ∧̃ Lϕ2Mρ

Lϕ1 ⇒ ϕ2Mρ ≜ Lϕ1Mρ ⇒̃ Lϕ2Mρ

L∀x : τ .ϕMρ ≜ ˜∀v .v ∈ Jτ K ⇒̃ LϕMρ[v/x ]

where we use the tilde (∼) to distinguish between the (R)HOL connectives and the meta-level connectives.

Soundness. We have the following result:

Theorem 2 (Soundness of set-theoretical semantics). If Γ | Ψ ⊢ ϕ, then for every valuation ρ |= Γ,
∧
ψ ∈ΨLψ Mρ

implies LϕMρ .

Proof. By induction on the length of the derivation of Γ | Ψ ⊢ ϕ. □

Semantics of UHOL
The intended meaning of a UHOL judgment Γ | Ψ ⊢ t : τ | ϕ is:

for all ρ. s.t. ρ |= Γ, L
∧

ΨMρ implies LϕMρ[LtMρ /r]
We have the following result:

Corollary 4 (Set-theoretical soundness and consistency of UHOL). If Γ | Ψ ⊢ t : σ | ϕ, then for every valuation

ρ |= Γ,
∧
ψ ∈ΨLψ Mρ implies LϕMρ[LtMρ /r]. In particular, there is no proof of Γ | ∅ ⊢ t : σ | ⊥ in UHOL.

Proof. It is a direct consequence of the embedding from UHOL into HOL and the soundness of HOL. □

Semantics of RHOL
The intended meaning of a RHOL judgment Γ | Ψ ⊢ t1 : τ1 ∼ t2 : τ2 | ϕ is:

for all ρ. s.t. ρ |= Γ, L
∧

ΨMρ implies LϕMρ[Lt1Mρ /r1][Lt2Mρ /r2]
We have the following result:
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Corollary 7 (Set-theoretical soundness and consistency of RHOL). If Γ | Ψ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ, then for every

valuation ρ |= Γ,
∧
ψ ∈ΨLψ Mρ implies LϕMρ[Lt1Mρ /r1],[Lt2Mρ /r2]. In particular, there is no proof of Γ | ∅ ⊢ t1 : σ1 ∼ t2 :

σ2 | ⊥ for any Γ.

Proof. It is a direct consequence of the embedding of RHOL into HOL and the soundness of HOL. □

B ADDITIONAL RULES
For reasons of space, we have omitted some derivable and admissible rules in HOL, UHOL and RHOL. These are

useful to prove some theorems and examples. We now discuss the most interesting among them:

HOL
The following rules are derivable in HOL:

• A cut rule can be derived from [⇒I ] and [⇒E ]:

Γ | Ψ,ϕ ′ ⊢ ϕ Γ | Ψ ⊢ ϕ ′

Γ | Ψ ⊢ ϕ
CUT

• A rule for case analysis can be derived from [LIST]:

Γ ⊢ l : listτ Γ | Ψ, l = [] ⊢ ϕ Γ,h : τ , t : listτ | Ψ, l = h :: t ⊢ ϕ

Γ | Ψ ⊢ ϕ
DESTR − LIST

• A rule for strong induction can be derived from [LIST]:

Γ | Ψ ⊢ ϕ[[]/t] Γ,h : τ , t : listτ | Ψ,∀u : listτ .|u | ≤ |t | ⇒ ϕ[u/t] ⊢ ϕ[h :: t/t]

Γ | Ψ ⊢ ∀t : listτ .ϕ
S − LIST

• A rule for (weak) double induction can be derived by applying [LIST] twice:

Γ | Ψ ⊢ ϕ[[]/l1][[]/l2]
Γ,h1 : τ1, t1 : listτ1 | Ψ,ϕ[t1/l1][[]/l2] ⊢ ϕ[h1 :: t1/l1][[]/l2]
Γ,h2 : τ2, t2 : listτ2 | Ψ,ϕ[[]/l1][t2/l2] ⊢ ϕ[[]/l1][h2 :: t2/l2]

Γ,h1 : τ1, t2 : listτ2 ,h2 : τ2, t2 : listτ2 | Ψ,ϕ[t1/l1][t2/l2] ⊢ ϕ[h1 :: t1/l1][h2 :: t2/l2]

Γ | Ψ ⊢ ∀l1l2.ϕ
D − LIST

• A rule for strong double induction can be derived from [D-LIST]:

Γ | Ψ ⊢ ϕ[[]/l1][[]/l2]
Γ,h1 : τ1, t1 : listτ1 | Ψ,∀m1.|m1 | ≤ |t1 | ⇒ ϕ[m1/l1][[]/l2] ⊢ ϕ[h1 :: t1/l1][[]/l2]
Γ,h2 : τ2, t2 : listτ2 | Ψ,∀m2.|m2 | ≤ |t2 | ⇒ ϕ[[]/l1][m2/l2] ⊢ ϕ[[]/l1][h2 :: t2/l2]

Γ,h1 : τ1, t1 : listτ1 ,h2 : τ2, t2 : listτ2 |
Ψ,∀m1m2.( |m1 |, |m2 |) < ( |h1 :: t1 |, |h2 :: t2 |) ⇒ ϕ[m1/l1][m2/l2] ⊢ ϕ[h1 :: t1/l1][h2 :: t2/l2]

Γ | Ψ ⊢ ∀l1l2.ϕ
S − D − LIST

RHOL
The following version of the case rule is admissible:
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Γ | Ψ ⊢ t1 : listτ1 ∼ t2 : listτ2 | ϕ
′ ∧ (r1 = 0⇔ r2 = 0)

Γ | Ψ,ϕ ′[0/r1][0/r2] ⊢ u1 : σ1 ∼ u2 : σ2 | ϕ
Γ | Ψ ⊢ v1 : N→ σ1 ∼ v2 : N→ σ2 | ∀x1x2.ϕ

′
[Sx1/r1][Sx2/r2]⇒ ϕ[r1 x1/r1][r2 x2/r2]

Γ | Ψ ⊢ case t1 of 0 7→ u1; S 7→ v1 : σ1 ∼ case t2 of 0 7→ u2; S 7→ v2 : σ2 | ϕ
NATCASE∗

and the one sided version:

Γ | Ψ ⊢ t1 : listτ1 ∼ t2 : σ2 | ϕ
′

Γ | Ψ,ϕ ′[0/r1][t2/r2] ⊢ u1 : σ1 ∼ t2 : σ2 | ϕ
Γ | Ψ ⊢ v1 : N→ σ1 ∼ t2 : σ2 | ∀x1.ϕ

′
[Sx1/r1]⇒ ϕ[r1 x1/r1]

Γ | Ψ ⊢ case t1 of 0 7→ u1; S 7→ v1 : σ1 ∼ t2 : σ2 | ϕ
NATCASE ∗ −L

Notice that we can always recover the initial version of the rule by instantiating ϕ ′ as t1 = r1 ∧ t2 = r2.

C PROOFS

Proof of Theorem 6
Theorem 6 (Equivalence with HOL). For every context Γ, simple types σ1 and σ2, terms t1 and t2, set of assertions
Ψ and assertion ϕ, if Γ ⊢ t1 : σ1 and Γ ⊢ t2 : σ2, then the following are equivalent:

• Γ | Ψ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ
• Γ | Ψ ⊢ ϕ[t1/r1][t2/r2]

Proof. The easier direction is the reverse implication. To prove it, one just notices that we can trivially apply

[SUB] instantiating ϕ ′ as a tautology that matches the structure of the types. For instance, for a base type N we

would use ⊤, for an arrow type N→ N we would use ∀x .⊥ ⇒ ⊤, and so on.

We now prove the direct implication by induction on the derivation of Γ | Ψ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ. Suppose the
last rule is:

Case. [VAR] (similarly, [NIL] and [PROJ])
The premise of the rule is already the judgment we want to prove.

Case. [ABS]
Γ,x1 : τ1,x2 : τ2 | Ψ,ϕ

′ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ

Γ | Ψ ⊢ λx1.t1 : τ1 → σ1 ∼ λx2.t2 : τ2 → σ2 | ∀x1,x2.ϕ
′ ⇒ ϕ[r1 x1/r1][r2 x2/r2]

By applying the induction hypothesis on the premise:

Γ,x1 : τ1,x2 : τ2 | Ψ,ϕ
′ ⊢ ϕ[t1/r1][t2/r2] (1)

By applying [⇒I ] on (1):

Γ,x1 : τ1,x2 : τ2 | Ψ ⊢ ϕ
′ ⇒ ϕ[t1/r1][t2/r2]

By applying [∀I ] twice on (2):

Γ | Ψ ⊢ ∀x1x2.ϕ
′ ⇒ ϕ[t1/r1][t2/r2] (3)

Finally, by applying CONV on (3):

Γ | Ψ ⊢ ∀x1x2.ϕ
′ ⇒ ϕ[(λx1.t1) x1/r1][(λx2.t2) x2/r2]

Proof for [ABS-L] (and [ABS-R]) is analogous.

Case. [APP]

Γ | Ψ ⊢ t1 : τ1 → σ1 ∼ t2 : τ2 → σ2 | ∀x1,x2.ϕ
′
[x1/r1][x2/r2]⇒ ϕ[r1 x1/r1][r2 x2/r2]

Γ | Ψ ⊢ u1 : τ1 ∼ u2 : τ2 | ϕ
′

Γ | Ψ ⊢ t1u1 : σ1 ∼ t2u2 : σ2 | ϕ[u1/x1][u2/x2]
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By applying the induction hypothesis on the premises we have:

Γ | Ψ ⊢ ∀x1x2.ϕ
′
[x1/r1][x2/r2]⇒ ϕ[t1 x1/r1][t2 x2/r2] (1)

and

Γ | Ψ ⊢ ϕ ′[u1/r1][u2/r2] (2)

By applying twice [∀E ] to (1) with u1,u2:
Γ | Ψ ⊢ ϕ ′[u1/r1][u2/r2]⇒ ϕ[t1 u1/r1][t2 u2/r2] (3)

and by applying [⇒E ] to (3) and (2):

Γ | Ψ ⊢ ϕ[t1 u1/r1][t2 u2/r2]
Proof for [APP-L] (and APP-R) is analogous, and it uses the UHOL embedding for the premise about the argument.

Proofs for [CONS] and [PAIR] are very similar as well.

Case. [SUB]
Γ | Ψ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ

′ Γ | Ψ ⊢HOL ϕ
′
[t1/r1][t2/r2]⇒ ϕ[t1/r1][t2/r2]

Γ | Ψ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ

Applying the inductive hypothesis on the premises we have:

Γ | Ψ ⊢ ϕ ′[t1/r1][t2/r2]
and

Γ | Ψ ⊢ ϕ ′[t1/r1][t2/r2]⇒ ϕ[t1/r1][t2/r2]
The proof is simply applying [⇒E ].

Case. [LETREC]

Def ( f1,x1, e1) Def ( f2,x2, e2)

Γ,x1 : I1,x2 : I2, f1 : I1 → σ , f2 : I2 → σ2 | Ψ,ϕ
′,

∀m1m2.( |m1 |, |m2 |) < ( |x1 |, |x2 |) ⇒ ϕ ′[m1/x1][m2/x2]⇒
ϕ[m1/x1][m2/x2][f1 m1/r1][f2 m2/r2] ⊢

e1 : σ1 ∼ e2 : σ2 | ϕ

Γ | Ψ ⊢ letrec f1 x1 = e1 : I1 → σ2 ∼ letrec f2 x2 = e2 : I2 → σ2 |
∀x1x2.ϕ

′ ⇒ ϕ[r1 x1/r1][r2 x2/r2]

As an example, we prove the list and nat case, but for other datatypes the proof is similar. Applying the inductive

hypothesis on the premise we have:

Γ, l1,n2, f1, f2 | Ψ,∀m1m2.( |m1 |, |m2 |) < ( |l1 |, |n2 |) ⇒ ϕ[f1m1/r1][f2m2/r2] ⊢ ϕ[e1/r1][e2/r2]

By [∀I ] we derive:

Γ | Ψ ⊢ ∀f1, f2, l1,n2.(∀m1m2.( |m1 |, |m2 |) < ( |l1 |, |n2 |) ⇒ ϕ[f1m1/r1][f2m2/r2]) ⇒ ϕ[e1/r1][e2/r2]. (Φ)

We want to prove

Γ | Ψ ⊢ ∀l1n2.ϕ[F1 l1/r1][F2 n2/r2]

where we use the abbreviations

F1 := letrec f1 x1 = e1

F2 := letrec f2 x2 = e2

We will use strong double induction over natural numbers and lists. We need to prove four premises. Since we

can prove (Φ) from Γ,Ψ, we can add it to the axioms:

(A) Γ | Ψ,Φ ⊢ ϕ[F1 []/r1][F2 0/r2]
(B) Γ,h1, t1 | Ψ,Φ,∀m1.|m1 | ≤ |t1 | ⇒ ϕ[F1 m1/r1][F2 0/r2] ⊢ ϕ[F1 (h1 :: t1)/r1][F2 0/r2]
(C) Γ,x2 | Ψ,Φ,∀m2.|m2 | ≤ |x2 | ⇒ ϕ[F1 []/r1][F2 m2/r2] ⊢ ϕ[F1 []/r1][F2 (Sx2)/r2]
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(D) Γ,h1, t1,x2 | Ψ,Φ,∀m1m2.( |m1 |, |m2 |) < ( |h1 :: t1 |, |Sx2 |) ⇒
ϕ[F1 m1/r1][F2 m2/r2] ⊢ ϕ[F1 (h1 :: t1)/r1][F2 (Sx2)/r2]

To prove them, we will instantiate the quantifiers in Φ with the appropriate variables.

To prove (A), we instantiate Φ at F1, F2, [], 0:

(∀m1m2.( |m1 |, |m2 |) < ( |[]|, |0|) ⇒ ϕ[F1m1/r1][F2m2/r2]) ⇒ ϕ[e1/r1][e2/r2][[]/l1][0/n2][F1/f1][F2/f2]

and, since ( |m1 |, |m2 |) < ( |[]|, |0|) is trivially false, then

ϕ[e1/r1][e2/r2][[]/l1][0/n2][F1/f1][F2/f2]

and by beta-expansion and [CONV]:

ϕ[F1 []/r1][F2 0/r2]

.

To prove (B), we instantiate Φ at F1, F2,h1 :: t1, 0

(∀m1m2.( |m1 |, |m2 |) < ( |h1 :: t1 |, |0|) ⇒ ϕ[F1m1/r1][F2m2/r2]) ⇒ ϕ[e1/r1][e2/r2][h1 :: t1/l1][0/n2][F1/f1][F2/f2]

by beta-expansion:

(∀m1m2.( |m1 |, |m2 |) < ( |h1 :: t1 |, |0|) ⇒ ϕ[F1m1/r1][F2m2/r2]) ⇒ ϕ[F1 h1 :: t1/r1][F2 0/r2]

Since ( |m1 |, |m2 |) < ( |h1 :: t1 |, |0|) is only satisfied if |m1 | ≤ |t1 | ∧m2 = 0, we can write it as:

(∀m1m2.( |m1 | ≤ |t1 | ∧m2 = 0) ⇒ ϕ[F1m1/r1][F2m2/r2]) ⇒ ϕ[F1 h1 :: t1/r1][F2 0/r2]

On the other hand, one of the antecedents of (B) is ∀m1.|m1 | ≤ |t1 | ⇒ ϕ[F1 m1/r1][F2 0/r2], so by [⇒E ] we prove

ϕ[F1 h1 :: t1/r1][F2 0/r2], which is the consequent of (B).

The proof of (C) is symmetrical to the proof of (B).

To prove (D), we instantiate Φ at F1, F2,h1 :: t1, Sx2

(∀m1m2.( |m1 |, |m2 |) < ( |h1 :: t1 |, |Sx2 |) ⇒ ϕ[F1m1/r1][F2m2/r2]) ⇒
ϕ[e1/r1][e2/r2][h1 :: t1/l1][Sx2/n2][F1/f1][F2/f2]

by beta-expansion:

(∀m1m2.( |m1 |, |m2 |) < ( |h1 :: t1 |, |Sx2 |) ⇒ ϕ[F1m1/r1][F2m2/r2]) ⇒ ϕ[F1 h1 :: t1/r1][F2 (Sx2)/r2]

One of the antecedents of (D) is exactly ∀m1m2.( |m1 |, |m2 |) < ( |h1 :: t1 |, |Sx2 |) ⇒ ϕ[F1 m1/r1][F2 m2/r2], so by

[⇒E ] we prove ϕ[F1 h1 :: t1/r1][F2 (Sx2)/r2], which is the consequent of (D).

Proof of [LETREC-L] (and [LETREC-R]) is analogous, and uses simple strong induction.

Case. [CASE]

Γ | Ψ ⊢ l1 : listτ1 ∼ l2 : listτ2 | r1 = []⇔ r2 = [] Γ | Ψ, l1 = [], l2 = [] ⊢ u1 : σ1 ∼ u2 : σ2 | ϕ
Γ | Ψ ⊢ v1 : τ1 → listτ1 → σ1 ∼ v2 : τ2 → listτ2 → σ2 |

∀h1h2t1t2.l1 = h1 :: t1 ⇒ l2 = h2 :: t2 ⇒ ϕ[r1 h1 t1/r1][r2 h2 t2/r2]

Γ | Ψ ⊢ case l1 of [] 7→ u1; _ :: _ 7→ v1 : σ1 ∼ case l2 of [] 7→ u2; _ :: _ 7→ v2 : σ2 | ϕ
We prove the rule for natural numbers. Applying the induction hypothesis to the premises of the rule, we have:

(A) Γ | Ψ ⊢ t1 = 0⇔ t2 = 0

(B) Γ | Ψ, t1 = 0, t2 = 0 ⊢ ϕ[u1/r1][u2/r2]
(C) Γ | Ψ ⊢ ∀x1,x2.t1 = Sx1 ⇒ t2 = Sx2 ⇒ ϕ[v1 x1/r1][v2 x2/r2]
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We want to prove:

Γ | Ψ ⊢ ϕ[(case t1 of 0 7→ u1; S 7→ v1)/r1][(case t2 of 0 7→ u2; S 7→ v2)/r2]

By applying [DESTR-NAT] twice, we get four premises:

(1) Γ | Ψ, t1 = 0, t2 = 0 ⊢ ϕ[(case t1 of 0 7→ u1; S 7→ v1)/r1][(case t2 of 0 7→ u2; S 7→ v2)/r2]
(2) Γ,m2 | Ψ, t1 = 0, t2 = Sm2 ⊢ ϕ[(case t1 of 0 7→ u1; S 7→ v1)/r1][(case t2 of 0 7→ u2; S 7→ v2)/r2]
(3) Γ,m1 | Ψ, t1 = Sm1, t2 = 0 ⊢ ϕ[(case t1 of 0 7→ u1; S 7→ v1)/r1][(case t2 of 0 7→ u2; S 7→ v2)/r2]
(4) Γ,m1,m2 | Ψ, t1 = Sm1, t2 = Sm2 ⊢ ϕ[(case t1 of 0 7→ u1; S 7→ v1)/r1][(case t2 of 0 7→ u2; S 7→ v2)/r2]
We can prove (2) and (3) by deriving a contradiction with [NC] and (A). After beta-reducing in (1) and (4) we

can easily derive them from (B) and (C) respectively.

Proof of [CASE-L] (and [CASE-R]) is analogous.
□

Proof of Lemma 10
Lemma 10 (Embedding lemma). Assume that:

• Γ | Ψ ⊢ t1 : σ1 | ϕ
• Γ | Ψ ⊢ t2 : σ2 | ϕ

′

Then Γ | Ψ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ[r1/r] ∧ ϕ ′[r2/r].

Proof. By the embedding into HOL, we have:

• Γ | Ψ ⊢ ϕ[t1/r]
• Γ | Ψ ⊢ ϕ ′[t2/r]

and by the [∧I ] rule,

Γ | Ψ ⊢ ϕ[t1/r] ∧ ϕ ′[t2/r].
Finally, by undoing the embedding:

Γ | Ψ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ .

□

Proof of Theorem 11
Theorem 11. If Γ ⊢ t : τ is derivable in the refinement type system, then |Γ | | ⌊Γ⌋ ⊢ t : |τ | | ⌊τ ⌋ (r) is derivable
in UHOL.

Proof. By induction on the derivation:

Case. x : τ , Γ ⊢ x : τ
To prove : x : |τ |, |Γ | ⊢ ⌊τ ⌋ (x ), ⌊Γ⌋ ⊢ x : |τ | | ⌊τ ⌋ (r). Directly by [VAR].

Case.
Γ,x : τ ⊢ t : σ

Γ ⊢ λx .t : Π(x : τ ).σ
To prove: |Γ | | ⌊Γ⌋ ⊢ λx .t : |Π(x : τ ).σ | | ⌊Π(x : τ ).σ ⌋ (r).
Expanding the definitions:

|Γ | | ⌊Γ⌋ ⊢ λx .t : |τ | → |σ | | ∀x .⌊τ ⌋ (x ) ⇒ ⌊σ ⌋ (rx )
By induction hypothesis on the premise:

|Γ |,x : |τ | | ⌊Γ⌋, ⌊τ ⌋ (x ) ⊢ t : |σ | | ⌊σ ⌋ (r)
Directly by [ABS].
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Case.
Γ ⊢ t : Π(x : τ ).σ Γ ⊢ u : τ

Γ ⊢ t u : σ [u/x]
To prove: |Γ | | ⌊Γ⌋ ⊢ t u : |σ [u/x]| | ⌊σ [u/x]⌋ (r).
Expanding the definitions:

|Γ | | ⌊Γ⌋ ⊢ t e2 : |σ | | ⌊σ ⌋ (r)[u/x]
By induction hypothesis on the premise:

|Γ | | ⌊Γ⌋ ⊢ t : |τ | → |σ | | ∀x .⌊τ ⌋ (x ) ⇒ ⌊σ ⌋ (rx )
and

|Γ | | ⌊Γ⌋ ⊢ u : |τ | | ⌊τ ⌋ (r)
We get the result directly by [APP].

Case.
Γ ⊢ t : listτ Γ ⊢ u : σ Γ ⊢ v : τ → listτ → σ

Γ ⊢ case t of [] 7→ u; _ :: _ 7→ v : σ
To prove: |Γ | | ⌊Γ⌋ ⊢ case t of [] 7→ u; _ :: _ 7→ v : |σ | | ⌊σ ⌋ (r)
By induction hypothesis on the premises:

|Γ | | ⌊Γ⌋ ⊢ t : |listτ | | ⌊listτ ⌋ (r), (1)

|Γ | | ⌊Γ⌋ ⊢ u : |σ | | ⌊σ ⌋ (r), (2)

and

|Γ | | ⌊Γ⌋ ⊢ v : |τ → listτ → σ | | ⌊τ → listτ → σ ⌋ (r) (3)

Expanding the definitions on (3) we get:

|Γ | | ⌊Γ⌋ ⊢ v : |τ | → |listτ | → |σ | | ∀x .⌊τ ⌋ (x ) ⇒ ∀y.⌊listτ ⌋ (y) ⇒ ⌊σ ⌋ (r x y) (4)

And from (1), (2) and (4) we apply [LISTCASE*] and we get the result. Notice that (2) and (4) are stronger than

the premises of the rule, so we will first need to apply [SUB] to weaken them

Case.
Γ ⊢ τ

Γ ⊢ [] : listτ
To prove: |Γ | | ⌊Γ⌋ ⊢ [] : |listτ | | ⌊listτ ⌋ (r)
Expanding the definitions: |Γ | | ⌊Γ⌋ ⊢ [] : list |τ | | All(r,x , ⌊τ ⌋ (x ))
And by the definition of All for the empty case, trivially All([],x , ⌊τ ⌋ (x )), so we apply the [NIL] rule and we get

the result.

Case.
Γ ⊢ h : τ Γ ⊢ t : listτ

Γ ⊢ h :: t : listτ
To prove: |Γ | | ⌊Γ⌋ ⊢ h :: t : |listτ | | ⌊listτ ⌋ (r).
Expanding the definitions: |Γ | | ⌊Γ⌋ ⊢ h :: t : list |τ | | All(r, λx .⌊τ ⌋ (x )).
By induction hypothesis on the premises, we have:

|Γ | | ⌊Γ⌋ ⊢ h : |τ | | ⌊τ ⌋ (r)
and

|Γ | | ⌊Γ⌋ ⊢ t : list |τ | | All(r, λx .⌊τ ⌋ (x )).
We complete the proof by the [CONS] rule and the definition of All in the inductive case.

Case.
Γ ⊢ τ ⪯ σ Γ ⊢ t : τ

Γ ⊢ t : σ
To prove: |Γ | | ⌊Γ⌋ ⊢ t : |σ | | ⌊σ ⌋ (r)
and, since |σ | ≡ |τ |, it is the same as writing
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|Γ | | ⌊Γ⌋ ⊢ t : |τ | | ⌊τ ⌋ (r)
By induction hypothesis on the premises:

|Γ |,x : |τ | | ⌊Γ⌋, ⌊τ ⌋ (x ) ⊢ ⌊σ ⌋ (x )
and

|Γ | | ⌊Γ⌋ ⊢ t : |τ | | ⌊τ ⌋ (r)
The proof is completed by applying [⇒I ] to the first premise, and then [SUB].

Case.
Γ,x : τ , f : Π(y : {r : τ | y < x }).σ [y/x] ⊢ t : σ Def ( f ,x , t )

Γ ⊢ letrec f x = t : Π(x : τ ).σ
To prove: |Γ | | ⌊Γ⌋ ⊢ letrec f x = t : |Π(x : τ ).σ | | ⌊Π(x : τ ).σ ⌋ (r)
By induction hypothesis on the premise:

|Γ |,x : |τ |, f : |τ | → |σ | | ⌊Γ⌋, ⌊τ ⌋ (x ),∀y.⌊τ ⌋ (y) ∧ y < x ⇒ ⌊σ [y/x]⌋ ( f y) ⊢ t : |σ | | ⌊σ ⌋ (r)
Directly by [LETREC].

□

Proof of Theorem 12
Theorem 12. If Γ ⊢ τ ⪯ σ is derivable in a refinement type system, then |Γ |,x : |τ | | ⌊Γ⌋, ⌊τ ⌋ (x ) ⊢ ⌊σ ⌋ (x ) is
derivable in HOL.

We will use without proof the following results:

Lemma 21. If Γ ⊢ τ ⪯ σ in refinement types, then |τ | ≡ |σ |.

Proof. By induction on the derivation. □

Lemma 22. For every type τ and expression e and variable x < FV (τ , e ), ⌊τ ⌋ (e ) = ⌊τ ⌋ (x )[e/x]

Proof. By structural induction. □

Now we proceed with the proof of the theorem.

Proof. By induction on the derivation:

Case.
Γ ⊢ τ

Γ ⊢ τ ⪯ τ
To show: |Γ |,x : |τ | | ⌊τ ⌋ (x ) ⊢ ⌊τ ⌋ (x ). Directly by [AX].

Case.
Γ ⊢ τ1 ⪯ τ2 Γ ⊢ τ2 ⪯ τ3

Γ ⊢ τ1 ⪯ τ3
To show: |Γ |,x : |τ1 | | ⌊Γ⌋, ⌊τ1⌋ (x ) ⊢ ⌊τ3⌋ (x ).
By induction hypothesis on the premises,

|Γ |,x : |τ1 | | ⌊Γ⌋, ⌊τ1⌋ (x ) ⊢ ⌊τ2⌋ (x )
and

|Γ |,x : |τ2 | | ⌊Γ⌋, ⌊τ2⌋ (x ) ⊢ ⌊τ3⌋ (x ).
We complete the proof by [CUT]. Notice that |τ1 | ≡ |τ2 | ≡ |τ3 |.

Case.
Γ ⊢ τ1 ⪯ τ2

Γ ⊢ listτ1 ⪯ listτ2
To show: |Γ |,x : |listτ1 | | ⌊Γ⌋, ⌊listτ1⌋ (x ) ⊢ ⌊listτ2⌋ (r)
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Expanding the definitions: |Γ |,x : list |τ1 | | ⌊Γ⌋,⊤ ⊢ ⊤,
which is trivial.

Case.
Γ ⊢ {r : τ | ϕ}

Γ ⊢ {r : τ | ϕ} ⪯ τ
To show: |Γ |,x : |{r : τ | ϕ}| | ⌊{r : τ | ϕ}⌋ (x ) ⊢ ⌊τ ⌋ (x ).
Expanding the definitions: |Γ |,x : |{r : τ | ϕ}| | ⌊τ ⌋ (x ) ∧ ϕ[x/r] ⊢ ⌊τ ⌋ (x )
and now the proof is completed trivially by [∧E ] and [AX].

Case.
Γ ⊢ τ ⪯ σ Γ, r : τ ⊢ ϕ

Γ ⊢ τ ⪯ {r : σ | ϕ}
To show: |Γ |, r : |τ | ⊢ ⌊Γ⌋, ⌊τ ⌋ (r) ⊢ ⌊{r : σ | ϕ}⌋ (r)
Expanding the definition: |Γ |, r : |τ | | ⌊Γ⌋, ⌊τ ⌋ (r) ⊢ ⌊σ ⌋ (r) ∧ ϕ
By induction hypothesis on the premises we have:

|Γ |, r : |τ | | ⌊Γ⌋, ⌊τ ⌋ (r) ⊢ ⌊σ ⌋ (r)
and:

|Γ |, r : |τ | | ⌊Γ⌋, ⌊τ ⌋ (r) ⊢ ϕ
We complete the proof by applying the [∧I ] rule.

Case.
Γ ⊢ σ2 ⪯ σ1 Γ,x : σ2 ⊢ τ1 ⪯ τ2

Γ ⊢ Π(x : σ1).τ1 ⪯ Π(x : σ2).τ2
To show: |Γ |, f : |Π(x : σ1).τ1 | | ⌊Γ⌋, ⌊Π(x : σ1).τ1⌋ ( f ) ⊢ ⌊Π(x : σ2).τ2⌋ ( f )
Expanding the definitions:

|Γ |, f : |Π(x : σ1).τ1 | | ⌊Γ⌋,∀x .⌊σ1⌋ (x ) ⇒ ⌊τ1⌋ ( f x ) ⊢ ∀x .⌊σ2⌋ (x ) ⇒ ⌊τ2⌋ ( f x )
By the rules [∀I ] and [⇒I ] it suffices to prove:

|Γ |, f : |Π(x : σ1).τ1 |,x : |σ2 | | ⌊Γ⌋,∀x .⌊σ1⌋ (x ) ⇒ ⌊τ1⌋ ( f x ), ⌊σ2⌋ (x ) ⊢ ⌊τ2⌋ ( f x ) (1)

On the other hand, by induction hypothesis on the premises:

|Γ |,x : |σ2 | | ⌊Γ⌋, ⌊σ2⌋ (x ) ⊢ ⌊σ1⌋ (x ) (2)

and

|Γ |,x : |σ2 |,y : |τ1 | | ⌊Γ⌋, ⌊σ2⌋ (x ), ⌊τ1⌋ (y) ⊢ ⌊τ2⌋ (y) (3)

which we can weaken respectively to:

|Γ |,x : |σ2 |, f : |Π(x : σ1).τ1 | | |Γ |, ⌊σ2⌋ (x ),∀x .⌊σ1⌋ (x ) ⇒ ⌊τ1⌋ ( f x ) ⊢ ⌊σ1⌋ (x ) (4)

and

|Γ |,x : |σ2 |,y : |τ1 |, f : |Π(x : σ1).τ1 | | |Γ |, ⌊σ2⌋ (x ), ⌊τ1⌋ (y),∀x .⌊σ1⌋ (x ) ⇒ ⌊τ1⌋ ( f x ) ⊢ ⌊τ2⌋ (y) (5)

From (4), by doing a cut with its own premise ∀x .⌊σ1⌋ (x ) ⇒ ⌊τ1⌋ ( f x ), we derive:
|Γ |,x : |σ2 |, f : |Π(x : σ1).τ1 | | ⌊Γ⌋, ⌊σ2⌋ (x ),∀x .⌊σ1⌋ (x ) ⇒ ⌊τ1⌋ ( f x ) ⊢ ⌊τ1⌋ ( f x ) (6)

From (5), by [⇒I ] and [∀I ] we can derive:

|Γ |,x : |σ2 |, f : |Π(x : σ1).τ1 | | ⌊Γ⌋, ⌊σ2⌋ (x ), ,∀x .⌊σ1⌋ (x ) ⇒ ⌊τ1⌋ ( f x ) ⊢ ∀y.⌊τ1⌋ (y) ⇒ ⌊τ2⌋ (y)
And by [∀E ]

|Γ |,x : |σ2 |, f : |Π(x : σ1).τ1 | | ⌊Γ⌋, ⌊σ2⌋ (x ), ,∀x .⌊σ1⌋ (x ) ⇒ ⌊τ1⌋ ( f x ) ⊢ ⌊τ1⌋ ( f x ) ⇒ ⌊τ2⌋ ( f x ) (7)

Finally, from (6) and (7) by [⇒E ] we get:

|Γ |,x : |σ2 |, f : |Π(x : σ1).τ1 | | ⌊Γ⌋, ⌊σ2⌋ (x ),∀x .⌊σ1⌋ (x ) ⇒ ⌊τ1⌋ ( f x ) ⊢ ⌊τ2⌋ ( f x )
and by one last application of [⇒I ] we get what we wanted to prove.

□
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Proof of Theorem 13
Theorem 13 (Soundness of embedding of relational refinement types). If Γ ⊢ t1 ∼ t2 :: T , then |Γ | | TΓU ⊢ t1 :
|T | ∼ t2 : |T | | TTU(r1, r2) Also, if Γ ⊢ T ⪯ U then |Γ |,x1,x2 : |T | | TΓU,TTU(x1,x2) ⊢ TUU(x1.x2).

We can recover the lemma from the unary case:

Lemma 23. For every type τ , expressions t1, t2 and variables x1,x2 < FV (τ , t1, t2),

TτU(t1, t2) = TτU(x1,x2)[t1/x1][t2/x2]

Proof. Most cases are very similar to the unary case, so we will only show the most interesting ones:

Case.
Γ ⊢ T

Γ ⊢ [] ∼ [] :: listT
To show: |Γ | | TΓU ⊢ [] : |listT | ∼ [] : |listT | | TlistT U(r1, r2).
There are two options. If T is a unary type, we have to prove:

|Γ | | TΓU ⊢ [] : |listT | ∼ [] : |listT | |
∧

i ∈{1,2} All(ri , λx .⌊τ ⌋ (x ))
And by the definition of All we can directly prove:

∅ | ∅ ⊢ All([], λx .⌊τ ⌋ (x )) ∧ All([], λx .⌊τ ⌋ (x ))
If T is a relational type, we have to prove:

|Γ | | TΓU ⊢ [] : |listT | ∼ [] : |listT | | All2(r1, r2, λx1.λx2.TTU(x1,x2))
And by the definition of All2 we can directly prove:

∅ | ∅ ⊢ All2([], [], λx1.λx2.TTU(x1,x2))

Case.
Γ ⊢ h1 ∼ h2 :: T Γ ⊢ t1 ∼ t2 :: listT

Γ ⊢ h1 :: t1 ∼ h2 :: t2 :: listT
To show: |Γ | | TΓU ⊢ h1 :: t2 : |listT | ∼ h2 :: t2 : |listT | | listT .
There are two options. If T is a unary type, we have to prove:

|Γ | | TΓU ⊢ h1 :: t1 : |listT | ∼ h2 :: t2 : |listT | |
∧

i ∈{1,2} All(ri , λx .⌊T ⌋ (x ))
By induction hypothesis we have:

|Γ | | TΓU ⊢ h1 : |T | ∼ h2 :: t2 : |T | |
∧

i ∈{1,2} ⌊T ⌋ (ri )
and

|Γ | | TΓU ⊢ t1 : |listT | ∼ t2 : |listT | |
∧

i ∈{1,2} All(ri , λx .⌊T ⌋ (x ))
And by the definition of All we can directly prove:∧

i ∈{1,2} ⌊T ⌋ (hi ) ⇒
∧

i ∈{1,2} All(ti , λx .⌊T ⌋ (x )) ⇒
∧

i ∈{1,2} All(hi :: ti , λx .⌊T ⌋ (x ))
So by the [CONS] rule, we prove the result. If T is a relational type, we have to prove:

|Γ | | TΓU ⊢ h1 :: t1 : |listT | ∼ h2 :: t2 : |listT | | All2(r1, r2, λx1.λx2.TTU(x1,x2))
By induction hypothesis we have:

|Γ | | TΓU ⊢ h1 : |T | ∼ h2 :: t2 : |T | | TTU(r1, r2)
and

|Γ | | TΓU ⊢ t1 : |listT | ∼ t2 : |listT | | All2(r1, r2, λx1.λx2.TTU(x1,x2))
And by the definition of All2 we can directly prove:

TTU(h1,h2) ⇒ All2(t1, t2, λx1.λx2.TTU(x1,x2)) ⇒ All(h1 :: t1,h1 :: h2, λx1.λx2.TTU(x1,x2))
So by the [CONS] rule, we prove the result.

Case.
Γ ⊢ t1 ∼ t2 :: listT Γ ⊢ t1 = []⇔ t2 = [] Γ ⊢ u1 ∼ u2 :: U Γ ⊢ v1 ∼ v2 :: Π(h :: T ).Π(t :: listT ).U

Γ ⊢ case t1 of [] 7→ u1; _ :: _ 7→ v1 ∼ case t2 of [] 7→ u2; _ :: _ 7→ v2 :: U
To show:
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|Γ | | TΓU ⊢ case t1 of [] 7→ u1; _ :: _ 7→ v1 : |U | ∼ case t2 of [] 7→ u2; _ :: _ 7→ r2 : |U | | TUU(r1, r2)
By induction hypothesis we have:

|Γ | | TΓU ⊢ t1 = []⇔ t2 = [],

|Γ | | TΓU ⊢ u1 : |U | ∼ u2 : |U | | TUU(r1, r2)
and

|Γ | | TΓU ⊢ v1 : T → listT → U ∼ v2 : T → listT → U | ∀h1h2.TTU(h1,h2) ⇒ ∀t1t2.TlistT U(t1, t2) ⇒
TUU(r1h1t1, h2t2r2)
By applying the [LISTCASE*] rule to the three premises we get the result.

Case.

Γ,x :: T , f :: Π(y :: {y :: T | (y1,y2) < (x1,x2)}).U [y/x] ⊢ t1 ∼ t2 :: U
Γ ⊢ Π(x :: T ).U Def ( f1,x1, t1) Def ( f2,x2, t2)

Γ ⊢ letrec f1 x1 = t1 ∼ letrec f2 x2 = t2 :: Π(x :: T ).U
To show:

|Γ | | TΓU ⊢ letrec f1 x1 = t1 : |Π(x :: T ).U | ∼ letrec f2 x2 = t2 : |Π(x :: T ).U | | TΠ(x :: T ).UU(r1, r2)
Expanding the definitions:

|Γ | | TΓU ⊢ letrec f1 x1 = t1 : |T | → |U | ∼ letrec f2 x2 = t2 : |T | → |U | | ∀x1x2.TTU(x1,x2) ⇒ TUU(r1x1, r2x2)
By induction hypothesis on the premise:

|Γ |,x1,x2 : |T |, f1, f2 : |T | → |U | | TΓU,TTU(x1,x2),∀y1,y2.(TTU(y1,y2)∧(y1,y2) < (x1,x2)) ⇒ TUU( f1x1, f2x2) ⊢
t1 : |U | ∼ t2 : |U | | TUU(r1, r2)
And we apply the [LETREC] rule to get the result.

□

Proof of Lemma 15
Lemma 15. If ℓ @ a and τ ↘ ℓ, then ⊢ ∀x ,y.(⌊τ ⌋a (x ,y) ≡ ⊤) in HOL.

Proof. By induction on the derivation of τ ↘ ℓ.

Case.
ℓ ⊑ ℓ′

Tℓ′ (τ ) ↘ ℓ
Since ℓ @ a (given) and ℓ ⊑ ℓ′ (premise), it must be the case that ℓ′ @ a. Hence, by definition, ⌊Tℓ′ (τ )⌋a (x ,y) =

⊤.

Case.
τ ↘ ℓ

Tℓ′ (τ ) ↘ ℓ
We consider two cases:

If ℓ′ @ a, then ⌊Tℓ′ (τ )⌋a (x ,y) = ⊤ by definition.

If ℓ′ ⊑ a, then ⌊Tℓ′ (τ )⌋a (x ,y) = ⌊τ ⌋a (x ,y) by definition. By i.h. on the premise, we have ⌊τ ⌋a (x ,y) ≡ ⊤.
Composing, ⌊Tℓ′ (τ )⌋a (x ,y) ≡ ⊤.

Case.
τ1 ↘ ℓ τ2 ↘ ℓ

τ1 × τ2 ↘ ℓ

By i.h. on the premises, we have ⌊τi ⌋a (x ,y) ≡ ⊤ for i = 1, 2 and all x ,y. Therefore, ⌊τ1 × τ2⌋a (x ,y) ≜
⌊τ1⌋a (π1 (x ),π1 (y)) ∧ ⌊τ2⌋a (π2 (x ),π2 (y)) ≡ ⊤ ∧ ⊤ ≡ ⊤.
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Case.
τ2 ↘ ℓ

τ1 → τ2 ↘ ℓ

By i.h. on the premise, we have ⌊τ2⌋a (x ,y) ≡ ⊤ for all x ,y. Hence, ⌊τ1 → τ2⌋a (x ,y) ≜ (∀v,w . ⌊τ1⌋a (v,w ) ⇒
⌊τ2⌋a (x v,y w )) ≡ (∀v,w . ⌊τ1⌋a (v,w ) ⇒ ⊤) ≡ ⊤.

□

Proof of Theorem 16
Theorem 16 (Soundness of embedding). If Γ ⊢ e : τ in DCC, then for all a ∈ {L,H }: |Γ | | ⌊Γ⌋a ⊢ |e |1 : |τ | ∼ |e |2 :
|τ | | ⌊τ ⌋a (r1, r2).

Proof. By induction on the given derivation of Γ ⊢ e : τ .

Case.
Γ ⊢ tt : B

To show: |Γ | | ⌊Γ⌋a ⊢ tt : B ∼ tt : B | (r1 = tt ∧ r2 = tt) ∨ (r1 = ff ∧ r2 = ff).
By rule TRUE, it suffices to show (tt = tt ∧ tt = tt) ∨ (tt = ff ∧ tt = ff) in HOL, which is trivial.

Case.
Γ ⊢ e : B Γ ⊢ et : τ Γ ⊢ ef : τ

Γ ⊢ case e of tt 7→ et ;ff 7→ ef : τ
To show: |Γ | | ⌊Γ⌋a ⊢ (case |e |1 of tt 7→ |et |1;ff 7→ |ef |1) : |τ | ∼ (case |e |2 of tt 7→ |et |2;ff 7→ |ef |2) : |τ | |
⌊τ ⌋a (r1, r2).
By i.h. on the first premise:

|Γ | | ⌊Γ⌋a ⊢ |e |1 : B ∼ |e |2 : B | (r1 = tt ∧ r2 = tt) ∨ (r1 = ff ∧ r2 = ff)
By i.h. on the second premise:

|Γ | | ⌊Γ⌋a ⊢ |et |1 : |τ | ∼ |et |2 : |τ | | ⌊τ ⌋a (r1, r2)
By i.h. on the third premise:

|Γ | | ⌊Γ⌋a ⊢ |ef |1 : |τ | ∼ |ef |2 : |τ | | ⌊τ ⌋a (r1, r2)
Applying rule BOOLCASE to the past three statements yields the required result.

Case.
Γ,x : τ ⊢ x : τ

To show: |Γ |,x1 : |τ |,x2 : |τ | | ⌊Γ⌋a , ⌊τ ⌋a (x1,x2) ⊢ x1 : |τ | ∼ x2 : |τ | | ⌊τ ⌋a (r1, r2).
This follows immediately from rule VAR.

Case.
Γ,x : τ1 ⊢ e : τ2

Γ ⊢ λx .e : τ1 → τ2
To show: |Γ | | ⌊Γ⌋a ⊢ λx1.|e |1 : |τ1 | → |τ2 | ∼ λx2.|e |2 : |τ1 | → |τ2 | | ∀x1,x2. ⌊τ1⌋a (x1,x2) ⇒ ⌊τ2⌋a (r1 x1, r2 x2).
By i.h. on the premise: |Γ |,x1 : |τ1 |,x2 : |τ2 | | ⌊Γ⌋a , ⌊τ1⌋a (x1,x2) ⊢ |e |1 : |τ2 | ∼ |e |2 : |τ2 | | ⌊τ2⌋a (r1, r2).
Applying rule ABS immediately yields the required result.

Case.
Γ ⊢ e : τ1 → τ2 Γ ⊢ e ′ : τ1

Γ ⊢ e e ′ : τ2
To show: |Γ | | ⌊Γ⌋a ⊢ |e |1 |e

′ |1 : |τ2 | ∼ |e |2 |e
′ |2 : |τ2 | | ⌊τ2⌋a (r1, r2).

By i.h. on the first premise:

|Γ | | ⌊Γ⌋a ⊢ |e |1 : |τ1 | → |τ2 | ∼ |e |2 : |τ1 | → |τ2 | | ∀x1,x2. ⌊τ1⌋a (x1,x2) ⇒ ⌊τ2⌋a (r1 x1, r2 x2)
By i.h. on the second premise:
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|Γ | | ⌊Γ⌋a ⊢ |e
′ |1 : |τ1 | ∼ |e

′ |2 : |τ1 | | ⌊τ1⌋a (r1, r2)
Applying rule APP immediately yields the required result.

Case.
Γ ⊢ e : τ Γ ⊢ e ′ : τ ′

Γ ⊢ ⟨e, e ′⟩ : τ × τ ′

To show: |Γ | | ⌊Γ⌋a ⊢ ⟨|e |1, |e
′ |1⟩ : |τ | × |τ

′ | ∼ ⟨|e |2, |e
′ |2⟩ : |τ | × |τ

′ | | ⌊τ ⌋a (π1 (r1),π1 (r2)) ∧ ⌊τ ′⌋a (π2 (r1),π2 (r2)).
By i.h. on the first premise:

|Γ | | ⌊Γ⌋a ⊢ |e |1 : |τ | ∼ |e |2 : |τ | | ⌊τ ⌋a (r1, r2)
By i.h. on the second premise:

|Γ | | ⌊Γ⌋a ⊢ |e
′ |1 : |τ

′ | ∼ |e ′ |2 : |τ
′ | | ⌊τ ′⌋a (r1, r2)

The required result follows from the rule PAIR. We only need to show the third premise of the rule, i.e., the

following in HOL:

∀x1x2y1y2.⌊τ ⌋a (x1,x2) ⇒ ⌊τ
′⌋a (y1,y2) ⇒ (⌊τ ⌋a (π1⟨x1,y1⟩,π1⟨x2,y2⟩) ∧ ⌊τ

′⌋a (π2⟨x1,y1⟩,π2⟨x2,y2⟩))

Since π1⟨x1,y1⟩ = x1, etc., this implication simplifies to:

∀x1x2y1y2.⌊τ ⌋a (x1,x2) ⇒ ⌊τ
′⌋a (y1,y2) ⇒ (⌊τ ⌋a (x1,x2) ∧ ⌊τ

′⌋a (y1,y2))

which is an obvious tautology.

Case.
Γ ⊢ e : τ × τ ′

Γ ⊢ π1 (e ) : τ
To show: |Γ | | ⌊Γ⌋a ⊢ π1 ( |e |1) : |τ | ∼ π1 ( |e |2) : |τ | | ⌊τ ⌋a (r1, r2).
By i.h. on the premise:

|Γ | | ⌊Γ⌋a ⊢ |e |1 : |τ | × |τ
′ | ∼ |e |2 : |τ | × |τ

′ | | ⌊τ ⌋a (π1 (r1),π1 (r2)) ∧ ⌊τ ′⌋a (π2 (r1),π2 (r2))
By rule SUB:

|Γ | | ⌊Γ⌋a ⊢ |e |1 : |τ | × |τ
′ | ∼ |e |2 : |τ | × |τ

′ | | ⌊τ ⌋a (π1 (r1),π1 (r2))
By rule PROJ1, we get the required result.

Case.
Γ ⊢ e : τ

Γ ⊢ ηℓ (e ) : Tℓ (τ )
To show: |Γ | | ⌊Γ⌋a ⊢ |e |1 : |τ | ∼ |e |2 : |τ | | ⌊Tℓ (τ )⌋a (r1, r2).
By i.h. on the premise: |Γ | | ⌊Γ⌋a ⊢ |e |1 : |τ | ∼ |e |2 : |τ | | ⌊τ ⌋a (r1, r2) (1)

If ℓ ⊑ a, then ⌊Tℓ (τ )⌋a (r1, r2) ≜ ⌊τ ⌋a (r1, r2), so the required result is the same as (1).

If ℓ @ a, then ⌊Tℓ (τ )⌋a (r1, r2) ≜ ⊤ and the required result follows from rule SUB applied to (1).

Case.
Γ ⊢ e : Tℓ (τ ) Γ,x : τ ⊢ e ′ : τ ′ τ ′ ↘ ℓ

Γ ⊢ bind(e,x .e ′) : τ ′

To show: |Γ | | ⌊Γ⌋a ⊢ (λx .|e
′ |1) |e |1 : |τ

′ | ∼ (λx .|e ′ |2) |e |2 : |τ
′ | | ⌊τ ′⌋a (r1, r2).

By i.h. on the first premise:

|Γ | | ⌊Γ⌋a ⊢ |e |1 : |τ | ∼ |e |2 : |τ | | ⌊Tℓ (τ )⌋a (r1, r2) (1)

By i.h. on the second premise:

|Γ |,x1 : |τ |,x2 : |τ | | ⌊Γ⌋a , ⌊τ ⌋a (x1,x2) ⊢ |e
′ |1 : |τ

′ | ∼ |e ′ |2 : |τ
′ | | ⌊τ ′⌋a (r1, r2) (2)

We consider two cases:

Subcase. ℓ ⊑ a. Here, ⌊Tℓ (τ )⌋a (r1, r2) ≜ ⌊τ ⌋a (r1, r2), so (1) can be rewritten to:

|Γ | | ⌊Γ⌋a ⊢ |e |1 : |τ | ∼ |e |2 : |τ | | ⌊τ ⌋a (r1, r2) (3)

Applying rule ABS to (2) yields:
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|Γ | | ⌊Γ⌋a ⊢ λx1.|e
′ |1 : |τ | → |τ

′ | ∼ λx2.|e
′ |2 : |τ | → |τ

′ | | ∀x1x2.⌊τ ⌋a (x1,x2) ⇒ ⌊τ
′⌋a (r1 x1, r2 x2) (4)

Applying rule APP to (4) and (3) yields:

|Γ | | ⌊Γ⌋a ⊢ (λx1.|e
′ |1) |e |1 : |τ

′ | ∼ (λx2.|e
′ |2) |e |2 : |τ

′ | | ⌊τ ′⌋a (r1, r2)
which is what we wanted to prove.

Subcase. ℓ @ a. Here, ⌊Tℓ (τ )⌋a (r1, r2) ≜ ⌊τ ⌋a (r1, r2), so (1) can be rewritten to:

|Γ | | ⌊Γ⌋a ⊢ |e |1 : |τ | ∼ |e |2 : |τ | | ⊤ (5)

Applying rule ABS to (2) yields:

|Γ | | ⌊Γ⌋a ⊢ λx1.|e
′ |1 : |τ | → |τ

′ | ∼ λx2.|e
′ |2 : |τ | → |τ

′ | | ∀x1x2.⌊τ ⌋a (x1,x2) ⇒ ⌊τ
′⌋a (r1 x1, r2 x2)

By Lemma 15 applied to the subcase assumption ℓ @ a and the premise τ ′ ↘ ℓ, we have ⌊τ ′⌋a (r1 x1, r2 x2) ≡ ⊤.
So, by rule SUB:

|Γ | | ⌊Γ⌋a ⊢ λx1.|e
′ |1 : |τ | → |τ

′ | ∼ λx2.|e
′ |2 : |τ | → |τ

′ | | ∀x1x2.⌊τ ⌋a (x1,x2) ⇒ ⊤
Since (∀x1x2.⌊τ ⌋a (x1,x2) ⇒ ⊤) ≡ ⊤ ≡ (∀x1,x2.⊤ ⇒ ⊤), we can use SUB again to get:

|Γ | | ⌊Γ⌋a ⊢ λx1.|e
′ |1 : |τ | → |τ

′ | ∼ λx2.|e
′ |2 : |τ | → |τ

′ | | ∀x1,x2.⊤ ⇒ ⊤ (6)

Applying rule APP to (6) and (5) yields:

|Γ | | ⌊Γ⌋a ⊢ (λx1.|e
′ |1) |e |1 : |τ

′ | ∼ (λx2.|e
′ |2) |e |2 : |τ

′ | | ⊤

which is the same as our goal since ⌊τ ′⌋a (r1, r2) ≡ ⊤.

□

Proof of Theorem 17
Theorem 17. If ∆;Φ;Ω ⊢lk t : A, then: L|Ω |M,∆ | Φ, ⌊Ω⌋ ⊢ LtM : L|A|Me | ⌊A⌋k,le (r)

Proof. By induction on the derivation of ∆;Φ;Ω ⊢lk t : A. We will show few cases.

Case.
∆;Φa ;Ω,x : A ⊢0

0
x : A

We can conclude by the following derivation:

L|Ω |M,x : L|A|Mv ,∆ | Φa , ⌊Ω⌋, ⌊A⌋v (x ) ⊢ x : L|A|Mv | ⌊A⌋v (r)
VAR

L|Ω |M,x : L|A|Mv ,∆ | Φa , ⌊Ω⌋, ⌊A⌋v (x ) ⊢ 0 : N | 0 ≤ r ≤ 0

Nat

L|Ω |M,x : L|A|Mv ,∆ | Φa , ⌊Ω⌋, ⌊A⌋v (x ) ⊢ (x , 0) : L|A|Mv × N | ⌊A⌋v (π1r) ∧ 0 ≤ π2r ≤ 0

PAIR-L

where the additional proof conditions that is needed for the [PAIR-L] rule can be easily proved in HOL.

Case.
∆;Φa ;Ω ⊢

0

0
n : int

Then we can conclude by the following derivation:

L|Ω |M,∆ | Φa , ⌊Ω⌋ ⊢ n : N | ⊤
Nat

L|Ω |M,∆ | Φa , ⌊Ω⌋ ⊢ 0 : N | 0 ≤ r ≤ 0

Nat

L|Ω |M,∆ | Φa , ⌊Ω⌋ ⊢ (n, 0) : N × N | 0 ≤ π2r ≤ 0

PAIR-L

where the additional proof conditions that is needed for the [PAIR-L] rule can be easily proved in HOL.

Case.
∆;Φa ;x : A1,Ω ⊢

l
k t : A2

∆;Φa ;Ω ⊢
0

0
λx .t : A1

exec(k,l )
−−−−−−−→ A2
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By induction hypothesis we have L|Ω |M,x : L|A1 |Mv ,∆ | Φ, ⌊Ω⌋, ⌊A1⌋v (x ) ⊢ LtM : L|A2 |Me | ⌊A⌋k,le (r) and we can

conclude by the following derivation:

L|Ω |M,x : L|A1 |Mv ,∆ | Φ, ⌊Ω⌋, ⌊A1⌋v (x ) ⊢ LtM :
L|A2 |Me | ⌊A2⌋

k,l
e (r)

L|Ω |M,∆ | Φ, ⌊Ω⌋ ⊢ λx .LtM : L|A1 |Mv → L|A2 |Me |
∀x .⌊A1⌋v (x ) ⇒ ⌊A2⌋

k,l
e (rx )

ABS

L|Ω |M,∆ | Φ, ⌊Ω⌋ ⊢ 0 : N | 0 ≤ r ≤ 0

L|Ω |M,∆ | Φ, ⌊Ω⌋ ⊢ (λx .LtM, 0) : (L|A1 |Mv → L|A2 |Me ) × N | ∀x .⌊A1⌋v (x ) ⇒ ⌊A2⌋
k,l
e ((π1r)x ) ∧ 0 ≤ π2r ≤ 0

PAIR-L

where the additional proof conditions that is needed for the [PAIR-L] rule can be easily proved in HOL.

Case
∆;Φa ;Ω ⊢

l1
k1

t1 : A1

exec(k,l )
−−−−−−−→ A2 ∆;Φa ;Ω ⊢

l2
k2

t2 : A1

∆;Φa ;Ω ⊢
l1+l2+l+capp
k1+k2+k+capp

t1 t2 : A2

By induction hypothesis and unfolding some some definitions we have

L|Ω |M,∆ | Φa , ⌊Ω⌋ ⊢ Lt1M : (L|A1 |Mv → (L|A2 |Mv × N)) × N |
∀h.⌊A1⌋v (h) ⇒ (⌊A2⌋v (π1 ((π1 (r))h)) ∧ k ≤ π2 ((π1 (r))h) ≤ l ) ∧ k1 ≤ π2 (r) ≤ l1

and L|Ω |M,∆ | Φa , ⌊Ω⌋ ⊢ Lt2M : L|A1 |Mv × N | ⌊A1⌋v (π1 (r)) ∧ k2 ≤ π2 (r) ≤ l2. So, we can prove:

L|Ω |M,∆ | Φa , ⌊Ω⌋ ⊢ letx = Lt1M in lety = Lt2M inπ1 (x ) π1 (y) : L|A2 |Mv × N |
⌊A2⌋v (π1 (r)) ∧ k ≤ π2 (r) ≤ l ∧ k1 ≤ π2 (x ) ≤ l1 ∧ k2 ≤ π2 (y)r ≤ l2

This combined with the definition of the cost-passing translation Lt1 t2M ≜ letx = Lt1M in lety = Lt2M in let z =
π1 (x ) π1 (y) in (π1 (z),π2 (x ) + π2 (y) + π2 (z) + capp ) allows us to prove as required the following:

L|Ω |M,∆ | Φa , ⌊Ω⌋ ⊢ Lt1 t2M : L|A2 |Mv × N | ⌊A2⌋v (π1 (r)) ∧ k + k1 + k2 + capp ≤ π2 (r) ≤ l + l1 + l2 + capp .

□

Proof of Theorem 18
Theorem 18. If ∆;Φ; Γ ⊢ t1 ⊖ t2 ≲ l : τ , then: ∥Γ∥,∆ | Φ,TΓU ⊢ Lt1M1 : L|τ |Me ∼ Lt2M2 : L|τ |Me | TτUle (r1, r2),
where Lti Mj is a copy of ti where each variable x is replaced by a variable x j for j ∈ {1, 2}.

To prove Theorem 18, we need three lemmas.

Lemma C.1. Suppose ∆;Φ ⊢ τ wf.1 Then, the following hold:
(1) ∆ | Φ ⊢ ∀xy. TτUv (x ,y) ⇒ ⌊τ ⌋v (x ) ∧ ⌊τ ⌋v (y)
(2) ∆ | Φ ⊢ ∀xy. TτUte (x ,y) ⇒ ⌊τ ⌋

0,∞
e (x ) ∧ ⌊τ ⌋0,∞e (y)

Also, (3) TΓU ⇒ ⌊Γ1⌋ ∧ ⌊Γ2⌋ where Γ1 and Γ2 are obtained by replacing each variable x in Γ with x1 and x2,
respectively.

Proof. (1) and (2) follow by a simultaneous induction on the given judgment. (3) follows immediately from (1).

□

Lemma C.2. If ∆;Φa ; Γ ⊢ e1 ⊖ e2 ≲ t : τ in RelCost, then ∆;Φ; Γ ⊢∞
0
ei : τ for i ∈ {1, 2} in RelCost.

Proof. By induction on the given derivation. □

1
This judgment simply means that τ is well-formed in the context ∆;Φ. It is defined in the original RelCost paper [Çiçek et al. 2017].
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Lemma C.3. If ∆;Φ |= τ1 ⊑ τ2, then ∆;Φ ⊢ ∀xy. Tτ1Uv (x ,y) ⇒ Tτ2Uv (x ,y).

Proof. By induction on the given derivation of ∆;Φ |= τ1 ⊑ τ2. □

Proof of Theorem 18. The proof is by induction on the given derivation of ∆;Φ; Γ ⊢ t1 ⊖ t2 ≲ k : τ . We show

only a few representative cases here.

Case:

i :: S,∆;Φa ; Γ ⊢ e ⊖ e
′ ≲ t : τ i < FIV(Φa ; Γ)

∆;Φa ; Γ ⊢ Λe ⊖ Λe ′ ≲ 0 : ∀i
diff(t )
:: S . τ

r-iLam

To show: ∥Γ∥,∆ | Φa ,TΓU ⊢ (λ_.LeM1, 0) : (N → L|τ |Me ) × N ∼ (λ_.Le ′M2, 0) : (N → L|τ |Me ) × N | T∀i
diff(t )
::

S . τU0

e (r1, r2).

Expand T∀i
diff(t )
:: S . τU0

e (r1, r2) to T∀i
diff(t )
:: S . τUv (π1 r1,π1 r2) ∧ π2r1 − π2 r2 ≤ 0, and apply the rule [PAIR] to

reduce to two proof obligations:

(A) ∥Γ∥,∆ | Φa ,TΓU ⊢ λ_.LeM1 : N→ L|τ |Me ∼ λ_.Le ′M2 : N→ L|τ |Me | T∀i
diff(t )
:: S . τUv (r1, r2)

(B) ∥Γ∥,∆ | Φa ,TΓU ⊢ 0 : N ∼ 0 : N | r1 − r2 ≤ 0

(B) follows immediately by rule [ZERO]. To prove (A), expand T∀i
diff(t )
:: S . τUv (r1, r2) and apply rule [∧I]. We

get three proof obligations.

(C) ∥Γ∥,∆ | Φa ,TΓU ⊢ λ_.LeM1 : N→ L|τ |Me ∼ λ_.Le ′M2 : N→ L|τ |Me | ⌊∀i
exec(0,∞)

:: S . τ ⌋v (r1)

(D) ∥Γ∥,∆ | Φa ,TΓU ⊢ λ_.LeM1 : N→ L|τ |Me ∼ λ_.Le ′M2 : N→ L|τ |Me | ⌊∀i
exec(0,∞)

:: S . τ ⌋v (r2)
(E) ∥Γ∥,∆ | Φa ,TΓU ⊢ λ_.LeM1 : N→ L|τ |Me ∼ λ_.Le ′M2 : N→ L|τ |Me | ∀z1z2.⊤ ⇒ ∀i .TτUte (r1 z1, r2 z2)

To prove (C), apply Lemma C.2 to the given derivation (not just the premise), obtaining a RelCost derivation

for ∆;Φa ; Γ ⊢
∞
0
Λe : (∀i

exec(0,∞)
:: S . τ ). Applying Theorem 17 to this yields LΓM,∆ | Φa , ⌊Γ⌋ ⊢ (λ_.LeM, 0) : (N →

L|τ |Me ) ×N | ⌊∀i
exec(0,∞)

:: S . τ ⌋0,∞e (r) in UHOL, which is the same as LΓM,∆ | Φa , ⌊Γ⌋ ⊢ (λ_.LeM, 0) : (N→ L|τ |Me ) ×

N | ⌊∀i
exec(0,∞)

:: S . τ ⌋v (π1 r) ∧ 0 ≤ π2 r ≤ ∞. Applying rule [PROJ1], we get LΓM,∆ | Φa , ⌊Γ⌋ ⊢ π1 (λ_.LeM, 0) : N→

L|τ |Me | ⌊∀i
exec(0,∞)

:: S . τ ⌋v (r). By subject conversion, LΓM,∆ | Φa , ⌊Γ⌋ ⊢ λ_.LeM : N→ L|τ |Me | ⌊∀i
exec(0,∞)

:: S . τ ⌋v (r).

Renaming variables, we get LΓM1,∆ | Φa , ⌊Γ1⌋ ⊢ λ_.LeM1 : N→ L|τ |Me | ⌊∀i
exec(0,∞)

:: S . τ ⌋v (r).
Now note that by definition, ∥Γ∥ ⊇ LΓM1 and by Lemma C.1(3), TΓU ⇒ ⌊Γ1⌋. Hence, we also get ∥Γ∥,∆ |

Φa ,TΓU ⊢ λ_.LeM1 : N→ L|τ |Me | ⌊∀i
exec(0,∞)

:: S . τ ⌋v (r). (C) follows immediately by rule [UHOL-L].
(D) has a similar proof.

To prove (E), apply the rule [ABS], getting the obligation:

∥Γ∥,∆, z1, z2 : N | Φa , TΓU ⊢ LeM1 : L|τ |Me ∼ Le ′M2 : L|τ |Me | ∀i .TτUte (r1, r2)
Since z1, z2 do not appear anywhere else, we can strengthen the context to remove them, thus reducing to:

∥Γ∥,∆ | Φa , TΓU ⊢ LeM1 : L|τ |Me ∼ Le ′M2 : L|τ |Me | ∀i .TτUte (r1, r2)
Next, we transpose to HOL using Theorem 6. We get the obligation:

∥Γ∥,∆ | Φa ,TΓU ⊢ ∀i .TτUte (LeM1, Le ′M2)
This is equivalent to:

∥Γ∥,∆, i : S | Φa , TΓU ⊢ TτUte (LeM1, Le ′M2)
The last statement follows immediately from i.h. on the premise, followed by transposition to HOL using Theo-

rem 6.

Case:

∆;Φa ; Γ ⊢ e ⊖ e ≲ t : τ ∀x ∈ dom(Γ). ∆;Φa |= Γ(x ) ⊑ □ Γ(x )

∆;Φa ; Γ, Γ
′
;Ω ⊢ e ⊖ e ≲ 0 : □τ

nochange
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To show: ∥Γ∥,∆ | Φa ,TΓU ⊢ LeM1 : L|τ |Me ∼ LeM2 : L|τ |Me | T□τU0

e (r1, r2).
Expanding the definition of T□τU0

e , this is equivalent to:

∥Γ∥,∆ | Φa ,TΓU ⊢ LeM1 : L|τ |Me ∼ LeM2 : L|τ |Me | TτUv (π1 r1,π2 r2) ∧ (π1 r1 = π1 r2) ∧ (π2 r1 − π2 r2 ≤ 0)
Using rule [∧I], we reduce this to two obligations:

(A) ∥Γ∥,∆ | Φa ,TΓU ⊢ LeM1 : L|τ |Me ∼ LeM2 : L|τ |Me | TτUv (π1 r1,π2 r2)
(B) ∥Γ∥,∆ | Φa ,TΓU ⊢ LeM1 : L|τ |Me ∼ LeM2 : L|τ |Me | (π1 r1 = π1 r2) ∧ (π2 r1 − π2 r2 ≤ 0)

By i.h. on the first premise,

∥Γ∥,∆ | Φa ,TΓU ⊢ LeM1 : L|τ |Me ∼ LeM2 : L|τ |Me | TτUv (π1 r1,π2 r2) ∧ (π2 r1 − π2 r2 ≤ t )
By rule [SUB],
∥Γ∥,∆ | Φa ,TΓU ⊢ LeM1 : L|τ |Me ∼ LeM2 : L|τ |Me | TτUv (π1 r1,π2 r2)
which is the same as (A).

To prove (B), apply Lemma C.3 to the second premise to get for every x ∈ dom(Γ) that ∆ | Φa ⊢ TΓ(x )Uv (x1,x2) ⇒
T□ Γ(x )Uv (x1,x2). Since T□ Γ(x )Uv (x1,x2) ⇒ x1 = x2 and from TΓU we know that TΓ(x )Uv (x1,x2), it follows
that ∥Γ∥,∆ | Φa ,TΓU ⊢ x1 = x2. Since this holds for every x ∈ dom(Γ), it follows immediately that ∥Γ∥,∆ |
Φa ,TΓU ⊢ LeM1 = LeM2. By Theorem 6, ∥Γ∥,∆ | Φa ,TΓU ⊢ LeM1 : L|τ |Me ∼ LeM2 : L|τ |Me | r1 = r2. (B) follows
immediately by rule [SUB].

□

D EXAMPLES

Factorial
This example shows that the two following implementations of factorial, with and without accumulator, are

equivalent:

fact1 ≜ letrec f1 n1 = case n1 of 0 7→ 1; S 7→ λx1.Sx1 ∗ ( f1 x1)

fact2 ≜ letrec f2 n2 = λacc .case n2 of 0 7→ acc; S 7→ λx2. f2 x2 (Sx2 ∗ acc )

Our goal is to prove that:

∅ | ∅ ⊢ fact1 : N→ N ∼ fact2 : N→ N→ N | ∀n1n2.n1 = n2 ⇒ ∀acc .(r1 n1) ∗ acc = r2 n2 acc

Since both programs do the same number of iterations, we can do synchronous reasoning for the recursion

at the head of the programs. However, the bodies of the functions have different types since fact2 receives an

extra argument, the accumulator. Therefore, we will need a one-sided application of [ABS-R], before we can
go back to reasoning synchronously. We will then apply the [CASE] rule, knowing that both terms reduce to

the same branch, since n1 = n2. On the zero branch, we will need to prove the trivial equality 1 ∗ acc = acc . On
the successor branch, we will need to prove that Sx ∗ (fact x ) ∗ acc = fact2 x2 (Sx2 ∗ acc ), knowing by induction

hypothesis that such a property holds for everym less that x .
Now we will expand on the details. We start the proof applying the [LETREC] rule, which has 2 premises:

(1) Both functions are well-defined

(2) n1 = n2,∀y1y2.(y1,y2) < (n1,n2) ⇒ y1 = y2 ⇒ ∀acc .( f1 y1) ∗ acc = f2 y2 acc ⊢ case n1 of 0 7→ 1; S 7→
λx1.Sx1 ∗ ( f1 x1) ∼ λacc .case n2 of 0 7→ acc; S 7→ λx2. f2 x2 (Sx2 ∗ acc ) | n1 = n2 ⇒ ∀acc .r1 ∗ acc = r2 acc

We assume that the first premise is provable.

To prove the second premise, we start by applying ABS-R, which leaves the following proof obligation:

n1 = n2,∀y1y2.(y1,y2) < (n1,n2) ⇒ y1 = y2 ⇒ ∀acc .( f1 y1) ∗ acc = f2 y2 acc,n1 = n2 ⊢
case n1 of 0 7→ 1; S 7→ λx1.Sx1 ∗ ( f1 x1) ∼ case n2 of 0 7→ acc; S 7→ λx2. f2 x2 (Sx2 ∗ acc ) | r1 ∗ acc = r2
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Now we can apply [CASE], and we have 3 premises, where Ψ denotes the axioms of the previous judgment:

• Ψ ⊢ n1 ∼ n2 | r1 = 0⇔ r2 = 0

• Ψ,n1 = 0,n2 = 0 ⊢ 1 ∼ acc | r1 ∗ acc = r2
• Ψ ⊢ λx1.Sx1 ∗ ( f1 x1) ∼ λx2. f2 x2 (Sx2 ∗ acc ) | ∀x1x2.n1 = Sx1 ⇒ n2 = Sx2 ⇒ (r1 x1) ∗ acc = r2 x2

Premise 1 is a direct consequence of n1 = n2. Premise 2 is a trivial arithmetic identity. To prove premise 3, we

first apply the ABS rule:

Ψ,n1 = Sx1,n2 = Sx2 ⊢ Sx1 ∗ ( f1 x1) ∼ f2 x2 (Sx2 ∗ acc ) | r1 ∗ acc = r2
and then by Theorem 6 we can finish the proof in HOL by deriving.

Ψ,n1 = Sx1,n2 = Sx2 ⊢ Sx1 ∗ ( f1 x1) ∗ acc = f2 x2 (Sx2 ∗ acc )

From the premises we can first prove that (x1,x2) < (n1,n2) so by the inductive hypothesis from the [LETREC]
rule, and the [⇒E ] rule, we get

∀acc .( f1 x1) ∗ acc = f2 x2 acc,

which we then instantiate with Sx1 ∗ acc to get

( f1 x1) ∗ Sx1 ∗ acc = f2 x2 (Sx1 ∗ acc ).

On the other hand, from the hypotheses we also have x1 = x2, so by [CONV] we finally prove

( f1 x1) ∗ Sx1 ∗ acc = f2 x2 (Sx2 ∗ acc )

List reversal
A related example for lists is the equivalence of reversal with and without accumulator. The structure of the

proof is the same as in the factorial example, but we will briefly show it to illustrate how the LISTCASE rule is

used. The functions are written:

rev1 ≜ letrec f1 l1 = case l1 of [] 7→ []; _ :: _ 7→ λh1.λt1.( f1 t1) ++[x1]

rev2 ≜ letrec f2 l2 = λacc .case l2 of [] 7→ acc; _ :: _ 7→ λh2.λt2. f2 t2 (h2 :: acc )

We want to prove they are related by the following judgment:

∅ | ∅ ⊢ rev1 : listτ → listτ ∼ rev2 : listτ → listτ | ∀l1, l2.l1 = l2 ⇒ ∀acc . (r1 l1) + +acc = r2 l2 acc

By the [LETREC] rule, we have to prove 2 premises:

(1) Both functions are well-defined.

(2) l1 = l2,∀m1m2.( |m1 |, |m2 |) < ( |l1 |, |l2 |) ⇒ m1 = m2 ⇒ ∀acc .( f1 m1) + +acc = f2 m2 acc ⊢ case l1 of [] 7→
[]; _ :: _ 7→ λh1.λt1.( f1 t1) ++[x1] ∼ λacc .case l2 of [] 7→ acc; _ :: _ 7→ λh2.λt2. f2 t2 (h2 :: acc ) |
∀acc . r1 + +acc = r2 acc

For the second premise, similarly as in factorial, we apply ABS-R. We have the following premise, where Ψ
denotes the axioms in the previous judgment:

Ψ ⊢ case l1 of [] 7→ []; _ :: _ 7→ λh1.λt1.( f1 t1) ++[x1] ∼ case t2 of [] 7→ acc; _ :: _ 7→ λh2.λt2. f2 t2 (h2 :: acc ) |
r1 + +acc = r2

and then LISTCASE, which has three premises:

• Ψ ⊢ l1 ∼ l2 | r1 = []⇔ r2 = []

• Ψ, l1 = [], l2 = [] ⊢ [] ∼ acc | r1 + +acc = r2
• Ψ ⊢ λh1.λt1.( f1 t1) ++[x1] ∼ λh2.λt2. f2 t2 (h2 :: acc ) |
∀h1t1h2t2.l1 = h1 :: t1 ⇒ l2 = h2 :: t2 ⇒ r1 + +acc = r2

We complete the proof in a similar way as in the factorial example.
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Proof of Theorem 19
Theorem 19. l1, l2 : listN,n1,n2 : N,д1,д2 : N→ N | l1 = l2,n1 = n2,д1 = д2 ⊢

map (take l1 n1) д1 : listN ∼ take (map l2 д2) n2 : listN | r1 = r2

We will use without proof two unary lemmas:

Lemma 24. • | • ⊢ take : listN → N→ listN | ∀ln.|r l n | =min(n, |l |)

Lemma 25. • | • ⊢map : listN → (N→ N) → listN | ∀l f .|r l f | = |l |

Now we proceed with the proof of the theorem

Proof. We want to prove

l1 = l2,n1 = n2,д1 = д2 ⊢map (take l1 n1) д1 ∼ take (map l2 д2) n2 | r1 ⊑ r2∧|r1 | = min(n1, |l1 |)∧|r2 | = min(n2, |l2 |)

where r1 ⊑ r2 is the prefix ordering and is defined as an inductive predicate:

∀l .[] ⊑ l ∀hl1l2.l1 ⊑ l2 ⇒ h :: l1 ⊑ h :: l2

By the helping lemmas and Lemma 10, it suffices to prove just the first conjunct:

l1 = l2,n1 = n2,д1 = д2 ⊢map (take l1 n1) д1 ∼ take (map l2 д2) n2 | r1 ⊑ r2
The derivation begins by applying the APP-R rule. We get the following judgment on n2:

l1 = l2,n1 = n2,д1 = д2 ⊢ n2 | r ≥ |take l1 n1 | (1)

and a main premise:

l1 = l2,n1 = n2,д1 = д2 ⊢map (take l1 n1) д1 ∼ take (map l2 д2) | ∀x2.x2 ≥ |take l1 n1 | ⇒ r1 ⊑ (r2 x2) (2)

Notice that we have chosen the premise x2 ≥ |take l1 n1 | because we are trying to prove r1 ⊑ (r2 x2), which is

only true if we take a larger prefix on the right than on the left. The judgment (1) is easily proven from the fact

that |take l1 n1 | =min(n1, |l1 |) ≤ n1 = n2, which we get from the lemmas. To prove (2) we first apply APP-L with

a trivial condition д1 = д2 on д1. Then we apply APP and we have two premises:

(A) Ψ ⊢ take l1 n1 ∼map l2 д2 | r1 ⊑д2 r2
(B) Ψ ⊢map ∼ take | ∀m1m2.m1 ⊑д2 m2 ⇒ (∀д1.д1 = д2 ⇒ ∀x2.x2 ≥ |m1 | ⇒ (r1 m1 д1) ⊑ (r2 m2 x2))

where ⊑д is defined as an inductive predicate parametrized by д:

∀l .[] ⊑д l ∀hl1l2.l1 ⊑д l2 ⇒ h :: l1 ⊑д (дh) :: l2

We first show how to prove (A). We start by applying APP with a trivial condition for the arguments to get:

Ψ ⊢ take l1 ∼map l2 | ∀x1д2.(r1 x1) ⊑д2 (r2 д2)

We then apply APP, which has two premises, one of them equating l1 and l2. The other one is:

Ψ ⊢ take ∼map | ∀m1m2.m1 =m2 ⇒ ∀x1д2.(r1 m1 x1) ⊑д2 (r2 m2 д2)

To complete this branch of the proof, we apply LETREC. We need to prove the following premise:

Ψ,m1 =m2,∀k1k2.(k1,k2) < (m1,m2) ⇒ k1 = k2 ⇒ ∀x1д2.( f1 k1 x1) ⊑д2 ( f2 k2 д2) ⊢
λn1.e1 ∼ λд2.e2 | ∀x1д2.(r1 x1) ⊑д2 (r2 д2)

Where e1, e2 abbreviate the bodies of the functions:

e1 ≜ casem1 of [] 7→ []

; _ :: _ 7→ λh1t1.case x1 of 0 7→ []

; S 7→ λy1.h1 :: f1 t1 y1
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e2 ≜ casem2 of [] 7→ []

; _ :: _ 7→ λh2t2.(д2 h2) :: ( f2 t2 д2)

If we apply ABS we get a premise:

Ψ,m1 =m2,∀k1k2.(k1,k2) < (m1,m2) ⇒ k1 = k2 ⇒ ∀x1д2.( f1 k1 x1) ⊑д2 ( f2 k2 д2) ⊢ e1 ∼ e2 | r1 ⊑f r2
And now we can apply a synchronous CASE rule, since we have a premise m1 = m2. This yields 3 proof

obligations, where Ψ′ is the set of axioms in the previous judgment:

(A.1) Ψ′ ⊢m1 ∼m2 | r1 = []⇔ r2 = []

(A.2) Ψ′ ⊢ [] ∼ [] | r1 ⊑f r2
(A.3) Ψ′ ⊢ λh1t1.case x1 of 0 7→ []; S 7→ λy1.h1 :: f1 t1 y1 ∼

λh2t2.(д2 h2) :: ( f2 t2 д2) | ∀h1t1h2t2.m1 = h1 :: t1 ⇒m2 = h2 :: t2 ⇒ (r1 h1 t1) ⊑д2 (r2 h2 t2)
Premises (A.1) and (A.2) are trivial. To prove (A.3) we first apply ABS twice:

Ψ′,m1 = h1 :: t1,m2 = h2 :: t2 ⊢ case n1 of 0 7→ []; S 7→ λy1.h1 :: f1 t1 y1 ∼ (д2 h2) :: ( f2 t2 д2) | r1 ⊑д2 r2
Next, we apply CASE-L, which has the following two premises:

(A.3.i) Ψ′,m1 = h1 :: t1,m2 = h2 :: t2,n1 = 0 ⊢ [] ∼ (д2 h2) :: ( f2 t2 д2) | r1 ⊑д2 r2
(A.3.ii) Ψ′,m1 = h1 :: t1,m2 = h2 :: t2 ⊢ λy1.h1 :: f1 t1 y1 ∼ (д2 h2) :: ( f2 t2 д2) | ∀y1.n1 = Sy1 ⇒ (r1 y1) ⊑д2 r2

Premise (A.3.i) can be directly derived in HOL from the definition of ⊑д2 . To prove (A.3.ii) we need to make use

of our inductive hypothesis:

∀k1k2.(k1,k2) < (m1,m2) ⇒ k1 = k2 ⇒ ∀x1д2.( f1 k1 x1) ⊑д2 ( f2 k2 д2)

In particular, from the premises m1 = h1 :: t1 and m2 = h2 :: t2 we can deduce (t1, t2) < (m1,m2). Addi-
tionally, from the premise m1 = m2 we prove t1 = t2. Therefore, from the inductive hypothesis we derive

∀x1д2.( f1 t1 x1) ⊑д2 ( f2 t2 д2), and by definition of ⊑д2 , and the fact that h1 = h2, for every y we can prove

h1 :: ( f1 t1 y) ⊑д2 (д2 h2) :: f2 t2. By Theorem 6, we can prove (A.3.ii).

We will now show how to prove (B) :

Ψ ⊢map ∼ take | ∀m1m2.m1 ⊑д2 m2 ⇒ (∀д1.д1 = д2 ⇒ ∀x2.x2 ≥ |m1 | ⇒ (r1 m1 д1) ⊑ (r2 m2 x2))

On this branch we will also use LETREC. We have to prove a premise:

Ψ,Φ ⊢ λд1.e2 ∼ λx2.e1 | ∀д1.д1 = д2 ⇒ ∀x2.x2 ≥ |m1 | ⇒ (r1 д1) ⊑ (r2 x2)
where

Φ ≜
m1 ⊑д2 m2,

∀k1k2.(k1,k2) < (m1,m2) ⇒ k1 ⊑д2 k2 ⇒ (∀д1.д1 = д2 ⇒ ∀x2.x2 ≥ |k1 | ⇒ (r1 k1 д1) ⊑ (r2 k2 x2))

We start by applying ABS. Our goal is to prove:

Ψ,Φ,x2 ≥ |m1 |,д1 = д2 ⊢
casem1 of [] 7→ []

; _ :: _ 7→ λh1t1.(д1 h1) :: ( f1 t1 д1)
∼

casem2 of [] 7→ []

; _ :: _ 7→ λh2t2.case x2 of 0 7→ []

; S 7→ λy2.h2 :: f2 t2 y2

| r1 ⊑ r2

Notice that we have α-renamed the variables to have the appropriate subscript. Now we want to apply a CASE

rule, but the lists over which we are matching are not necessarily of the same length. Therefore, we use the

asynchronous LISTCASE-A rule. We have to prove four premises:

(B.1) Ψ,Φ,x2 ≥ |m1 |,д1 = д2,m1 = [],m2 = [] ⊢ [] ∼ [] | r1 ⊑ r2
(B.2) Ψ,Φ,x2 ≥ |m1 |,д1 = д2,m1 = [] ⊢ [] ∼

λh2t2.case x2 of 0 7→ []; S 7→ λy2.h2 :: f2 t2 y2 | ∀h2t2.m2 = h2 :: t2 ⇒ r1 ⊑ (r2 h2 t2)
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(B.3) Ψ,Φ,x2 ≥ |m1 |,д1 = д2,m2 = [] ⊢ λh1t1.(д1 h1) :: ( f1 t1 д1) ∼ [] | ∀h1t1.m1 = h1 :: t1 ⇒ (r1 h1 t1) ⊑ r2
(B.4) Ψ,Φ,x2 ≥ |m1 |,д1 = д2 ⊢ λh1t1.(д1 h1) :: ( f1 t1 д1) ∼

λh2t2.case x2 of 0 7→ []; S 7→ λy2.h2 :: f2 t2 y2 |
∀h1t1h2t2.m1 = h1 :: t1 ⇒m2 = h1 :: t1 ⇒ (r1 h1 t1) ⊑ (r2 h2 t2)

Premises (B.1) and (B.2) are trivially derived from the definition of the ⊑ predicate. To prove premise (B.3) we

see that we have premisesm1 ⊑д2 m2,m2 = [], andm1 = h1 :: t2, from which we can derive a contradiction.

It remains to prove (B.4). To do so, we apply ABS twice and then NATCASE-R, which has two premises:

(B.4.i) Ψ,Φ,x2 ≥ |m1 |,д1 = д2,m1 = h1 :: t1,m2 = h1 :: t1,x2 = 0 ⊢ (д1 h1) :: ( f1 t1 д1) ∼ [] | r1 ⊑ r2
(B.4.ii) Ψ,Φ,x2 ≥ |m1 |,д1 = д2,m1 = h1 :: t1,m2 = h1 :: t1 ⊢ (д1 h1) :: ( f1 t1 д1) ∼ λy2.h2 :: f2 t2 y2 |

∀y2.x2 = Sy2 ⇒ r1 ⊑ (r2 y2)

To prove (B.4.i) we derive a contradiction between the premises. From x2 = 0 and the premise x2 ≥ |m1 | we

derivem1 = [] and, together withm1 = h1 :: t1 we arrive at a contradiction by applying NC.

To prove (B.4.ii) we need to use the induction hypothesis. Fromm1 = h1 :: t1,m2 = h1 :: t1 we can prove that

|t1 | < |m1 | and |t2 | < |m2 |, so we can do a CUT with the i.h. and derive:

t1 ⊑д2 t2 ⇒ (∀д1.д1 = д2 ⇒ ∀x2.x2 ≥ |t1 | ⇒ ( f1 t1 д1) ⊑ ( f2 t2 x2))

By assumption,m1 ⊑д2 m2, so t1 ⊑д2 t2. Moreover, also by assumption д1 = д2, and Sy2 = x2 ≥ |m1 | = S |t1 |, so
y2 ≥ |t1 |. So if we instantiate the i.h. with д1 and y2, and apply CUT again, we can prove:

( f1 t1 д1) ⊑ ( f2 t2 y2)

On the other hand, since h1 :: t1 ⊑д2 h2 :: t2, then (by elimination of ⊑д2 ) we can derive д1h1 = h2 and by definition
of ⊑, (д1 h1) :: ( f1 t1 д1) ⊑ h2 :: ( f2 t2 y2). So we can apply Theorem 6 and prove (B.4.ii). This ends the proof. □

□

Proof of Theorem 20
Theorem 20. Let τ ≜ listN → listN. Then, • | • ⊢ isort : τ ∼ isort : τ | ∀x1 x2. (sorted(x1) ∧ |x1 | = |x2 |) ⇒
π2 (r1 x1) ≤ π2 (r2 x2).

We need two straightforward lemmas in UHOL. The lemmas state that sorting preserves the length and

minimum element of a list.

Lemma 26. Let τ ≜ listN → listN. Then, (1) • | • ⊢ insert : N → τ | ∀x l . |π1 (r x l ) | = 1 + |l |, and
(2) • | • ⊢ isort : τ | ∀x . |π1 (r x ) | = |x |.

Lemma 27. Let τ ≜ listN → listN. Then, (1) • | • ⊢ insert : N→ τ | ∀x l . lmin(π1 (r x l )) = min(x , lmin(l )), and
(2) • | • ⊢ isort : τ | ∀x . lmin(π1 (r x )) = lmin(x ).

Proof of Theorem 20. We prove the theorem using LETREC. We actually show the following stronger theo-

rem, which yields a stronger induction hypothesis in the proof.

• | • ⊢ isort : τ ∼ isort : τ | ∀x1 x2. (sorted(x1) ∧ |x1 | = |x2 |) ⇒
(π2 (r1 x1) ≤ π2 (r2 x2)) ∧ (r1 x1 = isort x1) ∧ (r2 x2 = isort x2)

Let ι denote the inductive hypothesis:

ι ≜ ∀m1m2. ( |m1 |, |m2 |) < ( |x1 |, |x2 |) ⇒ (sorted(m1) ∧ |m1 | = |m2 |)
⇒ π2 (isort1 m1) ≤ π2 (isort2 m2) ∧ (isort1 m1 = isortm1) ∧ (isort2 m2 = isortm2)
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and e denote the body of the function isort:

e ≜ case l of [] 7→ ([], 0);
_ :: _ 7→ λh t . let s = isort t

let s ′ = insert h (π1 s ) in
(π1 s

′, (π2 s ) + (π2 s
′))

By LETREC, it suffices to prove the following (we omit simple types for easier reading; they play no essential

role in the proof).

isort1, isort2,x1,x2 | sorted(x1), |x1 | = |x2 |, ι ⊢ e[isort1/isort][x1/l] ∼ e[isort2/isort][x2/l] |
*.
,

π2 r1 ≤ π2 r2
∧ r1 = isort x1
∧ r2 = isort x2

+/
-

Following the structure of e , we next apply the rule LISTCASE. This yields the following two main proof

obligations, corresponding to the two case branches (the third proof obligation, x1 = [] ⇔ x2 = [] follows

immediately from the assumption |x1 | = |x2 |).

isort1, isort2,x1,x2 | sorted(x1), |x1 | = |x2 |, ι,x1 = x2 = [] ⊢ ([], 0) ∼ ([], 0) |
(π2 r1 ≤ π2 r2) ∧ (r1 = isort x1) ∧ (r2 = isort x2)

(1)

isort1, isort2,
x1,x2,h1, t1,h2, t2 |
sorted(x1), |x1 | = |x2 |, ι,
x1 = h1 :: t1,x2 = h2 :: t2

⊢

let s = isort1 t1
let s ′ = insert h1 (π1 s ) in
(π1 s

′, (π2 s ) + (π2 s
′))

∼

let s = isort2 t2
let s ′ = insert h2 (π1 s ) in
(π1 s

′, (π2 s ) + (π2 s
′))

������

π2 r1 ≤ π2 r2
∧ r1 = isort x1
∧ r2 = isort x2

(2)

(1) is immediate: By Theorem 6, it suffices to show that (π2 ([], 0) ≤ π2 ([], 0)) ∧ (([], 0) = isort x1) ∧ (([], 0) =
isort x2). Since x1 = x2 = [] by assumption here, this is equivalent to (π2 ([], 0) ≤ π2 ([], 0)) ∧ (([], 0) =
isort []) ∧ (([], 0) = isort []), which is trivial by direct computation.

To prove (2), we expand the outermost occurrences of let in both to function applications using the definition

let x = e1 in e2 ≜ (λx .e2) e1. Applying the rules APP and ABS, it suffices to prove the following for any ϕ of our

choice.

isort1, isort2,x1,x2,h1, t1,h2, t2

������
sorted(x1), |x1 | = |x2 |,
ι,x1 = h1 :: t1,x2 = h2 :: t2

⊢ isort1 t1 ∼ isort2 t2

������
ϕ (3)

isort1, isort2,x1,x2,
h1, t1,h2, t2, s1, s2 |
sorted(x1), |x1 | = |x2 |, ι,
x1 = h1 :: t1,x2 = h2 :: t2
ϕ[s1/r1][s2/r2]

⊢
let s ′ = insert h1 (π1 s1) in
(π1 s

′, (π2 s1) + (π2 s
′))

∼
let s ′ = insert h2 (π1 s2) in
(π1 s

′, (π2 s2) + (π2 s
′))

������

π2 r1 ≤ π2 r2
∧ r1 = isort x1
∧ r2 = isort x2

(4)

We choose ϕ as follows:

ϕ ≜ π2 r1 ≤ π2 r2 ∧ r1 = isort(t1) ∧ r2 = isort(t2) ∧ |π1 r1 | = |π1 r2 | ∧ lmin(t1) = lmin(π1 r1)

Proof of (3): By Theorem 6, it suffices to prove the following five statements in HOL under the context of (3).

These statements correspond to the five conjuncts of ϕ.

π2 (isort1 t1) ≤ π2 (isort2 t2) (5)
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isort1 t1 = isort t1 (6)

isort1 t2 = isort t2 (7)

|π1 (isort1 t1) | = |π1 (isort2 t2) | (8)

lmin(t1) = lmin(π1 (isort1 t1)) (9)

(5)–(7) follow from the induction hypothesis ι instantiated withm1 := t1,m2 := t2. Note that because x1 = h1 :: t1
and x2 = h2 :: t2, we can prove (in HOL) that ( |t1 |, |t2 |) < ( |x1 |, |x2 |). Since, |x1 | = |x2 |, x1 = h1 :: t1 and x2 = h2 :: t2,
we can also prove that |t1 | = |t2 |. Finally, from the axiomatic definition of sorted and the assumption sorted(x1)
it follows that sorted(t1). These together allow us to instantiate the i.h. ι and immediately derive (5)–(7).

To prove (8), we use (6) and (7), which reduces (8) to |π1 (isort t1) | = |π1 (isort t2) |. To prove this, we apply

Theorem 3 to Lemma 26, yielding ∀x . |π1 (isort x ) | = |x |. Hence, we can further reduce our goal to proving

|t1 | = |t2 |, which we already did above.

To prove (9), we use (6), which reduces (9) to lmin(t1) = lmin(π1 (isort t1)). This follows immediately from

Theorem 3 applied to Lemma 27.

This proves (3).

Proof of (4): We expand the definition of let and apply the rules APP and ABS to reduce (4) to proving the

following for any ϕ ′.

isort1, isort2,x1,x2,
h1, t1,h2, t2, s1, s2

������

sorted(x1), |x1 | = |x2 |,
ι,x1 = h1 :: t1,x2 = h2 :: t2,
ϕ[s1/r1][s2/r2]

⊢ insert h1 (π1 s1) ∼ insert h2 (π1 s2)
������
ϕ ′ (10)

isort1, isort2,x1,x2,
h1, t1,h2, t2, s1, s2, s

′
1
, s ′

2
|

sorted(x1), |x1 | = |x2 |,
ι,x1 = h1 :: t1,x2 = h2 :: t2
ϕ[s1/r1][s2/r2],
ϕ ′[s ′

1
/r1][s ′2/r2]

⊢ (π1 s
′
1
, (π2 s1) + (π2 s

′
1
)) ∼ (π1 s

′
2
, (π2 s2) + (π2 s

′
2
))

������

π2 r1 ≤ π2 r2
∧ r1 = isort x1
∧ r2 = isort x2

(11)

We pick the following ϕ ′:

ϕ ′ ≜ π2 r1 ≤ π2 r2 ∧ r1 = insert h1 (π1 s1) ∧ r2 = insert h2 (π1 s2)

Proof of (10): We start by applying Theorem 6. This yields three subgoals in HOL, corresponding to the three

conjuncts in ϕ ′:

π2 (insert h1 (π1 s1)) ≤ π2 (insert h2 (π1 s2)) (12)

insert h1 (π1 s1) = insert h1 (π1 s1) (13)

insert h2 (π1 s2) = insert h2 (π1 s2) (14)
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(13) and (14) are trivial, so we only have to prove (12). Since s1 = isort t1 and s2 = isort t2 are conjuncts in the

assumption ϕ[s1/r1][s2/r2], (12) is equivalent to:

π2 (insert h1 (π1 (isort t1))) ≤ π2 (insert h2 (π1 (isort t2))) (15)

To prove this, we split cases on the shapes of π1 (isort t1) and π1 (isort t2). From the conjuncts in ϕ[s1/r1][s2/r2],
it follows immediately that |π1 (isort t1) | = |π1 (isort t2) |. Hence, only two cases apply:

Case:π1 (isort t1) = π1 (isort t2) = []. In this case, by direct computation,π2 (inserth1 (π1 (isort t1))) = π2 (inserth1 []) =
π2 ([h1], 0) = 0. Similarly, and π2 (insert h2 (π1 (isort t2))) = 0. So, the result follows trivially.

Case: π1 (isort t1) = h′
1
:: t ′

1
and π1 (isort t2) = h′

2
:: t ′

2
. We first argue that h1 ≤ h′

1
. Note that from the second

and fifth conjuncts in ϕ[s1/r1][s2/r2], it follows that lmin(t1) = lmin(π1 (isort t1)). Since π1 (isort t1) = h′1 :: t
′
1
, we

further get lmin(t1) = lmin(π1 (isort t1)) = lmin(h′
1
:: t ′

1
) = min(h′

1
, lmin(t ′

1
)) ≤ h′

1
. Finally, from the axiomatic

definition of sorted(x1) and x1 = h1 :: t1, we derive h1 ≤ lmin(t1). Combining, we get h1 ≤ lmin(t1) ≤ h′
1
.

Next, π2 (insert h1 (π1 (isort t1))) = π2 (insert h1 (h′1 :: t
′
1
)). Expanding the definition of insert and using h1 ≤ h′

1
,

we immediately get π2 (insert h1 (π1 (isort t1))) = π2 (insert h1 (h′
1
:: t ′

1
)) = π2 (h1 :: h′

1
:: t ′

1
, 1) = 1. On the

other hand, it is fairly easy to prove (by case analyzing the result of h2 ≤ h′
2
) that π2 (insert h2 (π1 (isort t2))) =

π2 (insert h2 (h′2 :: t
′
2
)) ≥ 1. Hence, π2 (insert h1 (π1 (isort t1))) = 1 ≤ π2 (insert h2 (π1 (isort t2))).

This proves (15) and, hence, (12) and (10).

Proof of (11): By Theorem 6, it suffices to show the following in HOL, under the assumptions of (11):

π2 (π1 s
′
1
, (π2 s1) + (π2 s

′
1
)) ≤ π2 (π1 s

′
2
, (π2 s2) + (π2 s

′
2
)) (16)

(π1 s
′
1
, (π2 s1) + (π2 s

′
1
)) = isort x1 (17)

(π1 s
′
2
, (π2 s2) + (π2 s

′
2
)) = isort x2 (18)

By computation, (16) is equivalent to (π2 s1) + (π2 s
′
1
) ≤ (π2 s2) + (π2 s

′
2
). Using the definition of ϕ, it is easy

to see that π2 s1 ≤ π2 s2 is a conjunct in the assumption ϕ[s1/r1][s2/r2]. Similarly, using the definition of ϕ ′,
π2 s

′
1
≤ π2 s

′
2
is a conjunct in the assumption ϕ ′[s ′

1
/r1][s ′2/r2]. (16) follows immediately from these.

To prove (17), note that since x1 = h1 :: t1, expanding the definition of isort, we get

isort x1 = (π1 (insert h1 (π1 (isort t1))),π2 (isort t1) + π2 (insert h1 (π1 (isort t1))))

Matching with the left side of (17), it suffices to show that s ′
1
= insert h1 (π1 (isort t1)) and s1 = isort t1. These are

immediate: s1 = isort t1 is a conjunct in the assumption ϕ[s1/r1][s2/r2], while s ′1 = insert h1 (π1 (isort t1)) follows
trivially from this and the conjunct s ′

1
= insert h1 (π1 s1) in ϕ ′[s ′1/r1][s

′
2
/r2]. This proves (17).

The proof of (18) is similar to that of (17).

This proves (11) and, hence, (4). □

E FULL RHOL RULES
The full set of RHOL rules is in the following figures:
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Γ,x1 : τ1,x2 : τ2 | Ψ,ϕ
′ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ

Γ | Ψ ⊢ λx1.t1 : τ1 → σ1 ∼ λx2.t2 : τ2 → σ2 | ∀x1,x2.ϕ
′ ⇒ ϕ[r1 x1/r1][r2 x2/r2]

ABS

Γ | Ψ ⊢ t1 : τ1 → σ1 ∼ t2 : τ2 → σ2 | ∀x1,x2.ϕ
′
[x1/r1][x2/r2]⇒ ϕ[r1 x1/r1][r2 x2/r2]

Γ | Ψ ⊢ u1 : τ1 ∼ u2 : τ2 | ϕ
′

Γ | Ψ ⊢ t1u1 : σ1 ∼ t2u2 : σ2 | ϕ[u1/x1][u2/x2]
APP

Γ | Ψ ⊢HOL ϕ[0/r1][0/r2]
Γ | Ψ ⊢ 0 : N ∼ 0 : N | ϕ

ZERO

Γ | Ψ ⊢ t1 : N ∼ t2 : N | ϕ
′

Γ | Ψ ⊢HOL ∀x1x2ϕ
′
[x1/r1][x2/r2]⇒ ϕ[Sx1/r1][Sx2/r2]

Γ | Ψ ⊢ St1 : N ∼ St2 : N | ϕ
SUCC

Γ | Ψ ⊢ ϕ[x1/r1][x2/r2] Γ ⊢ x1 : σ1 Γ ⊢ x1 : σ1

Γ | Ψ ⊢ x1 : σ1 ∼ x2 : σ2 | ϕ
VAR

Γ | Ψ ⊢HOL ϕ[tt/r1][tt/r2]
Γ | Ψ ⊢ tt : B ∼ tt : B | ϕ

TRUE

Γ | Ψ ⊢HOL ϕ[ff/r1][ff/r2]
Γ | Ψ ⊢ ff : B ∼ ff : B | ϕ

FALSE
Γ | Ψ ⊢HOL ϕ[[]/r1][[]/r2]

Γ | Ψ ⊢ [] : listσ1 ∼ [] : listσ2 | ϕ
NIL

Γ | Ψ ⊢ h1 : σ1 ∼ h2 : σ2 | ϕ
′ Γ | Ψ ⊢ t1 : listσ1 ∼ t2 : listσ2 | ϕ

′′

Γ | Ψ ⊢HOL ∀x1x2y1y2.ϕ
′
[x1/r1][x2/r2]⇒ ϕ ′′[y1/r1][y2/r2]⇒ ϕ[x1 :: y1/r1][x2 :: y2/r2]

Γ | Ψ ⊢ h1 :: t1 : listσ1 ∼ h2 :: t2 : listσ2 | ϕ
CONS

Γ | Ψ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ
′ Γ | Ψ ⊢ u1 : τ1 ∼ u2 : τ2 | ϕ

′′

Γ | Ψ ⊢HOL ∀x1x2y1y2.ϕ
′
[x1/r1][x2/r2]⇒ ϕ ′′[y1/r1][y2/r2]⇒ ϕ[⟨x1,y1⟩/r1][⟨x2,y2⟩/r2]

Γ | Ψ ⊢ ⟨t1,u1⟩ : σ1 × τ1 ∼ ⟨t2,u2⟩ : σ2 × τ2 | ϕ
PAIR

Γ | Ψ ⊢ t1 : σ1 × τ1 ∼ t2 : σ2 × τ2 | ϕ[πi (r1)/r1][πi (r2)/r2]
Γ | Ψ ⊢ πi (t1) : σ1 ∼ πi (t2) : σ2 | ϕ

PROJi

Fig. 1. Core two-sided rules
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Γ | Ψ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ
′ Γ | Ψ ⊢HOL ϕ

′
[t1/r1][t2/r2]⇒ ϕ[t1/r1][t2/r2]

Γ | Ψ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ
SUB

Γ | Ψ′ ⊢ t1 : σ2 ∼ t2 : σ2 | ϕ Γ | Ψ′ ⊢ t1 : σ2 ∼ t2 : σ2 | ϕ
′

Γ | Ψ′ ⊢ t1 : σ2 ∼ t2 : σ2 | ϕ ∧ ϕ
′

∧I

Γ | Ψ′,ϕ ′[t1/r1][t2/r2] ⊢ t1 : σ2 ∼ t2 : σ2 | ϕ

Γ | Ψ′ ⊢ t1 : σ2 ∼ t2 : σ2 | ϕ
′ ⇒ ϕ

⇒I

Γ | Ψ ⊢ t1 : σ1 | ϕ[r/r1][t2/r2]
Γ | Ψ ⊢ t1 : σ1 ∼ t2 : σ1 | ϕ

UHOL − L

Fig. 2. Structural rules
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Γ,x1 : τ1 | Ψ,ϕ
′ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ

Γ | Ψ ⊢ λx1.t1 : τ1 → σ1 ∼ t2 : σ2 | ∀x1.ϕ
′ ⇒ ϕ[r1 x1/r1]

ABS−L

Γ | Ψ ⊢ t1 : τ1 → σ1 ∼ u2 : σ2 | ∀x1.ϕ
′
[x1/r1]⇒ ϕ[r1 x1/r1]

Γ | Ψ ⊢ u1 : σ1 | ϕ
′

Γ | Ψ ⊢ t1u1 : σ1 ∼ u2 : σ2 | ϕ[u1/x1]
APP−L

Γ ⊢ t2 : σ2
Γ | Ψ ⊢HOL ϕ[0/r1][t2/r2]

Γ | Ψ ⊢ 0 : N ∼ t2 : σ2 | ϕ
ZERO−L

Γ | Ψ ⊢ t1 : N ∼ t2 : σ2 | ϕ
′

Γ | Ψ ⊢HOL ∀x1x2ϕ
′
[x1/r1][x2/r2]⇒ ϕ[Sx1/r1][x2/r2]

Γ | Ψ ⊢ St1 : N ∼ t2 : σ2 | ϕ
SUCC−L

Γ | Ψ ⊢HOL ϕ[tt/r1][t2/r2] Γ ⊢ t2 : σ2

Γ | Ψ ⊢ tt : B ∼ t2 : σ2 | ϕ
TRUE − L

Γ | Ψ ⊢HOL ϕ[ff/r1][t2/r2] Γ ⊢ t2 : σ2

Γ | Ψ ⊢ ff : B ∼ t2 : σ2 | ϕ
FALSE − L

ϕ[x1/r1] ∈ Ψ r2 < FV (ϕ) Γ ⊢ t2 : σ2

Γ | Ψ ⊢ x1 : σ1 ∼ t2 : σ2 | ϕ
VAR−L

Γ | Ψ ⊢ ϕ[[]/r1][t2/r2] Γ ⊢ t2 : σ2

Γ | Ψ ⊢ [] : listσ1 ∼ t2 : σ2 | ϕ
NIL−L

Γ | Ψ ⊢ h1 : σ1 ∼ t2 : σ2 | ϕ
′ Γ | Ψ ⊢ t1 : listσ1 ∼ t2 : σ2 | ϕ

′′

Γ | Ψ ⊢HOL ∀x1x2y1.ϕ
′
[x1/r1][x2/r2]⇒ ϕ ′′[y1/r1][x2/r2]⇒ ϕ[x1 :: y1/r1][x2/r2]

Γ | Ψ ⊢ h1 :: t1 : listσ1 ∼ t2 : σ2 | ϕ
CONS−L

Γ | Ψ ⊢ t1 : σ1 ∼ t2 : σ2 | ϕ
′ Γ | Ψ ⊢ u1 : τ1 ∼ t2 : σ2 | ϕ

′′

Γ | Ψ ⊢HOL ∀x1x2y1.ϕ
′
[x1/r1][x2/r2]⇒ ϕ ′′[y1/r1][x2/r2]⇒ ϕ[⟨x1,y1⟩/r1][x2/r2]

Γ | Ψ ⊢ ⟨t1,u1⟩ : σ1 × τ1 ∼ t2 : σ2 | ϕ
PAIR−L

Γ | Ψ ⊢ t1 : σ1 × τ1 ∼ t2 : σ2 | ϕ[π1 (r1)/r1]
Γ | Ψ ⊢ π1 (t1) : σ1 ∼ t2 : σ2 | ϕ

PROJ1−L

Fig. 3. Core one-sided rules
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Γ | Ψ ⊢ t1 : B ∼ t2 : B | (r1 = tt ∧ r2 = tt) ∨ (r1 = ff ∧ r2 = ff)
Γ | Ψ, t1 = tt, t2 = tt ⊢ u1 : σ1 ∼ u2 : σ2 | ϕ
Γ | Ψ, t1 = ff, t2 = ff ⊢ v1 : σ1 ∼ v2 : σ2 | ϕ

Γ | Ψ ⊢ case t1 of tt 7→ u1;ff 7→ v1 : σ1 ∼ case t2 of tt 7→ u2;ff 7→ v2 : σ2 | ϕ
BOOLCASE

Γ | Ψ ⊢ t1 : N ∼ t2 : N | r1 = 0⇔ r2 = 0

Γ | Ψ, t1 = 0, t2 = 0 ⊢ u1 : σ1 ∼ u2 : σ2 | ϕ
Γ | Ψ ⊢ v1 : N→ σ1 ∼ v2 : N→ σ2 | ∀x1x2.t1 = Sx1 ⇒ t2 = Sx2 ⇒ ϕ[r1 x1/r1][r2 x2/r2]

Γ | Ψ ⊢ case t1 of 0 7→ u1; S 7→ v1 : σ1 ∼ case t2 of 0 7→ u2; S 7→ v2 : σ2 | ϕ
NATCASE

Γ | Ψ ⊢ t1 : listτ1 ∼ t2 : listτ2 | r1 = []⇔ r2 = []

Γ | Ψ, t1 = [], t2 = [] ⊢ u1 : σ1 ∼ u2 : σ2 | ϕ
Γ | Ψ ⊢ v1 : τ1 → listτ1 → σ1 ∼ v2 : τ2 → listτ2 → σ2 |

∀h1h2l1l2.t1 = h1 :: l1 ⇒ t2 = h2 :: l2 ⇒ ϕ[r1 h1 l1/r1][r2 h2 l2/r2]
Γ | Ψ ⊢ case t1 of [] 7→ u1; _ :: _ 7→ v1 : σ1 ∼ case t2 of [] 7→ u2; _ :: _ 7→ v2 : σ2 | ϕ

LISTCASE

Fig. 4. Synchronous case rules

Γ ⊢ t1 : B
Γ | Ψ, t1 = tt ⊢ u1 : σ1 ∼ t2 : σ2 | ϕ
Γ | Ψ, t1 = ff ⊢ v1 : σ1 ∼ t2 : σ2 | ϕ

Γ | Ψ ⊢ case t1 of tt 7→ u1;ff 7→ v1 : σ1 ∼ t2 : σ2 | ϕ
BOOLCASE − L

Γ ⊢ t1 : N
Γ | Ψ, t1 = 0 ⊢ u1 : σ1 ∼ t2 : σ2 | ϕ

Γ | Ψ ⊢ v1 : N→ σ1 ∼ t2 : σ2 | ∀x1.t1 = Sx1 ⇒ ϕ[r1 x1/r1]
Γ | Ψ ⊢ case t1 of 0 7→ u1; S 7→ v1 : σ1 ∼ t2 : σ2 | ϕ

NATCASE − L

Γ ⊢ t1 : listτ
Γ | Ψ, t1 = [] ⊢ u1 : σ1 ∼ t2 : σ2 | ϕ

Γ | Ψ ⊢ v1 : τ → listτ → σ1 ∼ t2 : σ2 | ∀h1l1.t1 = h1 :: l1 ⇒ ϕ[r1 h1 l1/r1]
Γ | Ψ ⊢ case t1 of [] 7→ u1; _ :: _ 7→ v1 : σ1 ∼ t2 : σ2 | ϕ

LISTCASE − L

Fig. 5. One-sided case rules
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Γ | Ψ ⊢ t1 : B ∼ t2 : B | ⊤
Γ | Ψ, t1 = tt, t2 = tt ⊢ u1 : σ1 ∼ u2 : σ2 | ϕ
Γ | Ψ, t1 , tt, t2 = tt ⊢ v1 : σ1 ∼ u2 : σ2 | ϕ
Γ | Ψ, t1 = tt, t2 , tt ⊢ u1 : σ1 ∼ v2 : σ2 | ϕ
Γ | Ψ, t1 , tt, t2 , tt ⊢ v1 : σ1 ∼ v2 : σ2 | ϕ

Γ | Ψ ⊢ case t1 of tt 7→ u1;ff 7→ v1 : σ1 ∼ case t2 of tt 7→ u2;ff 7→ v2 : σ2 | ϕ
BBCASE − A

Γ | Ψ ⊢ t1 : B ∼ t2 : N | ⊤
Γ | Ψ, t1 = tt, t2 = 0 ⊢ u1 : σ1 ∼ u2 : σ2 | ϕ
Γ | Ψ, t1 , tt, t2 = 0 ⊢ v1 : σ1 ∼ u2 : σ2 | ϕ

Γ | Ψ, t1 = tt ⊢ u1 : σ1 ∼ v2 : N→ σ2 | ∀x2.t2 = Sx2 ⇒ ϕ[r2 x2/r2]
Γ | Ψ, t1 , tt ⊢ v1 : σ1 ∼ v2 : N→ σ2 | ∀x2.t2 = Sx2 ⇒ ϕ[r2 x2/2]

Γ | Ψ ⊢ case t1 of tt 7→ u1;ff 7→ v1 : σ1 ∼ case t2 of 0 7→ u2; S 7→ v2 : σ2 | ϕ
BNCASE − A

Γ | Ψ ⊢ t1 : B ∼ t2 : listτ2 | ⊤
Γ | Ψ, t1 = tt, t2 = [] ⊢ u1 : σ1 ∼ u2 : σ2 | ϕ

Γ | Ψ, t1 , tt, t2 = [] ⊢ v1 : σ1 ∼ u2 : τ2 → listτ2 → σ2 | ϕ
Γ | Ψ, t1 = tt ⊢ u1 : σ1 ∼ v2 : τ2 → listτ2 → σ2 | ∀h2l2.t2 = h2 :: l2 ⇒ ϕ[r2 h2 l2/r2]
Γ | Ψ, t1 , tt ⊢ v1 : σ1 ∼ v2 : τ2 → listτ2 → σ2 | ∀h2l2.t2 = h2 :: l2 ⇒ ϕ[r2 h2 l2/r2]
Γ | Ψ ⊢ case t1 of tt 7→ u1;ff 7→ v1 : σ1 ∼ case t2 of [] 7→ u2; _ :: _ 7→ v2 : σ2 | ϕ

BLCASE − A

Γ | Ψ ⊢ t1 : N ∼ t2 : N | ⊤
Γ | Ψ, t1 = 0, t2 = 0 ⊢ u1 : σ1 ∼ u2 : σ2 | ϕ

Γ | Ψ, t2 = 0 ⊢ v1 : N→ σ1 ∼ u2 : σ2 | ∀x1.t1 = Sx1 ⇒ ϕ[r1 x1/r1]
Γ | Ψ, t1 = 0 ⊢ u1 : σ1 ∼ v2 : N→ σ2 | ∀x2.t2 = Sx2 ⇒ ϕ[r2 x2/r2]

Γ | Ψ ⊢ v1 : N→ σ1 ∼ v2 : N→ σ2 | ∀x1x2.t1 = Sx1 ⇒ t2 = Sx2 ⇒ ϕ[r1 x1/r1][r2 x2/r2]
Γ | Ψ ⊢ case t1 of 0 7→ u1; S 7→ v1 : σ1 ∼ case t2 of 0 7→ u2; S 7→ v2 : σ2 | ϕ

NNCASE − A

Γ | Ψ ⊢ t1 : listτ1 ∼ t2 : listτ2 | ⊤
Γ | Ψ, t1 = [], t2 = [] ⊢ u1 : σ1 ∼ u2 : σ2 | ϕ

Γ | Ψ, t2 = [] ⊢ v1 : τ1 → listτ1 → σ1 ∼ u2 : σ2 | ∀h1l1.t1 = h1 :: l1 ⇒ ϕ[r1 h1 l1/r1]
Γ | Ψ, t1 = [] ⊢ u1 : τ1 → listτ1 → σ1 ∼ v2 : τ2 → listτ2 → σ2 |

∀h2.t2 = h2 :: l2 ⇒ ϕ[r2 h2 l2/r2]
Γ | Ψ ⊢ v1 : τ1 → listτ1 → σ1 ∼ v2 : τ2 → listτ2 → σ2 |

∀h1h2l1l2.t1 = h1 :: l1 ⇒ t2 = h2 :: l2 ⇒ ϕ[r1 h1 l1/r1][r2 h2 l2/r2]
Γ | Ψ ⊢ case t1 of [] 7→ u1; _ :: _ 7→ v1 : σ1 ∼ case t2 of [] 7→ u2; _ :: _ 7→ v2 : σ2 | ϕ

LLCASE − A

Fig. 6. Asynchronous case rules (selected)
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Γ | Ψ ⊢ t1 : N ∼ t2 : N | ϕ
′ ∧ r1 = 0⇔ r2 = 0

Γ | Ψ,ϕ ′[0/r1][0/r2] ⊢ u1 : σ1 ∼ u2 : σ2 | ϕ
Γ | Ψ ⊢ v1 : N→ σ1 ∼ v2 : N→ σ2 | ∀x1x2.ϕ

′
[Sx1/r1][Sx2/r2]⇒ ϕ[r1 x1/r1][r2 x2/r2]

Γ | Ψ ⊢ case t1 of 0 7→ u1; S 7→ v1 : σ1 ∼ case t2 of 0 7→ u2; S 7→ v2 : σ2 | ϕ
NATCASE∗

Γ | Ψ ⊢ t1 : listτ1 ∼ t2 : listτ2 | ϕ
′ ∧ r1 = []⇔ r2 = []

Γ | Ψ,ϕ ′[[]/r1][[]/r2] ⊢ u1 : σ1 ∼ u2 : σ2 | ϕ
Γ | Ψ ⊢ v1 : τ1 → listτ1 → σ1 ∼ v2 : τ2 → listτ2 → σ2 |

∀h1h2l1l2.ϕ
′
[h1 :: l1/r1][h2 :: l2/r2]⇒ ϕ[r1 h1 l1/r1][r2 h2 l2/r2]

Γ | Ψ ⊢ case t1 of [] 7→ u1; _ :: _ 7→ v1 : σ1 ∼ case t2 of [] 7→ u2; _ :: _ 7→ v2 : σ2 | ϕ
LISTCASE∗

Fig. 7. Alternative case rules

Def ( f1,x1, e1) Def ( f2,x2, e2)
Γ,x1 : I1,x2 : I2, f1 : I1 → σ , f2 : I2 → σ2 | Ψ,ϕ

′,
∀m1m2.( |m1 |, |m2 |) < ( |x1 |, |x2 |) ⇒ ϕ ′[m1/x1][m2/x2]⇒ ϕ[m1/x1][m2/x2][f1 m1/r1][f2 m2/r2] ⊢

e1 : σ1 ∼ e2 : σ2 | ϕ

Γ | Ψ ⊢ letrec f1 x1 = e1 : I1 → σ2 ∼ letrec f2 x2 = e2 : I2 → σ2 | ∀x1x2.ϕ
′ ⇒ ϕ[r1 x1/r1][r2 x2/r2]

LETREC

Def ( f1,x1, e1)
Γ,x1 : I1, f1 : I1 → σ | Ψ,ϕ ′,

∀m1.|m1 | < |x1 | ⇒ ϕ ′[m1/x1]⇒ ϕ[m1/x1][m2/x2][f1 m1/r1][t2/r2] ⊢ e1 : σ1 ∼ t2 : σ2 | ϕ

Γ | Ψ ⊢ letrec f1 x1 = e1 : I1 → σ2 ∼ t2 : σ2 | ∀x1.ϕ
′ ⇒ ϕ[r1 x1/r1]

LETREC − L

where I1, I2 ∈ {N, listτ }

Fig. 8. Recursion rules
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