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Abstract
Many substructural type systems have been proposed for control-
ling access to shared state in higher-order languages. Central to
these systems is the notion of a resource, which may be split into
disjoint pieces that different parts of a program can manipulate in-
dependently without worrying about interfering with one another.
Some systems support a logical notion of resource (such as permis-
sions), under which two resources may be considered disjoint even
if they govern the same piece of state. However, in nearly all ex-
isting systems, the notions of resource and disjointness are fixed at
the outset, baked into the model of the language, and fairly coarse-
grained in the kinds of sharing they enable.

In this paper, inspired by recent work on “fictional disjointness”
in separation logic, we propose a simple and flexible way of en-
abling any module in a program to create its own custom type of
splittable resource (represented as a commutative monoid), thus
providing fine-grained control over how the module’s private state
is shared with its clients. This functionality can be incorporated into
an otherwise standard substructural type system by means of a new
typing rule we call the sharing rule, whose soundness we prove
semantically via a novel resource-oriented Kripke logical relation.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming
Languages]: Language Constructs and Features—Abstract data
types; F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs; F.3.3 [Logics and
Meanings of Programs]: Studies of Program Constructs

General Terms Languages, Design, Theory, Verification

Keywords Substructural type systems, separation logic, sharing
rule, commutative monoids, fictional disjointness, ADTs, hidden
state, dependent types, capabilities, Kripke logical relations

1. Introduction
Over the past decade, many substructural type systems—based pri-
marily on variants of linear logic [20] and separation logic [34]—
have been proposed as a means of verifying critical semantic prop-
erties of higher-order stateful programs, ranging from basic mem-
ory safety to full functional correctness. These type systems and
their key substructural elements go by a variety of names—e.g.,
typestate [38, 11], uniqueness [8], regions [39], capabilities [42],
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Hoare types [27]—but one thing they all have in common is that
they give programmers the ability to reason locally about the ef-
fects of their code on the state of shared resources.

The essence of this local reasoning is captured by the “frame”
property: if an operation f consumes a resource satisfying the type
or assertion A and produces one satisfying B, then f can also be
seen to transformA⊗C toB⊗C, whereC is an arbitrary “frame”
representing assumptions about the greater ambient environment in
which f is executed. The ⊗ here denotes multiplicative (or “sep-
arating”) conjunction, which ensures that the resource satisfying
A ⊗ C can be split into disjoint pieces satisfying A and C, re-
spectively; since f only consumes the resource satisfying A, it is
guaranteed to leave the resource satisfying C untouched.

As this discussion suggests, a central element in substructural
type systems is the notion of a resource, as well as the ability to split
a resource into disjoint pieces. A resource, in essence, describes
(1) the knowledge that the consumer of that resource has about the
machine state, and (2) what rights they have to change the state.
Two resources are then considered disjoint if they do not interfere
with each other, that is: any operation permitted by the rights of one
resource should not violate the knowledge of the other.

In some substructural type systems, such as those based on sep-
aration logic, resources take the form of entities—such as heaps—
that enjoy an immediate physical interpretation of disjointness.
When an operation consumes a heap h, it has full access to h as
a physical object: it knows what h is and has the right to mod-
ify it as it pleases. In other systems, resources take the form of
“permissions” or “capabilities”, which are strictly logical descrip-
tions of the knowledge and rights concerning some shared state. In
particular, two logical resources may be considered disjoint even
if they govern the same piece of state. For instance, “fractional”
permissions [7] enable the “full” permission to a memory location
(x 7→ v)—which gives its consumer the knowledge that x cur-
rently points to v and the right to update x’s contents—to be split
into two “half” permissions (x .57→ v ⊗ x

.57→ v)—which provide
their respective consumers with the knowledge that x points to v
but not the right to update it. These half permissions are logically
disjoint because they ensure that neither consumer can violate the
other’s knowledge that x points to v.

However, in nearly all existing systems, the notions of resource
and disjointness are fixed at the outset, baked into the model of
the language, and fairly coarse-grained in the kinds of sharing they
enable. This is unfortunate: ideally, we would like to have a way of
defining more fine-grained custom logical notions of resource and
disjointness on a per-module or per-library basis.

1.1 Motivating Example: A Memory Manager
To take a concrete example, consider a moduleM implementing an
explicit memory manager. M will of course maintain some private
data structure representing its free list, and it will expect a certain
invariant A of that data structure to hold whenever its methods
are invoked. If M is simple enough that this invariant is the only
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constraint needed on its methods, we can give it an interface like:

malloc : A( ∃X : Loc. ptr X ⊗ cap X 1⊗A
free : ∀X : Loc. ptr X ⊗ cap X 1⊗A( A

Here, ptr X is a singleton type inhabited only by the pointerX , and
cap X 1 represents the knowledge that X points to a value of unit
type 1, along with the full capability to modify it. The invariant A
is threaded through the pre- and post-conditions of the operations,
but in some type systems it could even be hidden entirely [32].

However, the above interface would not work for a more real-
istic memory manager that required the client to free only memory
previously allocated through the manager. For instance, in the Ver-
sion 7 Unix memory manager—verified (and debugged) recently
by Wickerson et al. [43]—the implementation internally maintains
a chain of pointers to the cells preceding contiguous blocks of
memory, both free and allocated. In order to preserve its invariant
that the blocks it maintains are contiguous, the manager must only
permit its client to free a block that the manager “knows about”
(has marked as allocated in its internal chain). The type of the free
operation must therefore make the set of allocated blocks explicit,
so that it can require the freed location to belong to that set. We can
achieve this by parameterizing the manager’s invariant A over the
set of allocated locations L, and revising its interface as follows:

malloc : ∀L : LocSet. A(L)(
∃X : Loc. ptr X ⊗ cap X 1⊗A(L ] {X})

free : ∀L : LocSet. ∀X : Loc.
ptr X ⊗ cap X 1⊗A(L ] {X})( A(L)

Unfortunately, this latter interface is problematic if the memory
manager is used by multiple client modules that one would like
to typecheck/verify independently. Each client module only really
cares about the locations that it allocates/frees, but because the
“global” state of the memory manager—i.e., the full set of allocated
locations L—is made explicit in the type A(L), each client will in
fact be sensitive to interference from other clients. Consequently,
each client will need to pollute its own interface with explicit
information about how it affects this global state, thereby leaking
implementation details in the process.

Ideally, we would like a way of giving each client its own local
view of the global state. A simple way to provide such a local view
would be to allow the memory allocator’s invariant to somehow be
split up into (and reconstituted from) logically disjoint pieces:

split : ∀L1, L2 : LocSet. A(L1 ] L2)( A(L1)⊗A(L2)
join : ∀L1, L2 : LocSet. A(L1)⊗A(L2)( A(L1 ] L2)

In particular, given A(L) for some initial L, we could use split to
generate any number of copies of A(∅), each of which could be
passed to a separate client, thus rendering each client completely
oblivious to the existence of the others.

Intuitively, the splitting provided by the split operation is per-
fectly safe becauseL1 andL2 are disjoint sets, and so the only right
granted to the owner of A(L1)—namely, the right to free the loca-
tions in L1—cannot possibly violate the knowledge of the owner
of A(L2)—namely, that the locations in L2 are allocated. Clearly,
though, if we can support such split and join operations, thenA(L)
no longer means what it did previously: rather than asserting that L
is the global set of allocated locations, it now asserts merely that L
is some subset of them that the owner ofA(L) has the right to free.
In other words, we are treating sets of locations as a kind of split-
table resource, and we are using this custom resource to control the
knowledge and rights that any one client module has concerning
the global, shared state of the memory manager.

The question is: how can we put this intuition on a sound and
flexible formal footing, thus enabling any module to develop its
own custom notion of splittable resource in a safe, principled way?

1.2 Commutative Monoids to the Rescue!
The goal of this paper is to show that the above example is but one
instance of a simple and general pattern, and that there is a simple
and general way of supporting such custom resource management
within an otherwise standard substructural type system.

The basic idea behind our approach is inspired by some very
recent work on separation logic, specifically Jensen and Birkedal’s
fictional separation logic [21], Dinsdale-Young et al.’s views [12],
and Ley-Wild and Nanevski’s subjective concurrent separation
logic [25]. Although these developments are all motivated by dif-
ferent concerns (to be described in Section 5), a common thread
running through them is the idea of accounting for various custom
notions of splittable resource—along with their attendant notions
of knowledge and rights—in terms of commutative monoids.

A commutative monoid is a set S equipped with a commutative,
associative composition operator (·) : S × S → S, and a unit
element ε ∈ S such that ∀x ∈ S. x · ε = x. If one can cast one’s
notion of custom resource as a commutative monoid, then one can
view the global, shared state as the composition rL · rF of one’s
local resource rL with the resource rF of one’s frame (i.e., one’s
environment). Owning the local rL gives one the knowledge that
the global state must be some “extension” of rL (i.e., it must equal
rL · rF for some frame resource rF ). It also gives one the right to
update the global state however one likes, so long as the new global
state satisfies r′L · rF for some r′L. In other words, one may change
one’s local resource to an arbitrary r′L, so long as the change is
frame-respecting, i.e., it leaves the frame resource rF alone.

The notion of logical resource that we suggested for the memory
manager module in Section 1.1 is expressible very naturally as a
commutative monoid: sets of locations, with composition defined
as disjoint union (]) and ε = ∅. Furthermore, the malloc and
free operations are both frame-respecting, due to their universal
quantification over the framing location set L.

But many other notions of splittable resource are instances of
commutative monoids as well. In their work on fictional separation
logic (FSL) [21], Jensen and Birkedal thus propose a way of al-
lowing different modules in a program to specify their interfaces in
terms of assertions—such asA(L) in Section 1.1—about different,
module-specific notions of resource, encoded as different commu-
tative monoids. This ability to encode module-specific protocols
governing shared state was in fact already present to a large extent
in earlier work on deny-guarantee reasoning [15] and concurrent
abstract predicates [13]; the main selling point of FSL in compar-
ison is that it adopts a simpler and more abstract monoidal view of
resource that is not bound up with concurrency-related concerns.
(For a more detailed analysis, see Section 5.)

In this paper, we show how to lift the ideas of FSL and its
predecessors from the first-order setting of separation logic to the
higher-order setting of a substructural type system.

1.3 Contributions
We make two main contributions: one syntactic, the other semantic.

Our syntactic contribution is to propose a new typing rule,
which we call the sharing rule, that gives the author of a module
fine-grained control over how the module’s private linear resources
(e.g., the full capability to access its internal data structures) are
shared with its clients. In particular, as witnessed in our motivating
example, the sharing rule allows the capabilities to access this
shared state to be split (by ⊗) into pieces that are logically disjoint
according to a custom commutative monoid of one’s choosing.
This means that our type system is only superficially substructural:
under the hood, the A and B in A ⊗ B may both be capabilities
to read and write the very same shared state, albeit in ways that are
guaranteed not to interfere with each other.
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We present the sharing rule in the context of a fairly standard
affine type system (Section 2), supporting a combination of features
from Dependent ML [45] and L3 [5]. While this language is not
as expressive as, say, Hoare Type Theory [27]—which we would
eventually like to target as well—it is nevertheless rich enough to
encode interesting examples (Section 3), while simple enough to
focus our attention on the sharing rule itself.

Compared with the support for custom monoids in FSL, our
sharing rule is more flexible because it enables types indexed by
different commutative monoids to be freely intermingled using the
language’s general-purpose ⊗ type. In contrast, FSL’s “indirect
Hoare triples” must be indexed explicitly by a particular monoid,
and composing specifications that are indexed by different monoids
requires additional, somewhat inconvenient, machinery.

However, in the face of arbitrary higher-order programs, our
implementation of the sharing rule necessarily carries a dynamic
cost, namely the use of a lock to protect updates to the shared
state from unsafe re-entrancy. We do not believe this imposes a
serious practical restriction on the use of the sharing rule in our
sequential setting, but it is clear that a better approach is needed
if we wish to scale to the concurrent setting. For special cases
of the rule—e.g., where the primitive operations on the shared
state do not invoke unknown functions—it is possible to show
that locking is not needed, but we leave a thorough examination
of such optimizations to future work. We discuss another, more
complicated but potentially more scalable approach in Section 5.

Our semantic contribution is a novel step-indexed Kripke
logical-relations model of shared state, which facilitates a clean
semantic proof of the soundness of our sharing rule (Section 4).
The structure of our Kripke model directly reflects the intuition
behind the sharing rule. In particular, its “possible worlds” W—
which encode representation invariants on shared state—take the
form of tuples of commutative monoids (think: one monoid for
each application of the sharing rule). Associated with each monoid
is a resource predicate that says how to interpret an element of the
monoid as an invariant on some underlying resources—e.g., in our
motivating example, how the full set of allocated locations L maps
to an invariant on the memory manager’s internal state. Crucially,
this resource predicate may describe invariants not only on the
physical heap, but also on logical resources (expressed as a tuple
of elements of all the monoids inW ), thus enabling applications of
the sharing rule to be soundly layered on top of one another.

We conclude the paper with a detailed comparison to related
work (Section 5) and a discussion of future work (Section 6).

2. The Core Language
Our core calculus is an implicitly-typed version of affine Fω , ex-
tended with domains that index types. We call these domains sorts
and their elements index terms. With a sufficiently rich language
of index terms, and propositions and type-level quantification over
them, we retain much of the flexibility of dependent types for giv-
ing rich type-based specifications for programs, without requiring
the index terms to coincide with program terms, thus avoiding the
problematic issue of affine variable occurrences in types.

Figure 1 lists the syntactic forms of the language, including
sorts, index terms, propositions over index terms, kinds, types,
terms, contexts (for the static semantics) and heaps (for the dy-
namic semantics). Judgments for checking well-formedness of
kinds, index terms, propositions and contexts, as well as logical
inference, type equality and typing are listed in Figure 2, but we
elide the standard rules for inferring these judgments.

Sorts, Index Terms, and Propositions Sorts, ranged over by
the metavariable σ, include mathematical domains such as natu-
ral numbers, tuples, functions, locations and sets, denoted by the

Sorts σ ::= N | 1 | σ × σ | 2 | Loc | σ → σ
| σ⊥ | seq σ | P(σ) | Q | . . .

Index Terms t ::= X | n | tt | ff | . . .
Propositions P,Q ::= > | P ∧Q | P ⊃ Q | ⊥ | P ∨Q

| ∀X : σ. P | ∃X : σ. P
| t = u | t > u | . . .

Kinds κ ::= ◦ | σ → κ

Types A ::= 1 | A⊗B | A( B | !A
| ptr t | cap t A
| ∀α : κ. A | ∃α : κ. A
| ∀X : σ :: P. A | ∃X : σ :: P. A |
| bool t | nat t | [A]
| if(t, A,B) | α | λX : σ. A | A t

Terms e ::= x | 〈〉 | 〈e, e′〉 | let 〈x, y〉 = e in e′

| λx. e | e e′ | !v | let !x = e in e′

| new(e) | gete′ e | e :=e′′ e
′

| tt | ff | if(e, e1, e2)
| n | case(e, 0→ e1, s x→ e2)
| fix f(x). e | share(e, vi) | •

Eval E ::= [ ] | 〈E, e〉 | 〈v,E〉 |
Contexts | let 〈x, y〉 = E in e | E e | v E

| !E | let !x = E in e
| new(E) | gete E | getE v | E :=e′ e
| v :=e′ E | v :=E v′ | if(E, e, e′)
| case(E, 0→ e1, s x→ e2) | share(E, vi)

Values v ::= 〈〉 | 〈v, v′〉 | λx. e | !v
| ` | fix f(x). e | n | tt | ff | • | x

Heaps h ::= · | h, ` : v

Contexts

Index/Type Σ ::= · | Σ, α : κ | Σ, X : σ
Proposition Π ::= · | Π, P
Unrestricted Γ ::= · | Γ, x : A
Affine ∆ ::= · | ∆, x : A
Combined Ω ::= Σ; Π; Γ; ∆

Figure 1. Syntax

Σ ` A : κ Well-kindedness
ΣB t : σ Well-sortedness
ΣB P : prop Well-formedness of propositions
Σ ` Π ok Well-formedness of propositional context
Σ ` Γ ok Well-formedness of hypothetical context
Σ; Π ` P Logical entailment
Σ; Π ` A ≡ B : κ Type constructor equality
Ω ` e : A Well-typedness

Figure 2. Judgments

metavariable t. Sorts are interpreted as plain mathematical sets and
new sorts can be added if needed. For precise specification of prop-
erties of index terms, we allow propositions of first-order logic over
the index domains to appear in our types. The standard judgment
Σ; Π ` P means that P can be inferred from the assumptions in
Π, for all instances of the free variables in Σ.

Types and Terms We use a standard affine type system, whose
rules are shown in Figures 4 and 5. The natural presentation of
typing has four contexts; to increase the legibility of the rules, we
abbreviate these with a single symbol Ω, and define notations for
adding hypotheses and merging contexts in Figure 3.

As expected, the unit term 〈〉 : 1 types in a context with any
set of resources ∆; the typing rule for 〈e1, e2〉 : A ⊗ B splits its
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Ω, x : A = Σ; Π; Γ; ∆, x : A if Ω = Σ; Π; Γ; ∆
Ω, x :! A = Σ; Π; Γ, x : A; ∆ if Ω = Σ; Π; Γ; ∆
Ω, α : κ = Σ, α : κ; Π; Γ; ∆ if Ω = Σ; Π; Γ; ∆
Ω, X : σ = Σ, X : σ; Π; Γ; ∆ if Ω = Σ; Π; Γ; ∆
Ω, P = Σ; Π, P ; Γ; ∆ if Ω = Σ; Π; Γ; ∆

Ω1,Ω2 = Σ; Π; Γ; ∆1,∆2 if Ω1 = Σ; Π; Γ; ∆1

Ω2 = Σ; Π; Γ; ∆2

Figure 3. Context Manipulation Operations

Ω ` e : A

x : A ∈ Γ

Σ; Π; Γ; ∆ ` x : A

x : A ∈ ∆

Σ; Π; Γ; ∆ ` x : A Ω ` 〈〉 : 1

Ω ` v : A

Ω ` • : [A]

Ω1 ` e1 : A Ω2 ` e2 : B

Ω1,Ω2 ` 〈e1, e2〉 : A⊗B

Ω1 ` e : A⊗B Ω2, x : A, y : B ` e′ : C

Ω1,Ω2 ` let 〈x, y〉 = e in e′ : C

Ω, x : A ` e : B

Ω ` λx. e : A( B

Ω1 ` e : A( B Ω2 ` e′ : A

Ω1,Ω2 ` e e′ : B

Σ; Π; Γ; · ` v : A

Σ; Π; Γ; ∆ ` !v : !A

Ω1 ` e : !A Ω2, x :! A ` e′ : C

Ω1,Ω2 ` let !x = e in e′ : C

Ω ` e : A

Ω ` new(e) : ∃X : Loc :: >. !ptr X ⊗ cap X A

Ω ` e : ptr t Ω′ ` e′ : cap t A

Ω,Ω′ ` gete′ e : A⊗ cap t 1

Ω1 ` e : ptr t Ω2 ` e′ : A Ω3 ` e′′ : cap t 1

Ω1,Ω2,Ω3 ` e :=e′′ e
′ : cap t A

Σ; Π; Γ, f : A( B;x : A ` e : B

Σ; Π; Γ; · ` fix f(x). e : A( B

Ω ` tt : bool tt Ω ` ff : bool ff Ω ` n : nat n

Ω ` e : bool t Ω′, t = tt ` e1 : C Ω′, t = ff ` e2 : C

Ω,Ω′ ` if(e, e1, e2) : C

Ω ` e : nat t
Ω′, t = 0 ` e1 : C Ω′, X : N, t = s X,x : nat X ` e2 : C

Ω,Ω′ ` case(e, 0→ e1, s x→ e2) : C

Figure 4. Typing Rules

resource context ∆ into two disjoint parts for checking subterms e1
and e2; and, to type the affine function λx. e : A( B, we add the
hypothesis x : A to the affine context to check the body e.

The exponential !A is subject to a value restriction — we can
type terms !v at type !A only when v is a value. The intuition for
this restriction is that (following the standard affine interpretation)
a term of type !A is duplicable, so the value it evaluates to must not
depend on affine resources. If v were not a value, then its evaluation
could create new affine resources on which its result depended (e.g.,
the evaluation might allocate fresh memory and return it).

The base types bool t and nat u are singleton types, indexed by
the Boolean sort 2 and the natural number sort N, respectively. So,

Ω ` e : A

Ω, α : κ ` v : B

Ω ` v : ∀α : κ. B

Ω, X : σ, P ` v : A

Ω ` v : ∀X : σ :: P. A

Ω ` e : ∀X : σ :: P. A
Ω = Σ; Π; Γ; ∆ Σ B t : σ Σ; Π ` [t/X]P

Ω ` e : [t/X]A

Ω ` e : ∀α : κ. B Ω = Σ; Π; Γ; ∆ Σ ` A : κ

Ω ` e : [A/α]B

Ω ` e : [t/X]A
Ω = Σ; Π; Γ; ∆ Σ B t : σ Σ; Π ` [t/X]P

Ω ` e : ∃X : σ :: P. A

Ω ` v : ∃X : σ :: P. A
Ω′, X : σ, P, x : A ` e : C X, x 6∈ FV(C)

Ω,Ω′ ` [v/x]e : C

Ω = Σ; Π; Γ; ∆
Σ ` A : κ Σ, α : κ ` B : ◦ Ω ` e : [A/α]B

Ω ` e : ∃α : κ. B

Ω ` v : ∃α : κ. B Ω′, α : κ, x : B ` e : C α 6∈ FV(C)

Ω,Ω′ ` [v/x]e : C

Ω = Σ; Π; Γ; ∆ Ω ` e : A Σ; Π ` A ≡ B : ◦
Ω ` e : B

Ω = Σ; Π; Γ; ∆
Σ; Π ` P ∨Q Ω, P ` e : A Ω, Q ` e : A

Ω ` e : A

Ω = Σ; Π; Γ; ∆
Σ; Π ` ∃X : σ. P Ω, X : σ, P ` e : A Σ ` A : ◦

Ω ` e : A

Ω = Σ; Π; Γ; ∆ Σ; Π ` ⊥ Σ ` A : ◦
Ω ` e : A

Figure 5. Typing Rules, Continued

for example, the only value of type bool tt is tt and the only value
of type nat 17 is 17.

For access to shared memory, we introduce the singleton type
ptr `. A term of type ptr ` evaluates to the location `. Additionally,
we have a capability type cap ` A, which represents the permission
to dereference the pointer ` and obtain a value of typeA. Intuitively,
` : ptr ` is a freely duplicable pointer, which can be shared, but
the capability to use the pointer, of type cap ` A, is affine, and
can be shared only in a controlled manner using our sharing rule.
Since cap ` A only represents a capability, the actual value of type
cap ` A is computationally irrelevant, and we write it as •.

The two types ptr t and cap t A are tied to each other by
the typing rules for reading and writing memory. For example,
the gete′ e operation (see Figure 4) dereferences a pointer e of
type ptr t, but it requires the capability e′ of type cap t A. It
returns a pair of type (cap t 1) ⊗ A. The operational semantics of
get• ` (Figure 6), removes the current value of ` from the store,
and replaces it with the value 〈〉. (It cannot also leave the contents
of the pointer in place since doing so would violate any affine
constraints on the contents. However, such behaviour is encodable
for references containing a !A, which is duplicable.) The write
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〈h; let 〈x1, x2〉 = 〈v1, v2〉 in e〉 ↪→ 〈h; [v1/x1, v2/x2]e〉
〈h; (λx. e) v〉 ↪→ 〈h; [v/x]e〉
〈h; let !x = !v in e〉 ↪→ 〈h; [v/x]e〉
〈h; new(v)〉 ↪→ 〈h ] [` : v]; 〈!`, •〉〉
〈h ] [` : v]; get• `〉 ↪→ 〈h ] [` : 〈〉]; 〈v, •〉〉
〈h ] [` : 〈〉]; ` :=• v〉 ↪→ 〈h ] [` : v]; •〉
〈h; (fix f(x). e) v〉 ↪→ 〈h; [fix f(x). e/f, v/x]e〉
〈h; if(tt, e, e′)〉 ↪→ 〈h; e〉
〈h; if(ff, e, e′)〉 ↪→ 〈h; e′〉
〈h; case(0, 0→ e, s x→ e′)〉 ↪→ 〈h; e〉
〈h; case(s v, 0→ e, s x→ e′)〉 ↪→ 〈h; [v/x]e′〉

〈h; share(v, vi)〉 ↪→ 〈h ] [` : ff];

〈•, !opi, !split, !join, !promote〉〉
where opi = λx. let 〈flag, 〉 = get• ` in

let = ` :=• tt in
if flag then (fix f(x). f x) 〈〉

else let y = vi x in
let = ` :=• ff in y

split = λx. 〈•, •〉 join = λx. • promote = λx. !•

〈h; e〉 ↪→
〈
h′; e′

〉
〈h;E[e]〉 ↪→

〈
h′;E[e′]

〉
Figure 6. Operational Semantics

operation ` :=• v
′ takes a pointer ` of type ptr `, new contents

v′, and a capability • of type cap X 1.
We generalize the idea of computational irrelevance by intro-

ducing the irrelevant type [A], which is inhabited by the dummy
value • if there is some value inhabiting A (see the typing rule for
[A] in Figure 4). The type [A] is employed gainfully in our shar-
ing rule (Section 3). Our semantic model validates several equiv-
alances on irrelevant types, including [cap t A] ≡ cap t A and
[A⊗B] ≡ [B ⊗A], which we use freely in our examples.

Propositions over index domains are embedded in the type sys-
tem at quantified types ∀X : σ :: P. A and ∃X : σ :: P. A. In-
tuitively, e : ∀X : σ :: P. A means that for all terms t of sort
σ satisfying the proposition P , e has the type [t/X]A. The type
∃X : σ :: P. A has the dual meaning. We also include an incon-
sistency rule (the last rule in Figure 5): if the propositional context
Π is inconsistent (derives false), then any term is well-typed in Π.
(The two prior rules give the rules for existentials and disjunctions.)

In addition, we also include type-level computation with indices
with the if(t, A,B) type, which is equal to A if t is true, and B if
t is false. There are no explicit introduction or elimination forms
for this type; we simply make use of the equality judgment. To
assist in this, the typing for the term-level if-then-else construct
adds the appropriate equality hypotheses about its index argument
in the branches of the conditional. (Similar rules apply for the other
index domains, but we suppress them for space reasons.)

Kinds, κ, in our language have the forms ◦ (affine types)
and σ → κ (dependent types). We include type-level lambda-
abstraction λX : σ. A, type-level applicationA t and the universal
and existential polymorphic types ∀α : κ. A and ∃α : κ. A. We
could also include type constructor polymorphism, but we omit it
for simplicity. We need a value restriction for all quantified types
because quantifiers are implicitly introduced and eliminated, and
do not delay evaluation (unlike in explicit System F).

Our choice of maximal implicitness naturally makes typecheck-
ing undecidable. It should be routine to add enough type and proof
annotations to make typechecking decidable, and we chose the im-
plicit style both to make our examples more readable, and to re-
duce the number of clauses in the term syntax. On the whole, our
language is a relatively conservative integration of the ideas of De-
pendent ML [45, 18] into an affine language with a type structure

Σ ` A : σ → ◦ Σ; Π; Γ; ∆ ` e : [A t]
Σ; Π ` monoidσ(ε, (·)) ∀i. Σ; Π; Γ; · ` vi : [A/α]speci

Σ; Π; Γ; ∆ ` share(e, vi) :

∃α : σ → ◦. [α t]⊗ !speci ⊗ !splitT⊗ !joinT⊗ !promoteT

where
speci = ∀X : σ. ∀Y : σ′i :: Pi. Bi ⊗ [α (ti ·X)](

∃Z : σ′′i :: Qi. Ci ⊗ [α (t′i ·X)]

where X,α 6∈ FV(Pi, Qi, Bi, Ci, ti, t
′
i)

splitT = ∀X,Y : σ. [α (X · Y )]( [α X]⊗ [α Y ]

joinT = ∀X,Y : σ. [α X]⊗ [α Y ]( [α (X · Y )]

promoteT = ∀X : σ :: X = X ·X. [α X]( ![α X]

monoidσ(ε, (·)) = ∀X : σ. ε ·X = X ∧
∀X,Y : σ. X · Y = Y ·X ∧
∀X,Y, Z : σ. (X · Y ) · Z = X · (Y · Z)

Figure 7. The Sharing Rule

resembling that of L3 [5]. The primary novelty in our language is
encapsulated in the sharing rule, which lets us put user-defined log-
ical resources on a first-class footing. We describe this rule and its
applications in the following section.

3. The Sharing Rule
A purely affine type discipline is too restrictive for most programs.
In this section, we describe the sharing rule, our method for in-
troducing controlled aliasing into an affine language. The intuition
behind this rule is that if a library has a particular programmer-
defined notion of resource, and if all the operations the programmer
exposes in the interface respect the frame property for that resource,
then we can treat the library’s concept of resource separation as an
instance of our ambient notion of separation: the tensor product.

Concretely, suppose that we have a type A : σ → ◦, repre-
senting an affine capability indexed by a monoid σ, along with an
operation f : ∀X : σ. A(Y1 ·X)( A(Y2 ·X). The type of f as-
serts that it can take the (logical) resource Y1 to Y2, and that in so
doing, it preserves the frame X . If we knew that f were the only
operation transforming capabilities of the form A(t), then it would
follow that we could split a capability A(X · Y ) into two parts
A(X)⊗A(Y ), and manipulate them independently, since the only
operation transforming capabilities of the form A(t) is f , and f is
parametric in the frame. By taking a value of type A(X) and using
it to construct a new abstract type, on which only frame-respecting
operations are allowed, we can safely share an affine capability.

The sharing rule, given in Figure 7, formalizes this idea. We
assert the existence of a type constructor A : σ → ◦, where
σ is a commutative monoid, and an initial resource e : [A t],
together with a family of frame-respecting, state-passing operations
vi, which take in an argument of type Bi and a state of type
[A(ti ·X)], and return a result of type Ci and a state [A(t′i ·X)].1

The full type of vi includes additional index quantifications, which
are useful for asserting propositions that connect the input and
initial state or output and final state; in our examples, we suppress
unused elements of this general type whenever we do not use
them. The sharing operator returns a new existential type, exporting
the vi operations together with split, join and promote operations.
Splitting and joining allow treating the monoidal composition as
a tensor product. The promote operator takes any resource value

1 Note that all the types of the formA(t) are in proof-irrelevance brackets—
this ensures that e represents a logical capability with no dynamic content,
which turns out to be useful in the proof of soundness (Section 4). That
said, it is possible to lift this restriction at the cost of a more complex
implementation of the sharing rule. See footnote 4 in Section 4.
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indexed by an idempotent value (i.e., where X = X · X), and
returns a freely duplicable value.

The type constraints on the operations vi statically ensure that
∃X : σ. A(X) holds as an invariant at the beginning and ending
of each call. However, if an operation vi is passed itself as an
argument, whether directly or indirectly, it may end up calling itself
when its internal state does not satisfy the invariant; this is the
well-known problem of re-entrant calls [29, 44] in higher-order
imperative programs. One way to address this issue, embodied in
Pottier’s anti-frame rule [32], is to statically check that the invariant
holds continuously, but this solution is often too restrictive [29].
We follow Pilkiewicz and Pottier [29] in preventing reentrancy
dynamically, using a lock. Thus, the operational semantics of the
sharing rule, given in Figure 6, is not a pure no-op, and shows
how we rely on a combination of static and dynamic checking to
enforce type safety. Sharing creates a flag variable (the lock), and
wraps each operator with code to test the lock and to diverge if it is
already held.

The remainder of this section gives a series of examples using
our sharing rule to introduce custom notions of resource, culminat-
ing with an idealized memory allocator.

Weak References Sharing enables us to model ML-style weak
references of type !A that can be aliased. Suppose we have a
location X : Loc, a duplicable pointer of type !ptr X and an
affine capability of type cap X !A, and we wish to define freely
duplicable functions to dereference and assign the locationX , with
types !(1( !A) and !(!A( 1) respectively. The key idea is to use
the share operator to allow these duplicable functions to close over
the affine capability. First, we wrap the built-in operators getc l and
l :=c v in the following functions get0 and set0 whose return types
resemble those of the second argument of the construct share( , ).
Typing these functions requires the equivalence [cap X !A] ≡
cap X !A, which our semantic model validates.

get0 : ∀X : Loc. !ptr X ( !([cap X !A]( !A⊗ [cap X !A])
get0 = λ!l. !λc. let 〈!v, c〉 = getc l in let c = (l :=c !v) in 〈!v, c〉

set0 : ∀X : Loc. !ptr X ( !(!A⊗ [cap X !A]( [cap X !A])
set0 = λ!l. !λ 〈!v, c〉 . let 〈!dummy, c〉 = getc l in l :=c !v

For any expression e : !ptr X , get0 e and set0 e have types
!([cap X !A] ( !A ⊗ [cap X !A]) and !(!A ⊗ [cap X !A] (
[cap X !A]), which essentially match the structure of the types
speci in the definition of the sharing rule. Next, we define the
monoid that encodes the logical state of the weak reference we are
defining. Since the resource invariant for a weak reference is fixed
and just states that the reference points to something of type !A, we
choose the unit monoid M = (1, ε

def
= 〈〉 , (·) def

= λ(x, y).〈〉) , and
we interpret it by instantiating the capability operatorA in Figure 7
with C 〈〉 def

= cap X !A. With these preliminaries, we can apply
the sharing rule as follows:

share ref 〈!l, c〉 = let 〈!g, !s〉 = 〈get0 !l, set0 !l〉 in share(c, g, s)
share ref : ∀X : Loc. !ptr X ⊗ [cap X !A](

∃α : 1→ ◦.
[α 〈〉] ⊗ !getType ⊗ !setType
⊗ !splitT⊗ !joinT⊗ !promoteT

where

getType
def
= ∀X : 1. [α X]( !A⊗ [α X]

setType
def
= ∀X : 1. !A⊗ [α X]( [α X]

promoteT
def
= ∀X : 1 :: X = X ·X. [α X]( ![α X]

Finally, the unit monoid is idempotent by definition, so we can
apply the promote operator to any value of type [α t] (for any
t : 1). This allows us to construct the following function that,
given a duplicable pointer and an affine capability to it, returns two
duplicable functions to read and write to it:

MLref : ∀X : Loc. !ptr X ⊗ [cap X !A]( !(1( !A) ⊗ !(!A( 1)
MLref 〈!l, c〉 =

let 〈q, !get , !set , , , !promote〉 = share ref(〈!l, c〉) in
let !r = promote(q) in
let deref = !(λ〈〉. let 〈v, 〉 = get(r) in v) in
let setref = !(λa. let = set(a, r) in 〈〉) in
〈deref , setref 〉

Monotonic Counters Next, we show how to construct shared
monotonic counters that can be freely incremented by all clients.
Since clients can only increment the counter, the local knowledge
of each client provides a lower bound on the counter’s actual value.
Suppose our counter is stored at a location X : Loc. We start by
defining a simple and standard increment function, next, that takes
as argument a pointer l of type !ptr X and a capability of type
cap X !(nat n), increments the counter, and returns n + 1 and a
capability of type cap X !(nat (n+ 1)). (We assume here that +
is a primitive operation taking unrestricted values of type natm1

and natm2 and returning an expression of type !nat (m1 +m2).)

next 〈!l, c〉 = let (!n, c) = getc l in
let c = (l :=c n+ 1) in 〈n+ 1, c〉

next : ∀n. !ptr X ⊗ cap X !(nat n)
( !nat (n+ 1)⊗ cap X !(nat (n+ 1))

We wish to share the counter by passing the function next as the
second argument of the share( , ) operator. To do that, we must
massage the type of next into a compatible form, capturing the fact
that, once the counter is aliased, its local knowledge only provides
a lower bound on its value. We define the monoid M = (N, ε def

=

0, (·) def
= max), the type C(n)

def
= cap X !(nat n) (to correspond to

the type A in Figure 7) and observe that next can also be given the
following weaker type:

next : nextType(C)
nextType(α) = ∀Y, Z : N. !ptr X ⊗ [α(Z · Y )]

( ∃U : N :: U > Z. !nat U ⊗ [α(U · Y )]

The weaker type, nextType(C), only asserts that if the initial value
of the counter is max(Z, Y ), then its value after the next operation
is max(U, Y ), for someU > Z. Intuitively,Z is the local context’s
initial lower bound on the counter, Y is the frame’s lower bound
on the counter, and U is the local context’s lower bound on the
counter after the increment operation. This weaker type is exactly
in the form of the second argument of share( , ), so we can define
a counter sharing function that creates an abstract, shared counter
from a given capability to X : Loc and the next function.

mkCnt c = share(c, next)
mkCnt : ∀ X : Loc, Y : N. [cap X !(nat Y )](

∃α : N→ ◦.
[α Y ]⊗ !nextType(α)⊗ !splitT⊗ !joinT⊗ !promoteT

Since max(x, x) = x, every element of our monoid is idempotent,
so we can take any counter and make it freely duplicable using
the resulting function of type promoteT (as in the previous exam-
ple). This permits multiple clients to make use of the same counter.
Each client knows that its own use of the counter will yield mono-
tonically increasing elements, and does not have to worry about
interference with other clients of the counter.

Fractional Permissions We provide an encoding of fractional
permissions that is parametric in the underlying affine resource that
we wish to share. Let σ be an index sort, and let α : σ → ◦ be
the type of an affine resource on top of which we want to layer
a fractional permissions algebra. For example, to model fractional
permissions over ref cells of type A, we could choose σ = Loc
and α X = cap X A. We define a sort of fractional (rational)
numbers, called Frac, and a sort of fractional permissions over σ,
called FPerm(σ):

Frac
def
= {a ∈ Q | 0 < a ≤ 1}

FPerm(σ)
def
= {ε,⊥,Empty} ∪ {(a,m) | a ∈ SJFracK,m ∈ SJσK}
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A fractional permission is either ε (essentially a 0 permission),
⊥ (for an invalid permission), Empty (denoting that there is no
resource currently in place to be fractionally shared), or (a,m)
(denoting fractional permission a to the resource represented by
m). Here, SJσK denotes the set of elements in the sort σ. Fractional
permissions form a monoidM with unit ε and operation (·) defined
on non-unit elements as follows:

(a,m) · (a′,m′) =

{
(a+ a′,m) 0 < a+ a′ ≤ 1, m = m′

⊥ otherwise

Empty · x =

{
Empty x = ε

⊥ otherwise
⊥ · x = ⊥

Next, we define the affine type family FracTyα which we actually
share (this type family is called A in Figure 7). As required by the
sharing rule, the type is indexed by the monoid FPerm(σ). Here,
void denotes the empty type ∃X : N :: ⊥. 1.

FracTyα ε
def
= void FracTyα ⊥

def
= void FracTyα Empty

def
= 1

FracTyα (a,m)
def
=

{
α m when a = 1

void when a 6= 1

Notice that this type family is uninhabitable except at the extremes.
This is important because, concretely, either the whole resource
will be available to the fractional permissions module as hidden
state, or nothing will be, even though the fractional permissions
superficially represent partial ownership.

We now show how to represent fractional permissions over the
affine type α when α supports only one fractionally-shareable op-
eration, readonlyop, that maps α M to α M , possibly with aux-
iliary inputs and outputs (our construction generalizes very easily
when there is more than one operation). Let this only operation,
readonlyop, have type ReadOnlyOp defined by:

ReadOnlyOp
def
=

∀X : FPerm(σ). ∀Y : σ′ × Frac :: P.
β (π1(Y ))⊗ [FracTyα ((π2(Y ),M) ·X)](
∃Z : σ′′ :: Q. γ Z ⊗ [FracTyα ((π2(Y ),M) ·X)]

This type has been constructed specifically to match the “spec” type
for the sharing rule, and thereby provide maximal generality. We
quantify over an arbitrary fraction as the second component of Y .

We can directly apply the share( , ) operator with this opera-
tion as the second argument to obtain a shareable abstract type α′

but, to make the fractional permissions useful, we would also like
to provide two operations that allow clients to exchange “full” re-
sources for “full” fractional permissions and vice versa. These two
operations should have types defined below:

ToFrac
def
= ∀X : σ. [α X]⊗ [α′ Empty]( [α′ (1, X)]

FromFrac
def
= ∀X : σ. [α′ (1, X)]( [α X]⊗ [α′ Empty]

Accordingly, we would like to pass to share( , ) two additional op-
erations of types ToFrac[FracTyα/α

′] and FromFrac[FracTyα/α
′],

respectively. Fortunately, given our definition of FracTyα, these
operations can be trivially defined as λ〈x, 〈〉〉. x and λx. 〈x, 〈〉〉.

Tying everything together, we now define the following term
mkFrac, a generic (polymorphic) module for layering fractional
permissions over a resource α. The module provides an empty frac-
tional permission at the outset, which can then be transferred to a
full permission using ToFrac and back using FromFrac. (The type
FracOp is defined as ReadOnlyOp with α′ in place of FracTyα.)

mkFrac = λ!f. share(〈〉, f, λ〈x, 〈〉〉. x, λx. 〈x, 〈〉〉)
mkFrac :
∀α : σ → ◦. ∀β : σ′ → ◦. ∀γ : σ′′ → ◦.

!ReadOnlyOp
( ∃α′ : FPerm(σ)→ ◦.

[α′ Empty] ⊗ !FracOp⊗ !ToFrac⊗ !FromFrac ⊗
!splitT⊗ !joinT⊗ !promoteT

Memory Allocator We now give a stylized memory allocator with
a non-monotonic resource invariant, inspired by (but much simpler
than) Wickerson et al.’s [43] proof of the Unix malloc function,
and show how the allocator can be shared safely. The basic idea is
that the memory allocator’s free list is represented by an array, each
entry of which contains a pair of a boolean flag and a location; the
flag is true when the location is free, and false when it has been
allocated to a client. For free locations, the allocator also owns a
capability to access the memory of that location. For the allocated
locations, it does not. To formalize this idea, we first assume a
family of types for affine arrays:

arrA : Loc× N× (N→ σ)→ ◦
alengthA : ∀X : Loc, n : N, f : N→ σ.

!ptr X ⊗ [arrA(X,n, f)]( !nat n⊗ [arrA(X,n, f)]

aswapA : ∀X : Loc, n : N, f : N→ σ, i : N, x : σ :: i < n.
!ptr X⊗ !nat i⊗A(x)⊗ [arrA(X,n, f)]
( A(f i)⊗ [arrA(X,n, λj. if(i = j, x, f(j)))]

areadA : ∀X : Loc, n : N, f : N→ σ, i : N, x : σ :: i < n.
!ptr X⊗ !nat i⊗ (A(f i)( B ⊗A(f i))
⊗ [arrA(X,n, f)]( B ⊗ [arrA(X,n, f)]

Here, A is a σ-indexed type constructor, and the index informa-
tion for the array of type arrA(X,n, f) consists of its location X ,
its length n and a function f , such that for each i < n, the i-th ele-
ment of the array contains a value of type A(f i). So f serves as a
representation function for the array. To modify the array, we make
use of a swapping operation aswapA, which takes an array pointer,
an index, a value, and a memory capability for the array, and uses
it to replace the contents of that index. In the process, it also up-
dates the representation function f . To read the array, we make use
of a reading function areadA, which takes an array pointer, an in-
dex, an array capability, and an observer function, which takes a
value at the given location and returns the array capability plus an
observation of type B.

To specialize this to the memory allocator ADT we described
briefly above, we choose σ = 2 × Loc, where 2 = {tt,ff} and
A = contents, which is defined below:

contents : (2× Loc)→ ◦
contents(tt, X) = !bool tt ⊗ !ptr X ⊗ [cap X 1]
contents(ff, X) = !bool ff ⊗ !ptr X ⊗ 1

freelist : Loc× N× (N→ (2× Loc))→ ◦
freelist(X,n, f) = ∃ :: inj(π2 ◦ f). [arrcontents(X,n, f)]

We define the type freelist (the type of the free list of our memory
allocator) as an array of contents, with the invariant that the second
projection of the representation function f be injective (i.e., the
array has at most one entry for each location). The type operator
contents takes a boolean b and a location X , where b reflects
whether X is free. The capability to access X is held in the array
contents only for free cells.

Next, we use the function aswap to define functions malloc at
and free at to allocate and free locations at a particular index in the
free list, respectively. The function malloc at takes an index i in
the free list, which maps to location Y , a proof that the location is
free (f(i) = (tt, Y )) and returns the capability of type [cap Y 1]
stored in the location, swapping it with a unit value. free at does
the opposite.

flag loc : ∀b : 2, l : Loc.
contents(b, l)( (!bool b ⊗ !ptr l)⊗ contents(b, l)

flag loc 〈!b, !l,m〉 = 〈〈!b, !l〉 , 〈!b, !l,m〉〉

malloc at :
∀X,Y : Loc, n : N, f : N→ (2× Loc), i : N :: i < n ∧ f(i) = (tt, Y ).

!ptr X⊗ !nat i⊗ freelist(X,n, f)
( !ptr Y ⊗ [cap Y 1]⊗ freelist(X,n, λj. if(i = j, (ff, Y ), f(j)))
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malloc : ∀S : P(Loc)⊥, X : Loc.
!ptr X ⊗ [C(S)]
( ∃Y : Loc. !ptr Y ⊗ [cap Y 1]⊗ [C(S · {Y })]

malloc(!a,m) =
let (!n,m) = alength(!a,m) in
let rec loop(m, !i) =

if i < n then
let 〈〈!b, !l〉,m〉 = aread(!a, !i, flag loc,m) in
if(b,malloc at(!a, !i,m), loop(m, i+ 1))

else
(fix f(x). f x) 〈〉

in loop(m, !0)

free : ∀S : P(Loc)⊥, X : Loc, Y : Loc.
!ptr X ⊗ !ptr Y ⊗ [cap Y 1]⊗ [C(S · {Y })]( [C(S)]

free (!a, !l, c,m) =
let (!n,m) = alength(!a,m) in
let rec loop(c,m, !i) =

let 〈〈!b, !l′〉,m〉 = aread(!a, !i, flag loc,m) in
if(l = l′, free at(!a, !i, c,m), loop(c,m, i+ 1))

in loop(c,m, !0)

Figure 8. The Memory Allocator

malloc at(!a, !i,m) =
let 〈〈!b, !l〉,m〉 = aread(!a, !i, flag loc,m) in
let 〈〈!b, !l, c〉,m〉 = aswap(!a, !i, 〈!ff, !l, 〈〉〉 ,m) in 〈!l, c,m〉

free at :
∀X,Y : Loc, n : N, f : N→ (2× Loc), i : N :: i < n ∧ f(i) = (ff, Y ).

!ptr X ⊗ !nat i⊗ [cap Y 1]⊗ freelist(X,n, f)
( freelist(X,n, λj. if(i = j, (tt, Y ), f(j)))

free at(!a, !i, c,m) =
let 〈〈!b, !l〉,m〉 = aread(!a, !i, flag loc,m) in
let 〈〈!b, !l, 〈〉〉,m〉 = aswap(!a, !i, 〈!tt, !l, c〉 ,m) in m

Next, we consider the monoid P(Loc)⊥, whose elements are sets
of locations. The unit is the empty set ε = ∅, and concatenation
is defined by disjoint union ], with non-disjoint sets going to ⊥.
We use this monoid to define the type C(S) for a given location X
pointing to the head of the free list:

C(⊥) = void
C(S) = ∃n : N, f : N→ (2× Loc) :: S = {l | ∃i < n. f(i) = 〈ff, l〉}.

freelist(X,n, f)

Intuitively, for S 6= ⊥, C(S) is a free list whose allocated pointers
coincide exactly with S.

Using C(S), we can define operations malloc and free (Fig-
ure 8). The malloc operation traverses the free array until it finds
an unallocated element, updates the flag, and returns that ele-
ment. If the free list is fully allocated, then we go into an infi-
nite loop — more realistic implementations would signal an er-
ror or resize the free list. The free operation also iterates over
the array until it finds the element it was passed as an argument,
but it does not have to perform a bounds check as it iterates: the
type C(S · {Y }) guarantees that the location Y will be found
in the free list, and hence that i is always in bounds. Note that
the type of the location comparison operation = used in free is
∀X,Y : Loc. ptr X ⊗ ptr Y ( bool (X = Y ).

More sophisticated versions of this pattern arise frequently in
the implementation of free lists, connection pools, and other re-
source managers. The critical feature of our invariant is that we can
only free a piece of memory if it originally came from this mem-
ory allocator in the first place. Furthermore, it is a non-monotonic
invariant, since the same piece of memory can go in and out of the
free list, which means that the size of the free list in the predicate
can grow and shrink as the program executes.

However, we can nevertheless share the memory allocator, since
the frame conditions on the specifications express the constraint
that interference between different clients is benign—up to partial

Worldn
def
=

{
W = (k, ω)

∣∣∣∣ k < n, ∃j. ω ∈ Islandj+1
k

ω[0] = HIslandk

}
Islandn

def
=

{
ι = (M, ·, ε, I)

∣∣∣∣ (M, ·, ε) comm. monoid,
I ∈M → ResPredn

}
HIslandn

def
=

(
Heap⊥,], ∅,
λh.{(W, ε) | W ∈Worldn, h 6= ⊥}

)
ResPredn

def
=

{
ϕ ⊆ ResAtomn

∣∣∣∣ ∀W ′ wW. (W , r) ∈ ϕ
=⇒ (W ′, r) ∈ ϕ

}
ResAtomn

def
=

{
(W, r)

∣∣∣∣ W ∈Worldn, ∀i. ai ∈W.ω[i].M,
r = (a0, . . . , am−1),m = |W.ω|

}
ValPred

def
=

{
V ⊆ ValAtom

∣∣∣∣ ∀W ′ wW. (W, (r, v)) ∈ V
⇒ ∀r′.(W ′, (r · r′, v)) ∈ V

}
ValAtom

def
= {(W, (r, v)) | ∃n. (W, r) ∈ ResAtomn }

.(k + 1, ω)
def
= (k, bωck)

b(ι1, . . . , ιn)ck
def
= (bι1ck, . . . , bιnck)

b(M, ·, ε, I)ck
def
= (M, ·, ε, λa.bI(a)ck)

bϕck
def
= {(W, r) ∈ ϕ | W.k < k}

(ι′1, . . . , ι
′
n′ ) w (ι1, . . . , ιn)

def
= n′ ≥ n, ∀i ≤ n. ι′i = ιi

(k′, ω′) wj (k, ω)
def
= k′ = k − j, ω′ w bωck′

(s, r) : W
def
= s = s0 · . . . · sm−1, m = |W.ω|,
∀i ∈ 0..m− 1. (.W, si) ∈W.ω[i].I((s · r)[i])

Figure 9. Possible Worlds and Related Definitions

correctness, no client cares what allocations or deallocations other
clients perform:

mkAllocator : ∀X,n, f, S :: S = {l | ∃i < n. f(i) = 〈ff, l〉} .
freelist(X,n, f)
( ∃α : P(Loc)⊥ → ◦.

[α(S)]⊗ !mallocType⊗ !freeType
!splitT⊗ !joinT⊗ !promoteT

mkAllocator m = share(m,malloc, free)

The memory manager’s state can be split up and shared among
many different clients. The key is to observe that for any state S, we
know that α(S) = α(S]∅). Thus we can pass each client a copy of
α(∅), which it can use to allocate and free locally-owned memory
without knowledge of the allocation behavior of other clients.

4. The Semantic Model
In this section, we justify the soundness of our type system. The
main challenge, of course, is validating the sharing rule. We gain
traction by characterizing the behavior of well-typed terms through
a step-indexed Kripke logical relation (SKLR). While SKLRs have
been used previously to give clean semantic soundness proofs of
related substructural calculi [5], ours is novel in its treatment of
resources. We therefore begin by laying down some conceptual
groundwork and terminology concerning resources.

Physical vs. Logical Resources and the Global Store In the be-
ginning, there is the heap: it is a primitive, physical notion of split-
table resource, and in the absence of sharing there is little more to
say. The affine heap capability cap ` A gives its “owner”—i.e.,
the term that consumes it—full control over the location ` and its
contents, and the lack of sharing means that no other parts of the
program may contain any knowledge about ` or its contents at all.

Each application of the sharing rule, however, introduces a new
logical notion of splittable resource, represented as a commutative
monoid (M, ·, ε), which governs access to a piece of shared state.
Control over resources of type M becomes a new type of affine
capability (written [α t] in the sharing rule in Figure 7), which
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may be consumed by or transferred between different parts of the
program just as heap capabilities can.2 Unlike the heap, which has a
direct physical interpretation, M must be given an interpretation in
terms of what invariants it imposes on the underlying shared state.
Specifically, the capability [A t] in Figure 7 describes the invariant
that holds of the shared state when the global store of M (i.e., the
monoidal composition of all resources of type M that are currently
in existence) is t. For those readers with a Hoare-logic background,
it may be helpful to think of this global store of M as a kind of
“ghost state” [22] that instruments the physical heap state with extra
logical information.

Atomic vs. Composite Resources As a program executes, a new
logical resource is created each time the sharing rule is executed,
extending the resource set (which begins life with only the lone
physical resouce of the heap). We will say that a resource belonging
to any one of these types is an atomic resource.

Of course, a term may naturally own many different atomic
resources, as a result of being composed from multiple different
subterms. For example, it may own the heap capability cap ` 1 to
control location `, as well as the logical capability [α t] (where α
is the abstract type constructor created by some application of the
sharing rule). In this case, the term owns a physical heap resource
([` : 〈〉]), as well as a logical resource (t) of the monoidal resource
type that was created along with α.

In general, a term may own resources of every type currently
in existence (and later, when new types of resource are created, it
can be implicitly viewed as owning the unit element of those re-
sources). We call such a combination of resources of all the differ-
ent atomic types a composite resource. Given that each atomic re-
source is a commutative monoid, observe that composite resources
form a commutative monoid via the obvious product construction.
For convenience, we overload · and write r1 · r2 to denote the com-
ponentwise composition of two composite resources r1 and r2.

Composite resources are the fundamental currency of our
model. Not only are they what terms consume and produce, but
furthermore, when we apply the sharing rule to make some un-
derlying (affine) resource shareable, that underlying resource is a
composite resource, and the invariant that governs it takes the form
of a predicate on composite resources.

Worlds and Islands Being a Kripke logical relation, our model
(presented below) is indexed by possible worlds. In previous
Kripke models of ML-like languages, these worlds have been used
to encode invariants on the physical heap. Here, since we support
logical as well as physical resources, we generalize worlds to en-
code (1) the knowledge of what types of logical resources have
been created by applications of the sharing rule, and (2) how to
interpret those logical resources as invariants on shared state.

As defined in Figure 9, worlds are tuples of islands, with each
island describing a different type of resource.3 (Ignore the “step
indices” k and n for now; we explain them below.) An island com-
prises a commutative monoid (M, ·, ε), as well as a representation
invariant I that interprets elements of M into assumptions (com-
posite resource predicates) on the underlying shared state. Specifi-
cally, I(t) denotes the invariant that holds on the shared state when
the global store of the island’s resource (M ) is t.

2 Note: even if the sharing rule is instantiated twice with the same monoid,
it nevertheless generates two distinct types of logical resources. The dis-
tinction is enforced syntactically by the fact that each application of the
sharing rule creates a fresh, existentially-quantified capability constructor
α; even if two such α’s (say, α1 and α2) are indexed by the same monoid,
instantiations [α1 t] and [α2 t] will not be confused with each other.
3 Throughout, we use dot notation like W.k and W.ω to project named
components from structures, and indexing notation like ω[i] to project the
ith component from a tuple.

The first island (island 0) is fixed to be the built-in island
for physical heaps (HIsland). Its monoid is the standard partial
commutative monoid on heaps, with disjoint union as composition
and the empty heap as unit, completed to a total monoid with a
bottom element ⊥. Its representation invariant I(h) is trivial—it
asserts no ownership of any underlying shared resource because
there is none, but is only satisfied if h is a heap and not ⊥.

In the other islands, the representation invariant I is more in-
teresting. First and foremost, it is world-indexed. For those read-
ers familiar with recent SKLRs [16, 3], which employ similarly
world-indexed heap invariants, the reason for this world-indexing
will likely be self-explanatory: it’s needed to account for the pres-
ence of higher-order state. For most other readers, it may appear
completely mysterious, but it is also a technical point that the reader
may safely gloss over (by skipping the next paragraph).

Briefly, the reason for the world-indexing of the resource pred-
icates is as follows: in proving the sharing rule (see the end of this
section), we extend the world with a new island, and we want to de-
fine its I(t) to require (roughly) that the underlying shared resource
of the island must justify the capability [A t], where A is the capa-
bility constructor in the first premise of the sharing rule (Figure 7).
But for arbitrary A, the question of whether some (composite) re-
source r justifies the capability [A t] depends on what the “current”
world W is when the question is asked, which might be at some
point in the future when new invariants have been imposed by fu-
ture islands. Such a situation would arise, for instance, were we to
apply the sharing rule to create a “weak reference” (Section 3) to a
value of function type, which is (not coincidentally) the canonical
example of higher-order state. The solution is thus to parameterize
the resource predicate I(t) overW , knowing that theW parameter
will always be instantiated (in the definition of “world satisfaction”
below) with the “current” world.

This parameterization trick is by now a very standard move in
the SKLR playbook for building models of higher-order state [3,
17]. However, it is also a prime example of Wheeler’s adage that
“all problems in computer science can be solved by another level of
indirection, but that usually will create another problem.” Indeed,
an unfortunate consequence is that it causes a “bad” circularity in
the construction of worlds that cannot be solved directly in sets. The
step-indexed approach of Ahmed et al. [1, 2, 3] handles this prob-
lem by stratifying the construction of worlds by n ∈ N bounding
the number of execution steps for which we observe the program,
with n going down by 1 in the world parameter of the resource
predicate. The details of this construction are entirely standard, as
are the world approximation (b·ck) and later (.) operators in Fig-
ure 9, and interested readers are referred to the literature [3, 17].

In any case, the resource predicates in the range of I are required
to be monotonic: adding new islands to a world cannot invalidate
the invariants of previous islands (see the definition of ResPred).
Finally, when using a composite resource r with j atomic sub-
resources in the context of a future world with j + k islands, we
silently assume the atomic sub-resources of the last k islands are ε.

Local vs. Shared Resources and World Satisfaction In reality, a
term e executes under a global heap h. In our model, we think of
e as executing, logically, under the global composite store, which
comprises all the resources currently in existence: specifically, it
combines the global store of every atomic resource in existence, in-
cluding the heap (which is the 0-th island’s resource). Some portion
r of that global composite store is directly known to (and owned
by) e itself—we call this e’s local resource—while the remaining
portion s constitutes the shared resource. The shared resource is so
named because it is required to contain all the underlying shared
resources needed to satisfy the representation invariants of all the
islands in the world. (The local vs. shared terminology is bor-
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KJ◦K def
= ValPred KJσ → κK def

= SJσK→ KJκK

VJB tKWρ
def
= {(r, IJtKρ)} for B ∈ {bool, nat, ptr}

VJcap t AKWρ
def
=
{

(r · [IJtKρ : v], •)
∣∣ (r, v) ∈ VJAKWρ

}
VJ1KWρ

def
= {(r, 〈〉)}

VJA1 ⊗A2KWρ
def
=
{

(r1 · r2, 〈v1, v2〉)
∣∣ (ri, vi) ∈ VJAiKWρ

}
VJA( BKWρ

def
=

{
(r, v)

∣∣∣∣∣ ∀W ′ wW. (r′, v′) ∈ VJAKW
′

ρ

=⇒ (r · r′, v v′) ∈ EJBKW
′

ρ

}
VJ!AKWρ

def
=
{

(r · r′, !v)
∣∣ (r, v) ∈ VJAKWρ , r = r · r

}
VJ∀X:σ ::P .AKWρ

def
=
⋂{
VJAKW

ρ[X 7→d]

∣∣∣ ρ[X 7→ d] |= P
}

VJ∃X:σ ::P .AKWρ
def
=
⋃{
VJAKW

ρ[X 7→d]

∣∣∣ ρ[X 7→ d] |= P
}

VJ∀α : κ. AKWρ
def
=
⋂{
VJAKW

ρ[α 7→V ]

∣∣∣ V ∈ KJκK
}

VJ∃α : κ. AKWρ
def
=
⋃{
VJAKW

ρ[α 7→V ]

∣∣∣ V ∈ KJκK
}

VJαKWρ
def
= ρ(α)

VJ [A] KWρ
def
=
{

(r, •)
∣∣ ∃v. (r, v) ∈ VJAKWρ

}
VJif(t,A,B)KWρ

def
= if IJtKρ = tt then VJAKWρ else VJBKWρ

VJλX : σ. AKWρ
def
= λd ∈ SJσK. VJAKW

ρ[X 7→d]

VJA tKWρ
def
= (VJAKWρ )(IJtKρ)

EJAKWρ
def
= { (r, e) | ∀j < W.k, (s, r · rF) : W.

if h = (s · r · rF)[0], 〈h; e〉 ↪→j 〈h′; e′〉 6↪→
then ∃W ′ wj W, (s′, r′ · rF) : W ′

with h′ = (s′ · r′ · rF)[0], (r′, e′) ∈ VJAKW
′

ρ }

Figure 10. Kripke Logical Relation

rowed from Vafeiadis’s work on concurrent separation logics [41],
in which a closely analogous distinction arises.)

Formally, the relationship between the local and shared re-
sources is codified by the world satisfaction relation (s, r) : W ,
defined in Figure 9, which asserts that s can be split into m com-
posite resources si (one for each island of W ) such that si satisfies
island i’s representation invariantW.ω[i].I . Note that the argument
passed to I is (s · r)[i]: this is correct because I’s argument is sup-
posed to represent the global store of the i-th island, which is pre-
cisely the i-th projection of the global composite store, s · r. Note
also that the world parameter of each island’s resource predicate
is instantiated with .W , the “current” world W approximated one
step-index level down.

Kripke Logical Relation Logical relations characterize program
behavior by induction over type structure, lifting properties about
base type computations to properties at all types: a term at a com-
pound type is “well-behaved” if every way of eliminating it yields a
“well-behaved” term at some simpler type. Kripke logical relations
index logical relations by a world W , which places constraints on
the machine states under which terms are required to behave well.
Although logical relations are often binary relations for proving
program equivalences [30], it suffices in our case to define unary
predicates, since we are merely trying to prove safety [6].

Figure 10 presents our Kripke logical relation. We assume a se-
mantics of sorts SJσK, index terms IJtKρ (where fv(t) ⊆ dom(ρ))
and propositions ρ |= P (where fv(P ) ⊆ dom(ρ)), all standard
from multisorted first-order logic. From the semantics of sorts, we
can easily build a semantics of kinds KJκK. The value predicate
VJAKWρ is indexed by both a worldW and a semantic environment
ρ, and is satisfied by pairs (r, v) of values v and their supporting
(composite) resources r. Because the type system is affine, the re-
source r may contain some part that is irrelevant to v—and in gen-
eral, if (r, v) ∈ VJAKWρ and W ′ w W then (r · r′, v) ∈ VJAKW

′
ρ ,

an assumption codified in the definition of ValPred. This mono-
tonicity property means that the good behavior of a term can de-

EnvJ·K def
= ∅

EnvJΣ, α : κK def
= {ρ, α 7→ V | ρ ∈ EnvJΣK, V ∈ KJκK}

EnvJΣ, X : σK def
= {ρ,X 7→ d | ρ ∈ EnvJΣK, d ∈ SJσK}

UJ·KWρ
def
= ∅

UJΓ, x : AKWρ
def
=

{
γ, x 7→ (r, v)

∣∣∣∣ γ ∈ UJΓKWρ , (r, v) ∈ VJAKWρ ,
r = r · r

}
LJ·KWρ

def
= ∅

LJ∆, x : AKWρ
def
=
{
δ, x 7→ (r, v)

∣∣ δ ∈ LJ∆KWρ , (r, v) ∈ VJAKWρ
}

π(γ)
def
=
⊙
{r | x ∈ dom(γ), γ(x) = (r, v)}

π(δ)
def
=
⊙
{r | x ∈ dom(δ), δ(x) = (r, v)}

Σ; Π; Γ; ∆  e : A
def
= ∀W, ρ ∈ EnvJΣK, γ ∈ UJΓKWρ , δ ∈ LJ∆KWρ .

ρ |= Π =⇒ (π(γ) · π(δ), δ(γ(e))) ∈ EJAKWρ

Figure 11. Semantics of Open Terms

pend on certain islands and resources being present, but not on cer-
tain islands or resources being absent.

The definition of the value predicate is essentially standard—in
particular, it is essentially an affine version of the model of L3 [5]
outfitted with our monoidal worlds. One difference is our interpre-
tation of the exponential !A, which is inhabited by !v only when
v can be supported by some idempotent portion of the resources—
that is, some part of the resources that permits the structural rule of
contraction. (In L3, the heap is the only resource, so only the empty
heap is idempotent.) Also, since universal and existential types are
introduced implicitly, they are given intersection and union seman-
tics, respectively. The remaining differences are to do with indexed
types—e.g., the parameter indexing the base types bool, nat, and
ptr must reflect the particular value inhabiting the type—and the
computational irrelevance type [A], whose interpretation records
the resources needed to justify A but not the value that inhabits it.

The term predicate EJAKWρ captures the crucial property sup-
porting sharing: namely, that computations are frame-respecting.
Suppose that a term e owns (composite) resource r. To show e is
well-behaved, we quantify over an arbitrary frame resource rF rep-
resenting the resource of e’s evaluation context. Together, r · rF
constitute the local resource, i.e., the portion of the global compos-
ite store that the program being executed owns. We also quantify
over some shared resource s such that (s, r · rF) : W . If e reduces
to an irreducible term e′—starting from the global heap that is the
0-th projection of s · r · rF—in j steps, where j is less than the
world’s step-index W.k, then it must (1) leave the heap in a state
described by a new global composite store s′ · r′ · rF, such that (2)
(s′, r′ · rF) : W ′ for some future world W ′ of W (whose step-
index is W.k − j), and (3) the final term e′ is in fact a value that,
supported by the resource r′, obeys the value predicate VJAKW

′
ρ .

Note, however, that the frame resource rF must remain unchanged.
The logical predicates defined in Figure 10 only describe well-

behaved closed terms. In Figure 11, we lift these to predicates on
open terms in the standard way: namely, we consider e to be well-
behaved at the type A under context Ω, written Ω  e : A, if it
is well-behaved (according to EJAK) for all well-behaved closing
instantiations of its free variables. These closing instantiations in-
clude both values and the resources supporting them; the π operator
then multiplies together all the resources supporting a closing in-
stantiation. Note that the resources accompanying the instantiations
of the unrestricted variables in Γ are required to be idempotent, so
that they may be safely duplicated within the proof of soundness.

Soundness of the Type System The main technical result of the
paper is summed up in the following theorems:

10



Theorem 1 (Fundamental Theorem of Logical Relations).
If Ω ` e : A, then Ω  e : A.

Theorem 2 (Adequacy).
If ∅  e : A and 〈∅; e〉 ↪→∗ 〈h; e′〉 6↪→, then e′ is a value.

Corollary 3 (Soundness of the Type System).
If ∅ ` e : A and 〈∅; e〉 ↪→∗ 〈h; e′〉 6↪→, then e′ is a value.

The proof of Adequacy is almost trivial. The proof of the Fun-
damental Theorem essentially proceeds by showing that each rule
in our type system is semantically sound, i.e., that it holds if all
the syntactic `’s are replaced by semantic ’s. The proofs for most
rules follow previous developments using SKLRs [3, 17, 16]. The
most interesting new case, of course, is that of the sharing rule. The
proof is quite involved, so here we will just offer a rough idea of
how the proof goes, focusing on the most interesting technical con-
structions. (For the full details, see the technical appendix [24].)

As described above, the intuition behind our worlds W is that
each island in W corresponds to an application of the sharing rule.
Indeed, the proof that the sharing rule is semantically sound is the
only part of our proof that involves extending a given input world
W with a new island to form a future world W ′ (as permitted in
the definition of the logical term predicate). Supposing W already
had n islands (0..n− 1), the new island will have index n.

At first glance, it would seem we want to define this new island
to be (SJσK, ·, ε, Isimple), where (SJσK, ·, ε) is the monoid with
which the sharing rule was instantiated, and the representation
invariant Isimple is defined in terms of the A in the first premise of
the rule (and whatever ρwe are given to interpret its free variables):

Isimple(x) = {(W, r) | ∃v. (r, v) ∈ VJAKWρ (x)}
This invariant stipulates that the shared resource of island n satis-
fies the capability [A x] when the island’s global store is x.

However, we must also take account of the lock ` that the dy-
namic semantics of share creates in order to protect against reen-
trancy. Intuitively, when the lock ` is released, the representation
invariant of island n should be much like the above Isimple. But
when the lock ` is held, it means we are in the middle of a call to
one of the operations returned by share, during which the represen-
tation invariant might not hold at all. The monoid of island n must
therefore reflect these two possibilities.

We define island n as (M,+, U(ε), I), where (in ML notation)

type M = U of SJσK | L of SJσK× SJσK | ⊥,
the composition operator (+) is the commutative closure of

U(x) + U(y) = U(x · y)
L(x, y) + U(z) = L(x, y · z)

L( ) + L( ) = ⊥
⊥+ = ⊥,

and the representation invariant I is defined as

I(U(x)) = {(W, r · [` : ff]) | ∃v. (r, v) ∈ VJAKWρ (x)}
I(L(x, y)) = {(W, [` : tt]) | x = y}

I(⊥) = ∅.
The idea here is to distinguish between unlocked states U(x),
where the lock ` is released, and locked states L(x, y), where `
is held. In the former case, I asserts that ` points to ff and that the
rest of the island’s shared resource r can satisfy [A x], as required
for invoking any of the shared operations.4 In the latter case, I
asserts that ` points to tt and that x = y (we explain about that

4 Note that if the sharing rule did not require A to represent a capability
(i.e., to appear in proof-irrelevant brackets), then invoking any of the shared
operations would require us to cough up the actual value v witnessing A x
(whereas here, v is ∃-quantified). This could be achieved by changing the
implementation of the sharing rule so that it maintains a private reference
cell ` storing the current witness v, and then updating I to also own [` : v].

in a moment). Finally, we give the following interpretation for the
abstract capability constructor α (returned by the share operation):

JαK = λx ∈ SJσK.
{

(W, (r, •))
∣∣ r[n] = r′ + U(x)

}
This essentially says that the owner of [α x] has control over a
U(x) piece of the resource on island n.

The two parameters to L are a technical trick we use to show
that the shared operations of the ADT are “frame-preserving”.
Specifically, the monoid we have defined has the property that if
we control L(y, ε) of the resource, then the only possible resource
r that the rest of the program could have on island n, such that
I(L(y, ε) + r) is satisfiable, is U(y). To see how this is exploited
in the soundness proof, suppose that a client owns [α t] (i.e., she
controls a U(t) piece of island n’s resource), and invokes one of
the shared operations, whose type spec (see Figure 7) promises
to transform [α t] into [α t′] for some t′. (For simplicity, we’ll
ignore the frame X in the type of the operation. It does not add
any fundamental complication.) If the lock is held, the operation
will diverge and there is nothing to show. If the lock is released, the
definition of I guarantees that the rest of the global store on island
nmust be of the form U(y) for some y, and that the island’s shared
resource r satisfies [A (t · y)]. Here, U(y) represents the control
the rest of the program has over the shared state of island n, and we
must show that the operation we are about to execute respects it.

Now, before invoking the underlying operation, we acquire the
lock, we remove r from the shared resource so that we can transfer
ownership of it to the operation, and—this is the key point—we
replace the client’s local U(t) resource with the resource L(y, ε),
thus updating the global store of island n to L(y, y). When we
invoke the underlying operation, we place the L(y, ε) in its frame,
which (by definition of the logical term predicate) it must preserve.
Thus, when we get back control from the operation (which must be
in a state such that I is satisfiable), the global store of island nmust
still be L(y, y), of which the client controls L(y, ε) and the rest of
the program controls U(y). Also, the frame-preserving nature of
the underlying operation’s type tells us that it must have returned
us a resource r′ satisfying the capability [A (t′ · y)]. We can then
release the lock, replace the client’s L(y, ε) resource with U(t′)
(which is what the client expects to control when the operation is
completed), and transfer ownership of r′ back to the island’s shared
resource, which now satisfies I at the new global store, U(t′ · y).
But crucially, despite/because of all these shenanigans, the resource
U(y) belonging to the rest of the program has been left untouched!

5. Related Work
Dealing with Reentrancy: Locking vs. the Anti-Frame Rule As
explained in Section 3, our sharing rule uses a lock to protect
against unsafe reentrancy, which can arise in our language due its
support for shared, higher-order state. Most prior separation logics
have not had to deal with such a hard problem because they are
done in a first-order setting, where the possibility of reentrancy
is syntactically evident; and most prior substructural type systems
(e.g., L3 [5]) have not had to deal with it because they don’t support
sharing/hiding of state.

One exception is Pottier’s work on the anti-frame rule [32],
which does account for reentrancy in the presence of shared,
higher-order state. The anti-frame rule permits a group of func-
tions to operate on a piece of hidden state described by an in-
variant C. Externally to the anti-frame rule, those functions may
have type !(A ( B), but internally they have roughly the form
!(A ⊗ C ( B ⊗ C) (but not quite, as we explain below). In a
substructural setting, the rule therefore gives a way to export, e.g.,
an affine reference with a set of operations, without treating the
operations themselves as affine or forcing the client to thread the
the affine reference capability through its code. The restriction to a
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simple invariant has been subsequently relaxed to support hidden
monotonic invariants [35], as well as monotonic “observations”
about hidden state [29] (although to our knowledge the last exten-
sion has not yet been proven sound).

Pottier’s approach provides a more general solution to the reen-
trancy problem (of which our use of locks would constitute one
mode of use), but this comes at the cost of significant additional
complexity in the typing rule for hiding (i.e., the anti-frame rule)
itself. In particular, the ⊗ operator that Pottier employs in the type
!(A ⊗ C ( B ⊗ C) above is not a simple tensor, but rather a
tensoring operation, which propagates under→ and ref types and
comes equipped with a non-standard equational theory. Soundness
proofs of the anti-frame rule using traditional syntactic techniques
have consequently required years of heroic effort [33]. That said,
significantly simpler semantic proofs of the anti-frame rule have
also been given using Kripke logical relations [35]. Based on this
experience, we chose to use a semantic model in our work, and
have been very satisfied with its simplicity.

In this paper, we decided to isolate concerns by focusing on
sharing and leaving an improved handling of reentrancy to future
work. One possibility would be to consider synthesizing our shar-
ing rule with the anti-frame rule, since they are complementary.
The anti-frame rule offers a more general treatment of reentrancy,
while the sharing rule offers a more general treatment of sharing.
As demonstrated in our weak references example, simple invari-
ants may be encoded via the sharing rule using the unit monoid,
and subsequently hidden. More novel, however, is our support for
a variety of interesting uses of sharing involving both monotonic
state and non-monotonic state (e.g., the memory manager exam-
ple). Furthermore, our use of monoids lets clients divide, transfer,
and recombine resources as they need, without restricting to a one-
way increase in information as the anti-frame rule does.

Fictions of Separation From the outset, substructural reasoning
about state has relied on the notion of disjointly supported asser-
tions for local reasoning, but only gradually has the flexibility of
that notion become clear. Early models of logically (but not phys-
ically) separable resources like fractional permissions [7, 10] and
trees [9] treat those resources as primitive, either baking them into
the operational semantics or, in simple cases, relying on a fixed in-
terpretation into an underlying heap. To handle higher-level notions
of separation, Krishnaswami et al. [23] embedded “domain-specific
separation logics” into higher-order separation logic, and Dinsdale-
Young, Gardner, and Wheelhouse named the general phenomenon
“fictional disjointness” and justified its support of local reasoning
by employing data refinement and axiomatic semantics [14].

Contemporaneously, concurrent abstract predicates (CAP, [13])
combined fictional disjointness with several other important ideas—
the two most relevant being abstract predicates [28] and rights-as-
resources [15]. CAP allows the specification of each module to
include abstract predicates which, like the abstract data types in-
troduced by our sharing rule, represent local knowledge and rights
about a shared underlying resource. Hence, just as the tensor ⊗ is
the all-purpose notion of separation for us, so separating conjunc-
tion ∗ is for CAP. On the other hand, CAP is built on more specific
and complex forms of knowledge and rights, inherited from deny-
guarantee [15] and intended for reasoning about concurrency.

In very recent work, several groups of researchers have si-
multaneously proposed variants of commutative monoids as an
abstract way to capture fictional separation. Their original goals
were quite distinct: Jensen and Birkedal’s fictional separation
logic (FSL) [21] is explicitly intended as a simple axiomatiza-
tion of fictional disjointness within separation logic; Dinsdale-
Young et al.’s views [12] are intended as a more abstract account
of CAP (and compositional reasoning about concurrency in gen-
eral); and Ley-Wild and Nanevski’s subjective concurrent separa-

tion logic (SCSL) [25] is geared toward compositional reasoning
about ghost state.

The three frameworks also share a shortcoming: the separating
conjunction ∗ of the assertion language is tied to a single, specific
monoid. With views and SCSL, this monoid is fixed at the outset,
when the framework is instantiated. FSL, in contrast, is based
on indirect Hoare triples parameterized by an interpretation map,
which explicitly records a monoid together with its interpretation
as a predicate on underlying resources. An interpretation map is
akin to an island in our model (Section 4), which means that the
assertions within an indirect Hoare triple must all be given in terms
of a single abstract resource. While FSL enables interpretation
maps to be stacked in layers or combined as a product (resembling
our worlds), such structure must be explicitly managed within both
assertions and proofs.

Our sharing rule also employs commutative monoids for fic-
tional separation, but it associates a different monoid with each ab-
stract data type it introduces. Consequently, our tensor product con-
structor ⊗ implicitly mediates between all resources “currently” in
existence, both the physical resources and a dynamically-growing
set of user-defined logical resources.

Temporarily Structural Types Most substructural type systems
are not completely substructural: they permit, by a variety of means,
linear or affine types to coexist with unrestricted types. Keeping
a strict distinction between the two kinds of types is crucial for
ensuring the soundness of e.g. strong updates, but it is also im-
practical for large programs with complex data structures. There
have been numerous proposals for safely allowing the rules to be
bent [37, 36], a well known example being Fähndrich and DeLine’s
adoption and focus [19]. At the root of these designs for “temporar-
ily structural types” is the ability to revoke access to previously
aliased data, providing a freshly linear view of that data. When un-
restricted access is later restored, however, there must be some way
of ensuring that the aliases still have an appropriate type, and the
simplest way of doing that is to keep the type fixed.

Our sharing rule, on the other hand, does not commit to a par-
ticular aliasing discipline. The abstract resources supported by a
shared underlying resource can be created and aliased to whatever
extent their governing monoid allows, and can be strongly updated
at any time without risk of invalidating non-local assertions. It re-
mains to be seen whether our monoidal approach is flexible enough
to recover the sophisticated rule-bending of the “temporarily struc-
tural” typing disciplines mentioned above.

Per-Module Notions of Resources Two recent languages—Tov’s
Alms [40] and Mazurak and Zdancewic’s F ◦ [26]—have been pro-
posed for general-purpose, practical programming with substruc-
tural types. The generality of these languages stems from their abil-
ity to perform substructural sealing: they can seal an unrestricted
value with an abstract type at a substructural kind, thereby prevent-
ing clients from freely aliasing the value. Substructural sealing, like
our sharing construct, provides a way to introduce per-module no-
tions of resource. But substructural sealing is used to impose a more
restrictive interface on a less restrictive value, while sharing goes
the other way around, allowing aliasing of affine resources. This
difference is apparent in the work done by a typechecker in both
cases: for substructural sealing, there is little to check, because it is
always safe to tighten the interface to a value; for sharing, the ex-
ported operations must be shown to respect their frame. Ultimately,
these two forms of resource introduction seem complementary, and
indeed, the language we have presented supports both.

Kripke Logical Relations Kripke logical relations have long been
used to reason about state in higher-order, ML-like languages [31].

Ahmed et al. [5, 4] have given Kripke logical relations for
linear languages with state, using a simple notion of possible world
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corresponding to strict heap separation. The structure of our logical
relation is quite similar to this earlier work, but the structure of
our worlds is significantly different, since we must account for
interaction between an unbounded number of abstract resource
types, each of which is governed by a distinct monoid.

More recently, Ahmed et al. [3] and Dreyer et al. [16] have
given models for higher-order structural state based on the concept
of transition systems, which facilitate the modeling of protocol-
based uses of state, as well as the “well-bracketed” state changes
possible in languages without control. Since transition systems can
be modeled as monoids, our current model fully supports transition
systems as a mode of use. With a small extension (whose proof is
in the appendix [24]), we can also model Dreyer et al.’s “public”
vs. “private” transitions for reasoning about well-bracketed state
changes, although proofs based on their techniques are arguably
more direct than ours. (We plan to report on this in future work.)

6. Conclusion and Future Work
In this paper, we have shown how to put programmer-defined re-
source abstractions on the same footing as built-in resources such
as the heap, yielding a type system that permits the flexible use of
aliased data while retaining the simple intuitions of substructural
logic. To do so, we combined exciting new ideas from separation
logic with classical type-theoretic techniques such as refinement
types and data abstraction.

An immediate direction for future work is to study how to
optimize the sharing rule, both via the model (i.e., proving that
locks are not needed for specific implementations), and via type-
theoretic extensions that we could use to avoid locking (e.g., via
formalizing the concept of “first-order data” as a modality, or via
a sharing modality [36]). Another natural direction for future work
is to examine if our methods extend to full-blown value-dependent
types (e.g., as in HTT [27]). This poses interesting questions, since
methods based on step-indexing have historically had challenges
dealing with semantic equalities (as opposed to approximation),
and our sharing rule deeply connects existential types and state.
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