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1 INTRODUCTION
Abstractions imply choice, one that OS designers must con-

front when designing a programming interface to expose.

Traditional monolithic kernel designers choose a high-level

portable interface that necessarily hides many hardware de-

tails. On the other extreme, designs such as the Exokernel

optimize for performance and low-level hardware access.

Abstraction choices have further implications in how easily

and quickly new hardware and application models can be

supported. In this paper, we describe the null-Kernel, a new

model for structuring system software that attempts to re-

lieve OS designers of this choice and enable access to and

composition of OS interfaces at different levels of abstraction.

The null-Kernel is designed to address the growing need

to easily provide high-level programming interfaces to new
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hardware, such as GPUs, crypto/AI accelerators, smart NICs/-

storage devices, NVRAM etc., and to efficiently support new

application requirements for functionality such as transac-

tional memory, fast snapshots, fine-grained isolation, etc.,

that demand new OS abstractions that can exploit existing

hardware in novel and more efficient ways.

At its core, the null-Kernel derives its novelty from being

able to support and compose across components, called Ab-

stract Machines (AMs) that provide programming interfaces

at different levels of abstraction. The null-Kernel uses an ex-

tensible capability mechanism to control resource allocation

and use at runtime. The ability of the null-Kernel to support

interfaces at different levels of abstraction accrues several

benefits: New hardware can be rapidly deployed using rela-

tively low-level interfaces; high-level interfaces can easily

be built using low-level ones; and applications can benefit

from being able to use interfaces, and compose abstractions

using more than one if necessary, as appropriate.

The null-Kernel capability system can also be used to par-

tition hardware between different components (AMs) that

provide different abstractions. For instance, the null-Kernel

can be used to simultaneously support a traditional OS that

provides a system call interface, and an exokernel that pro-

vides low-level access to new hardware. Such a system could

easily enable optimizations not possible now: for instance,

the BSD Socket interface necessarily implies copying incom-

ing data from kernel to user space memory, and typically an

additional copy is incurred when the data is initially copied

from the NIC. Zero copy stacks exist, but do not eliminate the

initial copy. A null-Kernel that combines a BSD-like AM and

an exokernel interface for Smart NICs can be programmed

to assemble incoming TCP segments and copy them directly

into process memory, bypassing the BSD AM entirely. Appli-

cations can use the BSD interface for traditional high-level

services while simultaneously benefiting from a very high

performance networking stack.

We describe design principles for AMs that go beyond

strict partitioning, and enable cooperating AMs to provide

additional functionality. These design principles can be used
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to retrofit existing kernels, allowing applications to simul-

taneously use the high-level interface they provide while

benefiting from additional access to low-level hardware fea-

tures that were previously hidden by the traditional OS. For

instance, cooperating high- and low-level AMs can simul-

taneously provide virtual memory (high-level) and access

to page-access bits (low-level, currently unavailable). Such

a facility could be used to implement new primitives (e.g.,

software transactional memory) or optimize existing (e.g.,

garbage collection).

In the next section, we describe the null-Kernel structure,

its capability system, and how interfaces provided by AMs

can be composed using the null-Kernel. In Section 3 we

discuss how an existing kernel can be retrofitted to interface

with an exokernel, and provide examples of how new types of

application primitives such a hybrid system can support. We

discuss related work in Section 4 and conclude in Section 5.

2 THE NULL-KERNEL
Figure 1 shows a high-level schematic of the null-Kernel.

The null-Kernel architecture decomposes the system into

three components: abstract machines (AMs), callers, and the

null-Kernel itself.

Abstract machines are software layers that provide specific

functionality, and expose a set of operations that callers may

invoke. In a traditional OS, the kernel is the AM, and this

set of operations is the system call interface. Callers are

processes or threads, as recognized by the kernel. In a null-

Kernel architecture, there may be other layers of software

(i.e., different AMs) that provide different interfaces, which

would also be available to eligible callers, which may include

other AMs.

The null-Kernel, shown in green in the figure, controls

access to AM operations by only allowing invocations when

the caller presents capabilities with sufficient access rights.

The capability structure supported by the null-Kernel is

extensible: AMs define new capabilities and specify which

access rights are required for any given AM operation. Since

the capability system is extensible, the null-Kernel can recog-

nize new operations (and indeed complete AMs) at runtime.

null-Kernel Structure. Figure 1 shows how OS software in

the null-Kernel model is structured. The hardware presents a

programming interface, which we term the Hardware-AM
1
.

The other AMs in the figure export different sets of opera-

tions that ultimately make use of the Hardware-AM. AMs

can be layered, e.g., AM-2 is partially built using AM-1’s

operations. In a null-Kernel, callers, with proper capabili-

ties, may invoke operations exported by a “high-level” AM

such as AM-2, or by “low-level” AMs such as AM-0, or any

1
Obviously, the Hardware-AM is not “abstract” but we (ab)use the term for

uniformity.

combination simultaneously. This is the key insight behind

the null-Kernel: as long as a caller has proper capabilities,

they may invoke operations at any level of abstraction, and

thus the OS architecture is not confined to one model. More

importantly, if the underlying resources are disjoint, or if the

AMs cooperate (as described next), these calls compose, and

can safely be executed in parallel or in any combination.

AMs structured with the null-Kernel capabilities permit

many patterns of resource access and optimizations that are

either cumbersome or impossible otherwise. These include

“bypassing” layers by delegating capabilities and controlled

sharing of resources between “peer” AMs. Next we describe

the capability subsystem in more detail followed by examples

demonstrating these access and optimization patterns.

2.1 null-Kernel Capabilities
In this section, we describe the null-Kernel capability system

in more detail. AMs, including the Hardware-AM, define “ob-

jects” and “access rights” on objects. The null-Kernel capabil-

ity system is extensible in that it operates over (dynamically

defined) AM objects and rights. Capabilities are unforgeable

references to a pair consisting of an AM object and a set of

access rights on that object. Operations defined by AMs refer

to one or more pairs of objects and access rights. For example,

the Hardware-AM may define a memory page as an object,

and read and write as access rights. A DMA operation that

copies data onto a page would require the write access right

on that page object. This requirement is reflected to the null-

Kernel as described below; a caller may invoke an operation

(DMA-write) only if they have the capabilities associated

with the operation (in our example, the caller must have a

capability that grants the write right to that memory page).

The null-Kernel capability system derives directly from

prior work in capabilities [10, 16]. Like existing systems, in

the null-Kernel, capabilities can be associated with object,

rights pairs, delegated to others, derived to produce weaker

capabilities (by reducing the rights set), and revoked. In the

null-Kernel, when a capability is revoked, all derived capa-

bilities are also revoked. Much like other capability systems,

the basic security of the null-Kernel requires that a principal

(a caller or AM) can only get access to a capability by either

being granted the capability explicitly or deriving it from

a stronger capability. In particular, colluders cannot grow

their collective set of capabilities beyond what is explicitly

granted to them.

Extensibility. The novelty of null-Kernel capabilities de-

rives from the fact that null-Kernel itself does not associate

capabilities to the operations they guard. This association is

made by AMs and is, therefore, extensible. Specifically, AMs

can define new objects at their level of abstraction (e.g., the

Hardware-AM can define memory pages as objects, whereas
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Figure 1: An overview of the null-
Kernel showing system components:
the null-Kernel, abstract machines,
and callers.
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Figure 2: A representation of a file sys-
tem AM built on top of and exposing
capabilities for a disk AM.
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Figure 3: Architecture for retrofitting
the null-Kernel into a BSD system to
expose include safe exokernel like AM.

a higher-level VM-AM that provides virtual memory can

define address-spaces and memory regions as objects). AMs

also define custom rights on objects, and this set too is exten-

sible at runtime. Again, as an example, both the Hardware-

AM and the VM-AM can define read and write as rights on

their respective objects (physical pages for the Hardware-

AM, memory regions and address spaces for the VM-AM).

The operations supported by the low-level Hardware-AM

mirror those of the access rights (the read/write operation

succeeds only if the caller has read/write access to a mem-

ory page). The VM-AM can associate much richer semantics

with operations: for example, it may define a mapReadable
function that takes an address space and a memory region

as input, and the caller may only map a memory region into

an address space if they have capabilities that provide write

on the address space and read on the memory region. The

null-Kernel provides an API that allows AMs to express capa-

bility requirements for each call. As long as the capabilities

are delegated correctly any caller at any ‘layer’ of the sys-

tem may use operations exported by an AM. The invoked

AM maintains its correctness as long as the capabilities are

checked prior to the operation being executed.

Capability hierarchies and delegation. The null-Kernel nat-
urally allows AMs to build and, in turn, export interfaces

based on capabilities received from lower layers. These ex-

ported interfaces (and their associated capabilities) implicitly

form a capability hierarchy. Hierarchical capabilities are dif-

ferent from simple delegation in which an AM directly grants

received capabilities to others. (Delegation is useful for the

layer bypassing model we discuss later.) For both hierarchi-

cal and delegated capabilities, AMs should follow two basic

principles to ensure correctness for higher-layers:

• Logical separation: An AM should give potentially con-

flicting capabilities (e.g., write capabilities to the same

object) to mutually trusting principals only (principals

who understand each other’s invariants).

• Essential capability hiding: A higher-level AM should

not give out any capability it has on a lower-level AM,

if the capability can be used to violate the higher-level

AM’s own invariants.

For example, an AM should provide write capabilities to

the same memory page to two callers only if these callers

wish to implement a write-shared page with each other. One

may view these two principles as engineering guidelines for

hierarchical AMs, which, if followed will avoid situations

where two AMs use the same object(s) inconsistently.

Capability Checks. It is crucial to note that the null-Kernel,
as described, is a schematic for how OSs should be structured.

This schematic does not specify how capability checks are

implemented, only that operations across AMs should be

guarded by checks. This lack of specificity of implementa-

tion is on purpose since it provides unconstrained latitude in

how (and when) the checks are implemented. For example,

capability checks could be implemented in hardware (using

the ISA [4, 20], MMU, processor protection rings [6, 16]),

with programming language techniques (a safe compiler

only generates code for capabilities it is provided [3]), using

virtualization (guest OSs implement AMs constrained using

the hypervisor interface [13]), and so on. Similarly, capabil-

ity unforgeability can also be implemented using different

mechanisms: EROS [16] protects capabilities using protec-

tion rings, whereas Amoeba [18] uses random placement of

capabilities in a sparse address space. Other systems [1] [19]

protect capabilities with cryptography primitives. The null-

Kernel could employ any or all of these methods.

2.2 null-Kernel Structures
We conclude this section with two examples of how null-

Kernel capabilities can be used to create interesting optimiza-

tions and sharing structures between AMs.
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Layer Bypassing. Consider a system (Figure 2) that exposes

both a high-level filesystem AM (fs-AM) that operates on

the level of files and directories, as well as a low-level disk

AM (d-AM) that operates at the level of blocks. The fs-AM is

implemented on top of the d-AM using raw block read/writes

exported by the d-AM.

Most callers may prefer to use the file system through

the fs-AM. However, applications, such as high performance

databases, that want low level control over how data is ar-

ranged, may use the d-AM directly. With a null-Kernel, both

these cases can be supported simultaneously by exposing

both AMs to callers, subject to constraints of hierarchical

and delegated capabilities. In particular, following the prin-

ciple of “logical separation”, the d-AM should give the direct

callers and the fs-AM capabilities to disjoint disk blocks to

ensure that they do not overwrite the other’s data. Indeed, in

existing systems, raw disks or partitions are often provided

exclusively to high performance applications for exactly this

reason (and with exactly this constraint).

A more interesting use-case is that the fs-AM itself can

delegate block capabilities it receives from the d-AM to its

callers. This would enable applications to write to file-system

managed data blocks directly without going through the fs-

AM. The null-Kernel enables such layer bypassing since it

allows any caller with the appropriate capabilities to call

any AM (the d-AM in this case). In this case, the fs-AM must

adhere to the principle of “essential capability hiding” by

never delegating write capabilities that pertain to file system

metadata blocks to guarantee file system integrity.

AMpeering. The null-Kernel also supports non-hierarchical,
peering structures between AMs. We illustrate this using VM

paging as an example. Consider the virtual memory AM (VM-

AM). Upon memory pressure, the VM-AM writes pages to

disk. To accomplish this, we assume that the VM-AM has

been delegated write capabilities to a set of disk blocks by the

disk AM (d-AM). The VM-AM uses these capabilities to write

pages to disk as needed. To page these items back in, the VM-

AM invokes an operation in the d-AM that requires a block

capability with read access and a page capability with write

access. The d-AM may then asynchronously write into the

page from the block and notify the VM-AM when the opera-

tion has completed. This peer-to-peer interaction between

cooperating AMs is natively supported by the null-Kernel.

3 NULL-KERNEL IN PRACTICE
In the previous section, we outlined the basic structure of

the null-Kernel and described use cases where the relevant

subsystems were written to conform to our model. Many

null-Kernel ideas, however, are applicable to current OSs as

well; in this section, we describe how salient parts of the

null-Kernel can be integrated into production kernels and

the types of optimizations this can enable.

Figure 3 depicts a standard OS, such as FreeBSD, extended

to recognize the null-Kernel as we describe next. The sys-

tem also includes a new AM, the EXO AM, which exports

a low-level interface to hardware, similar to that provided

by exokernels. FreeBSD is not structured as a null-Kernel

AM and there are several options as to how an EXO AM

could co-habit with FreeBSD. One option to give the EXO

AM access to the hardware is to let it run in supervisor mode,

alongside the BSD AM.

Callers in this hybrid system are BSD processes, aug-

mented with capabilities which can be used to access the

EXO AM. Processes (which run in processor ring-3) calling

into the EXO AM must incur a processor ring switch, and

hence the “user-kernel boundary” separates processes from

the EXO AM as well.

In this structure, the BSD AM and the EXO AM cooperate,

and must share the hardware capabilities without conflict.

For instance, the BSD AM could choose to not use its hard-

ware capabilities for certain devices. The EXO AM can safely

export its minimal interface and be used as a base for higher

level abstractions on these devices. With more cooperation,

the EXOAM could also provide read-only access to hardware

primitives that are used by the BSD AM (e.g., by exporting

processor status and memory reference bits). Such hybrid

access to high- and low-level interfaces enables new use pat-

terns that are not possible with either interface in isolation.

Access to new hardware. The EXO AM can provide low-

level access to new hardware such as GPUs, FPGAs, or smart-

NICs for which the BSD kernel does not have support. New

devices added to the machine would add additional hardware

AMs to the system. Hardware vendors or kernel developers

would then write a thin abstraction of the hardware AM and

expose it via the EXO AM. At this point, the new hardware

could be directly used by processes (with proper capabilities).

New Abstractions. The ability to layer AMs would give

us the opportunity to build higher level AMs in terms of

the EXO AM. These higher level AMs would offer different

abstractions that might be suitable for the hardware, and

each application that wanted to use the new hardware could

choose the AM that best meets its needs.

New abstractions need not be limited to new hardware.

For instance, in cooperation with the BSD AM, the EXO AM

could expose hardware features such as page reference bits in

page tables which are usually hidden by the BSD AM. These

tracking bits could be used by applications to augment the

BSD VM subsystem and implement novel features such as

efficient software transactional memory (TM) or fast garbage

collection. Currently, a generic software implementation of

TM requires compiler augmentation of every single memory
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access[9]. This overhead can be entirely avoided if page

reference bit were made available through the EXO AM.

Simultaneous high- and low-level access. The hybrid BSD/EXO
AM system can be used to implement layer bypassing as dis-

cussed earlier. The BSD AM could provide capabilities for

disk blocks to processes, which could then use the EXO AM

to implement their own optimizations within the blocks allo-

cated by the BSD filesystem.

High-level AM over different low-level AMs. The hybrid

system would allow different AM’s functionality to enable

new use cases. For example, suppose new hardware in the

form of NVRAM storage devices is available, and the EXO

AM exports a low-level block interface to these devices. A

higher-layer AM could provide a memory-mapped file in-

terface to the NVRAM storage, and process logic could use

this facility to implement efficient crash recovery. Here the

null-Kernel allows programmers to use a high-level, well-

understood paradigm (memory-mapped files) to program

their application logic, and integrate it with low-level access

to new hardware to implement new functionality (efficient

crash recovery).

AM composition. The examples above assume that either

AMs partition resources, or are able to expose safe “enough”

interfaces such that composite services, that use operations

from multiple AMs do not cause deadlock or fault the system

in some other manner. A sufficient condition to ensure both

safety and progress is for each exported AM call to run to

completion upon invocation, and for the AM to maintain all

of its safety and progress invariants (e.g., release held locks)

prior to call return (including for calls that it services in paral-

lel). The OS system call interface maintains such an invariant,

but internal kernel interfaces, that assume specific locking se-

quences and at times undocumented pre-conditions, do not,
thereby making kernel modifications fraught with danger.

To support composability, AMs could simply implement the

sufficient condition we have described. Articulation of more

precise and efficient criteria is likely feasible and remains

part of our future work.

4 RELATEDWORK
VINO [17] and SPIN [3] offer mechanisms to safely extend

monolithic kernels. Both systems require extensions to be

written against a restricted, internal interface that maintains

kernel invariants. These systems can be thought of as a lim-

ited instantiation of the hybrid system presented earlier, but

access to the internal interface cannot be shared in a struc-

tured manner. This limits how extensions (AMs) relate:for

instance, layer bypassing is not possible in either.

Microkernels [12] seL4 [5] and Barrelfish [15] export ker-

nel objects to user space as capabilities. Capability types

exported by the system are static. As a result, layer bypass-

ing via delegated capabilities is not supported.

Exokernels [6] provide a minimal, non-portable hardware-

like interface. Exokernel abstractions allow for the allocation

and revocation of hardware resources in a manner similar to

capability allocation, but unlike capabilities, these resources

cannot be shared or reduced except by proxying through the

resource owner.

EROS [16], derived from KeyKOS [8], is a stateless kernel

thatmaps hardware into a set of capabilities. Applications use

the operations permitted by these capabilities to construct

higher level abstractions. EROS is equivalent to a specific

instantiation of the null-Kernel that only exports a low level

AM. HiStar [21] also exposes a limited set of kernel objects

to user space, limiting access to those objects by tracking

information flow.

The Cal timesharing system [11], Cambridge CAP com-

puter [14] and Fluke [7] all allow an interface’s operations to

be implemented and over-ridden in a nested manner that is

similar to subclasses. This layering is constrained by capabil-

ities. Unlike the null-Kernel, the interface for these interfaces

is fixed.

Dune [2] uses hardware support for virtualization to grant

applications safe access to virtual memory interfaces without

the use of explicit capabilities. This is akin to a form of layer

bypassing supported by null-Kernel; but due to the lack of

capabilities, Dune does not support the simultaneous use

of both low and high level memory interfaces. While an

application may build higher-level abstractions on top of the

interfaces that Dune exposes, these abstractions cannot be

seamlessly integrated with the kernel’s existing abstractions.

5 CONCLUSIONS
This paper describes the null-Kernel, a new structure for

system software that enables abstractions for efficient access

to new hardware and admits new optimizations for exist-

ing hardware. The null-Kernel posits an extensible capability

mechanism that distributes system resources across software

that provides programming interfaces at different layers of

abstraction. Equipped with proper capabilities, callers, such

as user processes, can simultaneously program to any or all

of these abstractions as appropriate. We describe require-

ments of the null-Kernel’s basic capability mechanism and

show how the null-Kernel can be used to implement new

abstractions and optimizations.
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