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Abstract. SPARK 2014 is a safety critical language subset of Ada de-
veloped by Altran and used for developing safe and secure software by
major industrial players in the aviation, commercial, medical, space, and
military domains. This paper puts a spotlight on the SPARK flow analy-
sis. Articulating the boundaries of what is achievable by the analysis, we
spell out attacks to exploit termination, progress, resource exhaustion,
and timing channels. We harden the analysis to achieve security against
stronger attackers, with the focus on progress-sensitive security as our
baseline. Instead of redesigning and reimplementing the enforcement,
we leverage known flow analyses for weaker attackers by a transform
on program dependence graphs. We establish the soundness of this ap-
proach for a core language and demonstrate that it can be applied as a
source-to-source transform of SPARK code when modifying the compiler
is undesirable. A case study, derived from publicly available code for a
control unit of a missile, indicates the usefulness of the approach.

1 Introduction

SPARK is a safety critical language subset of Ada developed by Altran and
used by industry in the aviation, commercial, medical, space, and military do-
mains. Applications range from programming jet engines (Lockheed Martin) to
military aviation (EuroFighter), UK’s air traffic control system (Altran), cross-
domain guards (Rockwell Collins), smart card OS (MULTOS), biometrics soft-
ware (NSA), and multi-level security systems (Secunet) [42].

SPARK 2014. A recent major overhaul of SPARK has led to SPARK 2014 [44],
a language and accompanying tools for developing safe and secure software. To
aid security verification, a flow analysis is integrated in the compiler to track
information flow in SPARK programs and is used in applications like separation
kernels [29] and multi-level workstations [39].

Information flow security. The security model of SPARK programs draws
on information flow tracking. The goal is to track the propagation of data from
sources (inputs) to sinks (output) as information is manipulated by programs.
For systems whose sources and sinks are classified into secret and public (or
more complex classifications [18]), the baseline policy is noninterference [16,21]
that prevents secret inputs from affecting public outputs.

There are different ways in which noninterference can be broken, correspond-
ing to different information flow channels. An explicit flow results from a data
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flow from the right-hand side to the left-hand side in an assignment. An im-
plicit [19] flow is via control flow: for example, branching on a secret and out-
putting different public values in the branches is an implicit flow that leaks
information about the secret without any explicit leaks. The termination chan-
nel [48] is another source of potential leaks: a program that loops on a secret
and outputs a public value on exiting the loop reveals whether the loop has
terminated and therefore leaks information about the secret guard. A gener-
alization of this channel is the progress channel [7] that can be used to leak
information about secrets via the progress of public outputs. In contrast to the
one-bit termination channel, this channel allows leaking secrets in their entirety
by brute force attacks [7]. Other channels of interest are resource exhaustion and
timing [37], which allow the attacker to learn secret information by observing
abnormal behavior and time variation, respectively.

SPARK security examined. Usage of the SPARK flow analysis in industry
is encouraging. It makes the following questions important. What attacks does
it prevent? How can it be extended to achieve security against more powerful
attackers? Can it lead to a general methodology applicable to similar analyses?

This paper puts a spotlight on the flow analysis in SPARK GPL 2015. Re-
leased April 28 2015, it is, as of January 1 2016, the latest GPL edition of SPARK
2014. To articulate the boundaries of what it can achieve, we demonstrate that
the analysis successfully tracks explicit and implicit flows and spell out attacks
to exploit termination, progress, resource exhaustion, and timing channels.

SPARK security improved. With the goal to harden the analysis against
stronger attackers, we set our baseline at the progress-sensitive security pol-
icy [31,8,12,32]. This policy is a natural generalization of noninterference to
programs with output, in contrast to its progress-insensitive counterpart [7,8,12]
that needs to carve out leaks due to computation progress. Further, as mentioned
earlier, ignoring the progress channel implies opening up brute force leaks that
may extract secrets in their entirety. Our key goal is to design a general ap-
proach that allows leveraging existing analysis and tools for explicit and implicit
flows, such as SPARK flow analysis to enforce the stronger progress-sensitive
security. This goal is particularly important given the state of the art where the
vast majority of the information flow tools in addition to SPARK (e.g. Flow-
Fox [22], JSFlow [24] and IFC4BC [10] for JavaScript, Jif [30], Paragon [14] and
JOANA [23] for Java, FlowCaml [40] for Caml, all discussed in Section 8) are
currently only able to enforce progress-insensitive security.

Achieving progress-sensitive security. With this main goal at hand, the core
idea for enforcement is as follows. We set out to leverage two independent compo-
nents: graph-based analysis for explicit/implicit flows and termination analysis.
There have been many successful efforts on developing such components, with
the above-mentioned information flow tools for the former and much encourag-
ing progress on the latter [17,27,45]. Facilitated by the latter, Moore et al. [28]
show how to use termination oracles for termination-sensitive information flow
analysis. Similarly, we parametrize our approach in the termination analysis to
determine which loops terminate and perform a graph transform on the program
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dependence graph where we represent termination and progress flows by inject-
ing additional edges going out of potentially diverging loops. This lets us reuse
graph-based analyses, e.g. the one by Horwitz [26] that is behind the SPARK flow
analysis, since we can simply apply it to the transformed graph. The elegance
of this approach is that even if a trivial termination analysis (“all loops might
diverge”) is plugged into the framework, we get a sound and meaningful enforce-
ment of progress-sensitive noninterference corresponding to Smith’s and Boudol
and Castellani’s canonical restrictions for the termination channel [41,13].

We establish the soundness of this approach for a core language and demon-
strate that it can be applied as a source-to-source transform of SPARK code
when modifying the compiler is undesirable. We apply the source-to-source trans-
formation on a case study with a control unit of a missile, loosely based on pub-
licly available code by Hilton [25]. We formulate desired properties, such as “the
orientation sensors may not affect self-destruction”, in terms of information-flow
policies and demonstrate how our enforcement verifies these properties.

Contributions. The paper’s major contributions are (i) the attacks on the
SPARK flow analysis to demarcate its boundaries, (ii) leveraging a progress-
insensitive SPARK flow analysis (by changing the analyzer conservatively, or
through source-to-source transformation) to enforce progress-sensitive noninter-
ference, and (iii) a case study with a missile code controller to demonstrate
the usefulness of the approach. While our work is motivated by improving the
SPARK flow analysis, we believe the overall idea is portable to other approaches
and tools. Thus, we present our results more generally. For example, our frame-
work is graph-based, which opens up possibilities for natural adoption to other
graph-based tools such as JOANA [23]. Combining the major and minor contri-
butions, the paper contributes the following:

– Attacks illustrating the boundary of what SPARK’s flow analysis can achieve,
leaking via termination, progress, resource exhaustion, and timing (Section 2);

– A policy framework for expressing progress-(in)sensitive security conditions
(Section 4) for an imperative language (Section 3) at the heart of SPARK;

– A general graph-based approach for dependency analysis using termination
oracles to achieve progress-sensitive security (Section 5);

– A general graph-based framework for dependency analysis of reactive pro-
grams, also distinguishing output content from output presence (Section 5);

– Soundness of the graph-based enforcement for the core language (Section 5);
– Source-to-source transform leveraging existing graph-based flow analyses in

a modular fashion (Section 6) to achieve progress-sensitive security; and
– Case study with a control unit of a missile that verifies desired security

properties (Section 7).

Our code compiles with GNAT GPL 2015. Released April 28 2015, it is, as of
January 1 2015, the latest GPL edition of the Ada 2012 compiler. Our code can
be found online [49].

Scope. While resource exhaustion and timing channels are important, we leave
their consideration and exploration of more sophisticated attacks on the SPARK
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0 procedure Leak (H : in out Byte) i s
begin

H := H;

-- if H is even: nontermination.
5 -- else terminate with output "!".

i f H mod 2 = 0 then
while True loop

H := H;
end loop;

10 end i f ;
Write (Standard_Output ,

Character ’Pos(’!’));
end Leak;

0 procedure Leak (H : in out Byte) i s
K : Byte := 0;

begin
H := H;
while True loop

5 Write (Standard_Output , K);
i f K >= H then

while True loop
H := H;

end loop;
10 end i f ;

K := K + 1;
end loop;

end Leak;

Fig. 1: Termination leaks (left) and progress leaks (right) in SPARK

security analysis for future work. Typically, attacks on these channels require
more efforts from the attacker and result in attacks with lower bandwidth [37].
For similar reasons, we leave declassification [38] out of the scope of the present
work. Although important and wished for by the SPARK developers [35], the
flow analysis in SPARK is useful even without declassification, as indicated by
its deployments by Secunet [29,39] and as highlighted by our case study.

2 Attacks

We begin by providing evidence that SPARK’s flow analysis is termination-,
progress-, and timing-insensitive. We do this by providing minimal example pro-
grams which pass analysis yet leak information. Since SPARK’s flow analysis
implementation has no proof of soundness, this helps us identify the property it
is meant to enforce, and thus how to improve it.

All our examples share the same structure: a Main file that reads a byte from
standard input, and invokes a procedure Leak on said byte.

0 procedure Leak (H : in out Byte)
with Global => (In_Out => Standard_Output),

Depends => (H => H, Standard_Output => Standard_Output);

This specification states that Leak performs I/O on its parameter H and the
global Standard Output, and that output on Standard Output only depends
on Standard Output. That last bit is the flow policy of Leak. Our attacks,
which differ only in how they implement Leak, aim to violate this flow policy
while passing analysis, by making output on Standard Output depend on H.

The source code for our attacks is in Appendix A. In this section, we focus
on the two attacks most relevant to our technical contributions (termination and
progress), and summarize the other attacks when closing the section.

Termination. A flow analysis is termination sensitive when it tracks whether a
value can affect termination behavior. To gauge whether SPARK’s flow analysis
is termination sensitive, we design Leak on the left of Figure 1 such that the
presence of output on standard output depends on whether the program enters an
infinite loop, which depends on H. Main passes analysis with this implemetation
of Leak. However, invoking Leak on input values 1 and 2 produces different
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observable behavior: with input 1, we see ‘!’ on the standard output; with input
2, Main diverges. Thus, SPARK’s flow analysis is termination insenstive.

Progress. A termination insensitive flow analysis permits one bit to leak through
termination observations. Programs that pass such an analysis can leak much
more when a value can affect the progress the program makes on producing its
intermediate output [7]. A flow analysis that tracks such flows is progress sen-
sitive. The right panel of Figure 1 shows the brute force attack by Askarov et
al. [7] modelled in SPARK. Here, Leak outputs on standard output all characters
in their ASCII number order up to the character numbered H, and diverges, thus
leaking all of H. Again, this program passes SPARK’s flow analysis, indicating
that the flow analysis is progress insensitive.

Summary. We studied SPARK’s flow analysis under three additional attacks:

– Resource Exhaustion: We replace nontermination in the progress attack with
abnormal termination (a stack overflow). We give two examples; one allocates
an array too large to fit on the stack, the other creates infinitely many stack
frames through infinite mutual recursion. Both pass analysis.

– Timing: A flow analysis is timing sensitive when it tracks whether a value
can affect the time an effect occurs. We replace nontermination in the termi-
nation attack with a computation which takes considerable time (selection-
sorting 216 bytes). The attack passes analysis.

– Explicit and Implicit flows: As a sanity check, we provide two implementa-
tions of Leak: one creates an explicit flow from H to Standard Output, the
other an implicit flow. The attacks do not pass analysis.

Since SPARK detected the explicit and implicit flows, but failed to detect our
other attacks, it appears that SPARK enforces progress-insensitive security. As
demonstrated above, whole secrets can leak through progress. In this paper,
we harden SPARK’s flow analysis to detect progress leaks, to enforce progress
sensitive security. Addressing the other attacks is out of scope of this paper.

3 Programs and policies

We explain our ideas and results using a simple while language with flow annota-
tions, inputs, outputs, and arrays, which is a stripped down version of SPARK.
For a formal semantics and illustrative examples, see Appendix B and C.

Programs. The syntax for our language is given in Figure 2. Let p range over
programs, b over blocks, x over array names, e over expressions, n over integers,
c over channels, and � over (total) binary integer operators. Here, x[e] denotes
index e in array x . To model non-array variables, we write x as syntactic sugar
for x[0]. Statement c <- e outputs integer e to channel c, and c -> x[e] inputs
an integer on c and stores it in x[e]. The rest is standard.

Control flow graphs. A control flow graph (CFG) represents a program as a
directed graph. The CFG of a program p is defined by → in Figure 2; p′ is a
node iff p →∗ p′, and (p′, p′′) is an edge iff p′ and p′′ are nodes and p′ → p′′.
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p ::= skip

| b; p

e ::=n
| x[e]
| e � e

b ::= skip

| x[e] := e
| c <- e
| c -> x[e]
| if e {p} {p}
| while e {p}

if e {p1} {p0}; p −� p1; p

if e {p1} {p0}; p −� p0; p

while e {p1}; p −� p1; while e {p1}; p

while e {p1}; p −� p
For b ∈ {skip, x[e] := e ′, c <- e, c -> x[e]}:

b; p −� p

Fig. 2: Program syntax (left) and CFG (right)

We distinguish two nodes in the CFG of program p: the START node p and
the END node skip. START is defined as the root of the graph. END has no
outgoing edges. Conventionally, CFG nodes are blocks, b. This representation is
obtained by dropping p from nodes of the form b; p and replacing if e { } { }

and while e { } nodes with branch e. See Appendix C for an illustrative CFG.

Semantics. A program executes in a memory m : X × N → Z, which provides
a (mutable) binding for every location of every array (initially all set to 0 in the
initial memory m0), and an environment e : C→ Zω, which provides an infinite
stream of input values on every channel. We use a small-step reduction relation
(e,m, p) o−� (e′,m′, p′). Here, o ::= • | !cv is the output of the reduction step;
if p = c <- e; p′, then o = !cv where v is the value e evaluates to; otherwise,
o = •. The full definition of o−� is shown in Appendix B. Let ō = o1 . . . on denote
a finite sequence of outputs, and let ō−� = ( •−�)∗ o1−−� ( •−�)∗ . . . ( •−�)∗ on−−� ( •−�)∗.

Our environments are total [32], i.e., never block output, and always pro-
vide input on request. This is a natural fit for SPARK, as safety-critical systems
typically perform nonblocking I/O (e.g. on files and POSIX shared memory us-
ing read() and write() from the Single UNIX Specification). The endpoints
of channels thus, in general, form a collective store which can change indepen-
dently of the program, and provide input that depends on past output. However,
Clark and Hunt [15] have shown that when reasoning about security of deter-
ministic programs (as in our case), environments can be simplified to streams.
We use this simplification here. Programs can be composed securely under these
environments as long as their scheduler is secure and deterministic. For a more
complete and general treatment of composition, see [32,33].

Flow policies. A flow policy expresses permitted flows between input and out-
put channels. We are interested in two kinds of dependencies: where

f ::= null

| d; f
d ::= c => c
| c -> c

Fig. 3: Syntax of flow policies

input affects the presence (i.e. occurrence) resp.
content (i.e. value) of an output. The syntax of
our flow policy language is given in Figure 3.
Let f range over flow policy specifications, and d
over dependencies. The syntax c => c′ (resp. c -> c′) means that content (resp.
presence) of output on c is allowed to depend on input on c′. For instance,
a flow policy stating that (only) the presence of output on StdErr (standard
error) is allowed to depend on input on StdIn (standard input) can be written
as StdErr -> StdIn; null. Every flow policy f straightforwardly yields a pair of
functions (π, κ) where π(c) (resp. κ(c)) is the set of input channels on which the
presence (resp. content) of output on c may depend. We lift these functions to
sets of channels: π(C ) =

⋃
c∈C π(c) and κ(C ) =

⋃
c∈C κ(c).
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4 Security property

Consider a fixed policy (π, κ). Our attackers observe all outputs on some output
channels. An attacker or observer ω = (ωπ, ωκ) is a pair where ωπ (resp. ωκ) is
the set of channels on which the presence (resp. content) of outputs is observed.
If an observer sees the content of outputs on a channel, it can certainly detect the
presence of outputs on the channel, so we require ωκ ⊆ ωπ. Two environments
are equivalent to an observer ω if the environments agree on all input channels
that may flow to outputs visible to ω.

Definition 1 (ω-equivalence of e). e and e′ are ω-equivalent, e ∼ω e′, iff
∀c ∈ π(ωπ) ∪ κ(ωκ) � e(c) = e′(c).

The observables in an output are defined as follows: !cv�ω = !cv if c ∈ ωκ,
!cd if c ∈ ωπ \ ωκ, and • otherwise (here d is a default output, like null or
0). We remove the unobservables of a sequence of outputs ō follows: ε�ω = ε,
(o.ō)�ω = ō�ω if o�ω = •, and (o�ω).(ō�ω) otherwise.

Definition 2 (ω-equivalence of ō). ō and ō′ are ω-equivalent, ō ∼ω ō′, iff
ō�ω = ō′�ω.

Our security property, progress-sensitive noninterference (psni), requires that
under observably equivalent environments, a program must be able to component-
wiseobservably-equivalentlymatchobservableoutputs in itsbehaviors [31,8,12,32].
For an example involving psni, see Appendix C.

Definition 3 (Progress-sensitive noninterference). p satisfies psni iff
∀ω, e, e′ � e ∼ω e′ =⇒ ∀ō � (e,m0, p) ō−� =⇒ ∃ō′ � (e′,m0, p) ō′−−� ∧ ō ∼ω ō′.

5 Enforcement

SPARK implements a dependency analysis on control flow graphs that pre-
vents all explicit and implicit information leaks, but does not prevent leaks due
to progress and termination. In this section, we explain how to augment such
a dependency analysis with a loop termination oracle to enforce the stronger
property progress-sensitive noninteference (psni, Definition 3). While loop ter-
mination oracles have been combined with type sytems to enforce psni in prior
work (e.g., [28]), our technical development makes three novel contributions:
(1) We use a graph-based analysis to enforce psni (2) Our dependency anal-
ysis handles reactive programs, and (3) Our dependency analysis accounts for
the difference between output content and output presence. In the following,
we describe our analysis for the core language from Section 3 and prove that it
enforces psni. The core language captures all essential features of SPARK, so
generalizing the analysis to all of SPARK should not be difficult.

Standard data- and control-dependency analysis. SPARK’s flow analysis
uses standard dependency analysis [20,26], which we review briefly. We say that
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a node b in a CFG reads array x if b contains x in at least one location other
than x[ . . . ] := . . .. Dually, b writes to array x if b = (x[e] := e ′). Node b reads
a channel c if b = (c -> . . . [ . . . ]). Dependency analysis outputs all the nodes
of the CFG on which a given node is data dependent or control dependent. Data
dependence arises due to data flow. E.g., in x = 1; y = 3; z = x + 2; a = z,
the statements z = x + 2 and a = z are data dependent on the statement
x = 1, but not on y = 3. Similarly, in the example of Figure 1 (right), the
statements on lines 5 and 6 (output and branch K >= H, respectively) are data
dependent on the statement K := K + 1 on line 11.

Definition 4 (Data dependence). A node b is data dependent on node b′ in
a CFG G, written ddG(b′, b), if there is a path b′ →∗ b ∈ G and there is an
array that b′ writes and b reads, or there is a channel that both b and b′ read.

Note that the statement in b does not have to be an assignment; the definition
implies a data dependence from x = y to c <- x in program x = y; c <- x.
Also, as commonly assumed by flow analyses in prior work, e.g. Jif [30] and
Paragon [14], our definition of data dependence is flow-insensitive. This means
it ignores the effects of writes in nodes strictly between b′ and b; in program
x = y; x = 0; z = x, node z = x is data dependent on the node x = y by
our definition, even though x is overwritten by a constant between the nodes.
(We use some lemmas from [1] in our proofs, but this difference does not impact
those lemmas.) For clues on how to make this definition flow-sensitive, see [23].

Control dependence captures influence due to branches. In the program
if (x > 0) { y = 1 } else { y = 2 }; z = 1, both the nodes y = 1 and
y = 2 are control dependent on the branch node x > 0. However, the node
z = 1 is not control dependent on x > 0 because it executes irrespective of the
outcome of the test x > 0. There are many different definitions of control de-
pendence in literature (see [34] for a survey). We define here the most standard
notion of control dependence, which suffices for our purposes. We say that node
b post-dominates b′ if every path from b′ to END passes through b.

Definition 5 (Control dependence [1]). A node b is control dependent on
node b′ in a CFG G, written cdG(b′, b), if the following hold: (1) Either b =
b′ or b does not post-dominate b′ in G, and (2) There is a nontrivial path
b1 → . . .→ bk ∈ G with b1 = b′, bk = b such that for all i ∈ 2 . . . k − 1, b
post-dominates bi.

For block-structured languages such as SPARK and the core calculus of Sec-
tion 3, a node b is control dependent on node b′ iff b is a branch or loop condition
and b′ lies within that branch or loop. However, control dependence is defined on
arbitrary CFGs, even those without block structure (we exploit this generality
later). Combining data- and control-dependency analysis, we define dependence
as the reflexive-transitive closure of the data- and control-dependence relations.
For example, in the program of Figure 1 (right), the while loop on line 7 is de-
pendent on the statement K := K + 1 on line 11 because the condition K >= H

on line 6 is data-dependent on line 11, and line 7 is control-dependent on line 6.
The set of all nodes on which a node b depends is called b’s backward slice.
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Definition 6 (Dependence and backward slice). The dependence relation
depG for CFG G is defined as (ddG ∪ cdG)∗. The backward slice of node b,
BSG(b) = {b′ | depG(b′, b)}, is the set of all nodes on which b is dependent.

Information flow control using dependency analysis. The dependence
relation depG captures all explicit and implicit flows, and, hence, can be used
for enforcement of information flow policies. There are well-known algorithms
to compute dependencies and backward slices efficiently, e.g., [26]. This analysis
is already implemented in SPARK. However, noninterference enforced this way
is progress-insensitive because the dependency analysis described above does
not take into account nonterminating loops. For instance, the program of Fig-
ure 1 (right) passes SPARK’s dependency analysis, even though it leaks H to a
progress-sensitive adversary who can observe K. Additionally, the method so far
has been limited to sequential programs where the adversary makes only one ob-
servation at the end of the program. We explain how the method can be adapted
to enforce progress-sensitive noninterference on reactive programs, additionally
accounting separately for output content and output presence.

Progress-sensitive dependence. A leak due to progress happens when an
attacker-visible output is pre-empted due to the nontermination of a branch
with a secret branch condition. Our simple insight is that such leaks can be
detected by a dependence analysis if we ensure the following:

Requirement 1. An output that can be reached after the end of a branch is
dependent on the branch point if some loop in the branch may diverge.

To implement Requirement 1, we use a static termination analysis, often
called a termination oracle [17,27,45]. This oracle determines which loops in
the program may diverge. We add an edge from every node in such a loop to
the END node of the CFG. It is easy to check that the modified CFG satisfies
Requirement 1 if the termination oracle is sound, i.e., it flags all loops that
diverge on some input. A trivial, sound termination oracle marks every loop as
potentially non-terminating. The use of this oracle in our analysis causes every
program that contains an attacker-visible output after a loop with a secret loop
condition to be marked as leaky, irrespective of whether or not the loop diverges,
which may result in false positives. This corresponds exactly to termination-
sensitive analyses developed by Smith [41] and Boudol and Castellani [13]. False
positives can be reduced using a more precise termination oracle. For example,
the program while (h <> h) { }; l = 1 does not have a flow (via progress
or otherwise) from the input variable h to the output variable l, but the trivial
oracle above will cause this program to be marked leaky by the analysis. On the
other hand, a slightly better oracle that uses symbolic analysis to infer that (h

<> h) is always false will cause the program to be accepted. In general, fewer
false positives in the termination oracle translate to fewer false positives in our
dependence analysis. Consequently, we present our analysis parametrically in the
termination oracle, leaving it to the specific implementation to decide how many
resources to devote to the oracle (and, hence, how much precision to obtain).



10 W. Rafnsson, D. Garg and A. Sabelfeld

Definition 7 (Termination oracle). A termination oracle T is a function
that maps a CFG to a subset of the CFG’s nodes. T is sound if for every CFG
G and every node b ∈ G, b ∈ T (G) if there is a memory m and environment e
such that b appears infinitely often in the reduction sequence starting from the
state (e,m,START).

Definition 8 (Progress-sensitive graph). Given a control flow graph G and
a termination oracle T , the progress-sensitive CFG psT (G) is defined by adding
to G the edges {(b,END) | b ∈ T (G)}.

For the program of Figure 1 (right), a sound termination oracle T will say
that the while loop on line 7 is nonterminating and, hence, psT (G) will contain
an edge from the branch condition of the loop to the end of the program. This
makes the output statement on line 5 dependent on the branch condition K >= H

and, hence, a dependency analysis will discover the progress leak in the program.
Note that psT (G) may not correspond to any block-structured program.

Enforcing PSNI with content and presence distinction. Our analysis
takes as input a policy f and a program p. It works as follows. Let G be p’s
CFG. We compute the progress-sensitive CFG G′ = psT (G). Then, for each
node b ∈ G′ that outputs to some channel c, we compute the backward slice
of b in G′, and check that the policy relation κ allows a flow to c from any
channel c′ on which an input is made in the backward slice. This ensures that
information flows to the content of messages on c only in accordance with the
policy. To account for flows due to presence of outputs on c, we compute a second
backward slice from the same node b, but after erasing the payload of the output
in b. We check that the policy relation π (not κ) allows a flow to c from any
channel c′ on which an input is made in this backward slice. Thus, by computing
two backward slices per output node, we capture separate observations of content
and presence. In the sequel, we assume a fixed policy f = (κ, π).

Definition 9 (Enforcement of PSNI). Let p be a program with CFG G. Let
G′ = psT (G). We say p passes the psni enforcement, written checkT (p), if the
following hold for any node b of the form c <- e in G′:

1. If c′ -> x[e ′] ∈ BSG′(b) then c′ ∈ κ(c).

2. If c′ -> x[e ′] ∈ BSĜ′(b̂) then c′ ∈ π(c), where Ĝ′ is obtained by replacing

b with b̂ = c <- d in G′.

Our main theorem is that the enforcement above is sound: If checkT (p),
then p satisfies psni. We prove the theorem using bisimulations on backward
slices [1]. Our proof is inspired by a related proof for enforcement of progress-
insensitive noninterference in a sequential language [51]. In contrast to that proof,
our proof captures progress-sensitive noninterference for a reactive language.
Handling reactivity is quite involved: With multiple outputs, we have to argue
that the order of observable outputs (at different program points) is independent
of secret inputs. To do this, we construct a hypothetical slice that is the union of
slices from all outputs visible to a given adversary. See Appendix D for details.



Progress-Sensitive Security for SPARK 11

0 procedure Leak (H : in out Byte) i s
E : exception; -- new exception
X : Byte := 0;
K : Byte := 0;
O : File_Type := Standard_Output;

5 begin
H := H;
i f X = 1 then raise E; end i f ;
while True loop

10 Write (O, K);
i f K >= H then

i f X = 1 then raise E; end i f ;
while True loop

15 H := H;
end loop;

end i f ;
K := K + 1;

end loop;
20 end Leak;

0 procedure Leak (H : in out Byte) i s
E : Byte := 0; -- E := 1 when an

-- exception is raised
K : Byte := 0;
O : File_Type := Standard_Output;

5 begin
i f E = 0 then H := H; end i f ;
i f E > 0 then E := 1; end i f ;
while E = 0 and then True loop

E := E;
10 i f E = 0 then Write (O, K); end i f ;

i f E = 0 and then K >= H then
i f E > 0 then E := 1; end i f ;
while E = 0 and then True loop

E := E;
15 i f E = 0 then H := H; end i f ;

end loop;
end i f ;
i f E = 0 then K := K + 1; end i f ;

end loop;
20 end Leak;

Fig. 4: Source-to-source transformation of the program in the left of Figure 1,
using exceptions (left) and using an emulation of exceptions (right)

Theorem 1 (Soundness of enforcement). If T is a sound termination oracle
and checkT (p), then p satisfies psni.

6 Source-to-source transform

The previous section describes a CFG transformation which ensures Require-
ment 1 – that any outputs after a potentially divergent branch depend on the
branch’s condition, which is used to enforce psni. In this section, we describe a
source-to-source transform that also implies Requirement 1. The transform can
be used to enforce psni using a standard, unmodified (and, hence, closed-source)
dependency analysis of the kind that exists for SPARK.

The goal of our source-to-source transform, like the CFG transform, is to
add a direct path from every potentially infinite loop to the end of the program.
If the existing dependency analysis supports programmatic exceptions, then the
transform is trivial: Just before every potentially infinite loop (identified by the
oracle T ), we add a statement to raise an unhandled exception, conditional on an
unsatisfiable predicate. This has the effect of simulating an edge from the loop to
the end of the program because the exception is not handled anywhere. It is quite
easy to see that this has the same effect as the CFG transform. For example,
the program in the right of Figure 1 would be transformed to the program in
the left of Figure 4. Observe the new line 12 with the raise statement.

If the flow analysis, like SPARK, does not track flows through exceptions1,
then the source-to-source transform can emulate an exception by adding a new

1 The SPARK 2014 documentation states that SPARK programs are allowed to raise
exceptions, but may not handle them. However, in our experiments with SPARK
GPL 2015, we found that the flow analysis did not track flows through exceptions.
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boolean variable, say E, initially set to 0. E is set to 1 where the exception is
to be raised, and the program is transformed to check that E is still 0 before
executing any statement or entering any branch of the original program. This
ensures that once the exception is “raised” (E is set to 1), no statement from
the original program executes and control propagates to the end of the program
silently. This transform can be defined formally, but we only illustrate it for the
progress leak in Figure 1 in the right panel of Figure 4. Observe that there is now
a dependency between the branch condition K >= H and the output statement
on line 10.

We note that to enforce psni, the dependency analysis should be applied di-
rectly to the output of either of the two transforms described above, without any
intervening compiler optimizations. Such optimizations can negate the effects of
our transforms. For instance, constant propagation followed by dead code elim-
ination would remove the two raise statements on lines 7 and 12 in the left
panel of Figure 4 and, hence, also remove the control dependencies introduced
deliberately by the transform.

7 Case Study

We demonstrate the usefulness of our approach on a nontrivial application by
implementing a control system for a cruise missile (derived from publicly avail-
able code by Hilton [25]), and applying our approach on the code to prove desired
properties. The code steers the missile towards a target coordinate, and deto-
nates a nuclear warhead once within range, or self-destructs in the event that
a device fails. The code is intended to be an illustrative model native to the
domain of SPARK. The code makes several simplifications (e.g. the missile flies
in 2D space), and there are many safety- and mission-critical considerations for
more realistic missile control systems that we have not considered. For details
on such considerations, see Hilton [25]. We give an overview of our case study
(all our code is online [49]).

The missile has three sensors: a failure detector, which reports when a de-
vice has failed; an intertial navigation system, which provides spatial orientation
and displacement readings (via accelerometers and a ring laser gyroscope) for
navigation by dead reckoning; and a clock, used to calculate orientation and dis-
placement from accelerometer readings through integration. Using these read-
ings, the code controls three actuators: a watchdog, which, if not actuated at
regular intervals, triggers self-destruction (to avoid unwanted consequences of
device or software failure); a nuclear warhead, which is detonated when the mis-
sile reaches its target; and steering, consisting of aerodynamic fins which the code
actuates for trajectory corrections. Architecturally, our code draws inspiration
from an existing case study on implementing a controller for a water boiler [43,
Section 7]. The Main module consists of a sense-control-actuate loop, in which
it commands the sensor modules to read from their device, uses these readings
to compute values to control the actuators, and invokes the actuator modules to
actuate their device. The inter-module information flows are given in Figure 5.
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Main

Failure Inertia Clock Watchdog Warhead Steer

device drivers & hardware

Fig. 5: Inter-module information flows in the missile control system

To illustrate our approach, we aim to prove that orientation does not affect
self-destruction. The body of the Main procedure, in the left of Figure 6, is of
primary concern. Without our approach, since SPARK assumes loops terminate,
reaching “Watchdog.Actuate” in each iteration is deemed inevitable by SPARK,
so SPARK (incorrectly) claims the presence of a destruct event does not depend
on any input. However, if we instead apply the SPARK analysis on the code re-
sulting from applying our source-to-source analysis from Section 6 on the missile
control system source code, we get a different result: SPARK (correctly) infers
that the presence of a destruct event depends only on device failure. This can
be seen by inspecting the result of the transformation of the main loop, in the
right of Figure 6. Since both loops are of the form “while True loop”, any sound
termination oracle would flag them both as possibly diverging. Hence we emu-
late a raised exception before both loops, and add a check on variable E to each
branch. SPARK no longer deems that reaching “Watchdog.Actuate” is inevitable;
it now depends on the value of E. SPARK deems that the value of E depends on
Destruct, since there is an assignment to E under a branch on Destruct. Since
Destruct depends only on device failure, and since the only other assignment
to E branches only on E, self-destruction depends only on device failure.

8 Related Work

We focus on the three most closely related areas of work: information flow tools,
progress-sensitive security, and information flow analysis for SPARK.

Information flow tools. As mentioned before, much progress has been made on
enforcement of increasingly rich policies for increasingly expressive programming
languages. This has resulted in tools for mainstream programming languages as
FlowFox [22], JSFlow [24] and IFC4BC [10] for JavaScript, Jif [30], Paragon [14]
and JOANA [23] for Java, FlowCaml [40] for Caml, LIO [47] for Haskell, and
SPARK flow analysis [9] for SPARK. With the exception of the latest versions
of LIO, these tools target progress-insensitive noninterference [7,8,12], allowing
secrets to affect progress of public computation. With the focus on the termi-
nation and timing channels, Stefan et al. [46] introduced restrictions in LIO on
side effects that follow secret branching, which help enforce stronger policies.

Progress-sensitive security. Progress-sensitive noninterference [31,8,12,32,6]
(psni) disallows progress leaks. psni is not susceptible to laundering secrets
by brute-force attacks [7] or re-running programs [11]. A typical approach to
enforcing psni is to disallow loops with secret guards, going back to Volpano



14 W. Rafnsson, D. Garg and A. Sabelfeld

0

while True loop
-- [...] (sense , control)
Steer.Actuate;
i f Destruct then

5 -- block watchdog.
while True loop

null;
end loop;

end i f ;
10 Watchdog.Actuate;

i f Detonate then
Warhead.Actuate;

end i f ; -- [...]
end loop;

0 i f E > 0 then E := 1; end i f ;
while E = 0 loop

E := E; -- [...] (sense , control)
i f E = 0 then Steer.Actuate; end i f ;
i f E = 0 and then Destruct then

5 i f E > 0 then E := 1; end i f ;
while E = 0 loop

E := E; null;
end loop;

end i f ;
10 i f E = 0 then Watchdog.Actuate; end i f ;

i f E = 0 and then Detonate then
Warhead.Actuate;

end i f ; -- [...]
end loop;

Fig. 6: Main loop, before (left) and after (right) transformation

and Smith’s technique to deal with termination leaks [48], or to allow loops
with secret guards but prohibit assignments to public variables that follow
such loops [41,13]. While the theory of progress-sensitive security has been ex-
plored [31,8,12,32,6], our work connects the theory with tools, showing how we
can leverage a progress-insensitive tool (SPARK’s flow analysis) to achieve psni.
Related to our source-to-source transform, Russo et al. [36] discuss magnifica-
tion patterns in the context of distinguishing flows in malicious and nonmalicious
code. A magnification pattern in a control-flow graph consists of a branching on
a secret guard inside of a loop. We note that in the absence of such patterns (as
is sometimes the case in nonmalicious code [36]), progress-sensitive security and
progress-insensitive security coincide. Moore et al. [28] use termination oracles
for termination-sensitive tracking. Their prototype implementation utilizes an
SMT solver to analyze examples in a simple imperative language. While related,
there are several distinguishing features of our work: we focus on practical in-
formation flow control in SPARK and push the approach to the full SPARK
language; our case study goes beyond code snippets to a suite for a missile con-
troller; on the theoretical side, our framework is graph-based, which opens up
possibilities for natural adoption to other graph-based tools such as JOANA [23].

Information flow analysis in SPARK. A line of work by Amtoft et al. shares
with our work the motivation to improve SPARK’s information flow analysis.
Based on an expressive information logic [2], they enhance the information flow
contract language to support compositional policies and conditional informa-
tion flows [5]. They improve the precision of the analysis by breaking out of a
limitation of the original analysis that treats arrays as indivisible entities and
evaluate the approach on a collection of SPARK programs [4]. They extend the
logical framework to produce machine-checkable formal certificates of correct-
ness for verified code [3]. Extending the results by Amtoft et al. to guarantee
progress-sensitive security is a promising direction for future work.

9 Conclusion

This paper puts a spotlight on the SPARK flow analysis. Articulating the bound-
aries of what is achievable by the analysis, we spell out the attacks to exploit
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such channels as termination, progress, resource exhaustion, and timing chan-
nels. We suggest how to harden the analysis to achieve security against stronger
attackers, with the focus on progress-sensitive security as our baseline. Instead
of redesigning and reimplementing the enforcement, we show how to leverage
known flow analyses for weaker attackers by a transform on program depen-
dence graphs. The graph transform represents termination and progress flows
by injecting additional edges. We establish the soundness of this approach for
a core language and demonstrate that it can be applied as a source-to-source
transform of SPARK code when modifying the compiler is undesirable. A case
study with a control unit of a missile written in SPARK 2014 indicates the
usefulness of the approach. Future work is focused on enriching the policy and
enforcement mechanisms with possibilities for declassification [38], a feature on
the wish list of the SPARK developers [35]. We are also interested in extending
the framework with treating resource exhaustion and timing leaks and exploring
more sophisticated attacks.
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A Attacks

Here we outline the structure, and provide the full source code, for the attacks
presented Section 2. This code can also be downloaded [49]. The structure con-
sists of three modules: a Main module containing the procedure which gets com-
piled to an executable, a Leak module which provides a procedure for the main
module to leak information, and an Aux module which provides a simplified
interface to system I/O.

The Main module, main.adb, consists of a single procedure Main which reads
from standard input by invoking the auxiliary module Aux, and leaks said input
to standard output by invoking the leak module Leak. Its source follows.

0 pragma SPARK_Mode (On); -- File: main.adb
with SPARK.Text_IO ,Aux ,Leak; use SPARK.Text_IO ,Aux ,Leak;

procedure Main
with Global =>

5 (In_Out => (Standard_Input , Standard_Output , Standard_Error)),
Depends =>

(Standard_Input => Standard_Input ,
Standard_Output => Standard_Output ,
Standard_Error => (Standard_Input , Standard_Error))

10 i s -- policy requires that Standard_Output is independent of Standard_Input.
H : Byte;
I : Character_Result;

begin
Aux.Read (Standard_Input , H); -- read from Standard_Input ,

15 Leak.Leak (H); -- leak to Standard_Output.
Aux.Write (Standard_Error , H);-- (needed to make H relevant).

end Main;

The pragma primitive informs the Ada compiler and the SPARK tools that
what follows is SPARK 2014 code. The with and use primitives specify which
modules the present module uses, in our case Leak and Aux, and a third module
containing data types for standard streams. The with part of the Main procedule
specifies which information flows are allowed to occur by running this procedure.
The Global flow annotation specifies which global state the present procedure
affects and how; in our case, the state of standard input, output and error is
inspected and modified. A Depends clause of the form a => b states that the value
of a after running the procedure can depend on the value of b from before the
procedure was run. The flow annotation therefore states that information should
not flow from standard input to standard output. Without the Aux.Write line,
a component of the Ada compiler which checks for the relevance (i.e. relevant
substructural types [50]) of operations rejects the program, on the (false) basis
that it reads a value from standard input without using it to produce any result.
To show that the analysis overlooks the dependency created by Leak, we remove
this error message by adding an output to standard error containing the input.

The Aux module, aux.adb, defines a data type for bytes, and provides a
Read and a Write procedure for standard stream I/O. Its interface specification,
aux.ads, is as follows.
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0 pragma SPARK_Mode (On); -- File: aux.ads
with SPARK.Text_IO; use SPARK.Text_IO;

package Aux i s
type Byte i s mod 2**8;

5 procedure Write (File: in out File_Type; B : in Byte)
with Global => null , Depends => (File => (File , B));

procedure Read (File: in out File_Type; B : out Byte)
with Global => null , Depends => (File => File , B => File);

end Aux;

We introduced this module to hide the defensive programming needed when
doing file I/O in SPARK 2014, since SPARK 2014 does not support exceptions.

0 pragma SPARK_Mode (On); -- File: aux.adb
with SPARK.Text_IO; use SPARK.Text_IO;

package body Aux i s
procedure Write (File: in out File_Type; B : in Byte) i s

5 Output : String (1 .. 1) := "0";
begin

Output (1) := Character ’Val (B);
i f Is_Writable (File) and then Status (File) = Success then

Put_Line (File , Output);
10 end i f ;

end Write;
procedure Read (File: in out File_Type; B : out Byte) i s

I : Character_Result;
begin

15 i f Is_Readable (File) and then not End_Of_File (File) then
Get (File , I);
i f I.Status = Success
then B := Byte ( Character ’Pos ( I.Item ) );
else B := 0;

20 end i f ;
else B := 0;
end i f ;

end Read;
end Aux;

The Leak module, leak.adb, is as described in Section 2. For completeness,
the full source of its interface specification, leak.ads, follows. Observe that Main
invokes Leak with a variable containing a byte representation of a character read
from standard input.

0 pragma SPARK_Mode (On); -- File: leak.ads
with SPARK.Text_IO ,Aux; use SPARK.Text_IO ,Aux;

package Leak
i s

5 procedure Leak (H : in out Byte)
with Global => (In_Out => Standard_Output),

Depends => (H => H, Standard_Output => Standard_Output);
end Leak;

Explicit and implicit flow. As a first attempt to get Leak to leak H to standard
output, we try to simply write H directly to standard out.
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0 procedure Leak (H : in out Byte) -- procedure in
i s -- File: leak.adb
begin

H := H; -- makes "in" and "out" relevant
Write (Standard_Output , H); -- explicit flow of H to standard output

5 end Leak;

While we can compile and run this program, the SPARK analysis notices this
explicit flow, and rejects the program.

0 $ gnatmake main.adb # compile. ([...] = irrelevant text omitted)
gcc -c main.adb [...]
gnatbind -x main.ali
gnatlink main.ali
$ echo a | ./main 2>/dev/null # run; feed ’a’ in on StdIn , ignore StdErr.

5 a
$ gnatprove -P proj.gpr # prove; analyze flows & verify contracts.
[...] leak.ads :10:31: warning: missing dependency "Standard_Output => H"
gprbuild: *** compilation phase failed [...]
$

Implicit flows, as in the following example, are similarly detected by the SPARK
flow analysis.

0 procedure Leak (H : in out Byte) -- procedure in
i s -- File: leak.adb
begin

H := H; -- makes "in" and "out" relevant
i f H mod 2 = 1 then -- implicit flow of H to standard output

5 Write (Standard_Output , Character ’Pos(’1’));
else

Write (Standard_Output , Character ’Pos(’0’));
end i f ;

end Leak;

Resource exhaustion. In the termination and progress attack, nontermination
was a necessary component for circumventing the SPARK flow analysis. We now
see whether we can lift this requirement by causing the program to terminate
abnormally instead. We replace the infinite loop with a call to a procedure Blow,
which purpose is to allocate two gigabytes of memory.

0 procedure Leak (H : in out Byte) i s -- procedure in File: leak.adb
procedure Blow (O : out Byte)

with Global => null , Depends => (O => null)
i s

type GByte2 i s array (Natural range 0 .. 2147483647) of Byte
5 with Default_Component_Value => 255;

G : GByte2;
begin O := G(0); end Blow;
K : Byte := 0;

begin
10 H := H;

while True loop
Write (Standard_Output , K);
i f K >= H then Blow(H); end i f ;
K := K + 1;

15 end loop;
end Leak;

Main compiles and passes the flow analysis with this implemetation of Leak.
However, since SPARK allocates all data on the stack, and since the memory
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Blow needs is allocated on first invocation, the program will terminate abruptly
when the character provided on standard input appears on standard output, if
the stack is less than two gigabytes (which the default stack size usually is).

0 $ # newlines in standard output replaced with space for brevity.
$ echo "0" | ./main # stack overflow on outputting 0; program terminates
[...] ( ) * + , - . / 0
raised STORAGE_ERROR : stack overflow or erroneous memory access
$

Running gcc -c -fstack-usage leak.adb ; cat leak.su reveals the ex-
plicit allocation of two gigabytes of memory, so a thorough programmer could
use this information to either not ship the program, or ensure that the program
has enough stack before it is executed. However, this command will not track
implicit memory allocation, such as the buildup of stack frames through a chain
of procedure calls. We replace Blow with a procedure which makes an infinite
(mutually) recursive call. The resulting program has the same input-output be-
havior as the previous one, compiles and passes analysis, and leak.su states
each procedure and function uses less than 100 bytes of stack.

0 procedure Blow (O : out Byte)
with Global => null , Depends => (O => null)

i s
function G (B : Byte) return Byte;
function F (B : Byte) return Byte i s begin return G (B) + 1; end F;

5 function G (B : Byte) return Byte i s begin return F (B) + 1; end G;
begin O := F(0); end Blow;

Timing. Finally, we look at how SPARK treats timing. A flow analysis is timing
sensitive when it tracks whether a value can affect the time an effect occurs. We
modify the termination example by replacing the infinite loop by a computation
which takes considerable time: selection-sorting 216 bytes.
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0 procedure Leak (H : in out Byte) -- procedure in File: leak.adb
i s

type Bytes i s array (Natural range 0 .. 65535) of Byte
with Default_Component_Value => 255;

procedure SelectionSort (A : in out Bytes)
5 with Global => null , Depends => (A => A)

i s
B : Byte;

begin
for I in Integer range 0 .. 65535 loop

10 for J in Integer range I .. 65535 loop
i f A(J) <= A(I) then B := A(I); A(I) := A(J); A(J) := B; end i f ;

end loop;
end loop;

end SelectionSort;
15 M : Bytes;

begin
H := H;
i f H mod 2 = 0 then

for I in Integer range 0 .. 65535 loop
20 M(I) := Byte (I mod 256);

end loop;
SelectionSort (M);
i f H = M(0) then H := H; end i f ;

end i f ;
25 Write (Standard_Output , Character ’Pos(’!’));

end Leak;

Main compiles and passes the flow analysis with this implemetation of Leak.
Running this program on different values on standard input, however, affects the
time it takes for the output to appear on standard output. The flow analysis in
SPARK is therefore timing insenstive.

0 $ echo 1 | time ./main 2>/dev/null
!
./main 0.00s user 0.00s system 0% cpu 0.001 total
$ echo 0 | time ./main 2>/dev/null
!

5 ./main 10.28s user 0.00s system 100% cpu 10.283 total
$

B Semantics

We define the semantics of programs (in terms of expressions) and flow policies
in Figure 7.

Expressions. The semantics of expressions is given in terms of a memory
m : X× N→ Z. Here, m(x ,n) denotes the integer stored in array x at index
n. The big-step judgment m |= e −� n states that under m, e evaluates to n.
The inference rules defining this judgment are standard, and can be found in
Figure 7a.

Programs. The semantics of programs are defined by the small-step judgment
(e,m, p) o−� (e′,m′, p′) in Figure 7b, where o ::= • | !cv is an output action.
The semantics is the result of tracking assignments to memory at input and
assignment blocks while traversing the control flow graph of a program, and
consulting the memory at branch points. This can be seen through the follow-
ing observation: if memories and environments are dropped in the judgment,
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m |= n −� n

m |= e −� n

m |= x[e] −� m(x ,n)

m |= e −� n m |= e ′ −� n ′ n � n ′ = n ′′

m |= e � e ′ −� n ′′

(a) Expressions

(e,m, skip; p) •−� (e,m, p)

m |= e −� n m |= e ′ −� n ′

(e,m, x[e] := e ′; p) •−� (e,m[(x ,n) 7→ n ′], p)

m |= e −� n

(e,m, c <- e; p) !cn−−� (e,m, p)

m |= e −� n s = e(c) s′ = tl(s) n ′ = hd(s)

(e,m, c -> x[e]; p) •−� (e[c 7→ s′],m[(x ,n) 7→ n ′], p)

m |= e −� n n 6= 0

(e,m, if e {p1} {p0}; p) •−� (e,m, p1; p)

m |= e −� n n = 0

(e,m, if e {p1} {p0}; p) •−� (e,m, p0; p)

m |= e −� n n 6= 0

(e,m, while e {p1}; p) •−� (e,m, p1; while e {p1}; p)

m |= e −� n n = 0

(e,m, while e {p1}; p) •−� (e,m, p)

(b) Programs

JnullK= (∅, ∅)
Jc => c′; f K= (κ ∪ {(c, c′)}, π), where Jf K = (κ, π)
Jc -> c′; f K= (κ, π ∪ {(c, c′)}), where Jf K = (κ, π)

(c) Policies

Fig. 7: Semantics

all premises replaced with “true”, and o−� replaced with −� for all o, the re-
sulting rules are exacly those defining the CFG in Figure 2 (right). Thus, if
(e,m, p) o−� (e′,m′, p′), then p −� p′ is an edge in the CFG. Following the abbre-
viated notation for CFG nodes introduced in Section 3, we also get a stepping
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relation on blocks, (e,m, b) o−� (e′,m′, b′). We use this relation extensively in our
proofs. Inputs on channels are provided by a stream environment, e : C → Zω.
Intuitively, e(c) = v1v2 . . . is the sequence of inputs on channel c that have not
been consumed by the program yet. For an infinite sequence s = v1v2v3 . . ., we
define hd(s) = v1 (head) and tl(s) = v2v3 . . . (tail).

Flow policies A flow policy specification f defines a flow policy (π, κ) = Jf K
denotationally in Figure 7c. The resulting κ and π are relations on channels.
We then interpret these as functions as follows: κ(c) = {c′ | (c, c′) ∈ κ}, and
π(c) = {c′ | (c, c′) ∈ π}.

C Examples

Example 1. An output of 0 to standard output can be modeled in our formalism
as the output action !StdOut0.

Example 2. The program on the right reads an
integer n from standard input and, for each
1 ≤ i ≤ n, outputs 1, . . . , i to standard output.
The graph next to it is the CFG of this program.

StdIn -> n;
i := 1;
while i ≤ n {

j := 1;
while j ≤ i {

StdOut <- j;
j := j + 1;
skip

};
i := i + 1;
skip

};
skip

StdIn -> n

i := 1

branch i ≤ n

j := 1

branch j ≤ i

StdOut <- j

j := j + 1

skip

i := i + 1

skip

skip

Example 3. Let p = StdIn -> n; p′ be the program in Example 2, and let
e(StdIn) = 4.s for some e and s. Then

(e,m0, p) •−� (e[StdIn 7→s],m0[(n, d) 7→ 4], p′)

by the fourth rule of the semantics of p. This transition corresponds to traversing
the edge in the CFG in Example 2 from the root node to the node labeled i := 1
(since p′ = i := 1; p′′ for some p′′).

Example 4. A flow policy stating that (only) the presence of output on StdErr
(standard error) is allowed to depend on input on StdIn (standard input) can be
written as StdIn -> StdErr; null.

Example 5. Let p be a program that behaves like the progress leak in Section 2,
f = StdErr => StdIn; null, e1 = e[StdIn 7→ s1] and e2 = e[StdIn 7→ s0], where
e is arbitrary, s1 = 1.s1 and s0 = 0.s0. Consider ωπ = ωκ = {StdOut}. Since
ω does not observe StdErr, StdIn is unobservable to ω. So for this ω, e1 ∼ω e2.
However, (e1,m0, p) and (e2,m0, p) cannot observably match all behaviors; while
(e1,m0, p) ō′1−−� for some ō′1 with

ō′1�ω = ō1 = · · · .!StdOut..!StdOut/.!StdOut0.!StdOut1,
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(e2,m0, p) only matches ō1 up to 0, i.e. produces

ō2
′�ω = ō2 = · · · .!StdOut..!StdOut/.!StdOut0

at most; any other ō produced by (e2,m0, p) strictly observably prefixes ō2 which
strictly observably prefixes ō1, and therefore cannot be observably equivalent
with ō1. So, for all ō′2 for which (e2,m0, p) ō′2−−�, ō′1 6∼ω ō′2. Thus, p is not psni.

D Proof of Theorem 1

In this section, we prove Theorem 1. We start with several auxiliary definitions
and lemmas.

Definition 10 (Slice, denoted S). A slice of a CFG G is a subgraph S of G
satisfying the following condition: If b ∈ S and (b′, b) ∈ depG, then b′ ∈ S.

Note that, by definition, BSG(b) is a slice for any b ∈ G. Amtoft [1] proves
the following lemma.

Lemma 1 (Unique entry point [1, Lemma 5]). For any slice S of G and
b 6∈ S, there is at most one node b′ ∈ S such that (1) b →∗ b′ ∈ G, and (2) all
nodes other than b′ on any path between b and b′ in b are not in S.

Lemma 1 implies that starting from any node b (inside or outside S), there
is at most one “entry point” into S (when b ∈ S, this entry point is b itself).
We write epS(b) = b′ when this unique entry point is b′ and write epS(b) = ⊥
when S is not reachable from b.

Lemma 2. If b 6∈ S and b → b′, then epS(b) = epS(b′).

Proof. We consider three cases. If epS(b) = ⊥, then there is no path from b to
any node in S and, hence, there cannot be a path from b′ to any node in S.
Therefore, epS(b′) = ⊥ = epS(b).

If epS(b) = b′′ and epS(b′) 6= ⊥, then by Lemma 1, we must have epS(b′) =
b′′.

If epS(b) = b′′ and epS(b′) = ⊥, then there is a path from b to b′′ but not
through b′. The latter implies that b′′ does not post-dominate b. It follows that
b′′ is control-dependent on b. Since S is a slice and b′′ ∈ S, we must also have
b ∈ S, which is a contradiction. Hence, this case is impossible.

We now define equivalence of configurations of the form (e,m, b), with respect
to a slice S.

Definition 11 (State equivalence). Given a slice S, (e1,m1, b1) ∼S (e2,m2, b2)
if the following hold:

1. epS(b1) = epS(b2). In particular, this implies that the sets of nodes of S
reachable from b1 and b2 are equal.
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2. If a node in S reachable from b1 (or b2) reads array x , then for all n,
m1(x , n) = m2(x , n).

3. If a node in S reachable from b1 (or b2) reads channel c, then e1(c) = e2(c).

Lemma 3 (Confinement). If (e1,m1, b1) → (e2,m2, b2) and b1 6∈ S, then
(e1,m1, b1) ∼S (e2,m2, b2).

Proof. By analysis of the rules that apply to →, we show that (1) – (3) of
Definition 11 hold. Briefly, (1) holds from Lemma 2.

(2) can be violated only when some array x whose read in S is reachable from
b1 is assigned in b1. Suppose such an array is read at node b′ in S. Now, b′ is
data dependent on b1, so b1 ∈ S by the definition of slice. This is a contradiction
as b1 6∈ S by assumption.

(3) can be violated only when some channel c whose read in S is reachable
from b1 is read in b1. Suppose c is read at node b′ in S. Now, b′ is data dependent
on b1, so b1 ∈ S by the definition of slice. This is a contradiction as b1 6∈ S by
assumption.

Notation. We write (e1,m1, b1) o−�S (e2,m2, b2) when (e1,m1, b1) o−� (e2,m2, b2)
and b1 ∈ S.We write (e1,m1, b1)→6S (e2,m2, b2) when (e1,m1, b1) −� (e2,m2, b2)
and b1 6∈ S. Here, denotes • or !cv . Finally, we define ⇒o

S =→∗6S ◦ o−�S .

Definition 12 (Progress-complete CFG). A CFG G is called progress com-
plete, written pc(G), if for every b ∈ G, and every e,m, if b appears infinitely
often on the reduction sequence starting from (e,m,START), then there is an
edge from b to END.

Note that if T is a sound termination oracle, then it must be the case that
pc(psT (G)).

Lemma 4 (Simulation). Suppose pc(G) and S is a slice of G. If

(e1,m1, b1) ∼S (e2,m2, b2) and (e1,m1, b1)⇒o
S (e′1,m

′
1, b
′
1),

then there exist (e′2,m
′
2, b
′
2) such that

(e2,m2, b2)⇒o
S (e′2,m

′
2, b
′
2) and (e′1,m

′
1, b
′
1) ∼S (e′2,m

′
2, b
′
2).

Proof. From (e1,m1, b1) ∼S (e2,m2, b2), we know that epS(b1) = epS(b2). If
epS(b1) = epS(b2) = ⊥, then (e1,m1, b1) ⇒o

S (e′1,m
′
1, b
′
1) cannot exist. Hence,

there is some b′′ such that epS(b1) = epS(b2) = b′′. We consider two cases.

Case b1, b2 ∈ S. Then, b1 = epS(b1) = b′′ = epS(b2) = b2. By conditions (2) and
(3) of Definition 11, all arrays (channels) read by b1(= b2) are equal in m1/m2

(e1/e2). It immediately follows that we can choose b′2 = b′1 and (e′2,m
′
2, b
′
2) as

the (unique) successor state of (e2,m2, b2) to satisfy the theorem.

Case b1 6∈ S or b2 6∈ S. Then, (e1,m1, b1) →∗6S (e′′1 ,m
′′
1 , b
′′) o−�S (e′1,m

′
1, b
′
1).

Using Lemma 3, we get:
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1. (e1,m1, b1) ∼S (e′′1 ,m
′′
1 , b
′′)

Now we claim that on any path from b2 to epS(b2) = b′′, there is no node of
an infinite loop other than possibly b′′ itself. Why? If there were a node b of
an infinite loop on a path from b2 to b′′, then due to the property pc(G), there
would be an edge from b to END, which would make b′′ control dependent on
b. Hence, by the definition of slice, b would be in S. This would force b = b′′ as
no other node on a path from b2 to b′′ = epS(b2) can be in S.

Consequently, assuming that the language is type safe, there must be a (finite)
reduction sequence (e2,m2, b2)→∗6S (e′′2 ,m

′′
2 , b
′′). Using Lemma 3 we get:

2. (e2,m2, b2) ∼S (e′′2 ,m
′′
2 , b
′′)

(1), (2) and the given condition (e1,m1, b1) ∼S (e2,m2, b2) together imply that
(e′′1 ,m

′′
1 , b
′′) ∼S (e′′2 ,m

′′
2 , b
′′). Now we reason as in the previous case to argue for

existence of the required (e′2,m
′
2, b
′
2) observing that (e′′1 ,m

′′
1 , b
′′) o−�S (e′1,m

′
1, b
′
1).

In the sequel, we assume a fixed policy (κ, π). We define a predicate check′(G)
that is similar to the predicate checkT (G), but defined on a graph G to which
additional edges have already been added.

Definition 13 (Predicate check′(G)). We say that check′(G) when the follow-
ing conditions hold for any node b of the form c <- e in G:

1. If c′ -> x[e ′] ∈ BSG(b) then (c, c′) ∈ κ.

2. If c′ -> x[e ′] ∈ BSĜ(b̂) then (c, c′) ∈ π,

where Ĝ is obtained by replacing b with b̂ = c <- d in G.

Lemma 5 (Connection between checkT and check′). If checkT (p), then
check′(G′) where G is the CFG of p and G′ = psT (G).

Proof. Immediate from Definitions 9 and 13.

For ō = o1 . . . on, we define ō−� = ( •−�)∗ o1−−� ( •−�)∗ . . . ( •−�)∗ on−−� ( •−�)∗.
Next, we define an auxiliary graph G�ω, which syntactically erases all output
content that the adversary ω cannot see.

Definition 14 (Reduced graph, G�ω). Define the graph G�ω as follows: Re-
place every node of the form c <- e in G with c <- d if c 6∈ ωκ.

Lemma 6. The following hold:

1. If C ō−� in G, then C ō′−−� in G�ω with ō�ω = ō′�ω.
2. If C ō−� in G�ω, then C ō′−−� in G with ō�ω = ō′�ω.

Proof. Immediate, observing that G�ω is obtained from G by erasing outputs to
channels on which the adversary ω cannot observe content. Formally, the proof
follows by induction on the given sequences ō−� and ō′−−�, respectively. The envi-
ronments and memories on the two sides of the simulation remain in perfect sync
because replacing c <- e with c <- d does not impact the program’s execution
(our environments are streams, not adaptive functions).
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We define a third checkT -like predicate, which uses G�ω instead of G.

Definition 15 (Predicate check′′(G,ω)). Let G′ = G�ω. We say that check′′(G,ω)
when the following conditions hold for any node b of the form c <- e in G′ and
any node of the form c′ -> x[e ′] in BSG′(b):

1. If c ∈ ωκ, then c′ ∈ κ(c).
2. If c ∈ ωπ, but c 6∈ ωκ, then c′ ∈ π(c).

Lemma 7 (Relation between check′ and check′′). check′(G) implies check′′(G,ω)
for any ω.

Proof. Assume check′(G). Let G′ = G�ω. To show check′′(G,ω), pick any node b
of form c <- e in G′ and any node b′ of form c′ -> x[e ′] in BSG′(b). We have to
show the following: (1) If c ∈ ωκ, then c′ ∈ κ(c), and (2) If c ∈ ωπ, but c 6∈ ωκ,
then c′ ∈ π(c).

Proof of (1): Assume c ∈ ωκ. From b′ ∈ BSG′(b), it follows that (b′, b) ∈ depG′ .
Since b occurs as-is in G as well (because c ∈ ωκ), we must have (b′, b) ∈ depG.
Hence, b′ ∈ BSG(b) and, by check′(G), we get c′ ∈ κ(c), as required.

Proof of (2): Assume c ∈ ωπ and c 6∈ ωκ. Since c 6∈ ωκ, it follows from G′ = G�ω
that e = d. Let b′′ be the node corresponding to b in G. Note that b′′ must have
form c <- e ′′ for some e ′′. Hence, the b̂ referred to in clause (2) of Definition 13 is
exactly the b here. Since G′ is an erasure of G, b′ ∈ BSG′(b) implies b′ ∈ BSG(b).
From check′(G), we immediately get c′ ∈ π(c).

Definition 16. For an attacker ω and a graphG, we define the adversarial slice of
G�ω (not G) as the set of all nodes of G�ω (not G) that may influence an ω-visible
output. Formally, aSω(G) = {b′ | b = (c <- e) ∈ G�ω ∧ b′ ∈ BSG�ω (b)∧ c ∈ ωπ}.

Note that aSω(G) is a union of backward slices, each of which is closed under
(depG�ω

)−1. Therefore, aSω(G) is also closed under (depG�ω
)−1. Consequently,

aSω(G) is a slice in the sense of Definition 10.

Lemma 8 (Initial equivalence). Suppose that check′′(G,ω), e1 ∼ω e2 and
SA = aSω(G). Then for any m and b, (e1,m, b) ∼SA

(e2,m, b).

Proof. It suffices to prove condition (3) of Definition 11 since conditions (1) and
(2) are trivial here. So pick any c′ that is used in a node of SA reachable from b in
G�ω. It suffices to prove that e1(c′) = e2(c′). By the definition of SA = aSω(G),
there must be some node b′ of the form c <- e in G�ω such that c′ is used in
BSG�ω (b′) and c ∈ ωπ. Since c′ is used in BSG�ω (b′), there is some node of form
c′ -> x[e ′] in BSG�ω (b′). Now, two cases arise:

Case c ∈ ωκ. By check′′(G,ω), c′ ∈ κ(c). By definition of e1 ∼ω e2, it follows
immediately that e1(c′) = e2(c′), as required.

Case c 6∈ ωκ. Because c ∈ ωπ, from check′′(G,ω) we get c′ ∈ π(c). By definition
of e1 ∼ω e2, it follows immediately that e1(c′) = e2(c′), as required.
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Theorem 2. Let SA = aSω(G) and pc(G). Suppose (e,m, b) ∼SA
(e′,m′, b′). If

(e,m, b) ō−� in G�ω, then there exists an ō′ such that (e′,m′, b′) ō′−−� in G�ω and
ō�ω = ō′�ω.

Proof. First note that pc(G) implies pc(G�ω). This means that Lemma 4 is
applicable to G�ω and SA. We are given (e,m, b) ō−� in G�ω. Write this sequence
as (e,m, b) = s0 ⇒o1

SA
s1 . . .⇒on

SA
sn. By Lemma 4, there is a reduction sequence

(e′,m′, b′) = s′0 ⇒
o1

SA
s′1 . . . ⇒

on

SA
s′n such that for each i, si ∼SA

s′i. We choose
ō′ to be all outputs in this reduction sequence. Note that the two reduction
sequences may have outputs other than in o1 . . . on. For instance, s′0 ⇒

o1

SA
s′1

may have outputs before the last output o1. However, by construction of SA, if
any node b outputs on a channel c such that c ∈ ωκ∪ωπ (which implies c ∈ ωπ),
then b ∈ SA. So, any output in ō�ω or in ō′�ω must be in o1 . . . on. It follows
immediately that ō�ω = (o1 . . . on)�ω = ō′�ω.

Corollary 1. Suppose check′(G), pc(G) and e ∼ω e′. Let m be any memory.
If (e,m,START) ō−�, then there exists ō′ such that (e′,m,START) ō′−−� and
ō�ω = ō′�ω.

Proof. Let SA = aSω(G). From check′(G) and Lemma 7, we get check′′(G,ω).
From Lemma 8 we get:

1. (e,m,START) ∼SA
(e′,m,START).

From (e,m,START) ō−� and Lemma 6(1), there is a ō1 such that:

2. (e,m,START) ō1−−� in G�ω
3. ō�ω = ō1�ω

By Theorem 2 applied to (1) and (2), we get a sequence ō2 such that:

4. (e′,m,START) ō2−−� in G�ω
5. ō1�ω = ō2�ω

From Lemma 6(2) applied to (4), there is a ō′ such that:

6. (e′,m,START) ō′−−� in G
7. ō2�ω = ō′�ω

From (3), (5), (7) we get

8. ō�ω = ō′�ω

We are done by (6) and (8).

Theorem 3 (Soundness of enforcement, Theorem 1). If T is a sound
termination oracle and checkT (p), then p satisfies psni.

Proof. Let G be the CFG of p and G′ = psT (G). From Lemma 5, we get
check′(G′). Further from the soundness of T , we get pc(G′). Finally, note that
for G′, START = p by definition.

Now, we unfold the definition of psni. We pick e, e′ such that e ∼ω e′ and
ō such that (e,m0, p) ō−�, i.e., (e,m0,START) ō−�. By Corollary 1 applied to G′,
we get ō′ such that (e,m0,START = p) ō′−−� and ō�ω = ō′�ω. This is exactly
what the definition of psni requires us to show.


