
Trace-Relating Compiler Correctness
and Secure Compilation

Carmine Abate1 Roberto Blanco1 S, tefan Ciobâcă2 Adrien Durier1

Deepak Garg3 Cătălin Hrit,cu1 Marco Patrignani4,5 Éric Tanter6,1 Jérémy Thibault1

1Inria Paris, France 2UAIC Iaşi, Romania 3MPI-SWS, Saarbrücken, Germany 4Stanford University, Stanford, USA
5CISPA, Saarbrücken, Germany 6University of Chile, Santiago, Chile

Abstract. Compiler correctness is, in its simplest form, defined as the inclusion
of the set of traces of the compiled program into the set of traces of the origi-
nal program, which is equivalent to the preservation of all trace properties. Here
traces collect, for instance, the externally observable events of each execution.
This definition requires, however, the set of traces of the source and target lan-
guages to be exactly the same, which is not the case when the languages are far
apart or when observations are fine-grained. To overcome this issue, we study a
generalized compiler correctness definition, which uses source and target traces
drawn from potentially different sets and connected by an arbitrary relation. We
set out to understand what guarantees this generalized compiler correctness defi-
nition gives us when instantiated with a non-trivial relation on traces. When this
trace relation is not equality, it is no longer possible to preserve the trace prop-
erties of the source program unchanged. Instead, we provide a generic charac-
terization of the target trace property ensured by correctly compiling a program
that satisfies a given source property, and dually, of the source trace property one
is required to show in order to obtain a certain target property for the compiled
code. We show that this view on compiler correctness can naturally account for
undefined behavior, resource exhaustion, different source and target values, side-
channels, and various abstraction mismatches. Finally, we show that the same
generalization also applies to many secure compilation definitions, which char-
acterize the protection of a compiled program against linked adversarial code.

1 Introduction
Compiler correctness is an old idea [37, 40, 41] that has seen a significant revival in re-
cent times. This new wave was started by the creation of the CompCert verified C com-
piler [33] and continued by the proposal of many significant extensions and variants of
CompCert [8, 9, 12, 23, 29, 30, 42, 52, 56, 57, 61] and the success of many other mile-
stone compiler verification projects, including Vellvm [64], Pilsner [45], CakeML [58],
CertiCoq [4], etc. Yet, even for these verified compilers, the precise statement of cor-
rectness matters. Since proof assistants are used to conduct the verification, an external
observer does not have to understand the proofs in order to trust them, but one still has
to deeply understand the statement that was proved. And this is true not just for correct
compilation, but also for secure compilation, which is the more recent idea that our
compilation chains should do more to also ensure security of our programs [3, 26].

Basic Compiler Correctness. The gold standard for compiler correctness is semantic
preservation, which intuitively says that the semantics of a compiled program (in the
target language) is compatible with the semantics of the original program (in the source

2 C. Abate et al.

language). For practical verified compilers, such as CompCert [33] and CakeML [58],
semantic preservation is stated extrinsically, by referring to traces. In these two settings,
a trace is an ordered sequence of events—such as inputs from and outputs to an external
environment—that are produced by the execution of a program.

A basic definition of compiler correctness can be given by the set inclusion of the
traces of the compiled program into the traces of the original program. Formally [33]:

Definition 1.1 (Basic Compiler Correctness (CC)). A compiler ↓ is correct iff
∀W t. W↓ t⇒W t.

This definition says that for any whole1 source program W, if we compile it (denoted
W↓), execute it with respect to the semantics of the target language, and observe a trace
t, then the original W can produce the same trace t with respect to the semantics of
the source language.2 This definition is simple and easy to understand, since it only
references a few familiar concepts: a compiler between a source and a target language,
each equipped with a trace-producing semantics (usually nondeterministic).

Beyond Basic Compiler Correctness. This basic compiler correctness definition as-
sumes that any trace produced by a compiled program can be produced by the source
program. This is a very strict requirement, and in particular implies that the source and
target traces are drawn from the same set and that the same source trace corresponds
to a given target trace. These assumptions are often too strong, and hence in practice
verified compiler efforts use different formulations of compiler correctness:
CompCert [33] The original compiler correctness theorem of CompCert [33] can be

seen as an instance of basic compiler correctness, but it does not provide any guar-
antees for programs that can exhibit undefined behavior [53]. As allowed by the
C standard, such unsafe programs are not even considered to be in the source lan-
guage, so are not quantified over. This has important practical implications, since
undefined behavior often leads to exploitable security vulnerabilities [13, 24, 25]
and serious confusion even among experienced C and C++ developers [32, 53, 59,
60]. As such, since 2010, CompCert provides an additional top-level correctness
theorem3 that better accounts for the presence of unsafe programs by providing
guarantees for them up to the point when they encounter undefined behavior [53].
This new theorem goes beyond the basic correctness definition above, as a target
trace need only correspond to a source trace up to the occurrence of undefined
behavior in the source trace.

CakeML [58] Compiler correctness for CakeML accounts for memory exhaustion in
target executions. Crucially, memory exhaustion events cannot occur in source
traces, only in target traces. Hence, dually to CompCert, compiler correctness only
requires source and target traces to coincide up to the occurrence of a memory
exhaustion event in the target trace.

1 For simplicity, for now we ignore separate compilation and linking, returning to it in §5.
2 Typesetting convention [47]: we use a blue, sans-serif font for source elements, an orange,
bold font for target ones and a black , italic font for elements common to both languages.

3 Stated at the top of the CompCert file driver/Complements.v and discussed by Regehr [53].

http://compcert.inria.fr/doc/html/compcert.driver.Complements.html#transf_c_program_preservation

Trace-Relating Compiler Correctness and Secure Compilation 3

Trace-Relating Compiler Correctness. Generalized formalizations of compiler cor-
rectness like the ones above can be naturally expressed as instances of a uniform defini-
tion, which we call trace-relating compiler correctness. This generalizes basic compiler
correctness by (a) considering that source and target traces belong to possibly distinct
sets TraceS and TraceT, and (b) being parameterized by an arbitrary trace relation ∼.

Definition 1.2 (Trace-Relating Compiler Correctness (CC∼)). A compiler ↓ is cor-
rect with respect to a trace relation ∼⊆ TraceS ×TraceT iff

∀W.∀t. W↓ t⇒∃s ∼ t.W s.

This definition requires that, for any target trace t produced by the compiled program
W↓, there exist a source trace s that can be produced by the original program W and is
related to t according to ∼ (i.e., s ∼ t). By choosing the trace relation appropriately,
one can recover the different notions of compiler correctness presented above:
Basic CC Take s ∼ t to be s = t. Trivially, the basic CC of Definition 1.1 is CC=.
CompCert Undefined behavior is modeled in CompCert as a trace-terminating event

Goes_wrong that can occur in any of its languages (source, target, and all in-
termediate languages), so for a given phase (or composition thereof), we have
TraceS = TraceT. Nevertheless, the relation between source and target traces
with which to instantiate CC∼ to obtain CompCert’s current theorem is:

s ∼ t ≡ s = t ∨ (∃m ≤ t. s = m·Goes_wrong).

A compiler satisfying CC∼ for this trace relation can turn a source trace ending
in undefined behavior m·Goes_wrong (where “·” is concatenation) either into the
same trace in the target (first disjunct), or into a target trace that starts with the
prefix m but then continues arbitrarily (second disjunct, “≤” is the prefix relation).

CakeML Here, target traces are sequences of symbols from an alphabet ΣT that has
a specific trace-terminating event, Resource_limit_hit, which is not available
in the source alphabet ΣS (i.e., ΣT = ΣS ∪ {Resource_limit_hit}. Then, the
compiler correctness theorem of CakeML can be obtained by instantiating CC∼

with the following ∼ relation:
s ∼ t ≡ s = t ∨ (∃m. m ≤ s. t = m·Resource_limit_hit).

The resulting CC∼ instance relates a target trace ending in Resource_limit_hit
after executing m to a source trace that first produces m and then continues in a
way given by the semantics of the source program.
Beyond undefined behavior and resource exhaustion, there are many other practical

uses for CC∼: in this paper we show that it also accounts for differences between source
and target values, for a single source output being turned into a series of target outputs,
and for side-channels.

On the flip side, the compiler correctness statement and its implications can be
more difficult to understand for CC∼ than for CC=. The full implications of choosing a
particular ∼ relation can be subtle. In fact, using a bad relation can make the compiler
correctness statement trivial or unexpected. For instance, it should be easy to see that
if one uses the total relation, which relates all source traces to all target ones, the CC∼

property holds for every compiler, yet it might take one a bit more effort to understand
that the same is true even for the following relation:

s ∼ t ≡ ∃W.W s ∧ W↓ t.

4 C. Abate et al.

Reasoning About Trace Properties. To understand more about a particular CC∼ in-
stance, we propose to also look at how it preserves trace properties—defined as sets of
allowed traces [31]—from the source to the target. For instance, it is well known that
CC= is equivalent to the preservation of all trace properties (where W |= π reads “W
satisfies π” and stands for ∀t. W t⇒ t ∈ π):

CC= ≡ ∀π ∈ 2Trace ∀W. W|=π ⇒ W↓|=π.

However, to the best of our knowledge, similar results have not been formulated for
trace relations beyond equality, when it is no longer possible to preserve the trace prop-
erties of the source program unchanged. For trace-relating compiler correctness, where
source and target traces can be drawn from different sets and related by an arbitrary
trace relation, there are two crucial questions to ask:
1. For a source trace property πS of a program—established for instance by formal

verification—what is the strongest target property that any CC∼ compiler is guar-
anteed to ensure for the produced target program?

2. For a target trace propertyπT, what is the weakest source property we need to show
of the original source program to obtain πT for the result of any CC∼ compiler?

Far from being mere hypothetical questions, they can help the developer of a verified
compiler to better understand the compiler correctness theorem they are proving, and
we expect that any user of such a compiler will need to ask either one or the other if they
are to make use of that theorem. In this work we provide a simple and natural answer to
these questions, for any instance of CC∼. Building upon a bijection between relations
and Galois connections [5, 20, 43], we observe that any trace relation ∼ corresponds
to two property mappings τ̃ and σ̃, which are functions mapping source properties to
target ones (τ̃ standing for “to target”) and target properties to source ones (σ̃ standing
for “to source”):

τ̃(πS) = {t | ∃s. s ∼ t ∧ s ∈ πS} ; σ̃(πT) = {s | ∀t. s ∼ t⇒ t ∈ πT} .
The existential image of ∼, τ̃ , answers the first question above by mapping a given
source property πS to the target property that contains all target traces for which there
exists a related source trace that satisfies πS. Dually, the universal image of ∼, σ̃, an-
swers the second question by mapping a given target property πT to the source property
that contains all source traces for which all related target traces satisfy πT. We intro-
duce two new correct compilation definitions in terms of trace property preservation
(TP): TPτ̃ quantifies over all source trace properties and uses τ̃ to obtain the corre-
sponding target properties. TPσ̃ quantifies over all target trace properties and uses σ̃
to obtain the corresponding source properties. We prove that these two definitions are
equivalent to CC∼, yielding a novel trinitarian view of compiler correctness (Figure 1).

CC∼

TPτ̃TPσ̃

∀W. ∀t. W↓ t⇒∃s ∼ t.W s

∀πT. ∀W.W |= σ̃(πT)

⇒ W↓ |= πT ≡ ≡
∀πS. ∀W.W |= πS

⇒ W↓ |= τ̃(πS)

≡

Fig. 1: The equivalent compiler correctness definitions forming our trinitarian view.

Trace-Relating Compiler Correctness and Secure Compilation 5

Contributions.
I We propose a new trinitarian view of compiler correctness that accounts for non-trivial

trace relations. While, as discussed above, specific instances of the CC∼ definition have
already been used in practice, we seem to be the first to propose assessing the meaning-
fulness of CC∼ instances in terms of how properties are preserved between the source
and the target, and in particular by looking at the property mappings σ̃ and τ̃ induced
by the trace relation ∼. We prove that CC∼, TPσ̃ , and TPτ̃ are equivalent for any
trace relation (§2.2), as illustrated in Figure 1. In the opposite direction, we show that
for every trace relation corresponding to a given Galois connection [20], an analogous
equivalence holds. Finally, we extend these results (§2.3) from the preservation of trace
properties to the larger class of subset-closed hyperproperties (e.g., noninterference).

I We use CC∼ compilers of various complexities to illustrate that our view on com-
piler correctness naturally accounts for undefined behavior (§3.1), resource exhaustion
(§3.2), different source and target values (§3.3), and differences in the granularity of
data and observable events (§3.4). We expect these ideas to apply to any other discrep-
ancies between source and target traces. For each compiler we show how to choose
the relation between source and target traces and how the induced property mappings
preserve interesting trace properties and subset-closed hyperproperties. We look at the
way particular σ̃ and τ̃ work on different kinds of properties and how the produced
properties can be expressed for different kinds of traces.

I We analyze the impact of correct compilation on noninterference [22], showing what
can still be preserved (and thus also what is lost) when target observations are finer than
source ones, e.g., side-channel observations (§4). We formalize the guarantee obtained
by correct compilation of a noninterfering program as abstract noninterference [21], a
weakening of target noninterference. Dually, we identify a family of declassifications
of target noninterference for which source reasoning is possible.

I Finally, we show that the trinitarian view also extends to a large class of secure com-
pilation definitions [2], formally characterizing the protection of the compiled program
against linked adversarial code (§5). For each secure compilation definition we again
propose both a property-free characterization in the style of CC∼, and two character-
izations in terms of preserving a class of source or target properties satisfied against
arbitrary adversarial contexts. The additional quantification over contexts allows for
finer distinctions when considering different property classes, so we study mapping
classes not only of trace properties and hyperproperties, but also of relational hyper-
properties [2]. An example secure compiler accounting for a target that can produce
additional trace events that are not possible in the source illustrates this approach.

The paper closes with discussions of related (§6) and future work (§7). An online ap-
pendix contains omitted technical details: https://arxiv.org/abs/1907.05320.

The traces considered in our examples are structured, usually as sequences of events.
We notice however that unless explicitly mentioned, all our definitions and results are
more general and make no assumption whatsoever about the structure of traces. Most
of the theorems formally or informally mentioned in the paper were mechanized in the
Coq proof assistant and are marked with . This development has around 10k lines of
code, is described in the online appendix, and is available at the following address:
https://github.com/secure-compilation/different_traces.

https://arxiv.org/abs/1907.05320
https://github.com/secure-compilation/different_traces

6 C. Abate et al.

2 Trace-Relating Compiler Correctness
In this section, we start by generalizing the trace property preservation definitions at
the end of the introduction to TPσ and TPτ , which depend on two arbitrary mappings
σ and τ (§2.1). We prove that, whenever σ and τ form a Galois connection, TPσ and
TPτ are equivalent (Theorem 2.4). We then exploit a bijective correspondence between
trace relations and Galois connections to close the trinitarian view (§2.2), with two main
benefits: first, it helps us assess the meaningfulness of a given trace relation by look-
ing at the property mappings it induces; second, it allows us to construct new compiler
correctness definitions starting from a desired mapping of properties. Finally, we gen-
eralize the classic result that compiler correctness (i.e., CC=) is enough to preserve not
just trace properties but also all subset-closed hyperproperties [14]. For this, we show
that CC∼ is also equivalent to subset-closed hyperproperty preservation, for which we
also define both a version in terms of σ̃ and a version in terms of τ̃ (§2.3).

2.1 Property Mappings

As explained in §1, trace-relating compiler correctness CC∼, by itself, lacks a crisp de-
scription of which trace properties are preserved by compilation. Since even the syntax
of traces can differ between source and target, one can either look at trace properties of
the source (but then one needs to interpret them in the target), or at trace properties of
the target (but then one needs to interpret them in the source). Formally we need two
property mappings, τ : 2TraceS → 2TraceT and σ : 2TraceT → 2TraceS , which lead us
to the following generalization of trace property preservation (TP).

Definition 2.1 (TPσ and TPτ). Given two property mappings, τ : 2TraceS → 2TraceT

and σ : 2TraceT → 2TraceS , for a compilation chain ·↓ we define:

TPτ ≡ ∀πS. ∀W.W |= πS ⇒ W↓ |= τ(πS); TPσ ≡ ∀πT. ∀W.W |= σ(πT)⇒ W↓ |= πT.

For an arbitrary source program W, τ interprets a source property πS as the target
guarantee for W↓. Dually, σ defines a source obligation sufficient for the satisfaction
of a target property πT after compilation. Ideally:

– Given πT, the target interpretation of the source obligation σ(πT) should actually
guarantee that πT holds, i.e., τ(σ(πT)) ⊆ πT;

– Dually for πS, we would not want the source obligation for τ(πS) to be harder than
πS itself, i.e., σ(τ(πS)) ⊇ πS.

These requirements are satisfied when the two maps form a Galois connection between
the posets of source and target properties ordered by inclusion. We briefly recall the
definition and the characteristic property of Galois connections [16, 38].

Definition 2.2 (Galois connection). Let (X,�) and (Y,v) be two posets. A pair of
maps, α : X → Y , γ : Y → X is a Galois connection iff it satisfies the adjunction law:
∀x ∈ X. ∀y ∈ Y. α(x) v y ⇐⇒ x � γ(y). α (resp. γ) is the lower (upper) adjoint
or abstraction (concretization) function and Y (X) the abstract (concrete) domain.

We will often write α : (X,�) � (Y,v) : γ to denote a Galois connection, or simply
α : X � Y : γ, or even α� γ when the involved posets are clear from context.

Trace-Relating Compiler Correctness and Secure Compilation 7

Lemma 2.3 (Characteristic property of Galois connections). Ifα:(X,�)� (Y,v):γ
is a Galois connection, then α, γ are monotone and they satisfy these properties:

i) ∀x ∈ X. x � γ(α(x)); ii) ∀y ∈ Y. α(γ(y)) v y.
If X,Y are complete lattices, then α is continuous, i.e., ∀F ⊆ X. α(

⊔
F) =

⊔
α(F).

If two property mappings, τ and σ, form a Galois connection on trace properties ordered
by set inclusion, Lemma 2.3 (with α = τ and γ = σ) tells us that they satisfy the ideal
conditions we discussed above, i.e., τ(σ(πT)) ⊆ πT and σ(τ(πS)) ⊇ πS.4

The two ideal conditions on τ and σ are sufficient to show the equivalence of the
criteria they define, respectively TPτ and TPσ .

Theorem 2.4 (TPτ and TPσ coincide). Let τ : 2TraceS � 2TraceT : σ be a Galois
connection, with τ and σ the lower and upper adjoints (resp.). Then TPτ ⇐⇒ TPσ .

2.2 Trace Relations and Property Mappings

We now investigate the relation between CC∼, TPτ and TPσ . We show that for a trace
relation and its corresponding Galois connection (Lemma 2.7), the three criteria are
equivalent (Theorem 2.8). This equivalence offers interesting insights for both verifi-
cation and design of a correct compiler. For a CC∼ compiler, the equivalence makes
explicit both the guarantees one has after compilation (τ̃) and source proof obligations
to ensure the satisfaction of a given target property (σ̃). On the other hand, a compiler
designer might first determine the target guarantees the compiler itself must provide,
i.e., τ , and then prove an equivalent statement, CC∼, for which more convenient proof
techniques exist in the literature [7, 58].

Definition 2.5 (Existential and Universal Image [20]). Given any two sets X and Y
and a relation ∼ ⊆ A× B, define its existential or direct image, τ̃ : 2X → 2Y and its
universal image, σ̃ : 2Y → 2X as follows:
τ̃ = λ π ∈ 2X . {y | ∃x. x ∼ y ∧ x ∈ π} ; σ̃ = λ π ∈ 2Y . {x | ∀y. x ∼ y ⇒ y ∈ π} .

When trace relations are considered, the existential and universal images can be used to
instantiate Definition 2.1 leading to the trinitarian view already mentioned in §1.

Theorem 2.6 (Trinitarian View). For any trace relation ∼ and its existential and
universal images τ̃ and σ̃, we have: TPτ̃ ⇐⇒ CC∼ ⇐⇒ TPσ̃ .

This result relies both on Theorem 2.4 and on the fact that the existential and universal
images of a trace relation form a Galois connection (). Below we further generalize
this result (Theorem 2.8) relying on a bijective correspondence between trace relations
and Galois connections on properties.

Lemma 2.7 (Trace relations ∼= Galois connections on trace properties). The func-
tion ∼ 7→ τ̃ � σ̃ that maps a trace relation to its existential and universal images
is a bijection between trace relations 2TraceS×TraceT and Galois connections on trace
properties 2TraceS � 2TraceT . Its inverse is τ � σ 7→ ∼̂, where s ∼̂ t ≡ t ∈ τ({s}).

4 While target traces are often “more concrete” than source ones, trace properties 2Trace (which
in Coq we represent as the function type Trace→Prop) are contravariant in Trace and thus
target properties correspond to the abstract domain.

https://github.com/secure-compilation/different_traces/blob/esop2020-camera-ready/Def.v
https://github.com/secure-compilation/different_traces/blob/esop2020-camera-ready/TraceCriterion.v
https://github.com/secure-compilation/different_traces/blob/esop2020-camera-ready/Galois.v

8 C. Abate et al.

Proof. Gardiner et al. [20] show that the existential image is a functor from the category
of sets and relations to the category of predicate transformers, mapping a set X 7→ 2X

and a relation ∼ ⊆ X × Y 7→ τ̃ : 2X → 2Y . They also show that such a functor
is an isomorphism – hence bijective – when one considers only monotonic predicate
transformers that have a – unique – upper adjoint. The universal image of ∼, σ̃, is the
unique adjoint of τ̃ (), hence ∼ 7→ τ̃ � σ̃ is itself bijective. ut

The bijection just introduced allows us to generalize Theorem 2.6 and switch between
the three views of compiler correctness described earlier at will.

Theorem 2.8 (Correspondence of Criteria). For any trace relation ∼ and corre-
sponding Galois connection τ � σ, we have: TPτ ⇐⇒ CC∼ ⇐⇒ TPσ .

Proof. For a trace relation ∼ and the Galois connection τ̃ � σ̃, the result follows from
Theorem 2.6. For a Galois connection τ � σ and ∼̂, use Lemma 2.7 to conclude that
the existential and universal images of ∼̂ coincide with τ and σ, respectively; the goal
then follows from Theorem 2.6. ut

We conclude by explicitly noting that sometimes the lifted properties may be trivial:
the target guarantee can be the true property (the set of all traces), or the source obli-
gation the false property (the empty set of traces). This might be the case when source
observations abstract away too much information (§3.2 presents an example).

2.3 Preservation of Subset-Closed Hyperproperties

A CC= compiler ensures the preservation not only of trace properties, but also of all
subset-closed hyperproperties, which are known to be preserved by refinement [14]. An
example of a subset-closed hyperproperty is noninterference [14]; a CC= compiler thus
guarantees that if W is noninterfering with respect to the inputs and outputs in the trace
then so is W↓. To be able to talk about how (hyper)properties such as noninterference
are preserved, in this section we propose another trinitarian view involving CC∼ and
preservation of subset-closed hyperproperties (Theorem 2.11), slightly weakened in that
source and target property mappings will need to be closed under subsets.

First, recall that a program satisfies a hyperproperty when its complete set of traces,
which from now on we will call its behavior, is a member of the hyperproperty [14].

Definition 2.9 (Hyperproperty Satisfaction). A program W satisfies a hyperproperty
H , written W |= H , iff beh(W) ∈ H , where beh(W) = {t | W t}.

Hyperproperty preservation is a strong requirement in general. Fortunately, many inter-
esting hyperproperties are subset-closed (SCH for short), which simplifies their preser-
vation since it suffices to show that the behaviors of the compiled program refine the
behaviors of the source one, which coincides with the statement of CC=.

To talk about hyperproperty preservation in the trace-relating setting, we need an
interpretation of source hyperproperties into the target and vice versa. The one we con-
sider builds on top of the two trace property mappings τ and σ, which are naturally
lifted to hyperproperty mappings. This way we are able to extract two hyperproperty
mappings from a trace relation similarly to §2.2:

https://github.com/secure-compilation/different_traces/blob/esop2020-camera-ready/Galois.v

Trace-Relating Compiler Correctness and Secure Compilation 9

Definition 2.10 (Lifting property mappings to hyperproperty mappings). Let τ :
2TraceS → 2TraceT and σ : 2TraceT → 2TraceS be arbitrary property mappings. The
images of HS ∈ 22

TraceS ,HT ∈ 22
TraceT under τ and σ are, respectively:

τ(HS) = {τ(πS) | πS ∈ HS} ; σ(HT) = {σ(πT) | πT ∈ HT} .

Formally we are defining two new mappings, this time on hyperproperties, but by a
small abuse of notation we still denote them by τ and σ.

Interestingly, it is not possible to apply the argument used for CC= to show that a
CC∼ compiler guarantees W↓ |= τ̃(HS) whenever W |= HS. This is in fact not true
because direct images do not necessarily preserve subset-closure [36, 44]. To fix this
we close the image of τ̃ and σ̃ under subsets (denoted as Cl⊆) and obtain:

Theorem 2.11 (Preservation of Subset-Closed Hyperproperties). For any trace
relation ∼ and its existential and universal images lifted to hyperproperties, τ̃ and σ̃,
and for Cl⊆(H) = {π | ∃π′ ∈ H. π ⊆ π′}, we have:

SCHPCl⊆◦τ̃ ⇐⇒ CC∼ ⇐⇒ SCHPCl⊆◦σ̃, where

SCHPCl⊆◦τ̃ ≡ ∀W∀HS ∈ SCHS.W |= HS ⇒ W↓ |= Cl⊆(τ̃(HS));

SCHPCl⊆◦σ̃ ≡ ∀W∀HT ∈ SCHT.W |= Cl⊆(σ̃(HT))⇒ W↓ |= HT.

Theorem 2.11 makes us aware of the potential loss of precision when interested in
preserving subset-closed hyperproperties through compilation. In §4 we focus on a se-
curity relevant subset-closed hyperproperty, noninterference, and show that such a loss
of precision can be intended as a declassification of noninterference.

3 Instances of Trace-Relating Compiler Correctness
The trace-relating view of compiler correctness above can serve as a unifying frame-
work for studying a range of interesting compilers. This section provides several rep-
resentative instantiations of the framework: source languages with undefined behavior
that compilation can turn into arbitrary target behavior (§3.1), target languages with re-
source exhaustion that cannot happen in the source (§3.2), changes in the representation
of values (§3.3), and differences in the granularity of data and observable events (§3.4).

3.1 Undefined Behavior

We start by expanding upon the discussion of undefined behavior in §1. We first study
the model of CompCert, where source and target alphabets are the same, including the
event for undefined behavior. The trace relation weakens equality by allowing undefined
behavior to be replaced with an arbitrary sequence of events.

Example 3.1 (CompCert-like Undefined Behavior Relation). Source and target traces
are sequences of events drawn fromΣ, where Goes_wrong ∈ Σ is a terminal event that
represents an undefined behavior. We then use the trace relation from the introduction:

s ∼ t ≡ s = t ∨ ∃m ≤ t. s = m ·Goes_wrong .

Each trace of a target program produced by a CC∼ compiler is either also a trace of the
original source program or it has a finite prefix that the source program also produces,
immediately before encountering undefined behavior. As explained in §1, one of the
correctness theorems in CompCert can be rephrased as this variant of CC∼.

https://github.com/secure-compilation/different_traces/blob/esop2020-camera-ready/SSCHCriterion.v

10 C. Abate et al.

We proved that the property mappings induced by the relation can be written as ():

σ̃(πT) = {s | s∈πT ∧ s 6= m·Goes_wrong} ∪ {m·Goes_wrong | ∀t. m≤t =⇒ t∈πT} ;
τ̃(πS) = {t | t∈πS} ∪ {t | ∃m ≤ t. m·Goes_wrong ∈ πS} .

These two mappings explain what a CC∼ compiler ensures for the∼ relation above. The
target-to-source mapping σ̃ states that to prove that a compiled program has a property
πT using source-level reasoning, one has to prove that any trace produced by the source
program must either be a target trace satisfying πT or have undefined behavior, but only
provided that any continuation of the trace substituted for the undefined behavior satis-
fies πT . The source-to-target mapping τ̃ states that by compiling a program satisfying
a property πS we obtain a program that produces traces that satisfy the same property
or that extend a source trace that ends in undefined behavior.

These definitions can help us reason about programs. For instance, σ̃ specifies that,
to prove that an event does not happen in the target, it is not enough to prove that it
does not happen in the source: it is also necessary to prove that the source program is
does not have any undefined behavior (second disjunct). Indeed, if it had an undefined
behavior, its continuations could exhibit the unwanted event. �

This relation can be easily generalized to other settings. For instance, consider the
setting in which we compile down to a low-level language like machine code. Target
traces can now contain new events that cannot occur in the source: indeed, in modern
architectures like x86 a compiler typically uses only a fraction of the available instruc-
tion set. Some instructions might even perform dangerous operations, such as writing
to the hard drive. Formally, the source and target do not have the same events any more.
Thus, we consider a source alphabet ΣS = Σ ∪ {Goes_wrong}, and a target alpha-
bet ΣT = Σ ∪ Σ′. The trace relation is defined in the same way and we obtain the
same property mappings as above, except that since target traces now have more events
(some of which may be dangerous), and the arbitrary continuations of target traces get
more interesting. For instance, consider a new event that represents writing data on the
hard drive, and suppose we want to prove that this event cannot happen for a compiled
program. Then, proving this property requires exactly proving that the source program
exhibits no undefined behavior [11]. More generally, what one can prove about target-
only events can only be either that they cannot appear (because there is no undefined
behavior) or that any of them can appear (in the case of undefined behavior).

In §5.2 we study a similar example, showing that even in a safe language linked ad-
versarial contexts can cause dangerous target events that have no source correspondent.

3.2 Resource Exhaustion

Let us return to the discussion about resource exhaustion in §1.

Example 3.2 (Resource Exhaustion). We consider traces made of events drawn from
ΣS in the source, and ΣT = ΣS ∪ {Resource_Limit_Hit} in the target. Recall the
trace relation for resource exhaustion:

s ∼ t ≡ s = t ∨ ∃m ≤ s. t = m ·Resource_Limit_Hit.

Formally, this relation is similar to the one for undefined behavior, except this time it is
the target trace that is allowed to end early instead of the source trace.

https://github.com/secure-compilation/different_traces/blob/esop2020-camera-ready/UndefBehaviorCompCert.v

Trace-Relating Compiler Correctness and Secure Compilation 11

The induced trace property mappings σ̃ and τ̃ are the following ():
σ̃(πT) = {s | s ∈ πT } ∩ {s | ∀m ≤ s. m ·Resource_Limit_Hit ∈ πT };
τ̃(πS) = πS ∪ {m ·Resource_Limit_Hit | ∃s ∈ πS. m ≤ s}.

These capture the following intuitions. The target-to-source mapping σ̃ states that to
prove a property of the compiled program one has to show that the traces of the source
program satisfy two conditions: (1) they must also satisfy the target property; and (2)
the termination of every one of their prefixes by a resource exhaustion error must be
allowed by the target property. This is rather restrictive: any property that prevents re-
source exhaustion cannot be proved using source-level reasoning. Indeed, if πT does
not allow resource exhaustion, then σ̃(πT) = ∅. This is to be expected since resource
exhaustion is simply not accounted for at the source level. The other mapping τ̃ states
that a compiled program produces traces that either belong to the same properties as the
traces of the source program or end early due to resource exhaustion.

In this example, safety properties [31] are mapped (in both directions) to other safety
properties (). This can be desirable for a relation: since safety properties are usually
easier to reason about, one interested only in safety properties at the target can reason
about them using source-level reasoning tools for safety properties.

The compiler correctness theorem in CakeML is an instance of CC∼ for the ∼
relation above. We have also implemented two small compilers that are correct for this
relation. The full details can be found in the Coq development. The first compiler ()
goes from a simple expression language (similar to the one in §3.3 but without inputs)
to the same language except that execution is bounded by some amount of fuel: each
execution step consumes some amount of fuel and execution immediately halts when it
runs out of fuel. The compiler is the identity.

The second compiler () is more interesting: we proved this CC∼ instance for a
variant of a compiler from a WHILE language to a simple stack machine by Xavier
Leroy [35]. We enriched the two languages with outputs and modified the semantics of
the stack machine so that it falls into an error state if the stack reaches a certain size.
The proof uses a standard forward simulation modified to account for failure. �

We conclude this subsection by noting that the resource exhaustion relation and
the undefined behavior relation from the previous subsection can easily be combined.
Indeed, given a relation ∼UB and a relation ∼RE defined as above on the same sets of
traces, we can build a new relation∼ that allows both refinement of undefined behavior
and resource exhaustion by taking their union: s ∼ t ≡ s ∼UB t ∨ s ∼RE t. A compiler
that is CC∼UB or CC∼RE is trivially CC∼, though the converse is not true.

3.3 Different Source and Target Values

We now illustrate trace-relating compilation for a translation mapping source-level
booleans to target-level natural numbers. Given the simplicity of this compiler, most
of the details of the formalization are deferred to the online appendix.

The source language is a pure, statically typed expression language whose expres-
sions e include naturals n, booleans b, conditionals, arithmetic and relational operations,
boolean inputs inb and natural inputs inn. A trace s is a list of inputs is paired with a
result r, which can be a natural, a boolean, or an error. Well-typed programs never pro-
duce error (). Types ty are either N (naturals) or B (booleans); typing is standard. The

https://github.com/secure-compilation/different_traces/blob/esop2020-camera-ready/ResourceExhaustion.v
https://github.com/secure-compilation/different_traces/blob/esop2020-camera-ready/ResourceExhaustion.v
https://github.com/secure-compilation/different_traces/blob/esop2020-camera-ready/ResourceExhaustionExample.v
https://github.com/secure-compilation/different_traces/blob/esop2020-camera-ready/ResourceExhaustion/CompilerStackLimited.v
https://github.com/secure-compilation/different_traces/blob/esop2020-camera-ready/TypeRelationExample.v

12 C. Abate et al.

source language has a standard big-step operational semantics (e 〈is, r〉) which tells
how an expression e generates a trace 〈is, r〉. The target language is analogous, except
that it is untyped, only has naturals n and its only inputs are naturals inn. The semantics
of the target language is also given in big-step style. Since we only have naturals and
all expressions operate on them, no error result is possible in the target.

The compiler is homomorphic, translating a source expression to the same target
expression; the only differences are natural numbers (and conditionals), as noted below.

true↓ = 1 inb↓ = inn e1 ≤ e2↓ = if e1↓≤ e2↓ then 1 else 0

false↓ = 0 inn↓ = inn if e1 then e2 else e3↓ = if e1↓≤ 0 then e3↓ else e2↓
When compiling an if-then-else the target condition e1↓≤ 0 is used to check that e1 is
false, and therefore the then and else branches of the source are swapped in the target.
Relating Traces. We relate basic values (naturals and booleans) in a non-injective fash-
ion as noted below. Then, we extend the relation to lists of inputs pointwise (Rules Empty
and Cons) and lift that relation to traces (Rules Nat and Bool).

n ∼ n true ∼ n if n > 0 false ∼ 0

(Empty)

∅ ∼ ∅

(Cons)
i ∼ i is ∼ is

i · is ∼ i · is

(Nat)
is ∼ is n ∼ n
〈is, n〉 ∼ 〈is,n〉

(Bool)
is ∼ is b ∼ n
〈is, b〉 ∼ 〈is,n〉

Property mappings. The property mappings σ̃ and τ̃ induced by the trace relation ∼
defined above capture the intuition behind encoding booleans as naturals:

– the source-to-target mapping allows true to be encoded by any non-zero number;
– the target-to-source mapping requires that 0 be replaceable by both 0 and false.

Compiler correctness. With the relation above, the compiler is proven to satisfy CC∼.

Theorem 3.3 (·↓ is correct). ·↓ is CC∼.

Simulations with different traces. The difficulty in proving Theorem 3.3 arises from
the trace-relating compilation setting: For compilation chains that have the same source
and target traces, it is customary to prove compiler correctness using a forward simula-
tion (i.e., a simulation between source and target transition system); then, using deter-
minacy [18, 39] of the target language and input totality [19, 63] (aka receptiveness) of
the source, this forward simulation is flipped into a backward simulation (a simulation
between target and source transition system), as described by Beringer et al. [7], Leroy
[34]. This flipping is useful because forward simulations are often much easier to prove
(by induction on the transitions of the source) than backward ones, as it is the case here.

We first give the main idea of the flipping proof, when the inputs are the same in
the source and the target [7, 34]. We only consider inputs, as it is the most interesting
case, since with determinacy, nondeterminism only occurs on inputs. Given a forward
simulation R, and a target program WT that simulates a source program WS, WT is
able to perform an input iff so is WS: otherwise, say for instance that WS performs an
output, by forward simulation WT would also perform an output, which is impossible
because of determinacy. By input totality of the source, WS must be able to perform
the exact same input as WT; using forward simulation and determinacy, the resulting
programs must be related.

https://github.com/secure-compilation/different_traces/blob/esop2020-camera-ready/TypeRelationExampleInput.v

Trace-Relating Compiler Correctness and Secure Compilation 13

WS

i1

��

= WS

i2

��

R WT

i1

��
By input totality

ks +3
By contradiction,

using forward simulation

and determinacy

ks

∃WS1
R

By forward simulation and determinacy

· WT1

However, our trace relation is not injective (both 0 and false are mapped to 0),
therefore these arguments do not apply: not all possible inputs of target programs are
accounted for in the forward simulation. We thus have to strengthen the forward sim-
ulation assumption, requiring the following additional property to hold, for any source
program WS and target program WT related by the forward simulationR.

WS

iS1

��

∃iS2

{{

R WT

iT1

��

iT2

##
∃WS2

R

WS1 R WT1 WT2

where iS1 ∼ iT1

iS1 ∼ iT2

iS2 ∼ iT2

We say that a forward simulation for which this property holds is flippable. For our
example compiler, a flippable forward simulation works as follows: whenever a boolean
input occurs in the source, the target program must perform every strictly positive input
n (and not just 1, as suggested by the compiler). Using this property, determinacy of
the target, input totality of the source, as well as the fact that any target input has an
inverse image through the relation, we can indeed show that the forward simulation can
be turned into a backward one: starting from WS R WT and an input iT2, we show
that there is iS1 and iT2 as in the diagram above, using the same arguments as when the
inputs are the same; because the simulation is flippable, we can close the diagram, and
obtain the existence of an adequate iS2. From this we obtain CC∼.

In fact, we have proven a completely general ‘flipping theorem’, with this flippable
hypothesis on the forward simulation (). We have also shown that if the relation ∼
defines a bijection between the inputs of the source and the target, then any forward
simulation is flippable, hence reobtaining the usual proof technique [7, 34] as a special
case. This flipping theorem is further discussed in the online appendix.

3.4 Abstraction Mismatches

We now consider how to relate traces where a single source action is compiled to mul-
tiple target ones. To illustrate this, we take a pure, statically-typed source language that
can output (nested) pairs of arbitrary size, and a pure, untyped target language where
sent values have a fixed size. Concretely, the source is analogous to the language of §3.3,
except that it does not have inputs or booleans and it has an expression send e, which
can emit a (nested) pair e of values in a single action. That is, given that e reduces
to a pair, e.g., 〈v1, 〈v2, v3〉〉, expression send 〈v1, 〈v2, v3〉〉 emits action 〈v1, 〈v2, v3〉〉.
That expression is compiled into a sequence of individual sends in the target language
send v1 ; send v2 ; send v3, since in the target, send e sends the value that e re-
duces to, but the language has no pairs.

https://github.com/secure-compilation/different_traces/blob/esop2020-camera-ready/TypeRelationExampleInput.v

14 C. Abate et al.

Due to space constraints we omit the full formalization of these simple languages
and of the homomorphic compiler ((·)

y : e → e). The only interesting bit is the
compilation of the send · expression, which relies on the gensend (·) function below.
That function takes a source expression of a given type and returns a sequence of target
send · instructions that send each element of the expression.

gensend (` e : τ) =

{
send (` e : N)

y if τ = N

gensend (` e.1 : τ ′); gensend (` e.2 : τ ′′) if τ = τ ′ × τ ′′

Relating Traces. We start with the trivial relation between numbers: n∼0 n, i.e., num-
bers are related when they are the same. We cannot build a relation between single ac-
tions since a single source action is related to multiple target ones. Therefore, we define
a relation between a source action M and a target trace t (a list of numbers), inductively
on the structure of M (which is a pair of values, and values are natural numbers or pairs).

(Trace-Rel-N-N)

n∼0 n n′∼0 n′

〈n, n′〉∼n · n′

(Trace-Rel-N-M)

n∼0 n M∼ t
〈n,M〉∼n · t

(Trace-Rel-M-N)

M∼ t n∼0 n
〈M, n〉∼ t · n

(Trace-Rel-M-M)
M∼ t M′∼ t′

〈M,M′〉∼ t · t′

A pair of naturals is related to the two actions that send each element of the pair
(Rule Trace-Rel-N-N). If a pair is made of sub-pairs, we require all such sub-pairs to be
related (Rules Trace-Rel-N-M to Trace-Rel-M-M). We build on these rules to define the

(Trace-Rel-Single)

s∼ t M∼ t′

s ·M∼ t · t′

s ∼ t relation between source and target traces for which the
compiler is correct (Theorem 3.4). Trivially, traces are related
when they are both empty. Alternatively, given related traces,
we can concatenate a source action and a second target trace
provided that they are related (Rule Trace-Rel-Single).

Theorem 3.4 ((·)
y is correct). (·)

y is CC∼.

With our trace relation, the trace property mappings capture the following intuitions:
– The target-to-source mapping states that a source property can reconstruct target

action as it sees fit. For example, trace 4 · 6 · 5 · 7 is related to 〈4, 6〉 · 〈5, 7〉 and
〈〈4, 〈6, 〈5, 7〉〉〉〉 (and many more variations). This gives freedom to the source im-
plementation of a target behavior, which follows from the non-injectivity of ∼.5

– The source-to-target mapping “forgets” about the way pairs are nested, but is faith-
ful w.r.t. the values vi contained in a message. Notice that source safety properties
are always mapped to target safety properties. For instance, if πS ∈ SafetyS pre-
scribes that some bad number is never sent, then τ̃(πS) prescribes the same number
is never sent in the target and τ̃(πS) ∈ SafetyT. Of course if πS ∈ SafetyS pre-
scribes that a particular nested pairing like 〈4, 〈6, 〈5, 7〉〉〉 never happens, then τ̃(πS)
is still a target safety property, but the trivial one, since τ̃(πS) = > ∈ SafetyT.

4 Trace-Relating Compilation and Noninterference Preservation
When source and target observations are drawn from the same set, a correct compiler
(CC=) is enough to ensure the preservation of all subset-closed hyperproperties, in par-
ticular of noninterference (NI) [22], as also mentioned at the beginning of §2.3. In the

5 Making ∼ injective is a matter of adding open and close parenthesis actions in target traces.

Trace-Relating Compiler Correctness and Secure Compilation 15

scenario where target observations are strictly more informative than source observa-
tions, the best guarantee one may expect from a correct trace-relating compiler (CC∼)
is a weakening (or declassification) of target noninterference that matches the noninter-
ference property satisfied in the source. To formalize this reasoning, this section applies
the trinitarian view of trace-relating compilation to the general framework of abstract
noninterference (ANI) [21].

We first define NI and explain the issue of preserving source NI via a CC∼ compiler.
We then introduce ANI, which allows characterizations of various forms of noninterfer-
ence, and formulate a general theory of ANI preservation via CC∼. We also study how
to deal with cases such as undefined behavior in the target. Finally, we answer the dual
question, i.e., which source NI should be satisfied to guarantee that compiled programs
are noninterfering with respect to target observers.

Intuitively, NI requires that publicly observable outputs do not reveal information
about private inputs. To define this formally, we need a few additions to our setup. We
indicate the (disjoint) input and output projections of a trace t as t◦ and t• respectively6.
Denote with [t]low the equivalence class of a trace t, obtained using a standard low-
equivalence relation that relates low (public) events only if they are equal, and ingores
any difference between private events. Then, NI for source traces can be defined as:

NIS = {πS | ∀s1s2 ∈ πS. [s
◦
1]low = [s◦2]low ⇒ [s•1]low = [s•2]low } .

That is, source NI comprises the sets of traces that have equivalent low output projec-
tions as long as their low input projections are equivalent.

Trace-Relating Compilation and Noninterference. When additional observations are
possible in the target, it is unclear whether a noninterfering source program is compiled
to a noninterfering target program or not, and if so, whether the notion of NI in the tar-
get is the expected or desired one. We illustrate this issue considering a scenario where
target traces extend source ones by exposing the execution time. While source noninter-
ference NIS requires that private inputs do not affect public outputs, NIT additionally
requires that the execution time is not affected by private inputs.

To model the scenario described, let TraceS denote the set of traces in the source,
and TraceT = TraceS × Nω be the set of target traces, where Nω , N ∪ {ω}. Tar-
get traces have two components: a source trace, and a natural number that denotes
the time spent to produce the trace (ω if infinite). Notice that if two source traces
s1, s2, are low-equivalent then {s1, s2} ∈ NIS and {(s1,42), (s1,42)} ∈ NIT, but
{(s1,42), (s2,43)} 6∈ NIT and {(s1,42), (s2,42), (s1,43), (s2,43)} 6∈ NIT.

Consider the following straightforward trace relation, which relates a source trace
to any target trace whose first component is equal to it, irrespective of execution time:

s ∼ t ≡ ∃n. t = (s,n).

A compiler is CC∼ if any trace that can be exhibited in the target can be simulated
in the source in some amount of time. For such a compiler Theorem 2.11 says that
if W satisfies NIS, then W↓ satisfies Cl⊆ ◦ τ̃(NIS), which however is strictly weaker
than NIT, as it contains, e.g., {(s1,42), (s2,42), (s1,43), (s2,43)}, and one cannot
conclude that W↓ is noninterfering in the target. It is easy to prove that

6 Here we only require the projections to be disjoint. Depending on the scenario and the attacker
model the projections might record information such as the ordering of events.

16 C. Abate et al.

Cl⊆ ◦ τ̃(NIS) = Cl⊆ ({ πS × Nω | πS ∈ NIS}) = { πS × I | πS ∈ NIS ∧ I ⊆ Nω} ,
the first equality coming from τ̃(πS) = πS × Nω , and the second from NIS being
subset-closed. As we will see, this hyperproperty can be characterized as a form of
NI, which one might call timing-insensitive noninterference, and ensured only against
attackers that cannot measure execution time. For this characterization, and to describe
different forms of noninterference as well as formally analyze their preservation by a
CC∼ compiler, we rely on the general framework of abstract noninterference [21].

Abstract Noninterference. ANI [21] is a generalization of NI whose formulation re-
lies on abstractions (in abstract interpretation sense [16]) in order to encompass arbi-
trary variants of NI. ANI is parameterized by an observer abstraction ρ, which denotes
the distinguishing power of the attacker, and a selection abstraction φ, which specifies
when to check NI, and therefore captures a form of declassification [54].7 Formally:

ANI ρφ = {π | ∀t1t2 ∈ π. φ(t◦1) = φ(t◦2)⇒ ρ(t•1) = ρ(t•2)} .
By picking φ = ρ = [·]low , we recover the standard noninterference defined above,
where NI must hold for all low inputs (i.e., no declassification of private inputs), and
the observational power of the attacker is limited to distinguishing low outputs.

The observational power of the attacker can be weakened by choosing a more liberal
relation for ρ. For instance, one may limit the attacker to observe the parity of output
integer values. Another way to weaken ANI is to use φ to specify that noninterference
is only required to hold for a subset of low inputs.

To be formally precise, φ and ρ are defined over sets of (input and output projections
of) traces, so when we write φ(t) above, this should be understood as a convenience
notation for φ({t}). Likewise, φ = [·]low should be understood as φ = λπ.

⋃
t∈π[t]low ,

i.e., the powerset lifting of [·]low . Additionally, φ and ρ are required to be upper-closed
operators (uco)—i.e., monotonic, idempotent and extensive—on the poset that is the
powerset of (input and output projections of) traces ordered by inclusion [21].

Trace-Relating Compilation and ANI for Timing. We can now reformulate our ex-
ample with observable execution times in the target in terms of ANI. We have NIS =
ANI φS

ρS
with φS = ρS = [·]low . In this case, we can formally describe the hyperproperty

that a compiled program W↓ satisfies whenever W satisfies NIS as an instance of ANI:
Cl⊆ ◦ τ̃(NIS) = ANI

ρT

φT
,

for φT = φS and ρT(πT) = {(s,n) | ∃(s1,n1) ∈ πT. [s
•]low = [s•1]low} .

The definition of φT tells us that the trace relation does not affect the selection abstrac-
tion. The definition of ρT characterizes an observer that cannot distinguish execution
times for noninterfering traces (notice that n1 in the definition of ρT is discarded). For
instance, ρT({(s,n1)}) = ρT({(s,n2)}), for any s, n1, n2. Therefore, in this setting,
we know explicitly through ρT that a CC∼ compiler degrades source noninterference
to target timing-insensitive noninterference.

Trace-Relating Compilation and ANI in General. While the particular φT and ρT
above can be discovered by intuition, we want to know whether there is a systematic
way of obtaining them in general. In other words, for any trace relation ∼ and any

7 ANI includes a third parameter η, which describes the maximal input variation that the attacker
may control. Here we omit η (i.e., take it to be the identity) in order to simplify the presentation.

Trace-Relating Compiler Correctness and Secure Compilation 17

notion of source NI, what property is guaranteed on noninterfering source programs by
any CC∼ compiler?

We can now answer this question generally (Theorem 4.1): any source notion of
noninterference expressible as an instance of ANI is mapped to a corresponding in-
stance of ANI in the target, whenever source traces are an abstraction of target ones
(i.e., when ∼ is a total and surjective map). For this result we consider trace relations
that can be split into input and output trace relations (denoted as∼ , 〈 ◦∼, •∼〉) such that
s ∼ t ⇐⇒ s◦

◦∼ t◦ ∧ s•
•∼ t•. The trace relation ∼ corresponds to a Galois connection

between the sets of trace properties τ̃ � σ̃ as described in §2.2. Similarly, the pair ◦∼
and •∼ corresponds to a pair of Galois connections, τ̃ ◦ � σ̃◦ and τ̃ • � σ̃•, between the
sets of input and output properties. In the timing example, time is an output so we have
∼ , 〈=, •∼〉 and •∼ is defined as s•

•∼ t• ≡ ∃n. t• = (s•,n).

Theorem 4.1 (Compiling ANI). Assume traces of source and target languages are
related via ∼ ⊆ TraceS × TraceT, ∼ , 〈 ◦∼, •∼〉 such that ◦∼ and •∼ are both total
maps from target to source traces, and ◦∼ is surjective. Assume ↓ is a CC∼ compiler,
and φS ∈ uco(2Trace◦

S), ρS ∈ uco(2Trace•
S).

If W satisfies ANI ρS

φS
, then W↓ satisfies ANI

ρ#
T

φ#
T

, where φ#
T and ρ#T are defined as:

φ#
T = g◦ ◦ φS ◦ f ◦; ρ#T = g• ◦ ρS ◦ f • and

f ◦(π◦
T) =

{
s◦
∣∣ ∃t◦ ∈ π◦

T. s◦
◦∼ t◦
}
; g◦(π◦S) = {t◦ | ∀s◦. s◦

◦∼ t◦ ⇒ s◦ ∈ π◦S}
(and both f • and g• are defined analogously).

For the example above we recover the definitions we justified intuitively, i.e., φ#
T =

g◦ ◦ φS ◦ f ◦ = φT and ρ#T = g• ◦ ρS ◦ f • = ρT. Moreover, we can prove that if •∼ also

is surjective, ANI
ρ#
T

φ#
T

⊆ Cl⊆ ◦ τ̃(ANI ρS

φS
). Therefore, the derived guarantee ANI

ρ#
T

φ#
T

is

at least as strong as the one that follows by just knowing that the compiler ↓ is CC∼.
Noninterference and Undefined Behavior. As stated above, Theorem 4.1 does not
apply to several scenarios from §3 such as undefined behavior (§3.1), as in those cases
the relation •∼ is not a total map. Nevertheless, we can still exploit our framework to
reason about the impact of compilation on noninterference.

Let us consider ∼ , 〈 ◦∼, •∼〉 where ◦∼ is any total and surjective map from target to
source inputs (e.g., equality) and •∼ is defined as s•

•∼ t• ≡ s• = t• ∨ ∃m• ≤ t•. s• =
m• · Goes_wrong . Intuitively, a CC∼ compiler guarantees that no interference can be
observed by a target attacker that cannot exploit undefined behavior to learn private
information. This intuition can be made formal by the following theorem.

Theorem 4.2 (Relaxed Compiling ANI). Relax the assumptions of Theorem 4.1 by
allowing •∼ to be any output trace relation. If W satisfies ANI ρS

φS
, then W↓ satisfies

ANI
ρ#
T

φ#
T

where φ#
T is defined as in Theorem 4.1, and ρ#T is such that:

∀s t. s•
•∼ t• ⇒ ρ#T (t•) = ρ#T (τ̃ •(ρS(s

•))).

Technically, instead of giving us a definition of ρ#T , the theorem gives a property of it.
The property states that, given a target output trace t•, the attacker cannot distinguish it
from any other target output traces produced by other possible compilations (τ̃ •) of the

18 C. Abate et al.

source trace s it relates to, up to the observational power of the source level attacker ρS.
Therefore, given a source attacker ρS, the theorem characterizes a family of attackers
that cannot observe any interference for a correctly compiled noninterfering program.
Notice that the target attacker ρ#T = λ_. > satisfies the premise of the theorem, but

defines a trivial hyperproperty, so that we cannot prove in general that ANI
ρ#
T

φ#
T

⊆ Cl⊆◦

τ̃(ANI ρS

φS
). The same ρ#T = λ_. > shows that the family of attackers described in

Theorem 4.2 is nonempty, and this ensures the existence of a most powerful attacker
among them [21], whose explicit characterization we leave for future work.

From Target NI to Source NI. We now explore the dual question: under what hy-
potheses does trace-relating compiler correctness alone allow target noninterference to
be reduced to source noninterference? This is of practical interest, as one would be able
to protect from target attackers by ensuring noninterference in the source. This task can
be made easier if the source language has some static enforcement mechanism [1, 36].

Let us consider the languages from §3.4 extended with inputting of (pairs of) values.
It is easy to show that the compiler described in §3.4 is still CC∼. Assume that we want
to satisfy a given notion of target noninterference after compilation, i.e., W↓|=ANI

ρT

φT
.

Recall that the observational power of the target attacker, ρT, is expressed as a property
of sequences of values. To express the same property (or attacker) in the source, we
have to abstract the way pairs of values are nested. For instance, the source attacker
should not distinguish 〈v1, 〈v2, v3〉〉 and 〈〈v1, v2〉, v3〉. In general (i.e., when ◦∼ is not
the identity), this argument is valid only when φT can be represented in the source.
More precisely, φT must consider as equivalent all target inputs that are related to the
same source one, because in the source it is not possible to have a finer distinction of
inputs. This intuitive correspondence can be formalized as follows:

Theorem 4.3 (Target ANI by source ANI). LetφT ∈ uco(2Trace◦
T), ρT ∈ uco(2Trace•

T)
and •∼ a total and surjective map from source outputs to target ones and assume that

∀s t. s◦
◦∼ t◦ ⇒ φT(t

◦) = φT(τ̃
◦(s◦)).

If ·↓ is a CC∼ compiler and W satisfies ANI
ρ#S
φ#

S

, then W↓ satisfies ANI
ρT

φT
for

φ#S = σ̃◦ ◦ φT ◦ τ̃ ◦; ρ#S = σ̃• ◦ ρT ◦ τ̃ •.

To wrap up the discussion about noninterference, the results presented in this section
formalize and generalize some intuitive facts about compiler correctness and noninter-
ference. Of course, they all place some restrictions on the shape of the noninterference
instances that can be considered, because compiler correctness alone is in general not a
strong enough criterion for dealing with many security properties [6, 17].

5 Trace-Relating Secure Compilation
So far we have studied compiler correctness criteria for whole, standalone programs.
However, in practice, programs do not exist in isolation, but in a context where they in-
teract with other programs, libraries, etc. In many cases, this context cannot be assumed
to be benign and could instead behave maliciously to try to disrupt a compiled program.

Hence, in this section we consider the following secure compilation scenario: a
source program is compiled and linked with an arbitrary target-level context, i.e., one

Trace-Relating Compiler Correctness and Secure Compilation 19

that may not be expressible as the compilation of a source context. Compiler correctness
does not address this case, as it does not consider arbitrary target contexts, looking
instead at whole programs (empty context [33]) or well-behaved target contexts that
behave like source ones (as in compositional compiler correctness [27, 30, 45, 57]).

To account for this scenario, Abate et al. [2] describe several secure compilation
criteria based on the preservation of classes of (hyper)properties (e.g., trace properties,
safety, hypersafety, hyperproperties, etc.) against arbitrary target contexts. For each of
these criteria, they give an equivalent “property-free” criterion, analogous to the equiv-
alence between TP and CC=. For instance, their robust trace property preservation cri-
terion (RTP) states that, for any trace property π, if a source partial program P plugged
into any context CS satisfies π, then the compiled program P↓ plugged into any target
context CT satisfies π. Their equivalent criterion to RTP is RTC, which states that for
any trace produced by the compiled program, when linked with any target context, there
is a source context that produces the same trace. Formally (writing C [P] to mean the
whole program that results from linking partial program P with context C) they define:
RTP ≡ ∀P. ∀π. (∀CS. ∀t.CS [P] t⇒ t ∈ π)⇒ (∀CT. ∀t. CT [P↓] t⇒ t ∈ π);
RTC ≡ ∀P. ∀CT.∀t.CT [P↓] t⇒ ∃CS. CS [P] t.

In the following we adopt the notation P |=R π to mean “P robustly satisfies π,” i.e., P
satisfies π irrespective of the contexts it is linked with. Thus, we write more compactly:

RTP ≡ ∀π. ∀P. P |=Rπ ⇒ P↓ |=Rπ.

All the criteria of Abate et al. [2] share this flavor of stating the existence of some
source context that simulates the behavior of any given target context, with some varia-
tions depending on the class of (hyper)properties under consideration. All these criteria
are stated in a setting where source and target traces are the same. In this section, we ex-
tend their result to our trace-relating setting, obtaining trintarian views for secure com-
pilation. Despite the similarities with §2, more challenges show up, in particular when
considering the robust preservation of proper sub-classes of trace properties. For exam-
ple, after application of σ̃ or τ̃ , a property may not be safety anymore, a crucial point for
the equivalence with the property-free criterion for safety properties by Abate et al. [2].
We solve this by interpreting the class of safety properties as an abstraction of the class
of all trace properties induced by a closure operator (§5.1). The remaining subsections
provide example compilation chains satisfying our trace-relating secure compilation
criteria for trace properties (§5.2) and for safety properties hypersafety (§5.3).

5.1 Trace-Relating Secure Compilation: A Spectrum of Trinities

In this subsection we generalize many of the criteria of Abate et al. [2] using the ideas
of §2. Before discussing how we solve the challenges for classes such as safety and
hypersafety, we show the simple generalization of RTC to the trace-relating setting
(RTC∼) and its corresponding trinitarian view (Theorem 5.1):

Theorem 5.1 (Trinity for Robust Trace Properties). For any trace relation∼ and
induced property mappings τ̃ and σ̃, we have: RTPτ̃ ⇐⇒ RTC∼ ⇐⇒ RTPσ̃ , where

RTC∼ ≡ ∀P ∀CT ∀t. CT [P↓] t⇒ ∃CS ∃s ∼ t. CS [P] s;

RTPτ̃ ≡ ∀P ∀πS ∈ 2TraceS . P |=R πS ⇒ P↓ |=R τ̃(πS);

https://github.com/secure-compilation/different_traces/blob/esop2020-camera-ready/RobustTraceCriterion.v

20 C. Abate et al.

RTPσ̃ ≡ ∀P ∀πT ∈ 2TraceT . P |=R σ̃(πT)⇒ P↓ |=R πT.

Abate et al. [2] propose many more equivalent pairs of criteria, each preserving different
classes of (hyper)properties, which we briefly recap now. For trace properties, they also
have criteria that preserve safety properties plus their version of liveness properties. For
hyperproperties, they have criteria that preserve hypersafety properties, subset-closed
hyperproperties, and arbitrary hyperproperties. Finally, they define relational hyper-
properties, which are relations between the behaviors of multiple programs for express-
ing, e.g., that a program always runs faster than another. For relational hyperproperties,
they have criteria that preserve arbitrary relational properties, relational safety proper-
ties, relational hyperproperties and relational subset-closed hyperproperties. Roughly
speaking, the security guarantees due to robust preservation of trace properties regard
only protecting the integrity of the program from the context, the guarantees of hyper-
properties also regard data confidentiality, and the guarantees of relational hyperprop-
erties even regard code confidentiality. Naturally, these stronger guarantees are increas-
ingly harder to enforce and prove.

While we have lifted the most significant criteria from Abate et al. [2] to our trini-
tarian view, due to space constraints we provide the formal definitions only for the two
most interesting criteria. We summarize the generalizations of many other criteria in
Figure 2, described at the end. Omitted definitions are available in the online appendix.
Beyond Trace Properties: Robust Safety and Hyperproperty Preservation. We
detail robust preservation of safety properties and of arbitrary hyperproperties since they
are both relevant from a security point of view and their generalization is interesting.

Theorem 5.2 (Trinity for Robust Safety Properties). For any trace relation ∼
and for the induced property mappings τ̃ and σ̃, we have:

RTPSafe◦τ̃ ⇐⇒ RSC∼ ⇐⇒ RSPσ̃, where

RSC∼ ≡ ∀P ∀CT ∀t ∀m ≤ t.CT [P↓] t⇒ ∃CS ∃t′ ≥m ∃s ∼ t′. CS [P] s;

RTPSafe◦τ̃ ≡ ∀P∀πS ∈ 2TraceS .P |=R πS ⇒ P↓ |=R (Safe ◦ τ̃)(πS);

RSPσ̃ ≡ ∀P∀πT ∈ SafetyT.P |=R σ̃(πT)⇒ P↓ |=R πT.

There is an interesting asymmetry between the last two characterizations above, which
we explain now in more detail. RSPσ̃ quantifies over target safety properties, while
RTPSafe◦τ̃ quantifies over arbitrary source properties, but imposes the composition of
τ̃ with Safe , which maps an arbitrary target property πT to the target safety property
that best over-approximates πT

8 (an analogous closure was needed for subset-closed
hyperproperties in Theorem 2.11). More precisely, Safe is a closure operator on target
properties, with SafetyT =

{
Safe(πT)

∣∣ πT ∈ 2TraceT
}

. The mappings

Safe ◦ τ̃ : 2TraceS � SafetyT : σ̃

determine a Galois connection between source trace properties and target safety prop-
erties, and ensure the equivalence RTPSafe◦τ̃ ⇐⇒ RSPσ̃ (). This argument gen-
eralizes to arbitrary closure operators on target properties () and on hyperproperties,
as long as the corresponding class is a sub-class of subset-closed hyperproperties, and

8 Safe(πT) = ∩{ST | πT ⊆ ST ∧ ST ∈ SafetyT} is the topological closure in the topol-
ogy of Clarkson and Schneider [14], where safety properties coincide with the closed sets.

https://github.com/secure-compilation/different_traces/blob/esop2020-camera-ready/RobustSafetyCriterion.v
https://github.com/secure-compilation/different_traces/blob/esop2020-camera-ready/RobustSafetyPreservation.v
https://github.com/secure-compilation/different_traces/blob/esop2020-camera-ready/UcoRobustPreservation.v

Trace-Relating Compiler Correctness and Secure Compilation 21

explains all but one of the asymmetries in Figure 2, the one that concerns the robust
preservation of arbitrary hyperproperties:

Theorem 5.3 (Weak Trinity for Robust Hyperproperties). For a trace relation
∼ ⊆ TraceS ×TraceT and induced property mappings σ̃ and τ̃ , RHC∼ is equivalent
to RHPτ̃ ; moreover, if τ̃ � σ̃ is a Galois insertion (i.e., τ̃ ◦ σ̃ = id), RHC∼ implies
RHPσ̃ , while if σ̃ � τ̃ is a Galois reflection (i.e., σ̃ ◦ τ̃ = id), RHPσ̃ implies RHC∼,

where RHC∼ ≡ ∀P ∀CT ∃CS ∀t. CT [P↓] t ⇐⇒ (∃s ∼ t. CS [P] s);

RHPτ̃ ≡ ∀P ∀HS. P |=R HS ⇒ P↓ |=R τ̃(HS);

RHPσ̃ ≡ ∀P ∀HT. P |=R σ̃(HT)⇒ P↓ |=R HT.

This trinity is weak since extra hypotheses are needed to prove some implications.
While the equivalence RHC∼ ⇐⇒ RHPτ̃ holds unconditionally, the other two im-
plications hold only under distinct, stronger assumptions. For RHPσ̃ it is still possible
and correct to deduce a source obligation for a given target hyperproperty HT when no
information is lost in the the composition τ̃ ◦ σ̃ (i.e., the two maps are a Galois inser-
tion). On the other hand, RHPτ̃ is a consequence of RHPσ̃ when no information is lost
in composing in the other direction, σ̃ ◦ τ̃ (i.e., the two maps are a Galois reflection).
Navigating the Diagram. For a given trace relation∼, Figure 2 orders the generalized
criteria according to their relative strength. If a trinity implies another (denoted by⇒),
then the former provides stronger security for a compilation chain than the latter.

As mentioned, some property-full criteria regarding proper subclasses (i.e., subset-
closed hyperproperties, safety, hypersafety, 2-relational safety and 2-relational hyper-
properties) quantify over arbitrary (relational) (hyper)properties and compose τ̃ with
an additional operator. We have already presented the Safe operator; other operators
are Cl⊆, HSafe , and 2rSafe , which approximate the image of τ̃ with a subset-closed
hyperproperty, a hypersafety and 2-relational safety respectively.

As a reading aid, when quantifying over arbitrary trace properties we use the shaded
blue as background color, we use the red when quantifying over arbitrary subset-closed
hyperproperties and green for arbitrary 2-relational properties.

We now describe how to interpret the acronyms in Figure 2. All criteria start with R
meaning they refer to robust preservation. Criteria for relational hyperproperties—here
only arity 2 is shown—contain 2r. Next, criteria names spell the class of hyperproperties
they preserve: H for hyperproperties, SCH for subset-closed hyperproperties, HS for
hypersafety, T for trace properties, and S for safety properties. Finally, property-free
criteria end with a C while property-full ones involving σ̃ and τ̃ end with P. Thus,
robust (R) subset-closed hyperproperty-preserving (SCH) compilation (C) is RSCHC∼,
robust (R) two-relational (2r) safety-preserving (S) compilation (C) is R2rSC∼, etc.

5.2 Instance of Trace-Relating Robust Preservation of Trace Properties

This subsection illustrates trace-relating secure compilation when the target language
has strictly more events than the source that target contexts can exploit to break security.
Source and Target Languages. The source and target languages used here are nearly
identical expression languages, borrowing from the syntax of the source language of
§3.3. Both languages add sequencing of expressions, two kinds of output events, and

https://github.com/secure-compilation/different_traces/blob/esop2020-camera-ready/RobustHyperCriterion.v

22 C. Abate et al.

RTC∼

RTPτ̃RTPσ̃

RSC∼

RTPSafe◦τ̃RSPσ̃

RSCHC∼

RSCHPCl⊆◦τ̃RSCHPCl⊆◦σ̃

RHC∼

RHPτ̃RHPσ̃

Ins.

Refl.

RHSC∼

RSCHPHSafe◦τ̃RHSPCl⊆◦σ̃

R2rTC∼

R2rTPτ̃R2rTPσ̃

R2rSCHC∼

R2rSCHPCl⊆◦τ̃R2rSCHPCl⊆◦σ̃

R2rSC∼

R2rTP2rSafe◦τ̃R2rSPσ̃

R robust 2r 2-relational
H hyperproperties SCH subset-closed hyperproperties HS hypersafety

T trace properties S safety properties
P property-full criterion C property-free criterion based on σ and τ

Fig. 2: Hierarchy of trinitarian views of secure compilation criteria preserving classes
of hyperproperties and the key to read each acronym. Shorthands ‘Ins.’ and ‘Refl.’ stand
for Galois Insertion and Reflection. The symbol denotes trinities proven in Coq.

the expressions that generate them: outS n and outS n usable in source and target, re-
spectively, and outT n usable only in the target, which is the only difference between
source and target. The extra events in the target model the fact that the target language
has an increased ability to perform certain operations, some of them potentially dan-
gerous (such as writing to the hard drive), which cannot be performed by the source
language, and against which source-level reasoning can therefore offer no protection.

Both languages and compilation chains now deal with partial programs, contexts
and linking of those two to produce whole programs. In this setting, a whole program
is the combination of a main expression to be evaluated and a set of function definitions
(with distinct names) that can refer to their argument symbolically and can be called by
the main expression and by other functions. The set of functions of a whole program
is the union of the functions of a partial program and a context; the latter also contains
the main expression. The extensions of the typing rules and the operational semantics
for whole programs are unsurprising and therefore elided. The trace model also follows
closely that of §3.3: it consists of a list of regular events (including the new outputs)
terminated by a result event. Finally, a partial program and a context can be linked into
a whole program when their functions satisfy the requirements mentioned above.

Relating Traces. In the present model, source and target traces differ only in the fact
that the target draws (regular) events from a strictly larger set than the source, i.e.,
ΣT ⊃ ΣS. A natural relation between source and target traces essentially maps to a
given target trace t the source trace that erases from t those events that exist only at the
target level. Let t|ΣS

indicate trace t filtered to retain only those elements included in

https://github.com/secure-compilation/different_traces/blob/esop2020-camera-ready/RobustHyperCriterion.v
https://github.com/secure-compilation/different_traces/blob/esop2020-camera-ready/RobustSSCHCriterion.v
https://github.com/secure-compilation/different_traces/blob/esop2020-camera-ready/RobustTraceCriterion.v
https://github.com/secure-compilation/different_traces/blob/esop2020-camera-ready/RobustSafetyCriterion.v
https://github.com/secure-compilation/different_traces/blob/esop2020-camera-ready/RobustHyperSafetyCriterion.v
https://github.com/secure-compilation/different_traces/blob/esop2020-camera-ready/Robust2relSSCHCriterion.v
https://github.com/secure-compilation/different_traces/blob/esop2020-camera-ready/Robust2relTraceCriterion.v

Trace-Relating Compiler Correctness and Secure Compilation 23

alphabet ΣS. We define the trace relation as:
s ∼ t ≡ s = t|ΣS

.

In the opposite direction, a source trace s is related to many target ones, as any target-
only events can be inserted at any point in s. The induced mappings for ∼ are:
τ̃(πS) = {t | ∃s. s = t|ΣS

∧ s ∈ πS} ; σ̃(πT) = {s | ∀t. s = t|ΣS
⇒ t ∈ πT} .

That is, the target guarantee of a source property is that the target has the same
source-level behavior, sprinkled with arbitrary target-level behavior. Conversely, the
source-level obligation of a target property is the aggregate of those source traces all of
whose target-level enrichments are in the target property.

Since RS and RT are very similar, it is simple to prove that the identity compiler
(·↓) from RS to RT is secure according to the trace relation ∼ defined above.

Theorem 5.4 (·↓ is Secure). ·↓ is RTC∼.

5.3 Instances of Trace-Relating Robust Preservation of Safety and Hypersafety

To provide examples of cross-language trace-relations that preserve safety and hyper-
safety properties, we show how existing secure compilation results can be interpreted in
our framework. This indicates how the more general theory developed here can already
be instantiated to encompass existing results, and that existing proof techniques can be
used in order to achieve the secure compilation criteria we define.

For the preservation of safety, Patrignani and Garg [50] study a compiler from a
typed, concurrent WHILE language to an untyped, concurrent WHILE language with
support for memory capabilities. As in §3.3, their source has bools and nats while
their target only has nats. Additionally, their source has an ML-like memory (where
the domain is locations `) while their target has an assembly-like memory (where the
domain is natural numbers n). Their traces consider context-program interactions and
as such they are concatenations of call and return actions with parameters, which can
include booleans as well as locations. Because of the aforementioned differences, they
need a cross-language relation to relate source and target actions.

Besides defining a relation on traces (i.e., an instance of ∼), they also define a
relation between source and target safety properties. They provide an instantiation of τ
that maps all safe source traces to the related target ones. This ensures that no additional
target trace is introduced in the target property, and source safety properties are mapped
to target safety ones by τ . Their compiler is then proven to generate code that respects
τ , so they achieve a variation of RTPSafe◦τ̃ .

Concerning the preservation of hypersafety, Patrignani and Garg [49] consider com-
pilers in a reactive setting where traces are sequences of input (α?) and output (α!) ac-
tions. In their setting, traces are different between source and target, so they define a
cross-language relation on actions that is total on the source actions and injective. Ad-
ditionally, their set of target output actions is strictly larger than the source one, as it
includes a special action

√
, which is how compiled code must respond to invalid target

inputs (i.e., receiving a bool when a nat was expected). Starting from the relation on
actions, they define TPC, which is an instance of what we call τ . Informally, given a set
of source traces, TPC generates all target traces that are related (pointwise) to a source
trace. Additionally, it generates all traces with interleavings of undesired inputs α? fol-
lowed by

√
as long as removing α?

√
leaves a trace that relates to the source trace.

https://github.com/secure-compilation/different_traces/blob/esop2020-camera-ready/MoreTargetEventsExample.v

24 C. Abate et al.

TPC preserves hypersafety across languages, i.e., it is an instance of RSCHPHSafe◦τ̃

mapping source hypersafety to target hypersafety (and safety to safety).

6 Related Work
We already discussed how our results relate to some existing work in correct compila-
tion [33, 58] and secure compilation [2, 49, 50]. We also already mentioned that most
of our definitions and results make no assumptions about the structure of traces. One
result that relies on the structure of traces is Theorem 5.2, which involves some finite
prefix m, suggesting traces should be some sort of sequences of events (or states), as
customary when one wants to refer to safety properties [14]. It is however sufficient
to fix a topology on properties where safety properties coincide with closed sets [46].
Even for reasoning about safety, hypersafety, or arbitrary hyperproperties, traces can
therefore be values, sequences of program states, or of input output events, or even the
recently proposed interaction trees [62]. In the latter case we believe that the compila-
tion from IMP to ASM proposed by Xia et al. [62] can be seen as an instance of HC∼,
for the relation they call “trace equivalence.”
Compilers Where Our Work Could Be Useful. Our work should be broadly applica-
ble to understanding the guarantees provided by many verified compilers. For instance,
Wang et al. [61] recently proposed a CompCert variant that compiles all the way down
to machine code, and it would be interesting to see if the model at the end of §3.1 applies
there too. This and many other verified compilers [12, 29, 42, 56] beyond CakeML [58]
deal with resource exhaustion and it would be interesting to also apply the ideas of §3.2
to them. Hur and Dreyer [27] devised a correct compiler from an ML language to as-
sembly using a cross-language logical relation to state their CC theorem. They do not
have traces, though were one to add them, the logical relation on values would serve as
the basis for the trace relation and therefore their result would attain CC∼.

Switching to more informative traces capturing the interaction between the program
and the context is often used as a proof technique for secure compilation [2, 28, 48].
Most of these results consider a cross-language relation, so they probably could be
proved to attain one of the criteria from Figure 2.
Generalizations of Compiler Correctness. The compiler correctness definition of
Morris [41] was already general enough to account for trace relations, since it consid-
ered a translation between the semantics of the source program and that of the compiled
program, which he called “decode” in his diagram, reproduced in Figure 3 (left). And
even some of the more recent compiler correctness definitions preserve this kind of flex-
ibility [51]. While CC∼ can be seen as an instance of a definition by Morris [41], we are
not aware of any prior work that investigated the preservation of properties when the
“decode translation” is neither the identity nor a bijection, and source properties need
to be re-interpreted as target ones and vice versa.
Correct Compilation and Galois Connections. Melton et al. [38] and Sabry and
Wadler [55] expressed a strong variant of compiler correctness using the diagram of
Figure 3 (right) [38, 55]. They require that compiled programs parallel the computation
steps of the original source programs, which can be proven showing the existence of a
decompilation map # that makes the diagram commute, or equivalently, the existence
of an adjoint for ↓ (W ≤ W ′ ⇐⇒ W � W ′ for both source and target). The

Trace-Relating Compiler Correctness and Secure Compilation 25

source language

target language target meanings

source meanings

compile
target semantics

decode

source semantics
W

W↓ Z

Z#

T

S

Fig. 3: Morris’s [41] (left) and Melton et al.’s [38] and Sabry and Wadler’s [55] (right)

“parallel” intuition can be formalized as an instance of CC∼. Take source and target
traces to be finite or infinite sequences of program states (maximal trace semantics
[15]), and relate them exactly like Melton et al. [38] and Sabry and Wadler [55].
Translation Validation. Translation validation is an important alternative to proving
that all runs of a compiler are correct. A variant of CC∼ for translation validation can
simply be obtained by specializing the definition to a particular W, and one can obtain
again the same trinitarian view. Similarly for our other criteria, including our extensions
of the secure compilation criteria of Abate et al. [2], which Busi et al. [10] seem to
already be considering in the context of translation validation.

7 Conclusion and Future Work
We have extended the property preservation view on compiler correctness to arbitrary
trace relations, and believe that this will be useful for understanding the guarantees var-
ious compilers provide. An open question is whether, given a compiler, there exists a
most precise ∼ relation for which this compiler is correct. As mentioned in §1, every
compiler is CC∼ for some ∼, but under which conditions is there a most precise rela-
tion? In practice, more precision may not always be better though, as it may be at odds
with compiler efficiency and may not align with more subjective notions of usefulness,
leading to tradeoffs in the selection of suitable relations. Finally, another interesting
direction for future work is studying whether using the relation to Galois connections
allows to more easily compose trace relations for different purposes, say, for a compiler
whose target language has undefined behavior, resource exhaustion, and side-channels.
In particular, are there ways to obtain complex relations by combining simpler ones in
a way that eases the compiler verification burden?

Acknowledgements. We thank Akram El-Korashy and Amin Timany for participating
in an early discussion about this work and the anonymous reviewers for their valuable
feedback. This work was in part supported by the European Research Council under
ERC Starting Grant SECOMP (715753), by the German Federal Ministry of Education
and Research (BMBF) through funding for the CISPA-Stanford Center for Cybersecu-
rity (FKZ: 13N1S0762), by DARPA grant SSITH/HOPE (FA8650-15-C-7558) and by
UAIC internal grant 07/2018.

https://erc.europa.eu
https://secure-compilation.github.io/

Bibliography

[1] M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. A core calculus of dependency.
POPL, 1999.

[2] C. Abate, R. Blanco, D. Garg, C. Hriţcu, M. Patrignani, and J. Thibault. Journey beyond
full abstraction: Exploring robust property preservation for secure compilation. CSF, 2019.

[3] A. Ahmed, D. Garg, C. Hriţcu, and F. Piessens. Secure compilation (Dagstuhl Seminar
18201). Dagstuhl Reports, 8(5), 2018.

[4] A. Anand, A. Appel, G. Morrisett, Z. Paraskevopoulou, R. Pollack, O. S. Belanger,
M. Sozeau, and M. Weaver. CertiCoq: A verified compiler for Coq. CoqPL Workshop,
2017.

[5] K. Backhouse and R. Backhouse. Safety of abstract interpretations for free, via logical
relations and Galois connections. Science of Computer Programming, 51(1-2), 2004.

[6] G. Barthe, B. Grégoire, and V. Laporte. Secure compilation of side-channel countermea-
sures: the case of cryptographic “constant-time”. CSF, 2018.

[7] L. Beringer, G. Stewart, R. Dockins, and A. W. Appel. Verified compilation for shared-
memory C. ESOP, 2014.

[8] F. Besson, S. Blazy, and P. Wilke. A verified CompCert front-end for a memory model
supporting pointer arithmetic and uninitialised data. Journal of Automated Reasoning, 62
(4), 2019.

[9] S. Boldo, J. Jourdan, X. Leroy, and G. Melquiond. Verified compilation of floating-point
computations. Journal of Automated Reasoning, 54(2), 2015.

[10] M. Busi, P. Degano, and L. Galletta. Translation validation for security properties. CoRR,
abs/1901.05082, 2019.

[11] Q. Cao, L. Beringer, S. Gruetter, J. Dodds, and A. W. Appel. VST-Floyd: A separation logic
tool to verify correctness of C programs. Journal of Automated Reasoning, 61(1-4), 2018.

[12] Q. Carbonneaux, J. Hoffmann, T. Ramananandro, and Z. Shao. End-to-end verification of
stack-space bounds for C programs. PLDI, 2014.

[13] C. Cimpanu. Microsoft: 70 percent of all security bugs are memory safety issues. ZDNet,
2019.

[14] M. R. Clarkson and F. B. Schneider. Hyperproperties. JCS, 18(6), 2010.
[15] P. Cousot. Constructive design of a hierarchy of semantics of a transition system by abstract

interpretation. TCS, 277(1-2), 2002.
[16] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis

of programs by construction or approximation of fixpoints. POPL, 1977.
[17] V. D’Silva, M. Payer, and D. X. Song. The correctness-security gap in compiler optimiza-

tion. S&P Workshops, 2015.
[18] J. Engelfriet. Determinacy implies (observation equivalence = trace equivalence). TCS, 36,

1985.
[19] R. Focardi and R. Gorrieri. A taxonomy of security properties for process algebras. JCS, 3

(1), 1995.
[20] P. H. Gardiner, C. E. Martin, and O. De Moor. An algebraic construction of predicate

transformers. Science of Computer Programming, 22(1-2), 1994.
[21] R. Giacobazzi and I. Mastroeni. Abstract non-interference: a unifying framework for weak-

ening information-flow. ACM Transactions on Privacy and Security, 21(2), 2018.
[22] J. A. Goguen and J. Meseguer. Security policies and security models. S&P, 1982.
[23] R. Gu, Z. Shao, J. Kim, X. N. Wu, J. Koenig, V. Sjöberg, H. Chen, D. Costanzo, and T. Ra-

mananandro. Certified concurrent abstraction layers. PLDI, 2018.

http://dx.doi.org/10.1145/292540.292555
https://arxiv.org/abs/1807.04603
https://arxiv.org/abs/1807.04603
http://dx.doi.org/10.4230/DagRep.8.5.1
http://dx.doi.org/10.4230/DagRep.8.5.1
https://www.cs.princeton.edu/~appel/papers/certicoq-coqpl.pdf
https://core.ac.uk/download/pdf/82190842.pdf
https://core.ac.uk/download/pdf/82190842.pdf
http://dx.doi.org/10.1109/CSF.2018.00031
http://dx.doi.org/10.1109/CSF.2018.00031
http://dx.doi.org/10.1007/978-3-642-54833-8_7
http://dx.doi.org/10.1007/978-3-642-54833-8_7
http://dx.doi.org/10.1007/s10817-017-9439-z
http://dx.doi.org/10.1007/s10817-017-9439-z
http://dx.doi.org/10.1007/s10817-014-9317-x
http://dx.doi.org/10.1007/s10817-014-9317-x
http://arxiv.org/abs/1901.05082
http://dx.doi.org/10.1007/s10817-018-9457-5
http://dx.doi.org/10.1007/s10817-018-9457-5
http://dx.doi.org/10.1145/2594291.2594301
http://dx.doi.org/10.1145/2594291.2594301
https://www.zdnet.com/article/microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues/
http://dx.doi.org/10.3233/JCS-2009-0393
https://www.di.ens.fr/~cousot/COUSOTpapers/publications.www/Cousot-TCS-02-v277p47-103-2002.pdf
https://www.di.ens.fr/~cousot/COUSOTpapers/publications.www/Cousot-TCS-02-v277p47-103-2002.pdf
http://dx.doi.org/10.1109/SPW.2015.33
http://dx.doi.org/10.1109/SPW.2015.33
http://dx.doi.org/10.1016/0304-3975(85)90028-3
http://dx.doi.org/10.3233/JCS-1994/1995-3103
https://doi.org/10.1016/0167-6423(94)90006-X
https://doi.org/10.1016/0167-6423(94)90006-X
https://doi.org/10.1145/3175660
https://doi.org/10.1145/3175660
https://www.cs.purdue.edu/homes/ninghui/readings/AccessControl/goguen_meseguer_82.pdf
http://dx.doi.org/10.1145/3192366.3192381

Trace-Relating Compiler Correctness and Secure Compilation 27

[24] I. Haller, Y. Jeon, H. Peng, M. Payer, C. Giuffrida, H. Bos, and E. van der Kouwe. TypeSan:
Practical type confusion detection. CCS, 2016.

[25] Heartbleed. The Heartbleed bug. http://heartbleed.com/, 2014.
[26] C. Hriţcu, D. Chisnall, D. Garg, and M. Payer. Secure compilation. SIGPLAN PL Perspec-

tives Blog, 2019.
[27] C. Hur and D. Dreyer. A Kripke logical relation between ML and assembly. POPL, 2011.
[28] A. Jeffrey and J. Rathke. Java Jr: Fully abstract trace semantics for a core Java language.

ESOP, 2005.
[29] J. Kang, C. Hur, W. Mansky, D. Garbuzov, S. Zdancewic, and V. Vafeiadis. A formal C

memory model supporting integer-pointer casts. PLDI, 2015.
[30] J. Kang, Y. Kim, C.-K. Hur, D. Dreyer, and V. Vafeiadis. Lightweight verification of sepa-

rate compilation. POPL, 2016.
[31] L. Lamport and F. B. Schneider. Formal foundation for specification and verification. In

Distributed Systems: Methods and Tools for Specification, An Advanced Course, 1984.
[32] C. Lattner. What every C programmer should know about undefined behavior #1/3. LLVM

Project Blog, 2011.
[33] X. Leroy. Formal verification of a realistic compiler. CACM, 52(7), 2009.
[34] X. Leroy. A formally verified compiler back-end. JAR, 43(4), 2009.
[35] X. Leroy. The formal verification of compilers (DeepSpec Summer School 2017), 2017.
[36] I. Mastroeni and M. Pasqua. Verifying bounded subset-closed hyperproperties. SAS, 2018.
[37] J. McCarthy and J. Painter. Correctness of a compiler for arithmetic expressions. Mathe-

matical Aspects Of Computer Science 1, 19 of Proceedings of Symposia in Applied Math-
ematics, 1967.

[38] A. Melton, D. A. Schmidt, and G. E. Strecker. Galois connections and computer science
applications. In Proceedings of a Tutorial and Workshop on Category Theory and Computer
Programming, 1986.

[39] R. Milner. A Calculus of Communicating Systems. Springer-Verlag, Berlin, Heidelberg,
1982.

[40] R. Milner and R. Weyhrauch. Proving compiler correctness in a mechanized logic. In Pro-
ceedings of 7th Annual Machine Intelligence Workshop, volume 7 of Machine Intelligence,
1972.

[41] F. L. Morris. Advice on structuring compilers and proving them correct. POPL, 1973.
[42] E. Mullen, D. Zuniga, Z. Tatlock, and D. Grossman. Verified peephole optimizations for

CompCert. PLDI, 2016.
[43] D. A. Naumann. A categorical model for higher order imperative programming. Mathe-

matical Structures in Computer Science, 8(4), 1998.
[44] D. A. Naumann and M. Ngo. Whither specifications as programs. In International Sympo-

sium on Unifying Theories of Programming. Springer, 2019.
[45] G. Neis, C. Hur, J. Kaiser, C. McLaughlin, D. Dreyer, and V. Vafeiadis. Pilsner: a compo-

sitionally verified compiler for a higher-order imperative language. ICFP, 2015.
[46] M. Pasqua and I. Mastroeni. On topologies for (hyper)properties. CEUR, 2017.
[47] M. Patrignani. Why should anyone use colours? or, syntax highlighting beyond code snip-

pets, 2020.
[48] M. Patrignani and D. Clarke. Fully abstract trace semantics for protected module architec-

tures. Computer Languages, Systems & Structures, 42, 2015.
[49] M. Patrignani and D. Garg. Secure compilation and hyperproperty preservation. CSF, 2017.
[50] M. Patrignani and D. Garg. Robustly safe compilation. ESOP, 2019.
[51] D. Patterson and A. Ahmed. The next 700 compiler correctness theorems (functional pearl).

PACMPL, 3(ICFP), 2019.
[52] T. Ramananandro, Z. Shao, S. Weng, J. Koenig, and Y. Fu. A compositional semantics for

verified separate compilation and linking. CPP, 2015.

http://dx.doi.org/10.1145/2976749.2978405
http://dx.doi.org/10.1145/2976749.2978405
http://heartbleed.com/
https://blog.sigplan.org/2019/07/01/secure-compilation/
http://dx.doi.org/10.1145/1926385.1926402
http://dx.doi.org/10.1007/978-3-540-31987-0_29
http://dx.doi.org/10.1145/2737924.2738005
http://dx.doi.org/10.1145/2737924.2738005
http://sf.snu.ac.kr/sepcompcert/
http://sf.snu.ac.kr/sepcompcert/
http://dx.doi.org/10.1007/3-540-15216-4_15
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
http://dx.doi.org/10.1145/1538788.1538814
http://dx.doi.org/10.1007/s10817-009-9155-4
https://xavierleroy.org/courses/DSSS-2017/
https://iris.univr.it/retrieve/handle/11562/990895/120109/MastroeniPasqua.pdf
http://jmc.stanford.edu/articles/mcpain/mcpain.pdf
http://dl.acm.org/citation.cfm?id=20081.20099
http://dl.acm.org/citation.cfm?id=20081.20099
http://www.cs.umd.edu/~hjs/pubs/compilers/archive/mi72-mil-wey.pdf
http://dx.doi.org/10.1145/512927.512941
http://dx.doi.org/10.1145/2908080.2908109
http://dx.doi.org/10.1145/2908080.2908109
https://www.cs.stevens.edu/~naumann/pub/cmho.ps
https://arxiv.org/abs/1906.03557
http://dx.doi.org/10.1145/2784731.2784764
http://dx.doi.org/10.1145/2784731.2784764
http://ceur-ws.org/Vol-1949/ICTCSpaper13.pdf
http://arxiv.org/abs/2001.11334
http://arxiv.org/abs/2001.11334
http://dx.doi.org/10.1016/j.cl.2015.03.002
http://dx.doi.org/10.1016/j.cl.2015.03.002
http://dx.doi.org/10.1109/CSF.2017.13
https://arxiv.org/abs/1804.00489
http://dx.doi.org/10.1145/3341689
http://dx.doi.org/10.1145/2676724.2693167
http://dx.doi.org/10.1145/2676724.2693167

28 C. Abate et al.

[53] J. Regehr. A guide to undefined behavior in C and C++, part 3. Embedded in Academia
blog, 2010.

[54] A. Sabelfeld and D. Sands. Dimensions and principles of declassification. CSFW, 2005.
[55] A. Sabry and P. Wadler. A reflection on call-by-value. ACM Transactions on Programming

Languages and Systems, 19(6), 1997.
[56] J. Sevcík, V. Vafeiadis, F. Z. Nardelli, S. Jagannathan, and P. Sewell. CompCertTSO: A

verified compiler for relaxed-memory concurrency. J. ACM, 60(3), 2013.
[57] G. Stewart, L. Beringer, S. Cuellar, and A. W. Appel. Compositional CompCert. POPL,

2015.
[58] Y. K. Tan, M. O. Myreen, R. Kumar, A. Fox, S. Owens, and M. Norrish. The verified

CakeML compiler backend. Journal of Functional Programming, 29, 2019.
[59] X. Wang, H. Chen, A. Cheung, Z. Jia, N. Zeldovich, and M. F. Kaashoek. Undefined

behavior: What happened to my code? APSYS, 2012.
[60] X. Wang, N. Zeldovich, M. F. Kaashoek, and A. Solar-Lezama. Towards optimization-safe

systems: Analyzing the impact of undefined behavior. SOSP, 2013.
[61] Y. Wang, P. Wilke, and Z. Shao. An abstract stack based approach to verified compositional

compilation to machine code. PACMPL, 3(POPL), 2019.
[62] L. Xia, Y. Zakowski, P. He, C. Hur, G. Malecha, B. C. Pierce, and S. Zdancewic. Interaction

trees: representing recursive and impure programs in Coq. PACMPL, 4(POPL), 2020.
[63] A. Zakinthinos and E. S. Lee. A general theory of security properties. S&P, 1997.
[64] J. Zhao, S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. Formalizing the LLVM

intermediate representation for verified program transformations. POPL, 2012.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not in-
cluded in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

https://blog.regehr.org/archives/232
http://www.cse.chalmers.se/~dave/papers/sabelfeld-sands-CSFW05.pdf
http://dx.doi.org/10.1145/2487241.2487248
http://dx.doi.org/10.1145/2487241.2487248
http://dx.doi.org/10.1145/2676726.2676985
http://dx.doi.org/10.1017/S0956796818000229
http://dx.doi.org/10.1017/S0956796818000229
http://dx.doi.org/10.1145/2349896.2349905
http://dx.doi.org/10.1145/2349896.2349905
http://dx.doi.org/10.1145/2517349.2522728
http://dx.doi.org/10.1145/2517349.2522728
http://dx.doi.org/10.1145/3290375
http://dx.doi.org/10.1145/3290375
http://dx.doi.org/10.1145/3371119
http://dx.doi.org/10.1145/3371119
http://dx.doi.org/10.1109/SECPRI.1997.601322
http://www.cis.upenn.edu/~stevez/papers/ZNMZ12.pdf
http://www.cis.upenn.edu/~stevez/papers/ZNMZ12.pdf
http://creativecommons.org/licenses/by/4.0/

	Trace-Relating Compiler Correctness and Secure Compilation -0.8em
	Introduction
	Trace-Relating Compiler Correctness
	Property Mappings
	Trace Relations and Property Mappings
	Preservation of Subset-Closed Hyperproperties

	Instances of Trace-Relating Compiler Correctness
	Undefined Behavior
	Resource Exhaustion
	Different Source and Target Values
	Abstraction Mismatches

	Trace-Relating Compilation and Noninterference Preservation
	Trace-Relating Secure Compilation
	Trace-Relating Secure Compilation: A Spectrum of Trinities
	Instance of Trace-Relating Robust Preservation of Trace Properties
	Instances of Trace-Relating Robust Preservation of Safety and Hypersafety

	Related Work
	Conclusion and Future Work

