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Abstract. We extend the simply-typed guarded λ-calculus with discrete
probabilities and endow it with a program logic for reasoning about re-
lational properties of guarded probabilistic computations. This provides
a framework for programming and reasoning about infinite stochastic
processes like Markov chains. We demonstrate the logic sound by inter-
preting its judgements in the topos of trees and by using probabilistic
couplings for the semantics of relational assertions over distributions on
discrete types.
The program logic is designed to support syntax-directed proofs in the
style of relational refinement types, but retains the expressiveness of
higher-order logic extended with discrete distributions, and the ability
to reason relationally about expressions that have different types or syn-
tactic structure. In addition, our proof system leverages a well-known
theorem from the coupling literature to justify better proof rules for
relational reasoning about probabilistic expressions. We illustrate these
benefits with a broad range of examples that were beyond the scope of
previous systems, including shift couplings and lump couplings between
random walks.

1 Introduction

Stochastic processes are often used in mathematics, physics, biology or finance
to model evolution of systems with uncertainty. In particular, Markov chains
are “memoryless” stochastic processes, in the sense that the evolution of the
system depends only on the current state and not on its history. Perhaps the
most emblematic example of a (discrete time) Markov chain is the simple random
walk over the integers, that starts at 0, and that on each step moves one position
either left or right with uniform probability. Let pi be the position at time i.
Then, this Markov chain can be described as:

p0 = 0 pi+1 =

{
pi + 1 with probability 1/2

pi − 1 with probability 1/2



The goal of this paper is to develop a programming and reasoning frame-
work for probabilistic computations over infinite objects, such as Markov chains.
Although programming and reasoning frameworks for infinite objects and proba-
bilistic computations are well-understood in isolation, their combination is chal-
lenging. In particular, one must develop a proof system that is powerful enough
for proving interesting properties of probabilistic computations over infinite ob-
jects, and practical enough to support effective verification of these properties.

Modelling probabilistic infinite objects A first challenge is to model probabilistic
infinite objects. We focus on the case of Markov chains, due to its importance. A
(discrete-time) Markov chain is a sequence of random variables {Xi} over some
fixed type T satisfying some independence property. Thus, the straightforward
way of modelling a Markov chain is as a stream of distributions over T . Going
back to the simple example outlined above, it is natural to think about this
kind of discrete-time Markov chain as characterized by the sequence of positions
{pi}i∈N, which in turn can be described as an infinite set indexed by the natural
numbers. This suggests that a natural way to model such a Markov chain is to
use streams in which each element is produced probabilistically from the previous
one. However, there are some downsides to this representation. First of all, it
requires explicit reasoning about probabilistic dependency, since Xi+1 depends
on Xi. Also, we might be interested in global properties of the executions of
the Markov chain, such as “The probability of passing through the initial state
infinitely many times is 1”. These properties are naturally expressed as properties
of the whole stream. For these reasons, we want to represent Markov chains as
distributions over streams. Seemingly, one downside of this representation is that
the set of streams is not countable, which suggests the need for introducing heavy
measure-theoretic machinery in the semantics of the programming language,
even when the underlying type is discrete or finite.

Fortunately, measure-theoretic machinery can be avoided (for discrete dis-
tributions) by developing a probabilistic extension of the simply-typed guarded
λ-calculus and giving a semantic interpretation in the topos of trees [1]. Infor-
mally, the simply-typed guarded λ-calculus [1] extends the simply-typed lambda
calculus with a later modality, denoted by .. The type .A ascribes expressions
that are available one unit of logical time in the future. The . modality allows
one to model infinite types by using “finite” approximations. For example, a
stream of natural numbers is represented by the sequence of its (increasing) pre-
fixes in the topos of trees. The prefix containing the first i elements has the type
Si , N× .N× . . .× .(i−1)N, representing that the first element is available now,
the second element a unit time in the future, and so on. This is the key to repre-
senting probability distributions over infinite objects without measure-theoretic
semantics: We model probability distributions over non-discrete sets as discrete
distributions over their (the sets’) approximations. For example, a distribution
over streams of natural numbers (which a priori would be non-discrete since the
set of streams is uncountable) would be modelled by a sequence of distributions
over the finite approximations S1, S2, . . . of streams. Importantly, since each Si
is countable, each of these distributions can be discrete.



Reasoning about probabilistic computations Probabilistic computations exhibit
a rich set of properties. One natural class of properties is related to probabilities
of events, saying, for instance, that the probability of some event E (or of an
indexed family of events) increases at every iteration. However, several inter-
esting properties of probabilistic computation, such as stochastic dominance or
convergence (defined below) are relational, in the sense that they refer to two
runs of two processes. In principle, both classes of properties can be proved us-
ing a higher-order logic for probabilistic expressions, e.g. the internal logic of
the topos of trees, suitably extended with an axiomatization of finite distribu-
tions. However, we contend that an alternative approach inspired from refine-
ment types is desirable and provides better support for effective verification.
More specifically, reasoning in a higher-order logic, e.g. in the internal logic of
the topos of trees, does not exploit the structure of programs for non-relational
reasoning, nor the structural similarities between programs for relational rea-
soning. As a consequence, reasoning is more involved. To address this issue, we
define a relational proof system that exploits the structure of the expressions
and supports syntax-directed proofs, with necessary provisions for escaping the
syntax-directed discipline when the expressions do not have the same structure.
The proof system manipulates judgements of the form:

∆ | Σ | Γ | Ψ ` t1 : A1 ∼ t2 : A2 | φ

where ∆ and Γ are two typing contexts, Σ and Ψ respectively denote sets of as-
sertions over variables in these two contexts, t1 and t2 are well-typed expressions
of type A1 and A2, and φ is an assertion that may contain the special variables
r1 and r2 that respectively correspond to the values of t1 and t2. The context ∆
and Γ , the terms t1 and t2 and the types A1 and A2 provide a specification, while
Σ, Ψ , and φ are useful for reasoning about relational properties over t1, t2, their
inputs and their outputs. This form of judgement is similar to that of Relational
Higher-Order Logic [2], from which our system draws inspiration.

In more detail, our relational logic comes with typing rules that allow one
to reason about relational properties by exploiting as much as possible the syn-
tactic similarities between t1 and t2, and to fall back on pure logical reasoning
when these are not available. In order to apply relational reasoning to guarded
computations the logic provides relational rules for the later modality . and for
a related modality �, called “constant”. These rules allow the relational verifi-
cation of general relational properties that go beyond the traditional notion of
program equivalence and, moreover, they allow the verification of properties of
guarded computations over different types. The ability to reason about compu-
tations of different types provides significant benefits over alternative formalisms
for relational reasoning. For example, it enables reasoning about relations be-
tween programs working on different data structures, e.g. a relation between a
program working on a stream of natural numbers, and a program working on a
stream of pairs of natural numbers, or having different structures, e.g. a relation
between an application and a case expression.

Importantly, our approach for reasoning formally about probabilistic com-
putations is based on probabilistic couplings, a standard tool from the analysis



of Markov chains [3,4]. From a verification perspective, probabilistic couplings
go beyond equivalence properties of probabilistic programs, which have been
studied extensively in the verification literature, and yet support compositional
reasoning [5,6]. The main attractive feature of coupling-based reasoning is that it
limits the need of explicitly reasoning about the probabilities—this avoids com-
plex verification conditions. We provide sound proof rules for reasoning about
probabilistic couplings. Our rules make several improvements over prior rela-
tional verification logics based on couplings. First, we support reasoning over
probabilistic processes of different types. Second, we use Strassen’s theorem [7]
a remarkable result about probabilistic couplings, to achieve greater expressivity.
Previous systems required to prove a bijection between the sampling spaces to
show the existence of a coupling [5,6], Strassen’s theorem gives a way to show
their existence which is applicable in settings where the bijection-based approach
cannot be applied. And third, we support reasoning with what are called shift
couplings, coupling which permits to relate the states of two Markov chains at
possibly different times (more explanations below).

Case studies We show the flexibility of our formalism by verifying several exam-
ples of relational properties of probabilistic computations, and Markov chains in
particular. These examples cannot be verified with existing approaches.

First, we verify a classic example of probabilistic non-interference which re-
quires the reasoning about computations at different types. Second, in the con-
text of Markov chains, we verify an example about stochastic dominance which
exercises our more general rule for proving the existence of couplings modelled
by expressions of different types. Finally, we verify an example involving shift re-
lations in an infinite computation. This style of reasoning is motivated by “shift”
couplings in Markov chains. In contrast to a standard coupling, which relates the
states of two Markov chains at the same time t, a shift coupling relates the states
of two Markov chains at possibly different times. Our specific example relates a
standard random walk (described earlier) to a variant called a lazy random walk;
the verification requires relating the state of standard random walk at time t to
the state of the lazy random walk at time 2t. We note that this kind of reasoning
is impossible with conventional relational proof rules even in a non-probabilistic
setting. Therefore, we provide a novel family of proof rules for reasoning about
shift relations. At a high level, the rules combine a careful treatment of the later
and constant modalities with a refined treatment of fixpoint operators, allowing
us to relate different iterates of function bodies.

Summary of contributions

With the aim of providing a general framework for programming and reasoning
about Markov chains, the three main contributions of this work are:

1. A probabilistic extension of the guarded λ-calculus, that enables the defini-
tion of Markov chains as discrete probability distributions over streams.



2. A relational logic based on coupling to reason in a syntax-directed manner
about (relational) properties of Markov chains. This logic supports reasoning
about programs that have different types and structures. Additionally, this
logic uses results from the coupling literature to achieve greater expressivity
than previous systems.

3. An extension of the relational logic that allows to relate the states of two
streams at possibly different times. This extension supports reasoning prin-
ciples, such as shift couplings, that escape conventional relational logics.

2 Mathematical preliminaries

This section reviews the definition of discrete probability sub-distributions and
introduces mathematical couplings.

Definition 1 (Discrete probability distribution). Let C be a discrete (i.e.,
finite or countable) set. A (total) distribution over C is a function µ : C → [0, 1]
such that

∑
x∈C µ(x) = 1. The support of a distribution µ is the set of points

with non-zero probability, supp µ , {x ∈ C | µ(x) > 0}. We denote the set of
distributions over C as D(C). Given a subset E ⊆ C, the probability of sampling
from µ a point in E is denoted Prx←µ[x ∈ E], and is equal to

∑
x∈E µ(x).

Definition 2 (Marginals). Let µ be a distribution over a product space C1 ×
C2. The first (second) marginal of µ is another distribution D(π1)(µ) (D(π2)(µ))
over C1 (C2) defined as:

D(π1)(µ)(x) =
∑
y∈C2

µ(x, y)

(
D(π2)(µ)(y) =

∑
x∈C1

µ(x, y)

)

Probabilistic couplings Probabilistic couplings are a fundamental tool in the
analysis of Markov chains. When analyzing a relation between two probability
distributions it is sometimes useful to consider instead a distribution over the
product space that somehow “couples” the randomness in a convenient manner.

Consider for instance the case of the following Markov chain, which counts
the total amount of tails observed when tossing repeatedly a biased coin with
probability of tails p:

n0 = 0 ni+1 =

{
ni + 1 with probability p
ni with probability (1− p)

If we have two biased coins with probabilities of tails p and q with p ≤ q and
we respectively observe {ni} and {mi} we would expect that, in some sense,
ni ≤ mi should hold for all i (this property is known as stochastic dominance).
A formal proof of this fact using elementary tools from probability theory would
require to compute the cumulative distribution functions for ni and mi and then
to compare them. The coupling method reduces this proof to showing a way to
pair the coin flips so that if the first coin shows tails, so does the second coin.

We now review the definition of couplings and state relevant properties.



Definition 3 (Couplings). Let µ1 ∈ D(C1) and µ2 ∈ D(C2), and R ⊆ C1×C2.

– A distribution µ ∈ D(C1 × C2) is a coupling for µ1 and µ2 iff its first and
second marginals coincide with µ1 and µ2 respectively, i.e. D(π1)(µ) = µ1

and D(π2)(µ) = µ2.
– A distribution µ ∈ D(C1×C2) is a R-coupling for µ1 and µ2 if it is a coupling

for µ1 and µ2 and, moreover, Pr(x1,x2)←µ[R x1 x2] = 1, i.e., if the support
of the distribution µ is included in R.

Moreover, we write �µ1,µ2 .R iff there exists a R-coupling for µ1 and µ2.

Couplings always exist. For instance, the product distribution of two distri-
butions is always a coupling. Going back to the example about the two coins,
it can be proven by computation that the following is a coupling that lifts the
less-or-equal relation (0 indicating heads and 1 indicating tails):{

(0, 0) w/ prob (1− q) (0, 1) w/ prob (q − p)
(1, 0) w/ prob 0 (1, 1) w/ prob p

The following theorem in [7] gives a necessary and sufficient condition for the
existence of R-couplings between two distributions. The theorem is remarkable in
the sense that it proves an equivalence between an existential property (namely
the existence of a particular coupling) and a universal property (checking, for
each event, an inequality between probabilities).

Theorem 1 (Strassen’s theorem). Consider µ1 ∈ D(C1) and µ2 ∈ D(C2),
and R ⊆ C1 × C2. Then �µ1,µ2

.R iff for every X ⊆ C1, Prx1←µ1
[x1 ∈ X] ≤

Prx2←µ2 [x2 ∈ R(X)], where R(X) is the image of X under R, i.e. R(X) = {y ∈
C2 | ∃x ∈ X. R x y}.

An important property of couplings is closure under sequential composition.

Lemma 1 (Sequential composition couplings). Let µ1 ∈ D(C1), µ2 ∈
D(C2), M1 : C1 → D(D1) and M2 : C2 → D(D2). Moreover, let R ⊆ C1 × C2

and S ⊆ D1×D2. Assume: (1) �µ1,µ2 .R; and (2) for every x1 ∈ C1 and x2 ∈ C2

such that R x1 x2, we have �M1(x1),M2(x2).S. Then �(bind µ1 M1),(bind µ2 M2).S,
where bind µ M is defined as

(bind µ M)(y) =
∑
x

µ(x) ·M(x)(y)

We conclude this section with the following lemma, which follows from Strassen’s
theorem:

Lemma 2 (Fundamental lemma of couplings). Let R ⊆ C1×C2, E1 ⊆ C1

and E2 ⊆ C2 such that for every x1 ∈ E1 and x2 ∈ C2, R x1 x2 implies x2 ∈ E2,
i.e. R(E1) ⊆ E2. Moreover, let µ1 ∈ D(C1) and µ2 ∈ D(C2) such that �µ1,µ2

.R.
Then

Pr
x1←µ1

[x1 ∈ E1] ≤ Pr
x2←µ2

[x2 ∈ E2]



This lemma can be used to prove probabilistic inequalities from the existence
of suitable couplings:

Corollary 1. Let µ1, µ2 ∈ D(C):

1. If �µ1,µ2 .(=), then for all x ∈ C, µ1(x) = µ2(x).

2. If C = N and �µ1,µ2
.(≥), then for all n ∈ N, Prx←µ1

[x ≥ n] ≥ Prx←µ2
[x ≥ n]

In the example at the beginning of the section, the property we want to prove
is precisely that, for every k and i, the following holds:

Pr
x1←ni

[x1 ≥ k] ≤ Pr
x2←mi

[x2 ≥ k]

Since we have a ≤-coupling, this proof is immediate. This example is formalized
in subsection 3.3.

3 Overview of the system

In this section we give a high-level overview of our system, with the details on
sections 4, 5 and 6. We start by presenting the base logic, and then we show how
to extend it with probabilities and how to build a relational reasoning system
on top of it.

3.1 Base logic: Guarded Higher-Order Logic

Our starting point is the Guarded Higher-Order Logic [1] (Guarded HOL) in-
spired by the topos of trees. In addition to the usual constructs of HOL to reason
about lambda terms, this logic features the . and � modalities to reason about
infinite terms, in particular streams. The . modality is used to reason about
objects that will be available in the future, such as tails of streams. For instance,
suppose we want to define an All(s, φ) predicate, expressing that all elements of
a stream s ≡ n ::xs satisfy a property φ. This can be axiomatized as follows:

∀(xs : . StrN)(n : N).φ n⇒ . [s← xs] .All(s, x.φ)⇒ All(n ::xs, x.φ)

We use x.φ to denote that the formula φ depends on a free variable x, which will
get replaced by the first argument of All. We have two antecedents. The first
one states that the head n satisfies φ. The second one, . [s← xs] .All(s, x.φ),
states that all elements of xs satisfy φ. Formally, xs is the tail of the stream and
will be available in the future, so it has type . StrN. The delayed substitution
.[s← xs] replaces s of type StrN with xs of type . StrN inside All and shifts the
whole formula one step into the future. In other words, . [s← xs] .All(s, x.φ)
states that All(−, x.φ) will be satisfied by xs in the future, once it is available.



3.2 A system for relational reasoning

When proving relational properties it is often convenient to build proofs guided
by the syntactic structure of the two expressions to be related. This style of
reasoning is particularly appealing when the two expressions have the same
structure and control-flow, and is appealingly close to the traditional style of
reasoning supported by refinement types. At the same time, a strict adherence to
the syntax-directed discipline is detrimental to the expressiveness of the system;
for instance, it makes it difficult or even impossible to reason about structurally
dissimilar terms. To achieve the best of both worlds, we present a relational proof
system built on top of Guarded HOL, which we call Guarded RHOL. Judgements
have the shape:

∆ | Σ | Γ | Ψ ` t1 : A1 ∼ t2 : A2 | φ

where φ is a logical formula that may contain two distinguished variables r1
and r2 that respectively represent the expressions t1 and t2. This judgement
subsumes two typing judgements on t1 and t2 and a relation φ on these two
expressions. However, this form of judgement does not tie the logical property
to the type of the expressions, and is key to achieving flexibility while supporting
syntax-directed proofs whenever needed. The proof system combines rules of two
different flavours: two-sided rules, which relate expressions with the same top-
level constructs, and one-sided rules, which operate on a single expression.

We then extend Guarded HOL with a modality � that lifts assertions over
discrete types C1 and C2 to assertions over D(C1) and D(C2). Concretely, we
define for every assertion φ, variables x1 and x2 of type C1 and C2 respectively,
and expressions t1 and t2 of type D(C1) and D(C2) respectively, the modal
assertion �[x1←t1,x2←t2]φ which holds iff the interpretations of t1 and t2 are
related by the probabilistic lifting of the interpretation of φ. We call this new
logic Probabilistic Guarded HOL.

We accordingly extend the relational proof system to support reasoning about
probabilistic expressions by adding judgements of the form:

∆ | Σ | Γ | Ψ ` t1 : D(C1) ∼ t2 : D(C2) | �[x1←r1,x2←r2]φ

expressing that t1 and t2 are distributions related by a φ-coupling. We call
this proof system Probabilistic Guarded RHOL. These judgements can be built
by using the following rule, that lifts relational judgements over discrete types
C1 and C2 to judgements over distribution types D(C1) and D(C2) when the
premises of Strassen’s theorem are satisfied.

∆ | Σ | Γ | Ψ ` ∀X1 ⊆ C1.Pry1←t1 [y1 ∈ X1] ≤ Pry2←t2 [∃y1 ∈ X1.φ]

∆ | Σ | Γ | Ψ ` t1 : D(C1) ∼ t2 : D(C2) | �[y1←r1,y2←r2]φ
COUPLING

Recall that (discrete time) Markov chains are “memoryless” probabilistic
processes, whose specification is given by a (discrete) set C of states, an initial
state s0 and a probabilistic transition function step : C → D(C), where D(S)
represents the set of discrete distributions over C. As explained in the intro-
duction, a convenient modelling of Markov chains is by means of probabilistic



streams, i.e. to model a Markov chain as an element of D(StrS), where S is its
underlying state space. To model Markov chains, we introduce a markov oper-
ator with type C → (C → D(C)) → D(StrC) that, given an initial state and a
transition function, returns a Markov chain. We can reason about Markov chains
by the [Markov] rule (the context, omitted, does not change):

` t1 : C1 ∼ t2 : C2 | φ
` h1 : C1 → D(C1) ∼ h2 : C2 → D(C2) | ψ3

` ψ4

` markov(t1, h1) : D(StrD1
) ∼ markov(t2, h2) : D(StrD2

) | �[y1←r1
y2←r2]

φ′
Markov

where


ψ3 ≡ ∀x1x2.φ[x1/r1][x2/r2]⇒ �[y1←r1 x1,y2←r2 x2]φ[y1/r1][y2/r2]

ψ4 ≡ ∀x1 x2 xs1 xs2.φ[x1/r1][x2/r2]⇒ . [y1 ← xs1, y2 ← xs2] .φ′ ⇒
φ′[x1 ::xs1/y1][x2 ::xs2/y2]

Informally, the rule stipulates the existence of an invariant φ over states. The
first premise insists that the invariant hold on the initial states, the condition
ψ3 states that the transition functions preserve the invariant, and ψ4 states that
the invariant φ over pairs of states can be lifted to a stream property φ′.

Other rules of the logic are given in Figure 1. The language construct munit
creates a point distribution whose entire mass is at its argument. Accordingly,
the [UNIT] rule creates a straightforward coupling. The [MLET] rule internalizes
sequential composition of couplings (Lemma 1) into the proof system. The con-
struct let x = t in t′ composes a distribution t with a probabilistic computation
t′ with one free variable x by sampling x from t and running t′. The [MLET-L]
rule supports one-sided reasoning about let x = t in t′ and relies on the fact
that couplings are closed under convex combinations. Note that one premise of
the rule uses a unary judgement, with a non-relational modality �[x←r]φ whose
informal meaning is that φ holds with probability 1 in the distribution r.

The following table summarizes the different base logics we consider,the re-
lational systems we build on top of them, including the ones presented in [2],
and the equivalences between both sides:

Relational logic Base logic

RHOL [2]
Γ | Ψ ` t1 ∼ t2 | φ

[2]⇐⇒ HOL [2]
Γ | Ψ ` φ[t1/r1][t2/r2]

Guarded RHOL §6
∆ | Σ | Γ | Ψ ` t1 ∼ t2 | φ

Thm 3⇐⇒ Guarded HOL [1]
∆ | Σ | Γ | Ψ ` φ[t1/r1][t2/r2]

Probabilistic Guarded RHOL §6
∆ | Σ | Γ | Ψ ` t1 ∼ t2 | �[y1←r1,y2←r2].φ

Thm 3⇐⇒ Probabilistic Guarded HOL §5
∆ | Σ | Γ | Ψ ` �[y1←t1,y2←t2].φ

3.3 Examples

We formalize elementary examples from the literature on security and Markov
chains. None of these examples can be verified in prior systems. Uniformity of



∆ | Σ | Γ | Ψ ` t1 : C1 ∼ t2 : C2 | φ[r1/x1, r2/x2]

∆ | Σ | Γ | Ψ ` munit(t1) : D(C1) ∼ munit(t2) : D(C2) | �[x1←r1,x2←r2]φ
UNIT

∆ | Σ | Γ | Ψ ` t1 : D(C1) ∼ t2 : D(C2) | �[x1←r1,x2←r2]φ
∆ | Σ | Γ, x1 : C1, x2 : C2 | Ψ, φ ` t′1 : D(D1) ∼ t′2 : D(D2) | �[y1←r1,y2←r2]ψ

∆ | Σ | Γ | Ψ ` let x1 = t1 in t′1 : D(D1) ∼ let x2 = t2 in t′2 : D(D2) | �[y1←r1
y2←r2]ψ

MLET

∆ | Σ | Γ | Ψ ` t1 : D(C1) | �[x←r]φ
∆ | Σ | Γ, x1 : C1 | Ψ, φ ` t′1 : D(D1) ∼ t′2 : D(D2) | �[y1←r1,y2←r2]ψ

∆ | Σ | Γ | Ψ ` let x1 = t1 in t′1 : D(D1) ∼ t′2 : D(D2) | �[y1←r1,y2←r2]ψ
MLET− L

Fig. 1. Proof rules for probabilistic constructs

one-time pad and lumping of random walks cannot even be stated in prior sys-
tems because the two related expressions in these examples have different types.
The random walk vs lazy random walk (shift coupling) cannot be proved in prior
systems because it requires either asynchronous reasoning or code rewriting.
Finally, the biased coin example (stochastic dominance) cannot be proved in
prior work because it requires Strassen’s formulation of the existence of coupling
(rather than a bijection-based formulation) or code rewriting. We give additional
details below.

One-time pad/probabilistic non-interference Non-interference [8] is a base-
line information flow policy that is often used to model confidentiality of com-
putations. In its simplest form, non-interference distinguishes between public
(or low) and private (or high) variables and expressions, and requires that the
result of a public expression not depend on the value of its private parameters.
This definition naturally extends to probabilistic expressions, except that in this
case the evaluation of an expression yields a distribution rather than a value.
There are deep connections between probabilistic non-interference and several
notions of (information-theoretic) security from cryptography. In this paragraph,
we illustrate different flavours of security properties for one-time pad encryption.
Similar reasoning can be carried out for proving (passive) security of secure mul-
tiparty computation algorithms in the 3-party or multi-party setting [9,10].

One-time pad is a perfectly secure symmetric encryption scheme. Its space
of plaintexts, ciphertexts and keys is the set {0, 1}`—fixed-length bitstrings of
size `. The encryption algorithm is parametrized by a key k—sampled uniformly
over the set of bitstrings {0, 1}`—and maps every plaintext m to the ciphertext
c = k ⊕m, where the operator ⊕ denotes bitwise exclusive-or on bitstrings. We
let otp denote the expression λm.let k = U{0,1}` in munit(k ⊕m), where UX is
the uniform distribution over a finite set X.

One-time pad achieves perfect security, i.e. the distributions of ciphertexts is
independent of the plaintext. Perfect security can be captured as a probabilistic



non-interference property:

` otp : {0, 1}` → D({0, 1}`) ∼ otp : {0, 1}` → D({0, 1}`) | ∀m1m2.r1 m1
�
= r2 m2

where e1
�
= e2 is used as a shorthand for �[y1←e1,y2←e2]y1 = y2. The crux of the

proof is to establish

m1,m2 : {0, 1}` ` U{0,1}` : D({0, 1}`) ∼ U{0,1}` : D({0, 1}`) | r1 ⊕m2
�
= r2 ⊕m1

using the [COUPLING] rule. It suffices to observe that the assertion induces a
bijection, so the image of an arbitrary set X under the relation has the same
cardinality as X, and hence their probabilities w.r.t. the uniform distributions
are equal. One can then conclude the proof by applying the rules for monadic
sequenciation ([MLET]) and abstraction (rule [ABS] in appendix), using algebraic
properties of ⊕.

Interestingly, one can prove a stronger property: rather than proving that the
ciphertext is independent of the plaintext, one can prove that the distribution
of ciphertexts is uniform. This is captured by the following judgement:

c1, c2 : {0, 1}` ` otp : {0, 1}` → D({0, 1}`) ∼ otp : {0, 1}` → D({0, 1}`) | ψ

where ψ , ∀m1m2.m1 = m2 ⇒ �[y1←r1 m1,y2←r2 m2]y1 = c1 ⇔ y2 = c2. This
style of modelling uniformity as a relational property is inspired from [11]. The
proof is similar to the previous one and omitted. However, it is arguably more
natural to model uniformity of the distribution of ciphertexts by the judgement:

` otp : {0, 1}` → D({0, 1}`) ∼ U{0,1}` : D({0, 1}`) | ∀m. r1 m
�
= r2

This judgement is closer to the simulation-based notion of security that is used
pervasively in cryptography, and notably in Universal Composability [12]. Specif-
ically, the statement captures the fact that the one-time pad algorithm can be
simulated without access to the message. It is interesting to note that the judge-
ment above (and more generally simulation-based security) could not be ex-
pressed in prior works, since the two expressions of the judgement have different
types—note that in this specific case, the right expression is a distribution but
in the general case the right expression will also be a function, and its domain
will be a projection of the domain of the left expression.

The proof proceeds as follows. First, we prove

` U{0,1}` ∼ U{0,1}` | ∀m. �[y1←r1,y2←r2] y1 ⊕m = y2

using the [COUPLING] rule. Then, we apply the [MLET] rule to obtain

` let k = U{0,1}` in
munit(k ⊕m)

∼ let k = U{0,1}` in
munit(k)

| �[y1←r1,y2←r2]y1 = y2

We have let k = U{0,1}` in munit(k) ≡ U{0,1}` ; hence by equivalence (rule [Equiv]
in appendix), this entails

` let k = U{0,1}` in munit(k ⊕m) ∼ U{0,1}` | �[y1←r1,y2←r2]y1 = y2

We conclude by applying the one-sided rule for abstraction.



Stochastic dominance Stochastic dominance defines a partial order between
random variables whose underlying set is itself a partial order; it has many
different applications in statistical biology (e.g. in the analysis of the birth-and-
death processes), statistical physics (e.g. in percolation theory), and economics.
First-order stochastic dominance, which we define below, is also an important
application of probabilistic couplings. We demonstrate how to use our proof sys-
tem for proving (first-order) stochastic dominance for a simple Markov process
which samples biased coins. While the example is elementary, the proof method
extends to more complex examples of stochastic dominance, and illustrates the
benefits of Strassen’s formulation of the coupling rule over alternative formula-
tions stipulating the existence of bijections (explained later).

We start by recalling the definition of (first-order) stochastic dominance for
the N-valued case. The definition extends to arbitrary partial orders.

Definition 4 (Stochastic dominance). Let µ1, µ2 ∈ D(N). We say that µ2

stochastically dominates µ1, written µ1 ≤SD µ2, iff for every n ∈ N,

Pr
x←µ1

[x ≥ n] ≤ Pr
x←µ2

[x ≥ n]

The following result, equivalent to Corollary 1, characterizes stochastic dom-
inance using probabilistic couplings.

Proposition 1. Let µ1, µ2 ∈ D(N). Then µ1 ≤SD µ2 iff �µ1,µ2
.(≤).

We now turn to the definition of the Markov chain. For p ∈ [0, 1], we consider
the parametric N-valued Markov chain coins , markov(0, h), with initial state 0
and (parametric) step function:

h , λx.let b = B(p) in munit(x+ b)

where, for p ∈ [0, 1], B(p) is the Bernoulli distribution on {0, 1} with probability
p for 1 and 1− p for 0. Our goal is to establish that coins is monotonic, i.e. for
every p1, p2 ∈ [0, 1], p1 ≤ p2 implies coins p1 ≤SD coins p2. We formalize this
statement as

` coins : [0, 1]→ D(StrN) ∼ coins : [0, 1]→ D(StrN) | ψ

where ψ , ∀p1, p2.p1 ≤ p2 ⇒ �[y1←r1,y2←r2] All(y1, y2, z1.z2.z1 ≤ z2). The crux
of the proof is to establish stochastic dominance for the Bernoulli distribution:

p1 : [0, 1], p2 : [0, 1] | p1 ≤ p2 ` B(p1) : D(N) ∼ B(p2) : D(N) | r1
�
≤ r2

where we use e1
�
≤ e2 as shorthand for �[y1←e1,y2←e2]y1 ≤ y2. This is proved

directly by the [COUPLING] rule and checking by simple calculations that the
premise of the rule is valid.

We briefly explain how to conclude the proof. Let h1 and h2 be the step
functions for p1 and p2 respectively. It is clear from the above that (context
omitted):

x1 ≤ x2 ` h1 x1 : D(B) ∼ h2 x2 : D(B) | �[y1←r1,y2←r2].y1 ≤ y2



and by the definition of All:

x1 ≤ x2 ⇒ All(xs1, xs2, z1.z2.z1 ≤ z2)⇒ All(x1 ::.xs1, x2 ::.xs2, z1.z2.z1 ≤ z2)

So, we can conclude by applying the [Markov] rule.
It is instructive to compare our proof with prior formalizations, and in par-

ticular with the proof in [5]. Their proof is carried out in the pRHL logic, whose
[COUPLING] rule is based on the existence of a bijection that satisfies some prop-
erty, rather than on our formalization based on Strassen’s Theorem. Their rule
is motivated by applications in cryptography, and works well for many examples,
but is inconvenient for our example at hand, which involves non-uniform proba-
bilities. Indeed, their proof is based on code rewriting, and is done in two steps.
First, they prove equivalence between sampling and returning x1 from B(p1);
and sampling z1 from B(p2), z2 from B(p1/p2) and returning z = z1 ∧ z2. Then,
they find a coupling between z and B(p2).

Shift coupling: random walk vs lazy random walk The previous example
is an instance of a lockstep coupling, in that it relates the k-th element of the
first chain with the k-th element of the second chain. Many examples from
the literature follow this lockstep pattern; however, it is not always possible to
establish lockstep couplings. Shift couplings are a relaxation of lockstep couplings
where we relate elements of the first and second chains without the requirement
that their positions coincide.

We consider a simple example that motivates the use of shift couplings. Con-
sider the random walk and lazy random walk (which, at each time step, either
chooses to move or stay put), both defined as Markov chains over Z. For sim-
plicity, assume that both walks start at position 0. It is not immediate to find a
coupling between the two walks, since the two walks necessarily get desynchro-
nized whenever the lazy walk stays put. Instead, the trick is to consider a lazy
random walk that moves two steps instead of one. The random walk and the
lazy random walk of step 2 are defined by the step functions:

step , λx.let z = U{−1,1} in munit(z + x)

lstep2 , λx.let z = U{−1,1} in let b = U{0,1} in munit(x+ 2 ∗ z ∗ b)

After 2 iterations of step, the position has either changed two steps to the left or
to the right, or has returned to the initial position, which is the same behaviour
lstep2 has on every iteration. Therefore, the coupling we want to find should
equate the elements at position 2i in step with the elements at position i in
lstep2. The details on how to prove the existence of this coupling are in section 6.

Lumped coupling: random walks on 3 and 4 dimensions A Markov chain
is recurrent if it has probability 1 of returning to its initial state, and transient
otherwise. It is relatively easy to show that the random walk over Z is recurrent.
One can also show that the random walk over Z2 is recurrent. However, the
random walk over Z3 is transient.



For higher dimensions, we can use a coupling argument to prove transience.
Specifically, we can define a coupling between a lazy random walk in n dimensions
and a random walk in n+m dimensions, and derive transience of the latter from
transience of the former. We define the (lazy) random walks below, and sketch
the coupling arguments.

Specifically, we show here the particular case of the transience of the 4-
dimensional random walk from the transience of the 3-dimensional lazy random
walk. We start by defining the stepping functions:

step4 : Z4 → D(Z4) , λz1.let x1 = UU4
in munit(z1 +4 x1)

lstep3 : Z3 → D(Z3) , λz2.let x2 = UU3
in let b2 = B(3/4) in munit(z2 +3 b2 ∗ x2)

where Ui = {(±1, 0, . . . 0), . . . , (0, . . . , 0,±1)} are the vectors of the basis of Zi
and their opposites. Then, the random walk of dimension 4 is modelled by
rwalk4 , markov(0, step4), and the lazy walk of dimension 3 is modelled by
lwalk3 , markov(0, step3). We want to prove:

` rwalk4 : D(StrZ4) ∼ lwalk3 : D(StrZ3) | �[y1←r1
y2←r2]

All(y1, y2, z1.z2.pr43(z1) = z2)

where prn2
n1

denotes the standard projection from Zn2 to Zn1 .
We apply the [Markov] rule. The only interesting premise requires proving

that the transition function preserves the coupling:

p2 = pr43(p1) ` step4 ∼ lstep3 | ∀x1x2.x2 = pr43(x1)⇒ �[y1←r1 x1
y2←r2 x2]

pr43(y1) = y2

To prove this, we need to find the appropriate coupling, i.e., one that pre-
serves the equality. The idea is that the step in Z3 must be the projection of the
step in Z4. This corresponds to the following judgement:

λz1. let x1 = UU4
in

munit(z1 +4 x1)
∼
λz2. let x2 = UU3

in
let b2 = B(3/4) in
munit(z2 +3 b2 ∗ x2)

∣∣∣∣∣∣ ∀z1z2.pr43(z1) = z2 ⇒
pr43(r1 z1)

�
= r2 z2

which by simple equational reasoning is the same as

λz1. let x1 = UU4
in

munit(z1 +4 x1)
∼ λz2. let p2 = UU3

× B(3/4) in
munit(z2 +3 π1(p2) ∗ π2(p2))

∣∣∣∣ ∀z1z2.pr43(z1) = z2 ⇒
pr43(r1 z1)

�
= r2 z2

We want to build a coupling such that if we sample (0, 0, 0, 1) or (0, 0, 0,−1)
from UU3 , then we sample 0 from B(3/4), and otherwise if we sample (x1, x2, x3, 0)
from UU4 , we sample (x1, x2, x3) from U3. Formally, we prove this with the
[Coupling] rule. Given X : U4 → B, by simple computation we show that:

Pr
z1∼UU4

[z1 ∈ X] ≤ Pr
z2∼UU3

×B(3/4)
[z2 ∈ {y | ∃x ∈ X.pr43(x) = π1(y) ∗ π2(y)}]

This concludes the proof. From the previous example, it follows that the
lazy walk in 3 dimensions is transient, since the random walk in 3 dimensions
is transient. By simple reasoning, we now conclude that the random walk in 4
dimensions is also transient.



4 Probabilistic Guarded Lambda Calculus

To ensure that a function on infinite datatypes is well-defined, one must check
that it is productive. This means that any finite prefix of the output can be
computed in finite time. For instance, consider the following function on streams:

letrec bad (x : xs) = x : tail(bad xs)

This function is not productive since only the first element can be computed.
We can argue this as follows: Suppose that the tail of a stream is available one
unit of time after its head, and that that x:xs is available at time 0. How much
time does it take for bad to start outputting its tail? Assume it takes k units of
time. This means that tail(bad xs) will be available at time k + 1 , since xs

is only available at time 1. But tail(bad xs) is exactly the tail of bad(x:xs),
and this is a contradiction, since x:xs is available at time 0 and therefore the
tail of bad(x:xs) should be available at time k. Therefore, the tail of bad will
never be available.

The guarded lambda calculus solves the productivity problem by distinguish-
ing at type level between data that is available now and data that will be avail-
able in the future, and restricting when fixpoints can be defined. Specifically,
the guarded lambda calculus extends the usual simply typed lambda calculus
with two modalities: . (pronounced later) and � (constant). The later modality
represents data that will be available one step in the future, and is introduced
and removed by the term formers . and prev respectively. This modality is used
to guard recursive occurrences, so for the calculus to remain productive, we must
restrict when it can be eliminated. This is achieved via the constant modality,
which expresses that all the data is available at all times. In the remainder of
this section we present a probabilistic extension of this calculus.

Syntax Types of the calculus are defined by the grammar

A,B ::= b | N | A×B | A+B | A→ B | StrA | � A | .A | D(C)

where b ranges over a collection of base types. StrA is the type of guarded streams
of elements of type A. Formally, the type StrA is isomorphic to A× . StrA. This
isomorphism gives a way to introduce streams with the function (::) : A →
. StrA → StrA and to eliminate them with the functions hd : StrA → A and
tl : StrA → . StrA. D(C) is the type of distributions over discrete types C.
Discrete types are defined by the following grammar, where b0 are discrete base
types, e.g., Z.

C,D ::= b0 | N | C ×D | C +D | StrC | . C.

Note that, in particular, arrow types are not discrete but streams are. This is due
to the semantics of streams as sets of finite approximations, which we describe
in the next subsection. Also note that �StrA is not discrete since it makes the
full infinite streams available.



We also need to distinguish between arbitrary types A,B and constant types
S, T , which are defined by the following grammar

S, T ::= bC | N | S × T | S + T | S → T | � A

where bC is a collection of constant base types. Note in particular that for any
type A the type � A is constant.

The terms of the language t are defined by the following grammar

t ::= x | c | 0 | St | case t of 0 7→ t;S 7→ t | µ | munit(t) | let x = t in t

| 〈t, t〉 | π1t | π2t | inj1t | inj2t | case t of inj1x.t; inj2y.t | λx.t | t t | fix x. t

| t :: ts | hd t | tl t | box t | letb x← t in t | letc x← t in t | .ξ.t | prev t

where ξ is a delayed substitution, a sequence of bindings [x1 ← t1, . . . , xn ← tn].
The terms c are constants corresponding to the base types used and munit(t)
and let x = t in t are the introduction and sequencing construct for probability
distributions. The meta-variable µ stands for base distributions like UC and B(p).

Delayed substitutions were introduced in [13] in a dependent type theory to
be able to work with types dependent on terms of type .A. In the setting of a
simple type theory, such as the one considered in this paper, delayed substitu-
tions are equivalent to having the applicative structure [14] ~ for the . modality.
However, delayed substitutions extend uniformly to the level of propositions, and
thus we choose to use them in this paper in place of the applicative structure.

Denotational semantics The meaning of terms is given by a denotational model
in the category S of presheaves over ω, the first infinite ordinal. This category
S is also known as the topos of trees [15]. In previous work [1], it was shown
how to model most of the constructions of the guarded lambda calculus and its
internal logic, with the notable exception of the probabilistic features. Below we
give an elementary presentation of the semantics.

Informally, the idea behind the topos of trees is to represent (infinite) objects
from their finite approximations, which we observe incrementally as time passes.
Given an object x, we can consider a sequence {xi} of its finite approximations
observable at time i. These are trivial for finite objects, such as a natural number,
since for any number n, ni = n at every i. But for infinite objects such as streams,
the ith approximation is the prefix of length i+ 1.

Concretely, the category S consists of:

– Objects X: families of sets {Xi}i∈N together with restriction functions rXn :
Xn+1 → Xn. We will write simply rn if X is clear from the context.

– Morphisms X → Y : families of functions αn : Xn → Yn commuting with
restriction functions in the sense of rYn ◦ αn+1 = αn ◦ rXn .

The full interpretation of types of the calculus can be found in Figure 8 in
the appendix. The main points we want to highlight are:

– Streams over a type A are interpreted as sequences of finite prefixes of ele-
ments of A with the restriction functions of A:

JStrAK , JAK0 × {∗}
r0×!←−−− JAK1 × JStrAK0

r1×r0×!←−−−−− JAK2 × JStrAK1 ← · · ·



– Distributions over a discrete object C are defined as a sequence of distribu-
tions over each JCKi:

JD(C)K , D(JCK0)
D(r0)←− D(JCK1)

D(r1)←− D(JCK2)
D(r2)←− . . . ,

where D(JCKi) is the set of (probability density) functions µ : JCKi → [0, 1]
such that

∑
x∈X

µx = 1, and D(ri) adds the probability density of all the

points in JCKi+1 that are sent by ri to the same point in the JCKi. In other
words, D(ri)(µ)(x) = Pry←µ[ri(y) = x]

An important property of the interpretation is that discrete types are inter-
preted as objects X such that Xi is finite or countably infinite for every i. This
allows us to define distributions on these objects without the need for measure
theory. In particular, the type of guarded streams StrA is discrete provided A is,
which is clear from the interpretation of the type StrA. Conceptually this holds
because JStrAKi is an approximation of real streams, consisting of only the first
i+ 1 elements.

An object X of S is constant if all its restriction functions are bijections.
Constant types are interpreted as constant objects of S and for a constant type
A the objects J�AK and JAK are isomorphic in S.

Typing rules Terms are typed under a dual context ∆ | Γ , where Γ is a usual
context that binds variables to a type, and ∆ is a constant context containing
variables bound to types that are constant. The term letc x ← u in t allows us
to shift variables between constant and non-constant contexts. The typing rules
can be found in Figure 2.

The semantics of such a dual context ∆ | Γ is given as the product of types
in ∆ and Γ , except that we implicitly add � in front of every type in ∆. In the
particular case when both contexts are empty, the semantics of the dual context
correspond to the terminal object 1, which is the singleton set {∗} at each time.

The interpretation of the well-typed term ∆ | Γ ` t : A is defined by induc-
tion on the typing derivation, and can be found in Figure 9 in the appendix.

Applicative structure of the later modality As in previous work we can define the
operator ~ satisfying the typing rule

∆ | Γ ` t : .(A→ B) ∆ | Γ ` u : .A

∆ | Γ ` t~ u : .B

and the equation (.t)~ (.u) ≡ .(t u) as the term t~ u , . [f ← t, x← u] .f x.

Example: Modelling Markov chains As an application of ~ and an example
of how to use guardedness and probabilities together, we now give the precise
definition of the markov construct that we used to model Markov chains earlier:

markov : C → (C → D(C))→ D(StrC)

markov , fix f. λx.λh.

let z = h x in let t = swapStrC
.D (f ~ .z ~ .h) in munit(x :: t)



x : A ∈ Γ
∆ | Γ ` x : A

x : A ∈ ∆
∆ | Γ ` x : A

∆ | Γ, x : A ` t : B

∆ | Γ ` λx.t : A→ B

∆ | Γ ` t : A→ B ∆ | Γ ` u : A

∆ | Γ ` t u : B

∆ | Γ, f : .A ` t : A

∆ | Γ ` fix f. t : A

∆ | · ` t : .A

∆ | Γ ` prev t : A

∆ | · ` t : A

∆ | Γ ` box t : �A

∆ | Γ ` u : �B ∆, x : B | Γ ` t : A

∆ | Γ ` letb x← u in t : A

∆ | Γ ` u : B ∆, x : B | Γ ` t : A B constant

∆ | Γ ` letc x← u in t : A

∆ | Γ, x1 : A1, · · ·xn : An ` t : A ∆ | Γ ` ti : .Ai

∆ | Γ ` . [x1 ← t1, . . . , xn ← tn] .t : .A

∆ | Γ ` t : A A discrete

∆ | Γ ` munit(t) : D(A)

∆ | Γ ` t : D(A) ∆ | Γ, x : A ` u : D(B)

∆ | Γ ` let x = t in u : D(B)

µ primitive distribution on type A

∆ | Γ ` µ : D(A)

Fig. 2. A selection of the typing rules of the guarded lambda calculus. The rules for
products, sums, and natural numbers are standard.

The guardedness condition gives f the type .(C → (C → D(C)) → D(StrC))
in the body of the fixpoint. Therefore, it needs to be applied functorially (via
~) to .z and .h, which gives us a term of type .D(StrC). To complete the
definition we need to build a term of type D(. StrC) and then sequence it with ::
to build a term of type D(StrC). To achieve this, we use the primitive operator
swapC

.D : .D(C)→ D(.C), which witnesses the isomorphism between .D(C) and
D(.C). For this isomorphism to exist, it is crucial that distributions be total
(i.e., we cannot use subdistributions). Indeed, the denotation for .D(C) is the
sequence {∗} ← D(C1) ← D(C2) ← . . . , while the denotation for D(.C) is the
sequence D({∗}) ← D(C1) ← D(C2) ← . . . , and {∗} is isomorphic to D({∗}) in
Set only if D considers only total distributions.

5 Guarded higher-order logic

We now introduce Guarded HOL (GHOL), which is a higher-order logic to reason
about terms of the guarded lambda calculus. The logic is essentially that of [1],
but presented with the dual context formulation analogous to the dual-context
typing judgement of the guarded lambda calculus. Compared to standard in-
tuitionistic higher-order logic, the logic GHOL has two additional constructs,
corresponding to additional constructs in the guarded lambda calculus. These
are the later modality (.) on propositions, with delayed substitutions, which ex-
presses that a proposition holds one time unit into the future, and the “always”
modality �, which expresses that a proposition holds at all times. Formulas are
defined by the grammar:

φ, ψ ::= > | φ ∧ ψ | φ ∨ ψ | ¬ψ | ∀x.φ | ∃x.φ | . [x1 ← t1 . . . xn ← tn] .φ | �φ



The basic judgement of the logic is ∆ | Σ | Γ | Ψ ` φ where Σ is a logical
context for ∆ (that is, a list of formulas well-formed in ∆) and Ψ is another
logical context for the dual context ∆ | Γ . The formulas in context Σ must be
constant propositions. We say that a proposition φ is constant if it is well-typed
in context ∆ | · and moreover if every occurrence of the later modality in φ
is under the � modality. Selected rules are displayed in Figure 3 on page 20.
We highlight [Loeb] induction, which is the key to reasoning about fixpoints:
to prove that φ holds now, one can assume that it holds in the future. The
interpretation of the formula ∆ | Γ ` φ is a subobject of the interpretation
J∆ | Γ K. Concretely the interpretation A of ∆ | Γ ` φ is a family {Ai}∞i=0 of
sets such that Ai ⊆ J∆ | Γ Ki. This family must satisfy the property that if
x ∈ Ai+1 then ri(x) ∈ Ai where ri are the restriction functions of J∆ | Γ K. The
interpretation of formulas is defined by induction on the typing derivation. In
the interpretation of the context ∆ | Σ | Γ | Ψ the formulas in Σ are interpreted
with the added � modality. Moreover all formulas φ in Σ are typeable in the
context ∆ | · ` φ and thus their interpretations are subsets of J�∆K. We treat
these subsets of J∆ | Γ K in the obvious way.

The cases for the semantics of the judgement ∆ | Γ ` φ can be found in the
appendix. It can be shown that this logic is sound with respect to its model in
the topos of trees.

Theorem 2 (Soundness of the semantics). The semantics of guarded higher-
order logic is sound: if ∆ | Σ | Γ | Ψ ` φ is derivable then for all n ∈ N,
J�ΣKn ∩ JΨKn ⊆ JφK.

In addition, Guarded HOL is expressive enough to axiomatize standard prob-
abilities over discrete sets. This axiomatization can be used to define the �modal-
ity directly in Guarded HOL (as opposed to our relational proof system, were
we use it as a primitive). Furthermore, we can derive from this axiomatization
additional rules to reason about couplings, which can be seen in Figure 4. These
rules will be the key to proving the soundness of the probabilistic fragment of
the relational proof system, and can be shown to be sound themselves.

Proposition 2 (Soundness of derived rules). The additional rules are sound.

6 Relational proof system

We complete the formal description of the system by describing the proof rules
for the non-probabilistic fragment of the relational proof system (the rules of the
probabilistic fragment were described in Section 3.2).

6.1 Proof rules

The rules for core λ-calculus constructs are identical to those of [2]; for conve-
nience, we present a selection of the main rules in Figure 7 in the appendix.



φ ∈ Ψ
∆ | Σ | Γ | Ψ ` φ

AXU

φ ∈ Σ
∆ | Σ | Γ | Ψ ` φ

AXG
Γ ` t : τ Γ ` t′ : τ t ≡ t′

∆ | Σ | Γ | Ψ ` t = t′
CONV

∆ | Σ | Γ | Ψ ` φ[t/x] ∆ | Σ | Γ | Ψ ` t = u

∆ | Σ | Γ | Ψ ` φ[u/x]
SUBST

∆ | Σ | Γ | Ψ, .φ ` φ
∆ | Σ | Γ | Ψ ` φ Loeb

∆ | Σ | Γ, x1 : A1, . . . , xn : An | Ψ ` φ ∆ | Γ ` t1 : .A1 . . . ∆ | Γ ` tn : .An

∆ | Σ | Γ | Ψ ` . [x1 ← t1, . . . , xn ← tn] .φ
.I

∆ | Σ | · | · ` . [x1 ← t1 . . . xn ← tn] .φ ∆ | • ` t1 : .A1 . . . ∆ | • ` tn : .An

∆ | Σ | Γ | Ψ ` φ[prev t1/x1] . . . [prev tn/xn]
.E

∆ | Σ | Γ | Ψ ` . [x1← t1, . . . , xn← tn] .ψ ∆ | Γ ` t1 : .A1 . . . ∆ | Γ ` tn : .An
∆ | Σ | Γ, x1 : A1, . . . , xn : An | Ψ, ψ ` φ
∆ | Σ | Γ | Ψ ` . [x1 ← t1, . . . , xn ← tn] .φ

.App

∆ | Σ | · | · ` φ
∆ | Σ | Γ | Ψ ` �φ

�I

∆ | Σ | Γ | Ψ ` �ψ ∆ | Σ,ψ | Γ | Ψ ` φ
∆ | Σ | Γ | Ψ ` φ

�E

Fig. 3. Selected Guarded Higher-Order Logic rules

∆ | Σ | Γ | Ψ ` �[x1←t1,x2←t2]φ ∆ | Σ | Γ, x1 : C1, x2 : C2 | Ψ, φ ` ψ
∆ | Σ | Γ | Ψ ` �[x1←t1,x2←t2]ψ

MONO2

∆ | Σ | Γ | Ψ ` φ[t1/x1][t2/x2]

∆ | Σ | Γ | Ψ ` �[x1←munit(t1),x2←munit(t2)]φ
UNIT2

∆ | Σ | Γ | Ψ ` �[x1←t1,x2←t2]φ
∆ | Σ | Γ, x1 : C1, x2 : C2 | Ψ, φ ` �[y1←t′1,y2←t′2]ψ
∆ | Σ | Γ | Ψ ` �[y1←let x1=t1 in t′1,y2←let x2=t2 in t′2]

ψ
MLET2

∆ | Σ | Γ | Ψ ` �[x1←t1]φ ∆ | Σ | Γ, x1 : C1 | Ψ, φ ` �[y1←t′1,y2←t′2]ψ
∆ | Σ | Γ | Ψ ` �[y1←let x1=t1 in t′1,y2←t

′
2]
ψ

MLET-L

Fig. 4. Derived rules for probabilistic constructs

We briefly comment on the two-sided rules for the new constructs (Figure 5).
The notation Ω abbreviates a context ∆ | Σ | Γ | Ψ . The rule [Next] relates two
terms that have a . term constructor at the top level. We require that both have
one term in the delayed substitutions and that they are related pairwise. Then
this relation is used to prove another relation between the main terms. This rule
can be generalized to terms with more than one term in the delayed substitution.
The rule [Prev] proves a relation between terms from the same delayed relation
by applying prev to both terms. The rule [Box] proves a relation between two
boxed terms if the same relation can be proven in a constant context. Dually,
[LetBox] uses a relation between two boxed terms to prove a relation between



their unboxings. [LetConst] is similar to [LetBox], but it requires instead a relation
between two constant terms, rather than explicitly �-ed terms. The rule [Fix]
relates two fixpoints following the [Loeb] rule from Guarded HOL. Notice that in
the premise, the fixpoints need to appear in the delayed substitution so that the
inductive hypothesis is well-formed. The rule [Cons] proves relations on streams
from relations between their heads and tails, while [Head] and [Tail] behave as
converses of [Cons].

Figure 6 contains the one-sided versions of the rules. We only present the
left-sided versions as the right-sided versions are completely symmetric. The
rule [Next-L] relates at φ a term that has a . with a term that does not have a ..
First, a unary property φ′ is proven on the term u in the delayed substitution,
and it is then used as a premise to prove φ on the terms with delays removed.
Rules for proving unary judgements can be found in the appendix. Similarly,
[LetBox-L] proves a unary property on the term that gets unboxed and then
uses it as a precondition. The rule [Fix-L] builds a fixpoint just on the left, and
relates it with an arbitrary term t2 at a property φ. Since φ may contain the
variable r2 which is not in the context, it has to be replaced when adding .φ to
the logical context in the premise of the rule. The remaining rules are similar to
their two-sided counterparts.

6.2 Metatheory

We review some of the most interesting metatheoretical properties of our rela-
tional proof system, highlighting the equivalence with Guarded HOL.

Theorem 3 (Equivalence with Guarded HOL). For all contexts ∆,Γ ;
types σ1, σ2; terms t1, t2; sets of assertions Σ,Ψ,; and assertions φ:

∆ | Σ | Γ | Ψ ` t1 : σ1 ∼ t2 : σ2 | φ ⇐⇒ ∆ | Σ | Γ | Ψ ` φ[t1/r1][t2/r2]

The forward implication follows by induction on the given derivation. The re-
verse implication is immediate from the rule which allows to fall back on Guarded
HOL in relational proofs. (Rule [SUB] in the appendix). The full proof is in the
appendix. The consequence of this theorem is that the syntax-directed, relational
proof system we have built on top of Guarded HOL does not lose expressiveness.

The intended semantics of a judgement ∆ | Σ | Γ | Ψ ` t1 : A1 ∼ t2 : A2 | φ
is that, for every valuation δ |= ∆, γ |= Γ , if JΣK(δ) and JΨK(δ, γ), then

JφK(δ, γ[r1 ← Jt1K(δ, γ), r2 ← Jt2K(δ, γ)])

Since Guarded HOL is sound with respect to its semantics in the topos of trees,
and our relational proof system is equivalent to Guarded HOL, we obtain that
our relational proof system is also sound in the topos of trees.

Corollary 2 (Soundness and consistency). If ∆ | Σ | Γ | Ψ ` t1 : σ2 ∼ t2 :
σ2 | φ, then for every valuation δ |= ∆, γ |= Γ :

J∆ ` �ΣK(δ) ∧ J∆ | Γ ` ΨK(δ, γ)⇒
J∆ | Γ, r1 : σ1, r1 : σ2 ` φK(δ, γ[r1 ← J∆ | Γ ` t1K(δ, γ)][r2 ← J∆ | Γ ` t2K(δ, γ)])

In particular, there is no proof of ∆ | ∅ | Γ | ∅ ` t1 : σ1 ∼ t2 : σ2 | ⊥.



∆ | Σ | Γ, x1 : A1, x2 : A2 | Ψ, φ′[x1/r1][x2/r2] ` t1 : A1 ∼ t2 : A2 | φ
Ω ` u1 : .A1 ∼ u2 : .A2 | .[r1, r2 ← r1, r2].φ′

Ω ` .[x1←u1].t1 : .A1 ∼ .[x2←u2].t2 : .A2 | .[x1←u1, x2←u2, r1←r1, r2←r2].φ
Next

∆ | Σ | · | · ` t1 : .A1 ∼ t2 : .A2 | .[r1, r2 ← r1, r2].φ

Ω ` prev t1 : A1 ∼ prev t2 : A2 | φ
Prev

∆ | Σ | · | · ` t1 : A1 ∼ t2 : A2 | φ
Ω ` box t1 : �A1 ∼ box t2 : �A2 | �φ[letb x1 ← r1 in x1/r1][letb x2 ← r2 in x2/r2]

Box

Ω ` u1 : �B1 ∼ u2 : �B2 | �φ[letb x1 ← r1 in x1/r1][letb x2 ← r2 in x2/r2]
∆,x1 : B1, x2 : B2 | Σ,φ[x1/r1][x2/r2] | Γ | Ψ ` t1 : A1 ∼ t2 : A2 | φ′

Ω ` letb x1 ← u1 in t1 : A1 ∼ letb x2 ← u2 in t2 : A2 | φ′
LetBox

B1, B2, φ constant FV (φ) ∩ FV (Γ ) = ∅ Ω ` u1 : B1 ∼ u2 : B2 | φ
∆, x1 : B1, x2 : B2 | Σ,φ[x1/r1][x2/r2] | Γ | Ψ ` t1 : A1 ∼ t2 : A2 | φ′

Ω ` letc x1 ← u1 in t1 : A1 ∼ letc x2 ← u2 in t2 : A2 | φ′
LetConst

∆ | Σ | Γ, f1 : .A1, f2 : .A2 | Ψ, .[r1, r2 ← f1, f2].φ ` t1 : A1 ∼ t2 : A2 | φ
Ω ` fix f1. t1 : A1 ∼ fix f2. t2 : A2 | φ

Fix

Ω ` x1 : A1 ∼ x2 : A2 | φh Ω ` xs1 : . StrA1 ∼ xs2 : . StrA2 | φt
Ω ` ∀x1, x2, s1, s2.φh[x1/r1][x2/r2]⇒ φt[s1/r1][s2/r2]⇒ φ[x1 ::s1/r1][x2 ::s2/r2]

Ω ` x1 ::s1 : StrA1 ∼ x2 ::s2 : StrA2 | φ
Cons

Ω ` t1 : StrA1 ∼ t1 : StrA1 | φ[hd r1/r1][hd r2/r2]

Ω ` hd t1 : A1 ∼ hd t2 : A2 | φ
Head

Ω ` t1 : StrA1 ∼ t2 : StrA2 | φ[tl r1/r1][tl r2/r2]

Ω ` tl t1 : .StrA1 ∼ tl t2 : . StrA2 | φ
Tail

Fig. 5. Two-sided rules for Guarded RHOL

6.3 Shift couplings revisited

We give further details on how to prove the example with shift couplings from
Section 3.3. (Additional examples of relational reasoning on non-probabilistic
streams can be found in the appendix.) Recall the step functions:

step , λx.let z = U{−1,1} in munit(z + x)

lstep2 , λx.let z = U{−1,1} in let b = U{0,1} in munit(x+ 2 ∗ z ∗ b)

We axiomatize the predicate All2,1, which relates the element at position 2i in
one stream to the element at position i in another stream, as follows.

∀x1x2xs1xs2y1.φ[z1/x1][z2/x2]⇒
. [ys1 ← xs1] . . [zs1 ← ys1, ys2 ← xs2] .All2,1(zs1, ys2, z1.z2.φ)⇒

All2,1(x1 ::y1 ::xs1, x2 ::xs2, z1.z2.φ)



∆ | Σ | Γ, x1 : B1 | Ψ, φ′[x1/r] ` t1 : A1 ∼ t2 : A2 | φ
Ω ` u1 : .B1 | .[r← r].φ′

Ω ` . [x1 ← u1] .t1 : .A1 ∼ t2 : A2 | . [x1 ← u1, r1 ← r1] .φ
Next-L

∆ | Σ | · | · ` t1 : .A1 ∼ t2 : A2 | .[r1 ← r1].φ

∆ | Σ | Γ1;Γ2 | Ψ1;Ψ2 ` prev t1 : A1 ∼ t2 : A2 | φ
Prev-L

∆ | Σ | Γ2 | Ψ2 ` t1 : A1 ∼ t2 : A2 | φ
FV (t1) 6⊆ FV (Γ2) FV (Ψ2) ⊆ FV (Γ2)

∆ | Σ | Γ1;Γ2 | Ψ1;Ψ2 ` box t1 : �A1 ∼ t2 : A2 | �φ[letb x1 ← r1 in x1/r1]
Box-L

Ω ` u1 : �B1 | �φ[letb x1 ← r1 in x1/r]
∆,x1 : B1 | Σ,φ[x1/r] | Γ | Ψ ` t1 : A1 ∼ t2 : A2 | φ′

Ω ` letb x1 ← u1 in t1 : A1 ∼ t2 : A2 | φ′
LetBox-L

B1, φ constant FV (φ) ∩ FV (Γ ) = ∅ Ω ` u1 : B1 | φ
∆, x1 : B1 | Σ,φ[x1/r] | Γ | Ψ ` t1 : A1 ∼ t2 : A2 | φ′

Ω ` letc x1 ← u1 in t1 : A1 ∼ t2 : A2 | φ′
LetConst-L

∆ | Σ | Γ, f1 : .A1 | Ψ, .[r1 ← f1].(φ[t2/r2]) ` t1 : A1 ∼ t2 : A2 | φ
∆ | Σ | Γ | Ψ ` fix f1. t1 : A1 ∼ t2 : A2 | φ

Fix-L

Ω ` x1 : A1 ∼ t2 : A2 | φh Ω ` xs1 : . StrA1 ∼ t2 : A2 | φt
Ω ` ∀x1, x2, xs1.φh[x1/r1][x2/r2]⇒ φt[xs1/r1][x2/r2]⇒ φ[x1 ::xs1/r1][x2/r2]

Ω ` x1 ::xs1 : StrA1 ∼ t2 : A2 | φ
Cons-L

Ω ` t1 : StrA1 ∼ t1 : A2 | φ[hd r1/r1]

Ω ` hd t1 : A1 ∼ t2 : A2 | φ
Head-L

Ω ` t1 : StrA1 ∼ t2 : A2 | φ[tl r1/r1]

Ω ` tl t1 : .StrA1 ∼ t2 : A2 | φ
Tail-L

Fig. 6. One-sided rules for Guarded RHOL

In fact, we can assume that, in general, we have a family of Allm1,m2
predicates

relating two streams at positions m1 · i and m2 · i for every i.

We can now express the existence of a shift coupling by the statement:

p1 = p2 ` markov(p1, step) ∼ markov(p2, lstep2) | �[y1←r1
y2←r2] All2,1(y1, y2, z1.z2.z1 = z2)

For the proof, we need to introduce an asynchronous rule for Markov chains:

Ω ` t1 : C1 ∼ t2 : C2 | φ
Ω ` (λx1.let x

′
1 = h1 x1 in h1 x

′
1) : C1 → D(C1) ∼ h2 : C2 → D(C2) |

∀x1x2.φ[x1/z1][x2/z2]⇒ �[z1←r1 x1,z2←r2 x2]φ

Ω ` markov(t1, h1) : D(StrC1) ∼ markov(t2, h2) : D(StrC2) |
�[y1←r1,y2←r2] All2,1(y1, y2, z1.z2.φ)

Markov-2-1



This asynchronous rule for Markov chains shares the motivations of the rule for
loops proposed in [6]. Note that one can define a rule [Markov-m-n] for arbitrary
m and n to prove a judgement of the form Allm,n on two Markov chains.

We show the proof of the shift coupling. By equational reasoning, we get:

λx1.let x
′
1 = h1 x1 in h1 x

′
1 ≡ λx1.let z1 = U{−1,1} in h1 (z1 + x1) ≡

≡ λx1.let z1 = U{−1,1} in let z′1 = U{−1,1} in munit(z′1 + z1 + x′1)

and the only interesting premise of [Markov-2-1] is:

λx1. let z1 = U{−1,1} in
let z′1 = U{−1,1} in
munit(z′1 + z1 + x′1)

∼
λx2. let z2 = U{−1,1} in

let b2 = U{1,0} in
munit(x2 + 2 ∗ b2 ∗ z2)

∣∣∣∣∣∣ ∀x1x2.x1 = x2 ⇒
r1 x1

�
= r2 x2

Couplings between z1 and z2 and between z′1 and b2 can be found by simple
computations. This completes the proof.

7 Related work

Our probabilistic guarded λ-calculus and the associated logic Guarded HOL
build on top of the guarded λ-calculus and its internal logic [1]. The guarded
λ-calculus has been extended to guarded dependent type theory [13], which can
be understood as a theory of guarded refinement types and as a foundation for
proof assistants based on guarded type theory. These systems do not reason
about probabilities, and do not support syntax-directed (relational) reasoning,
both of which we support.

Relational models for higher-order programming languages are often defined
using logical relations. [16] showed how to use second-order logic to define and
reason about logical relations for the second-order lambda calculus. Recent work
has extended this approach to logical relations for higher-order programming
languages with computational effects such as nontermination, general references,
and concurrency [17,18,19,20]. The logics used in loc. cit. are related to our work
in two ways: (1) the logics in loc. cit. make use of the later modality for reasoning
about recursion, and (2) the models of the logics in loc. cit. can in fact be defined
using guarded type theory. Our work is more closely related to Relational Higher
Order Logic [2], which applies the idea of logic-enriched type theories [21,22]
to a relational setting. There exist alternative approaches for reasoning about
relational properties of higher-order programs; for instance, [23] have recently
proposed to use monadic reification for reducing relational verification of F ∗ to
proof obligations in higher-order logic.

A series of work develops reasoning methods for probabilistic higher-order
programs for different variations of the lambda calculus. One line of work has
focused on operationally-based techniques for reasoning about contextual equiv-
alence of programs. The methods are based on probabilistic bisimulations [24,25]
or on logical relations [26]. Most of these approaches have been developed for
languages with discrete distributions, but recently there has also been work on



languages with continuous distributions [27,28]. Another line of work has fo-
cused on denotational models, starting with the seminal work in [29]. Recent
work includes support for relational reasoning about equivalence of programs
with continuous distributions for a total programming language [30]. Our ap-
proach is most closely related to prior work based on relational refinement types
for higher-order probabilistic programs. These were initially considered by [31]
for a stateful fragment of F ∗, and later by [32,33] for a pure language. Both
systems are specialized to building probabilistic couplings; however, the latter
support approximate probabilistic couplings, which yield a natural interpreta-
tion of differential privacy [34], both in its vanilla and approximate forms (i.e. ε-
and (ε, δ)-privacy). Technically, approximate couplings are modelled as a graded
monad, where the index of the monad tracks the privacy budget (ε or (ε, δ)).
Both systems are strictly syntax-directed, and cannot reason about computa-
tions that have different types or syntactic structures, while our system can.

8 Conclusion

We have developed a probabilistic extension of the (simply typed) guarded λ-
calculus, and proposed a syntax-directed proof system for relational verification.
Moreover, we have verified a series of examples that are beyond the reach of prior
work. Finally, we have proved the soundness of the proof system with respect to
the topos of trees.

There are several natural directions for future work. One first direction is
to enhance the expressiveness of the underlying simply typed language. For in-
stance, it would be interesting to introduce clock variables and some type depen-
dency as in [13], and extend the proof system accordingly. This would allow us,
for example, to type the function taking the n-th element of a guarded stream,
which cannot be done in the current system. Another exciting direction is to
consider approximate couplings, as in [32,33], and to develop differential privacy
for infinite streams—preliminary work in this direction, such as [35], considers
very large lists, but not arbitrary streams. A final direction would be to extend
our approach to continuous distributions to support other application domains.
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A Additional proof rules

∆ | Σ | Γ, x1 : τ1, x2 : τ2 | Ψ, φ′ ` t1 : σ1 ∼ t2 : σ2 | φ
∆ | Σ | Γ | Ψ ` λx1 : τ1.t1 : τ1 → σ1 ∼ λx2 : τ2.t2 : τ2 → σ2 | ∀x1, x2.φ′ ⇒ φ[r1 x1/r1][r2 x2/r2]

ABS

∆ | Σ | Γ | Ψ ` t1 : τ1 → σ1 ∼ t2 : τ2 → σ2 | ∀x1, x2.φ′[x1/r1][x2/r2]⇒ φ[r1 x1/r1][r2 x2/r2]
∆ | Σ | Γ | Ψ ` u1 : τ1 ∼ u2 : τ2 | φ′

∆ | Σ | Γ | Ψ ` t1u1 : σ1 ∼ t2u2 : σ2 | φ[u1/x1][u2/x2]
APP

∆ | Γ ` x1 : σ1 ∆ | Γ ` x2 : σ2 ∆ | Σ | Γ | Ψ ` φ[x1/r1][x2/r2]

∆ | Σ | Γ | Ψ ` x1 : σ1 ∼ x2 : σ2 | φ
VAR

∆ | Σ | Γ | Ψ ` t1 : σ1 ∼ t2 : σ2 | φ′ ∆ | Σ | Γ | Ψ `GHOL φ
′[t1/r1][t2/r2]⇒ φ[t1/r1][t2/r2]

∆ | Σ | Γ | Ψ ` t1 : σ1 ∼ t2 : σ2 | φ
SUB

∆ | Σ | Γ | Ψ ` t1 : σ1 | φ[r/r1][t2/r2] ∆ | Γ ` t2 : σ2

∆ | Σ | Γ | Ψ ` t1 : σ1 ∼ t2 : σ2 | φ
UHOL− L

∆ | Σ | Γ, x1 : τ1 | Ψ, φ′ ` t1 : σ1 ∼ t2 : σ2 | φ
∆ | Σ | Γ | Ψ ` λx1 : τ1.t1 : τ1 → σ1 ∼ t2 : σ2 | ∀x1.φ′ ⇒ φ[r1 x1/r1]

ABS−L

∆ | Σ | Γ | Ψ ` t1 : τ1 → σ1 ∼ u2 : σ2 | ∀x1.φ′[x1/r1]⇒ φ[r1 x1/r1]
∆ | Σ | Γ | Ψ ` u1 : σ1 | φ′

∆ | Σ | Γ | Ψ ` t1u1 : σ1 ∼ u2 : σ2 | φ[u1/x1]
APP−L

φ[x1/r1] ∈ Ψ r2 6∈ FV (φ) ∆ | Γ ` t2 : σ2

∆ | Σ | Γ | Ψ ` x1 : σ1 ∼ t2 : σ2 | φ
VAR−L

Ω ` t′1 : A1 ∼ t′2 : A2 | Φ
t1 ≡ t′1 t2 ≡ t′2 ∆ | Γ ` t1 : A1 ∆ | Γ ` t2 : A2

Ω ` t1 : A1 ∼ t2 : A2 | Φ
Equiv

Fig. 7. Selected RHOL rules

B Denotational semantics

B.1 Types and terms in context

The meaning of terms is given by the denotational model in the category S of
presheaves over ω, the first infinite ordinal. This category S is also known as the
topos of trees [15]. In previous work [1] it was shown how to model most of the
constructions of the guarded lambda calculus and the associated logic, with the



notable exception of the probabilistic features. Below we give an elementary and
self-contained presentation of the semantics.

Concretely, objects X of S are families of sets Xi indexed over N together
with functions rXn : Xn+1 → Xn. These are called restriction functions. We will
write simply rn if X is clear from the context. Moreover if x ∈ Xi and j ≤ i we
will write x �j for the element rj(· · · (ri−1(x)) · · · ) ∈ Xj . Morphisms X → Y are
families of functions αn : Xn → Yn commuting with restriction functions in the
sense of rYn ◦αn+1 = αn◦rXn . One can see the restriction function rn : Xn+1 → Xn

as mapping elements of Xn+1 to their approximations at time n.
Semantics of types can be found on Figure 8, where G (JAK) consists of se-

quences {xn}n∈N such that xi ∈ JAKi and ri(xi+1) = xi for all i, i.e., �JAK is
the set of so-called global sections of JAK.

The semantics of a dual context ∆ | Γ is given as the product of types
in ∆ and Γ , except that we implicitly add � in front of every type in ∆. In
the particular case when both contexts are empty, the semantics of the dual
context correspond to the terminal object 1, which is the singleton set {∗} at
each stage. A term in context ∆ | Γ ` t : τ is interpreted as a family of functions
JtKn : J∆ | Γ Kn → JτKn commuting with restriction functions of J∆ | Γ K and
JτK. Semantics of products, coproducts, and natural numbers is pointwise as in
sets, so we omit writing it. The cases for the other constructs are in Figure 9
where munit and mlet are the standard unit and bind operations on discrete
probabilities, i.e.

munit(c) = λy. 1c=y
mlet x = µ in M = λy.

∑
c∈C µ(c) ·M(c)(y)

The functions π0 and π1 are the first and second projections, respectively.

JbK , chosen object of S

JNK , N id←− N id←− N id←− · · ·

JA×BK , JAK0 × JBK0
r0×r0←−−−− JAK1 × JBK1

r1×r1←−−−− JAK2 × JBK2
r2×r2←−−−− · · ·

JA→ BK ,
(
JBKJAK

)
0

π←−
(
JBKJAK

)
1

π←−
(
JBKJAK

)
2

π←− · · ·

JStrAK , JAK0 × {∗}
r0×!←−−− JAK1 × (JAK0 × {∗})

r1×r0×!←−−−−− JAK2 × (JAK1 × (JAK0 × {∗}))← · · ·

J.AK , {∗} !←− JAK0
r0←− JAK1

r1←− · · ·

J�AK , G(JAK) id←− G(JAK) id←− · · ·

JD(C)K , D(JCK0)
D(r0)←− D(JCK1)

D(r1)←− D(JCK2)
D(r2)←− . . .

Fig. 8. Semantics of types in the topos of trees



J∆ | Γ ` λx : A.t : A→ BKi(δ, γ) , (f0, . . . , fi)

where fi(x) = J∆ | Γ, x : A ` t : BK (δ, (γ �i, x))

J∆ | Γ ` t1 t2 : BKi(δ, γ) , fi (J∆ | Γ ` t2 : AK(δ, γ))

where J∆ | Γ ` t1 : A→ BKi(δ, γ) = (f0, . . . , fi)

J∆ | Γ ` . [x1 ← t1, . . . , xn ← tn] .t : .AK0(δ, γ) , ∗

J∆ | Γ ` . [x1 ← t1, . . . , xn ← tn] .t : .AKi+1(δ, γ) ,

J∆ | Γ, {xk : Ak}nk=1 ` t : AKi
(
δ, (γ �i, {J∆ | Γ ` tk : .AkKi+1}nk=1 (δ, γ))

)
J∆ | Γ ` prev t : AKi(δ, γ) , J∆ | · ` t : .AKi+1(δ)

J∆ | Γ ` box t : �AKi(δ, γ) , {J∆ | · ` t : AKj(δ)}∞j=0

J∆ | Γ ` letb x← u in t : AKi(δ, γ) ,

J∆,x : B | Γ ` t : AKi ((δ, J∆ | Γ ` u : �BKi(δ, γ)) , γ)

J∆ | Γ ` letc x← u in t : AKi(δ, γ) ,

J∆,x : B | Γ ` t : AKi
((
δ, ε−1

i (J∆ | Γ ` u : �BKi(δ, γ))
)
, γ

)
J∆ | Γ ` hd t : AKi(δ, γ) , π0 (J∆ | Γ ` t : StrAKi(δ, γ))

J∆ | Γ ` tl t : . StrAKi(δ, γ) , π1 (J∆ | Γ ` t : StrAKi(δ, γ))

J∆ | Γ ` t ::u : StrAKi(δ, γ) , (J∆ | Γ ` t : AKi(δ, γ), J∆ | Γ ` u : StrAKi(δ, γ))

J∆ | Γ ` munit(t) : D(C)Ki(δ, γ) , munit(J∆ | Γ ` t : CKi(δ, γ))

J∆ | Γ ` let x = t in u : D(C)Ki(δ, γ) , mlet v = J∆ | Γ ` t : D(D)Ki(δ, γ) in

J∆ | Γ, x : D ` u : D(C)Ki(δ, γ[x := v])

Fig. 9. Semantics for the Guarded λ-calculus

B.2 Equational theory of the calculus

The denotational semantics validates the following equational theory in addition
to the standard equational theory of the simply typed lambda calculus with sums
and natural numbers.
Rules for fixed points, always modality and streams

fix f. t ≡ t[.(fix f. t)/f ]

prev (.t) ≡ t

letb x← (box u) in t ≡ t[u/x]

letc x← u in t ≡ t[u/x]

hd (x ::xs) ≡ x

tl (x ::xs) ≡ xs

hd t :: tl t ≡ t



Rules for delayed substitutions

.ξ [x← t] .u ≡ .ξ.u if x not in u

.ξ [x← t, y ← s] ξ′.u ≡ .ξ [y ← s, x← t] ξ′.u

.ξ [x← .ξ.t] .u ≡ .ξ. (u[t/x])

. [x← t] .x ≡ t

Monad laws for distributions

let x = munit(t) in u ≡ u[t/x]

let x = t in munit(x) ≡ t
let x2 = (let x1 = t1 in t2) in u ≡ let x1 = t1 in (let x2 = t2 in u)

In particular, notice that fix does not reduce as usual, but instead the whole
term is delayed before the substitution is performed.

B.3 Logical judgements

The cases for the semantics of the judgement ∆ | Γ ` φ of the non-probabilistic
fragment are as follows (we omit writing the contexts if they are clear):

J>Ki , J∆ | Γ Ki
Jφ ∧ ψKi , JφKi ∩ JψKi
Jφ ∨ ψKi , JφKi ∪ JψKi

Jφ⇒ ψKi , {x | ∀j ≤ i, x �j∈ JφKj ⇒ x �j∈ JψKj}
J∀x : A.φKi , {(δ, γ) | ∀j ≤ i,∀x ∈ JAKj , (δ, (γ �j) , x) ∈ JφK}

J. [x1 ← t1, . . . , xn ← tn] .φKi , {(δ, γ) | i > 0⇒ (δ, γ �i−1, {JtkKi(δ, γ)}nk=1) ∈ JφKi−1}
J�φKi , {x | ∀j, x ∈ JφKj}

C Additional background

One consequence of Strassen’s theorem is that couplings are closed under convex
combinations.

Lemma 3 (Convex combinations of couplings). Let (µi)i∈I and (νi)i∈I bet
two families of distributions on C1 and C2 respectively, and let (pi)i∈I ∈ [0, 1]
such that

∑
i∈I pi = 1. If �µi,νi .R for all i ∈ I then �(∑i∈I piµi),(

∑
i∈I piνi)

.R,

where the convex combination
∑
i∈I piµi is defined by the clause (

∑
i∈I piµi)(x) =∑

i∈I piµi(x).

One obtains an asymmetric version of the lemma by observing that if µi = µ
for every i ∈ I, then (

∑
i∈I piµi) = µ.

One can also show that couplings are closed under relation composition.

Lemma 4 (Couplings for relation composition). Let µ1 ∈ D(C1), µ2 ∈
D(C2), µ3 ∈ D(C3). Moreover, let R ⊆ C1 × C2 and S ⊆ C2 × C3. If �µ1,µ2

.R
and �µ2,µ3

.R then �µ1,µ3
.R.



D Proofs of the theorems

D.1 Proof of Theorem 2

The semantics of the guarded higher-order logic without the probabilistic frag-
ment has been explained in previous work [15,1]. Thus we focus on showing
soundness of the additional rules for the diamond modality, which will be useful
for proving soundness of the relational proof system. Moreover we only describe
soundness for the binary diamond modality, the soundness of the rules for the
unary modality being entirely analogous.
Soundness of the rule MONO2

∆ | Σ | Γ | Ψ ` �[x1←t1,x2←t2]φ ∆ | Σ | Γ, x1 : C1, x2 : C2 | Ψ, φ ` ψ
∆ | Σ | Γ | Ψ ` �[x1←t1,x2←t2]ψ

MONO2

Let n ∈ N and (δ, γ) ∈ J∆ | Σ | Γ | ΨKn. Then from the first premise we have
(δ, γ) ∈ J�[x1←t1,x2←t2]φKn and thus there exists an {(v, u) | (δ, γ, v, u) ∈ JφKn}
coupling for the distributions Jt1Kn(δ, γ) and Jt2Kn(δ, γ). But since (δ, γ) ∈ J∆ |
Σ | Γ | ΨKn we have from the second premise of the rule that

{(v, u) | (δ, γ, v, u) ∈ JφKn} ⊆ {(v, u) | (δ, γ, v, u) ∈ JψKn}

and thus any {(v, u) | (δ, γ, v, u) ∈ JφKn} coupling is also an {(v, u) | (δ, γ, v, u) ∈ JψKn}
coupling, which means there exists an {(v, u) | (δ, γ, v, u) ∈ JψKn} coupling for
Jt1Kn(δ, γ) and Jt2Kn(δ, γ) as required.
Soundness of the rule UNIT2

∆ | Σ | Γ | Ψ ` φ[t1/x1][t2/x2]

∆ | Σ | Γ | Ψ ` �[x1←munit(t1),x2←munit(t2)]φ
UNIT2

Let n ∈ N and (δ, γ) ∈ J∆ | Σ | Γ | ΨKn. We need to show the existence of a

{(v, u) | (δ, γ, v, u) ∈ JφKn}

coupling for the point-mass distributions concentrated at Jt1Kn(δ, γ) and Jt2Kn(δ, γ).
The premise of the rule establishes the membership

(Jt1Kn(δ, γ), Jt2Kn(δ, γ)) ∈ {(v, u) | (δ, γ, v, u) ∈ JφKn}

and thus the point-mass distribution concentrated at (Jt1Kn(δ, γ), Jt2Kn(δ, γ)) is
a required coupling.
Soundess of the rule MLET2

∆ | Σ | Γ | Ψ ` �[x1←t1,x2←t2]φ ∆ | Σ | Γ, x1 : C1, x2 : C2 | Ψ, φ ` �[y1←t′1,y2←t′2]ψ
∆ | Σ | Γ | Ψ ` �[y1←let x1=t1 in t′1,y2←let x2=t2 in t′2]

ψ
MLET2

Let n ∈ N and (δ, γ) ∈ J∆ | Σ | Γ | ΨKn. Then from the first premise we have
that there exists an

{(v, u) | (δ, γ, v, u) ∈ JφKn}



coupling for the distributions Jt1Kn(δ, γ) and Jt2Kn(δ, γ).
From the second premise we get that for every v, u such that (δ, γ, v, u) ∈ JφKn

there exists an

{(v′, u′) | (δ, γ, v, u, v′, u′) ∈ JψKn}

coupling for Jt′1Kn(δ, γ, v) and Jt′2Kn(δ, γ, u). Since x1 and x2 are fresh for ψ the
relation

{(v′, u′) | (δ, γ, v, u, v′, u′) ∈ JψKn}

is independent of v, u.
Thus Lemma 1 instantiated with

µ1 = Jt1Kn(δ, γ)

µ2 = Jt2Kn(δ, γ)

M1 = Jt′1Kn(δ, γ,−)

M2 = Jt′2Kn(δ, γ,−)

R = {(v, u) | (δ, γ, v, u) ∈ JφKn}
S = {(v′, u′) | (δ, γ, v, u, v′, u′) ∈ JψKn}

concludes the proof.
Soundness of the rule MLET-L

∆ | Σ | Γ | Ψ ` �[x1←t1]φ ∆ | Σ | Γ, x1 : C1 | Ψ, φ ` �[y1←t′1,y2←t′2]ψ
∆ | Σ | Γ | Ψ ` �[y1←let x1=t1 in t′1,y2←t′2]ψ

MLET− L

Let n ∈ N and (δ, γ) ∈ J∆ | Σ | Γ | ΨKn. Then from the first premise we have
that the support of the distribution Jt1Kn(δ, γ) is included in

{v | (δ, γ, v) ∈ JφKn} .

From the second premise we get that for every v such that (δ, γ, v) ∈ JφKn
there exists an

{(v′, u′) | (δ, γ, v, v′, u′) ∈ JψKn}

coupling for Jt′1Kn(δ, γ, v) and Jt′2Kn(δ, γ). Since x1 is fresh for ψ the relation

R , {(v′, u′) | (δ, γ, v, v′, u′) ∈ JψKn}

is independent of v.
Let I = {v | (δ, γ, v) ∈ JφKn} and for any v ∈ I let pv = Jt1Kn(δ, γ)(v),

µv = Jt′1Kn(δ, γ, v), and νv = Jt′2Kn(δ, γ). Then we have
∑
v∈I pv = 1 from the

first premise of the rule and µv L (R) νv for all v ∈ I from the second premise.
Lemma 3 concludes the proof.



D.2 Proof of Theorem 3

The inverse implication follows immediately from the [SUB] rule and the fact
that we can always prove a judgement of the shape

Γ | Σ | Γ | Ψ ` t1 : A1 ∼ t2 : A2 | >

for well-typed t1 and t2.
We will prove the direct implication by induction on the derivation. We will

just prove the two-sided rules. The proofs for the one sided rule are similar.

Case.

∆ | Σ | Γ, x1 : A1, x2 : A2 | Ψ,Φ′[x1/r1][x2/r2] ` t1 : A1 ∼ t2 : A2 | Φ
∆ | Σ | Γ | Ψ ` u1 : .A1 ∼ u2 : .A2 | .[r1, r2 ← r1, r2].Φ′

∆ | Σ | Γ | Ψ ` .[x1 ← u1].t1 : .A1 ∼ .[x2 ← u2].t2 : .A2 | .[x1 ← u1, x2 ← x2, r1 ← r1, r2 ← r2]Φ
Next

By I.H. ∆ | Σ | Γ, x1 : A1, x2 : An | Ψ, Φ′[x1/r1][x2/r2] ` Φ[t1/r1][t2/r2],
(H1)
and ∆ | Σ | Γ | Ψ ` . [r1 ← u1, r2 ← u2] .Φ′ (H2)
To show:∆ | Σ | Γ | Ψ ` . [x1 ← u1, x2 ← u2, r1 ← .[x1 ← u1].t1, r2 ← .[x2 ← u2].t2] .Φ.
(G)
By [CONV] we can change the goal (G) into
∆ | Σ | Γ | Ψ ` . [x1 ← u1, x2 ← u2] .Φ[t1/r1][t2/r2] (G’)
and (H2) into:
∆ | Σ | Γ | Ψ ` . [x1 ← u1, x2 ← u2] .Φ′[x1/r1][x2/r2] (H2’)
Finally, by applying [.App] to (H1) and (H2) we get (G’)

Case.

∆ | Σ | · | · ` t1 : .A1 ∼ t2 : .A2 | .[r1, r2 ← r1, r2].Φ

∆ | Σ | Γ | Ψ ` prev t1 : A1 ∼ prev t2 : A2 | Φ
Prev

We just apply [.E ].

Case.

∆ | Σ | · | · ` t1 : A1 ∼ t2 : A2 | Φ
∆ | Σ | Γ | Ψ ` box t1 : �A1 ∼ box t2 : �A2 | �Φ[letb x1 ← r1 in x1/r1][letb x2 ← r2 in x2/r2]

Box

By I.H. ∆ | Σ | · | · ` Φ[t1/r1][t2/r2]
To show:∆ | Σ | Γ | Ψ ` �Φ[letb x1 ← box t1 in x1/r1][letb x2 ← box t2 in x2/r2]
By [CONV] we can change the goal into:
∆ | Σ | Γ | Ψ ` �Φ[t1/r1][t2/r2]
And then we can prove it by [�I ].

Case.

∆ | Σ | Γ | Ψ ` u1 : �B1 ∼ u2 : �B2 | �Φ[letb x1 ← r1 in x1/r1][letb x2 ← r2 in x2/r2]
∆,x1 : B1, x2 : B2 | Σ,Φ[x1/r1][x2/r2] | Γ | Ψ ` t1 : A1 ∼ t2 : A2 | Φ′

∆ | Σ | Γ | Ψ ` letb x1 ← u1 in t1 : A1 ∼ letb x2 ← u2 in t2 : A2 | Φ′
LetBox

By I.H. ∆ | Σ | Γ | Ψ ` �Φ[letb x1 ← u1 in x1/r1][letb x2 ← u2 in x2/r2]
(H1)
and ∆,x1 : B1, x2 : B2 | Σ,Φ[x1/r1][x2/r2] | Γ | Ψ ` Φ′[t1/r1][t2/r2]. (H2)



To show: ∆ | Σ | Γ | Ψ ` Φ′[letb x1 ← u1 in t1/r1][letb x2 ← u2 in t2/r2] (G)
We instantiate (H2) into:

∆ | Σ,Φ[letb x1 ← u1 in x1/r1][letb x2 ← u2 in x2/r2] | Γ | Ψ `
Φ′[t1[letb x1 ← u1 in x1/x1]/r1][t2[letb x2 ← u2 in x2/x2]/r2]

And by the equality t[letb x← u in x/x] ≡ letb x← u in t, we get:

∆ | Σ,Φ[letb x1 ← u1 in x1/r1][letb x2 ← u2 in x2/r2] | Γ | Ψ `
Φ′[letb x1 ← u1 in t1/r1][letb x2 ← u2 in t2/r2]

and then, by applying [�E ] to (H1) and the previous judgement we get (G).

Case.

B1, B2, Φ constant FV (Φ) ∩ FV (Γ ) = ∅ ∆ | Σ | Γ | Ψ ` u1 : B1 ∼ u2 : B2 | Φ
∆, x1 : B1, x2 : B2 | Σ,Φ[x1/r1][x2/r2] | Γ | Ψ ` t1 : A1 ∼ t2 : A2 | Φ′

∆ | Σ | Γ | Ψ ` letc x1 ← u1 in t1 : A1 ∼ letc x2 ← u2 in t2 : A2 | Φ′
LetConst

By I.H. ∆ | Σ | Γ | Ψ ` Φ[u2/u1], (H1)
and ∆,x1 : B1, x2 : B2 | Σ,Φ[x1/r1][x2/r2] | Γ | Ψ ` Φ′[t1/r1][t2/r2]. (H2)
To show: ∆ | Σ | Γ | Ψ ` Φ′[letc x1 ← u1 in t1/r1][letc x2 ← u2 in t2/r2] (G)
From (H1) and the fact that Φ,B1 and B2 are constant, we get:
∆ | Σ | Γ | Ψ ` �Φ[u1/r1][u2/r2]
The rest of the prove is analogous to the previous case.

Case.

∆ | Σ | Γ, f1 : .A1, f2 : .A2 | Ψ, .[r1, r2 ← f1, f2].Φ ` t1 : A1 ∼ t2 : A2 | Φ
∆ | Σ | Γ | Ψ ` fixf1.t1 : A1 ∼ fixf2.t2 : A2 | Φ

Fix

By I.H. ∆ | Σ | Γ, f1 : .A1, f2 : .A2 | Ψ, . [r1 ← f1, r2 ← f2] .Φ ` Φ[t1/r1][t2/r2].
To show: ∆ | Σ | Γ | Ψ ` Φ[fixf2t2/fix f1. t1]
Instantiating the I.H. with f1 = .fix f1. t1 and f2 = .fix f2. t2 we get:
∆ | Σ | Γ | Ψ, . [r1 ← .fix f1. t1, r2 ← .fix f2. t2] .Φ ` Φ[t1[.fix f1. t1/f1]/r1][t2[.fix f2. t2/f2]/r2].
Since t[.fix f. t/f ] ≡ fix f. t, by [CONV]:
∆ | Σ | Γ | Ψ, . [r1 ← .fix f1. t1, r2 ← .fix f2. t2] .Φ ` Φ[fix f1. t1/r1][fix f2. t2/r2].
and since . [r1 ← .fix f1. t1, r2 ← .fix f2. t2] .Φ⇔ .Φ[fix f2. t2/r1][fix f2. t2/r2],
∆ | Σ | Γ | Ψ, .Φ[fix f1. t1/r1][fixf2t2/r2] ` Φ[fixf1t1/r1][fixf2t2/r2],
and finally, by [Löb] we get our goal.

Case.

∆ | Σ | Γ | Ψ ` x1 : A1 ∼ x2 : A2 | Φh
∆ | Σ | Γ | Ψ ` xs1 : . StrA1 ∼ xs2 : .StrA2 | Φt

Γ | Ψ ` ∀x1, x2, xs1, xs2.Φh[x1/r1][x2/r2]⇒ Φt[xs1/r1][xs2/r2]⇒ Φ[x1 ::xs1/r1][x2 ::xs2/r2]

∆ | Σ | Γ | Ψ ` x1 ::xs1 : StrA1 ∼ x2 ::xs2 : StrA2 | Φ
Cons

Apply the I.H., [∀E ] and [⇒E ].

Case.

∆ | Σ | Γ | Ψ ` t1 : StrA1 ∼ t1 : StrA1 | Φ[hd r1/r1][hd r2/r2]

∆ | Σ | Γ | Ψ ` hd t1 : A1 ∼ hd t2 : A2 | Φ
Head



Trivial by I.H.

Case.

∆ | Σ | Γ | Ψ ` t1 : StrA1 ∼ t2 : StrA2 | Φ[tl r1/r1][tl r2/r2]

∆ | Σ | Γ | Ψ ` tl t1 : .StrA1 ∼ tl t2 : .StrA2 | Φ
Tail

Trivial by I.H.

Case.

∆ | Σ | Γ | Ψ ` t′1 : A1 ∼ t′2 : A2 | Φ
t1 ≡ t′1 t2 ≡ t′2 ∆ | Γ ` t1 : A1 ∆ | Γ ` t2 : A2

∆ | Σ | Γ | Ψ ` t1 : A1 ∼ t2 : A2 | Φ
Equiv

Trivial by I.H. and [Conv].

Most of the proofs for the probabilistic fragment are a consequence of the
proof of Theorem 2. The only interesting case is [Markov]. We do the proof
directly in RHOL by showing we can derive it from [Fix]. We have the premises:

1. ∆ | Σ | Γ | Ψ ` t1 : C1 ∼ t2 : C2 | φ
2. ∆ | Σ | Γ | Ψ ` h1 : C1 → D(C1) ∼ h2 : C2 → D(C2) | ψ3

3. ∆ | Σ | Γ | Ψ ` ψ4

where:

ψ3 ≡ ∀x1x2.φ[x1/r1][x2/r2]⇒ �[y1←r1 x1,y2←r2 x2]φ[y1/r1][y2/r2]

ψ4 ≡ ∀x1 x2 xs1 xs2.φ[x1/r1][x2/r2]⇒ . [y1 ← xs1, y2 ← xs2] .Φ⇒ Φ[x1 ::xs1/y1][x2 ::xs2/y2]

If we inline the definition of unfold, we have to prove:

fix f. λx1.λh1.let z1 = h1 x1 in let t1 = swapC
.D(f1 ~ .z1 ~ .h1) in munit(x1 :: t1) ∼

fix f. λx2.λh2.let z2 = h2 x2 in let t2 = swapC
.D(f2 ~ .z2 ~ .h2) in munit(x2 :: t2)

| ∀x1x2h1h2.φ[x1/r1][x2/r2]⇒ ψ3[h1/r1][h2/r2]⇒ �[y2←r1,y2←r2]Φ

We apply [FIX], [MLET] twice, and then [MUNIT]. The main judgements we
have to prove are:

(a) ∆ | Σ | Γ | Ψ ` h1 x1 : D(C1) ∼ h2 x2 : D(C2) | �[r1←r1,r2←r2]φ

(b) ∆ | Σ | Γ | Ψ ` swapC
.D(f1 ~ .z1 ~ .h1) : D(.C1) ∼ swapC

.D(f2 ~ .z2 ~ .h2) :
D(.C2) | �[z1←r1,z2←r2] . [y1 ← z1, y2 ← z2] .Φ

(c) ∆ | Σ | Γ, x1, x2, t1, t2 | Ψ, φ[x1/r1][x2/r2], . [y1 ← t1, y2 ← t2] .Φ ` y1 :: t1 :
D(StrC1

) ∼ y2 :: t2 : D(StrC2
) | Φ[r1/y1][r2/y2]

The judgement (a) is a direct consequence of premises (1) and (2), (b) is
proven from the inductive hypothesis, and (d) is a direct consequence of (3).
This completes the proof.



E Examples

E.1 Proof of ZipWith

This example, taken from [13], proves a property about the ZipWith function,
which takes two streams of type A, a function on pairs of elements, and “zips”
the two streams by applying that function to the elements that are at the same
position on the two streams. We want to show that if the function on the elements
is commutative, zipping two streams with that function is commutative as well.

We can define the zipWith function as:

zipWith : (N→ N→ N)→ StrN → StrN → StrN

zipWith , fix zipWith . λf.λxs.λys.(f (hd xs) (hd ys)) :: (zipWith~(tl xs)~ (tl ys))

We prove (omitting types of expressions):

` zipWith ∼ zipWith | Φ

where

Φ , ∀f1f2.(f1 = f2 ∧ ∀xy.f1xy = f1yx)⇒ ∀xs1xs2.∀ys1ys2.(xs1 = ys2 ∧ xs2 = ys1)

⇒ r1 f1 xs1 ys1 = r2 f2 xs2 ys2

A , (N→ N→ N)→ StrN → StrN → StrN

The proof proceeds by applying two-sided rules all the way. We invite interested
readers to compare this proof with the one given in [13] to see how the two
approaches differ.

We show how to derive the statement backwards. The derivation begins with
the [Fix] rule. Its premise is (omitting constant contexts):

zipWith1, zipWith2 : .A | . [r1 ← zipWith1, r2 ← zipWith2] .Φ ` λf1.(· · · ) : A ∼ λf2.(· · · ) : A | Φ

Then we apply the [ABS] rule three times to introduce into the context the
logical relations on f1, f2, xs1, xs2, ys1, and ys2. The premise we need to prove
is then:

Γ | Ψ ` (f1 (hd xs1) (hd ys1)) :: (zipWith1~(tl xs1)~ (tl ys1)) : StrN ∼
(f2 (hd xs2) (hd ys2)) :: (zipWith2~(tl xs2)~ (tl ys2)) : StrN | r1 = r2

where

Γ , zipWith1, zipWith2 : .A; f1, f2 : (N→ N→ N);xs1, xs2, ys1, ys2 : StrN

Ψ , . [r1 ← zipWith1, r2 ← zipWith2] .Φ, (f1 = f2 ∧ ∀xy.fxy = fyx), xs1 = ys2, xs2 = ys1

Now we can apply the [Cons] rule, which has three premises:

1. Γ | Ψ ` f1 (hd xs1) (hd ys1) : N ∼ f2 (hd xs2) (hd ys2) : N | r1 = r2



2. Γ | Ψ ` zipWith1~(tl xs1)~(tl ys1) : . StrN ∼ zipWith2~(tl xs2)~(tl ys2) :
. StrN | r1 = r2

3. Γ | Ψ ` ∀xyxsys.x = y ⇒ xs = ys⇒ x ::xs = y ::ys

Premise (3) is easily provable in HOL. To prove premise (1) we first apply the
[App] rule twice, and we have to prove the judgments:

– Γ | Ψ ` f1 : N→ N→ N ∼ f2 : N→ N→ N | ∀vs1vs2ws1ws2.
vs1 = hd ys2∧vs2 = hd ys1 ⇒ ws1 = hd xs2∧ws2 = hd xs1 ⇒ r1 vs1 ws1 =
r2 vs2 ws2

– Γ | Ψ ` hd xs1 : N ∼ hd xs2 : N | r1 = hd ys2 ∧ r2 = hd ys1
– Γ | Ψ ` hd ys1 : N ∼ hd ys2 : N | r1 = hd xs2 ∧ r2 = hd xs1

The three can be proven in HOL from the conditions imposed on f1, f2 and the
equalities xs1 = ys2, xs2 = ys1.

All that remains to prove is premise (2) of the [Cons] application, which,
by expanding the definition of ~ and using the equational theory of delayed
substitutions, can be desugared to:

Γ | Ψ ` .ξ1.(g1 t1 u1) : . StrN ∼ .ξ2.(g2 t2 u2) : . StrN | .ξ1, ξ2, [r1 ← r1, r2 ← r2].(r1 = r2)

where, for i = 1, 2:

ξi = [gi ← zipWithi, ti ← (tl xsi), ui ← (tl ysi)]

We apply the [Next] rule, and we have the four following premises:

– Γ | Ψ ` zipWith1 : .A ∼ zipWith2 : .A | . [r1 ← r1, r2 ← r2] .(r1 = r2 ∧
∀xy.r1xy = r1yx)

– Γ | Ψ ` tl xs1 : . StrN ∼ tl xs2 : .StrN | . [r1 ← r1, r2 ← r2] .(r1 = tl ys2 ∧
r2 = tl ys1)

– Γ | Ψ ` tl ys1 : . StrN ∼ tl ys2 : . StrN | . [r1 ← r1, r2 ← r2] .(r1 = tl xs2 ∧
r2 = tl xs1)

– Γ ; g1, g2 : A; t1, t2, u1, u2 : StrN | Ψ, g1 = g2 ∧ ∀xy.g1xy = g1yx, t1 = tl ys2 ∧
t2 = tl ys1,
u1 = tl xs2 ∧ u2 = tl xs1 ` g1 t1 u1 : StrN ∼ g2 t2 u2 : StrN | r1 = r2

To prove the first premise we instantiate the inductive hypothesis we got
from [Fix]. To prove the second and the third premises we use the equalities
xs1 = ys2, xs2 = xs1. Finally, the fourth premise is a simple derivation in HOL
that follows from the same equalities plus the refinements of g1, g2, t1, t2, u1, u2.
This concludes the proof.

E.2 Proof of approximation series

We now continue with another example that, while still being fully synchronous
(i.e., uses only two-sided rules), goes beyond reasoning about equality of streams,



and showcases the flexibility of streams to represent different kinds of information
and structures.

For instance, streams can be used to represent series of numbers. In this
example, we illustrate an instance of a property about series that can be proven
in our system. Consider the series x0, x1, . . . for any p ≥ 1

2 and any a ≥ 0, where
x0 is given and:

xi+1 = pxi + (1− p) a
xi

It can be easily shown that if x0 ≥
√
a, then this series converges monotonically

from the top to
√
a. In particular, lim

i→∞
xi =

√
a. (For p = 1

2 , this is the standard

Newton-Raphson series for square-root computation [36])
The interesting relational property is that for smaller p, this series converges

faster. Concretely, define f(p, a, x0, i) as the ith element of the above series (for
the given p, a and x0). Then, the relational property to prove is that:

∀p1 p2 a x0 i. (
1

2
≤ p1 ≤ p2 ∧ x0 ≥

√
a)⇒ |f(p1, a, x0, i)−

√
a| ≤ |f(p2, a, x0, i)−

√
a|

We outline the proof of this property. First, note that because convergence is
from the top, |f(p2, a, x0, i)−

√
a| = f(p2, a, x0, i)−

√
a. Therefore, the property

above is the same as:

∀p1 p2 a x0 i. (
1

2
≤ p1 ≤ p2 ∧ x0 ≥

√
a)⇒ f(p2, a, x0, i)− f(p1, a, x0, i) ≥ 0

This is easy to establish by induction on i.
(Note the importance of the assumption p ≥ 1

2 : Without this assumption,
convergence is not monotonic, and this relational property may not hold. If we
start with x0 ≤

√
a instead of x0 ≥

√
a, we need p ≤ 1

2 for convergence to be
monotonic, this time from below.)

Now we see how we can encode and prove this as a relational property of a
pair of streams. We can define a stream whose elements are the elements of one
of this series:

approx sqrt : R→ R→ R→ StrR

approx sqrt , fix f. λp.λa.λx.x :: (f ~ .p~ .a~ .(p ∗ x+ (1− p) ∗ a/x))

We prove:

` approx sqrt1 : R→ R→ R→ StrR ∼ approx sqrt2 : R→ R→ R→ StrR | Φ

where

Φ , ∀p1p2.(
1

2
≤ p1 ≤ p2)⇒ ∀a1a2.0 ≤ a1 = a2 ⇒ ∀x1x2.(0 ≤ x1 ≤ x2 ∧ a1 ≤ x1 ∗ x1)

⇒ All(r1 p1 a1 x1, r2 p2 a2 x2, λn1n2.0 ≤ n1 ≤ n2 ∧ a1 ≤ n1 ∗ n1)

and All is defined axiomatically as follows:

∀s1, s2, n1, n2.φn1n2 ⇒ . [s′1 ← s1, s
′
2 ← s2] .All(s′1, s

′
2, λx1x2.φ)⇒ All(n1 ::s1, n2 ::s2, λx1x2.φ)



The meaning of the judgement is that, if we have two approximation series
for the square root of a (formally, we write a = a1 = a2), with initial guesses
x1 ≤ x2, and parameters 1/2 ≤ p1 ≤ p2, then, at every position, the first series
is going to be closer to the root than the second one. Note that we have removed
the square roots in the specification by squaring.

Let A =, R → R → R → StrR. We will show how to derive the judgment
backwards. The proof starts by applying [Fix] which has the premise (omitting
constant contexts):

f1, f2 : .A | . [r1, r2 ← f1, f2] .Φ ` λp1.λa1.λx1. . . . : A ∼ λp2.λa2.λx2. . . . : A | Φ

and after applying [Abs] three times:

f1, f2 : .A; p1, p2, a1, a2, x1, x2 : R |
. [r1, r2 ← f1, f2] .Φ, (

1

2
≤ p1 ≤ p2), 0 ≤ a1 = a2, 0 ≤ x1 ≤ x2, a1 ≤ x1 ∗ x1 `

(λy1.x1 :: (f1 ~ .p1 ~ .a1 ~ .y1))(p1 ∗ x1 + (1− p1) ∗ a1/x1) : StrR ∼
(λy2.x2 :: (f2 ~ .p2 ~ .a2 ~ .y2))(p2 ∗ x2 + (1− p2) ∗ a2/x2) : StrR |

All(r1, r2, λn1n2.n1 ≤ n2)

Let Γ and Ψ denote the typing and logical contexts in the previous judgement.
Now we apply [App], which has two premises:

– Γ | Ψ ` λy1.x1 :: (f1 ~ .p1 ~ .a1 ~ .y1) : R → StrR ∼ λy2.x2 :: (f2 ~ .p2 ~
.a2 ~ .y2) : R→ StrR |
∀y1, y2.(0 ≤ y1 ≤ y2 ∧ a1 ≤ y1 ∗ y1) ⇒ All(r1 y1, r2 y2, λn1n2.0 ≤ n1 ≤
n2 ∧ a1 ≤ n1 ∗ n1)

– Γ | Ψ ` p1 ∗ x1 + (1− p1) ∗ a1/x1 : StrR ∼ p2 ∗ x2 + (1− p2) ∗ a2/x2 : StrR |
0 ≤ r1 ≤ r2 ∧ a1 ≤ r1 ∗ r1

The second premise can be established in Guarded HOL as an arithmetic
property in our theory of reals. To prove the first one, we start by applying the
[Abs] rule, followed by the [Cons] rule, which has three premises:

1. Γ, y1, y2 : R | Ψ, (y1 ≤ y2 ∧ y1 ∗ y1 ≥ a1) ` x1 : R ∼ x2 : R | 0 ≤ r1 ≤ r2 ∧ a ≤
r1 ∗ r1

2. Γ, y1, y2 : R | Ψ, (y1 ≤ y2 ∧ y1 ∗ y1 ≥ a1) ` (f1 ~ .p1 ~ .a1 ~ .y1) : . StrR ∼
(f2 ~ .p2 ~ .a2 ~ .y2) : . StrR | . [r1 ← r1, r2 ← r2] .All(r1, r2, λn1n2.0 ≤
n1 ≤ n2 ∧ a ≤ n1 ∗ n1)

3. Γ, y1, y2 : R | Ψ, (y1 ≤ y2 ∧ y1 ∗ y1 ≥ a1) ` ∀h1h2t1t2.0 ≤ h1 ≤ h2 ⇒ a1 ≤
h1 ∗ h1 ⇒
. [r1 ← t1, r2 ← t2] .All(r1, r2, λn1n2.0 ≤ n1 ≤ n2 ∧ a ≤ n1 ∗ n1)⇒
All(h1 :: t1, h2 :: t2, λn1n2.0 ≤ n1 ≤ n2 ∧ a ≤ n1 ∗ n1))

Premise (1) is just the refinement on x1, x2, while premise (3) is the axiom-
atization of All. To prove premise (2) one instantiates the induction hypothesis
given by the [Fix] rule. In order to do so, we first rewrite the two terms we are
comparing to their desugared form:

. [f ′1 ← f1, p
′
1 ← .p1, a

′
1 ← .a1, y

′
1 ← .y1] .f ′1 p

′
1 a
′
1 y
′
1



and
. [f ′2 ← f2, p

′
2 ← .p2, a

′
2 ← .a2, y

′
2 ← .y2] .f ′2 p

′
2 a
′
2 y
′
2

We can also add by [SUB] the same substitutions to the . in the conclusion,
since the substituted variables do not appear in the formula. Then we can apply
the [Next] rule, which has the premises:

– Γ, y1, y2 : R | Ψ, (y1 ≤ y2∧y1∗y1 ≥ a1) ` f1 : .A ∼ f2 : .A | . [r1 ← r1, r2 ← r1] .Φ
– Γ, y1, y2 : R | Ψ, (y1 ≤ y2 ∧ y1 ∗ y1 ≥ a1) ` .p1 : R ∼ .p2 : R |
. [r1 ← r1, r2 ← r1] .

1

2
≤ r1 ≤ r2

– Γ, y1, y2 : R | Ψ, (y1 ≤ y2∧y1∗y1 ≥ a1) ` .a1 : R ∼ .a2 : R | . [r1 ← r1, r2 ← r1] .0 ≤
r1 = r2

– Γ, y1, y2 : R | Ψ, (y1 ≤ y2 ∧ y1 ∗ y1 ≥ a1) ` .y1 : R ∼ .y2 : R |
. [r1 ← r1, r2 ← r1] .0 ≤ r1 ≤ r2 ∧ a′1 ≤ r1 ∗ r1

– Γ, y1, y2, p
′
1, p
′
2, a
′
1, a
′
2, y
′
1, y
′
2 : R; f ′1, f

′
2 : A | Ψ, (y1 ≤ y2∧y1∗y1 ≥ a1), Φ[f ′1/r1][f ′2/r2],

1

2
≤ p′1 ≤ p′2, 0 ≤ a′1 = a′2, 0 ≤ y′1 ≤ y′2 ∧ a′1y′1 ∗ y′1 `

f ′1 p
′
1 a
′
1 y
′
1 : StrR ∼ f ′2 p

′
2 a
′
2 y
′
2 : StrR | All(r1, r2, λn1n2.0 ≤ n1 ≤ n2 ∧ a ≤

n1 ∗ n1)

The first four can be proven simply by instantiating and then delaying one of
the axioms. The last one is proven by applying [App] three times. This concludes
the proof.

E.3 Proof of Cassini’s identity

We continue building on the idea from the previous example of using streams
to represent series of numbers. This time, we prove a classical identity of the
Fibonacci sequence. Since the example requires to observe the stream at differ-
ent times, we will also have to deal with some asynchronicity on the delayed
substitutions.

Let Fn be the nth Fibonacci number. Cassini’s identity states that Fn−1 ·
Fn+1 − F 2

n = (−1)n. Cassini’s identity can be stated as a stream problem as
follows. First, let F be the Fibonnaci stream (1, 1, 2, 3, 5, . . .) and A be the stream
1,−1, 1,−1, . . . Let ⊕ and ⊗ be infix functions that add and multiply two streams
pointwise. Cassini’s identity can then be informally written as:

F ⊗ tl(tl F ) = tl(F ⊗ F )⊕A

In order to formalize Cassini’s identity in our system, we first define:

⊕ : StrN → StrN → StrN ⊗ : StrN → StrN → StrN

⊕ , fix f. λs.λt
(hd x+ hd y) :: (f ~ (tl x)~ (tl y))

⊗ , fix f. λs.λt
(hd x ∗ hd y) :: (f ~ (tl x)~ (tl y))

Then we define F and A as the fixpoints of the equations:

F , fix F. 1::. [F ′ ← F ] .(1 ::. [T ← tl F ′] .(F ′ ⊕ T ))

A , fix A. 1::.(−1::A)



We prove (using prefix notation for ⊕ and ⊗):

` . [T1 ← tl F ] .⊗~(.F )~tl T1 : ..StrN ∼ ⊕~tl(F⊗F )~(.A) : . StrN | r1 = .r2

The proof combines applications of two-sided rules and one-sided rules; in
particular, we use the rule [NEXT-L] to proceed with the proof for a judgement
where the left expression is delayed twice and the right expression is delayed
once.

By conversion, in the logic we can prove the following equalities:

Ψ ,

{
F = 1::.(1 ::. [T ← tl F ] .(F ⊕ T )),

A = 1::.(−1::.A)

}

Using these equalities, and desugaring the applications, the judgment we
want to prove is (omitting constant contexts):

F,A : StrN | Ψ ` . [T1 ← tl F ] . . [T ′1 ← tl T1] .(F ⊗ T ′1) : . . StrN ∼
. [T2 ← tl(F ⊗ F )] .(T2 ⊕A) : . StrN |

. [r′1 ← r1, T1 ← tl F ] . . [r′′1 ← r1, r
′
2 ← r2, T

′
1 ← tl T1, T

′
2 ← tl(F ⊗ F )] .r′′1 = r′2

Notice that on the left, since we want to apply tail twice to F , we need to
delay the term twice so that F and tl tl F have the same type. On the right, we
just need to delay the term once. As for the logical conclusion, r1 needs to be
delayed twice, while r2 only once. The way to do this is by having r1 appear on
the two substitutions but r2 only on the inner one.

We start by applying [NEXT-L], which has the two following premises:

– F,A : StrN | Ψ ` tl F : . StrN | . [r′ ← r] .tl F = .r′

– F,A, T1 : StrN | Ψ, tl F = .T1 ` . [T ′1 ← tl T1] .(F ⊗ T ′1) : . StrN ∼
.[T2 ← tl(F ⊗ F )] .(T2⊕A) : . StrN | . [r′′1 ← r1, r

′
2 ← r2, T

′
1 ← tl T1, T

′
2 ← tl(F ⊗ F )] .r′′1 =

r′2

The first premise is trivial. We continue by applying [NEXT] to the second,
which has the following premises:

– F,A, T1 : StrN | Ψ, tl F = .T1 ` tl T1 : . StrN ∼ tl(F ⊗ F ) : . StrN |
. [r′1 ← r1, r

′
2 ← r2] .T1 = .r′1 ∧ r′1 ⊗ r′1 = r′2

– F,A, T ′1, T2 : StrN | Ψ, tl F = .T1, tl T1 = .T ′1, T
′
1⊗T ′1 = T2 ` F ⊗T ′1 : StrN ∼

T2 ⊕A : StrN | r1 = r2

Again, the first premise is trivial. We apply [APP] twice to the second, and
we have to prove:

– F,A, T ′1, T2 : StrN | Ψ, tl F = .T1, tl T1 = .T ′1, T
′
1 ⊗ T ′1 = T2 ` F : StrN ∼ A :

StrN |
r1 = F ∧ r2 = A



– F,A, T ′1, T2 : StrN | Ψ, tl F = .T1, tl T1 = .T ′1, T
′
1 ⊗ T ′1 = T2 ` T ′1 : StrN ∼

T2 : StrN |
F = 1::.(1 ::.T1) ∧ r1 ⊗ r2 = r2

– F,A, T ′1, T2 : StrN | Ψ, tl F = .T1, tl T1 = .T ′1, T
′
1 ⊗ T ′1 = T2 `

⊗ : StrN → StrN → StrN ∼ ⊕ : StrN → StrN → StrN | ∀X1X2Y1Y2.X1 =
F ∧X2 = A⇒ F = 1::.(1 ::.Y1) ∧ Y1 ⊗ Y1 = Y2 ⇒ r1 X1 Y1 = r2 X2 Y2

The two first premises are easy to prove. We will show how to prove the last
one. For this, we need a stronger induction hypothesis for ⊕̂ and ⊗̂. We propose
the following:

∀g1, g2, b1, G,B.G = g1 :̂:g2 :̂:(G⊕̂(t̂lG)) ∧ b1 = g21 + g1g2 − g22 ∧B = b1 :̂:− b1 :̂:B

⇒ G⊗̂t̂l(t̂lG) = t̂l(G⊗̂G)⊕̂B

We then use the [SUB] rule to strengthen the inductive hypothesis, and now
the new judgement to prove is:

F,A, T ′1, T2 : StrN | Ψ, tl F = .T1, tl T1 = .T ′1, T
′
1 ⊗ T ′1 = T2 `

⊗ : StrN → StrN → StrN ∼ ⊕ : StrN → StrN → StrN |
∀X1X2Y1Y2.(∃g1, g2, b1, G,B.G = g1 ::.(g2 ::. [G′ ← tl G] .(G⊕G′)) ∧ b1 = g21 + g1g2 − g22∧

B = b1 ::.(−b1 ::.B) ∧X1 = G ∧X2 = B ∧X1 = 1::.(1 ::.Y1) ∧ Y1 ⊗ Y1 = Y2)⇒ r1 X1 Y1 = r2 X2 Y2

Let Γ ′, Ψ ′ and ΦIH denote respectively the typing context, logical context
and logical conclusion of the previous judgement. The premise of the FIX rule
is:

Γ ; f1, f2 : .(StrN → StrN → StrN) | Ψ ′, . [r1 ← f1, r2 ← f2] .ΦIH `
fix f1. λX1.λY1. . . . : StrN → StrN → StrN ∼ fix f2. λX2.λY2. . . . : StrN → StrN → StrN | ΦIH

Let ΦE denote the existential clause in ΦIH . After applying [ABS] twice, we
have:

Γ ; f1, f2 : .(StrN → StrN → StrN);X1, X2, Y1, Y2 : StrN | Ψ ′, . [r1 ← f1, r2 ← f2] .ΦIH , ΦE `
(hd X1) ∗ (hd Y1) ::f1 ~ (tl X1)~ (tl Y1) : StrN ∼ (hd X2) + (hd Y2) ::f2 ~ (tl X2)~ (tl Y2) : StrN | r1 = r2

And then we apply [Cons] to prove equality on the heads and the tails:

– Γ ; f1, f2 : .(StrN → StrN → StrN);X1, X2, Y1, Y2 : StrN | Ψ ′, . [r1 ← f1, r2 ← f2] .ΦIH , ΦE `

(hd X1) ∗ (hd Y1) : N ∼ (hd X2) + (hd Y2) : N | r1 = r2
– Γ ; f1, f2 : .(StrN → StrN → StrN);X1, X2, Y1, Y2 : StrN | Ψ ′, . [r1 ← f1, r2 ← f2] .ΦIH , ΦE `

f1 ~ (tl X1)~ (tl Y1) : . StrN ∼ f2 ~ (tl X2)~ (tl Y2) : . StrN | r1 = r2



To prove the first one we notice that hdX1∗hdY1 = g1∗(g1+g2) = g21+g2∗g1 =
g22 + g21 + g1 ∗ g2 − g22 = hdX2 ∗ hdY2. To prove the second one we need to check
that tlX1, tlY1, tlX2, tlY2 satisfy the precondition of the inductive hypothesis. In
particular, we need to check that

−b1 = −g21 − g1g2 + g22 = g22 + g2(g1 + g2)− (g1 + g2)2

which is can be proven by arithmetic computation.

F Unary fragment

In this section we introduce a unary system to prove properties about a single
term of the guarded lambda calculus. We will start by adding some definitions
Guarded HOL for the unary diamond monad, following by the derivation rules
for both the non-probabilistic and the probabilistic system, plus the metatheory
and an example.

F.1 Unary fragment of GHOL

The unary semantics of the diamond monad are:

J�[x←t]φKi ,
{

(δ, γ)
∣∣ Prv←(JtKi(δ,γ))[(δ, (γ, v)) ∈ JφKi] = 1

}
The rules are on Figure 10

∆ | Σ | Γ | Ψ ` �[x←t]φ ∆ | Σ | Γ, x : C | Ψ, φ ` ψ
∆ | Σ | Γ | Ψ ` �[x←t]ψ

MONO1

∆ | Σ | Γ | Ψ ` φ[t/x]

∆ | Σ | Γ | Ψ ` �[x←munit(t)]φ
UNIT1

∆ | Σ | Γ | Ψ ` �[x←t]φ ∆ | Σ | Γ, x : C | Ψ, φ ` �[y←t′]ψ
∆ | Σ | Γ | Ψ ` �[y←let x=t in t′]ψ

MLET1

Fig. 10. Rules for the unary diamond modality

F.2 Guarded UHOL

We start by defining the Guarded UHOL system, which allows us to prove log-
ical properties of a term of the Guarded Lambda Calculus. More concretely,
judgements have the form:

∆ | Σ | Γ | Ψ ` t : σ | φ



where t is a term well-typed in the dual context ∆ | Γ and φ is a logical formula
well-typed in the context ∆ | Γ, r : σ and that can refer to t via the special
variable r. The logical contexts Σ and Ψ consist respectively of refinements over
the contexts ∆ and Γ .

F.3 Derivation rules

The rule [Next] corresponds to the introduction of the later modality. A re-
finement Φi is proven on every term in the substitution, and using those as a
premise, a refinement Φ is proven on t. In the notation . [r← r] .Φ the first
r is the variable bound by the delayed substitution inside Φ while the second
r is the distinguished variable in the refinement that refers to the term that
is being typed. In other words, t satisfies . [r← r] .Φ if . [r← t] .Φ. The rule
[Prev] corresponds to the elimination of the later modality. If we can prove .φ
in a constant context, then we can also prove φ. The rule [Box] applies the con-
stant modality on a formula that can be proven on a constant context. The rule
[LetBox] removes the constant modality from a formula Φ by using it as a con-
stant premise to prove another formula Φ′. The rule [LetConst] shifts constant
terms between contexts. The rule [Fix] introduces a fixpoint and proves a refine-
ment on it by Loeb induction. The rule [Cons] proves a property on a stream
from a refinement on its head and its tail. The rule [ConsHat] is the analogue
of [Cons] to build constant streams. In particular, the :̂: operator can be defined
as λx.λs.letb (y, t) ← (x, s) in box (y :: .t). Conversely the rules [Head] and
[Tail] respectively prove a property on the head and the tail of a stream from a
property on the full stream.

The intended meaning for a judgment ∆ | Σ | Γ | Ψ ` t : τ | φ is: “For every
valuations δ, γ of ∆ and Γ ,

J∆ | Γ ` �ΣK(δ, γ)∧J∆ | Γ ` ΨK(δ, γ)⇒ J∆ | Γ, r : τ ` ΣK(δ, 〈γ, J∆ | Γ ` tK(δ, γ)〉)”

F.4 Metatheory

We now the most interesting metatheoretical properties of Guarded UHOL. In
particular, Guarded UHOL is equivalent to Guarded HOL:

Theorem 4 (Equivalence with Guarded HOL). For every contexts ∆,Γ ,
type σ, term t, sets of assertions Σ,Ψ and assertion φ, the following are equiv-
alent:

– ∆ | Σ | Γ | Ψ ` t : σ | φ
– ∆ | Σ | Γ | Ψ ` φ[t/r]

The proof is analogous to the relational case

The previous result allows us to lift the soundness result from Guarded HOL
to Guarded UHOL.



∆ | Σ | Γ, x1 : A1, . . . , xn : An | Ψ,Φ1[x1/r], . . . , Φn[xn/r] ` t : A | Φ
∆ | Σ | Γ | Ψ ` t1 : .A1 | .[r← r].Φ1

. . . ∆ | Σ | Γ | Ψ ` tn : .An | .[r← r].Φn

∆ | Σ | Γ | Ψ ` .[x1 ← t1, . . . , xn ← tn].t : .A | .[x1, . . . , xn, r← t1, . . . , tn, r].Φ
Next

∆ | Σ | · | · ` t : .A | .[r← r].Φ

∆ | Σ | Γ | Ψ ` prev t : A | Φ
Prev

∆ | Σ | · | · ` t : A | Φ
∆ | Σ | Γ | Ψ ` box t : �A | �Φ[letb x← r in x/r]

Box

∆ | Σ | Γ | Ψ ` u : �B | �Φ[letb x← r in x/r]
∆,x : B | Σ,Φ[x/r] | Γ | Ψ ` t : A | Φ′

∆ | Σ | Γ | Ψ ` letb x← u in t : A | Φ′
LetBox

∆ | Σ | Γ | Ψ ` u : B | Φ
∆, x : B | Σ,Φ[x/r] | Γ | Ψ ` t : A | Φ′ B,Φ constant FV (Φ) ∩ FV (Γ ) = ∅

∆ | Σ | Γ | Ψ ` letc x← u in t : A | Φ′
LetConst

∆ | Σ | Γ, f : .A | .[r← f ].Φ ` t : A | Φ
∆ | Σ | Γ | Ψ ` fixf.t : A | Φ

Fix

∆ | Σ | Γ | Ψ ` x : A | Φh
∆ | Σ | Γ | Ψ ` xs : . StrA | Φt Γ | Ψ ` ∀x, xs.Φh[x/r]⇒ Φt[xs/r]⇒ Φ[x ::xs/r]

∆ | Σ | Γ | Ψ ` x ::xs : StrA | Φ
Cons

∆ | Σ | Γ | Ψ ` x : A | Φh ∆ | Σ | Γ | Ψ ` xs : �StrA | �Φt
Γ | Ψ ` ∀x, xs.Φh[x/r]⇒ Φt[xs/r]⇒ Φ[x:̂:xs/r] A,Φh constant

∆ | Σ | Γ | Ψ ` x:̂:xs : �StrA | �Φ
ConsHat

∆ | Σ | Γ | Ψ ` t : StrA | Φ[hd r/r]

∆ | Σ | Γ | Ψ ` hd t : A | Φ
Head

∆ | Σ | Γ | Ψ ` t : StrA | Φ[tl r/r]

∆ | Σ | Γ | Ψ ` tl t : .StrA | Φ
Tail

Fig. 11. Guarded Unary Higher-Order Logic rules

Corollary 3 (Soundness and consistency). If ∆ | Σ | Γ | Ψ ` t : σ | φ, then
for every valuations δ |= ∆, γ |= Γ :

J∆ ` ΣK(δ) ∧ J∆ | Γ ` ΨK(δ, γ)⇒ J∆ | Γ, r : σ ` φK(δ, γ[r← J∆ | Γ ` tK(δ, γ)])

In particular, there is no proof of ∆ | ∅ | Γ | ∅ ` t : σ | ⊥ in Guarded UHOL.



F.5 Probabilistic extension

We comment on the rules, starting from the rules of the unary logic. There
are three new rules for the probabilistic case, and they all establish that an
expression u of type D(D) satisfies the assertion �[y←r]φ, i.e. for every element
v in the support of (the interpretation of) u, the interpretation of φ with the
valuation [y 7→ v] is true. This intuition is captured by the rule [SUPP], which
can be used in particular in case u is a primitive distribution. The rule [UNIT]
considers the case where u is of the form munit(t); in this case, it is clearly
sufficient to know that φ[t/y] is valid. The rule [MLET] simply captures the fact
that the support of let x = t in t′ is the disjoint union of the support of t′ under
all the assignments of x to values in the support of t.

Guarded UHOL

∆ | Σ | Γ | Ψ ` t : C | Φ[r/y]

∆ | Σ | Γ | Ψ ` munit(t) : D(C) | �[y←r]Φ
UNIT

∆ | Σ | Γ | Ψ ` t : D(C) | �[x←r]Φ ∆ | Σ | Γ, x : C | Ψ, φ ` t′ : D(D) | �[y←r]ψ

∆ | Σ | Γ | Ψ ` let x = t in t′ : D(D) | �[y←r]ψ
MLET

∆ | Σ | Γ | Ψ ` Prz∼u[φ[z/y]] = 1

∆ | Σ | Γ | Ψ ` u : D(D) | �[y←r]φ
SUPP

Fig. 12. Proof rules for probabilistic constructs – unary case

Finally, we prove an embedding lemma for Guarded UHOL. The proof can
be carried by induction on the structure of derivations, or using the equivalence
between Guarded UHOL and Guarded HOL (Theorem 4).

Lemma 1 (Embedding lemma). Assume that:

– ∆ | Σ | Γ | Ψ ` t1 : σ1 | φ
– ∆ | Σ | Γ | Ψ ` t2 : σ2 | φ′

Then ∆ | Σ | Γ | Ψ ` t1 : σ1 ∼ t2 : σ2 | φ[r1/r] ∧ φ′[r2/r].

F.6 Unary example: Every two

We define the every2 function, which receives a stream and returns another
stream consisting of the elements at even positions in the input stream. Note
that this function, while productive, cannot be built with the type Str → Str,
since we need to take twice the tail of the argument, which would have type
. . Str, and then a Str cannot be built. Instead, we need to use the constant
modality as follows:



every2 : �Str → Str

every2 , fix every2. λs.ĥd(t̂l s) :: (every2~ next(t̂l(t̂l s)))

Where the ĥd and t̂l functions are not the native ones, but rather they are
defined as:

ĥd : �Str → N t̂l : �Str → �Str

ĥd , λs.letb x← s in hd x t̂l , λs.letb x← s in box (prev (tl x))

The property we want to prove is:

· | · | ones : �Str | Ψ ` every2 : �Str → Str | ∀s.s = ones⇒ r s = (letb x← s in x)

where ones is the constant stream containing only the number 1 defined as:

ones , box (fix f. 1::f)

For which we can prove the following properties:

Ψ , ĥd ones = 1, t̂l ones = ones

In the rest of the proof we omit the empty contexts ∆ and Σ. We start by
applying the [Fix] rule, which has the premise:

ones : �Str, every2 : .(�Str → Str) | Ψ, . [r← every2] .∀s.s = ones⇒ r s = letb x← s in x `
λs.(· · · ) : �Str → Str | ∀s.s = ones⇒ (r s) = letb x← s in x

We apply the [Abs] rule inmediately after:

ones : �Str, every2 : .(�Str → Str), s : �Str |
Ψ, . [r← every2] .∀s.s = ones⇒ r s = letb x← s in x, s = ones `

ĥd(t̂l s) :: (every2~ .(t̂l(t̂l s))) : Str | r = letb x← s in x

By [SUB] and the equivalence letb x← s in x ≡ letb x← ones in x, we can
change the conclusion of the judgement. Now we use the [Cons] rule, which has
three premises:

1. ones : �Str, every2 : .(�Str → Str), s : �Str |
Ψ, . [r← every2] .∀s.s = ones⇒ r s = letb x← s in x, s = ones ` ĥd(t̂l s) :
N | r = 1

2. ones : �Str, every2 : .(�Str → Str), s : �Str |
Ψ, . [r← every2] .∀s.s = ones⇒ r s = letb x← s in x, s = ones `
(every2~ .(t̂l(t̂l s))) : Str | .[r← r].r = letb x← ones in x



3. ones : �Str, every2 : .(�Str → Str), s : �Str |
Ψ, .[r← every2].∀s.s = ones⇒ r s = letb x← s in x, s = ones `
∀y, ys.y = 1⇒ . [zs← ys] .(zs = letb x← ones in x)⇒ y ::ys = (letb x←
ones in x)

Premises (1) is a consequence of the properties of ones. To prove premise (3)
we reduce the letbox with the box inside ones, and do some reasoning using the
definition of the fixpoint. To prove the premise (2) we first desugar the term we
are typing:

every2~ .(t̂l(t̂l s))) , .
[
g ← every2, t← .(t̂l(t̂l s))

]
.gt

and then we apply [Next] which has the following premises:

– ones : �Str, every2 : .(�Str → Str), s : �Str |
Ψ, .[r← every2].∀s.s = ones⇒ r s = letb x← s in x, s = ones `
every2 : .(�Str → Str) | .[r← r].(∀s = ones⇒ r s = letb x← s in x)

– ones : �Str, every2 : .(�Str → Str), s : �Str |
Ψ, .[r← every2].(∀s.s = ones⇒ r s = letb x← s in x), s = ones `
. (t̂l(t̂l s)) : .�Str | .[r← r].(r = ones)

– ones : �Str, every2 : .(�Str → Str), s : �Str, g : �Str → Str, t : �Str |
Ψ, .[r← every2].(∀s.s = ones⇒ r s = letb x← s in x), s = ones,
∀s.s = ones ⇒ g s = letb x ← s in x, t = ones ` g t : Str | r = (letb x ←
ones in x)

The first premise is just an application of the [Var] rule. The second premise can
be proven as a consequence of the properties of ones. Finally, the third premise
can be proven with some simple logical reasoning in HOL. This concludes the
proof.
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