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Abstract

We show that Kripke semantics of modal logic, manifest in the syntactic proof formalism
of labeled sequent calculi, can be used to solve three central problems in access control:
Generating evidence for denial of access (countermodel generation), finding all consequences
of a policy (saturation) and determining which additional credentials will allow an access
(abduction). At the core of our work is a single, non-trivial, countermodel producing decision
procedure for a specific access control logic. The procedure is based on backwards search in
a labeled sequent calculus for the logic. Modifications of the calculus yield a procedure for
abduction and, surprisingly, for saturation.

1 Introduction

The role of formal logic in the context of access control is now well-established. Logic has been
used to model and reason about access policies starting with the work of Abadi et al. [2]; proof
theory has been used to enforce access policies in architectures like proof-carrying authoriza-
tion [3, 6, 7, 17, 23, 26], and to prove meta-properties of policies [16]; logic programming, both
backward and forward, has been used to efficiently determine consequences of policies [9, 13, 22]
and as the basis of privacy analysis of policies [8]; logical abduction has been used to determine
credentials needed to authorize a specific access [10]; and, logics embedded in type systems have
been used to statically enforce access policies in programming language interfaces [4, 19, 25].
In fact, logic has been so widely used in access control that several specialized logics, called ac-
cess control logics, have been proposed exclusively for representing and reasoning about access
policies. Technically, all access control logics are modal logics, containing at least one principal
indexed modality A says ϕ (principal A supports the truth of formula ϕ), used to represent
authenticated statements made by individuals participating in the access control process.

The primary focus of study in the area of access control logics in the past decade has been
proof theory (symbolic proofs); semantics, when studied, have been second-rate citizens largely
because it has been unclear what role they could play in practice. Unlike other applications
of logic, where real-world situations correspond to a logic’s models and the semantics connect
logical formulas to their interpretations in the real world, there are no known interesting connec-
tions between models of access control logics (which are specializations of the standard Kripke
models of modal logic) and actual access control systems.
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In this paper we argue that despite the fact that Kripke semantics of access control logics
are not useful to formalize real-world access control systems, such semantics are useful to solve
the following relevant problems in the use of access control logics:

- Countermodel generation: Producing evidence of why an access is denied, or why it does
not follow from a given policy. (Existence of a sound countermodel producing procedure
also implies decidability.)

- Saturation or finding all consequences of an access policy.

- Abduction or determining which additional credentials are sufficient to authorize an access.

All three problems are important for models of access control. Countermodels enable a
reference monitor to justify to a principal why it has been denied access: If a policy represented
as a formula P does not entail an authorization represented as formula ϕ, then the reference
monitor can provide a countermodel for P → ϕ, thus justifying the denial of authorization
ϕ. Saturation is necessary to pre-compile policies or to cache the consequences of policies.
Abduction is useful for finding missing credentials and for justifying authorizations on-the-fly,
as in the Grey system [7].

The main contribution of this paper is in showing that all the above problems can be solved
using the single foundational formalism of labeled sequent calculi, which are symbolic proof
systems that directly mimic Kripke semantics of the logic in the inference rules [5]. Working
with a specific access control logic, a propositional variant of the logic BL [17], we show how
its labeled sequent calculus can be used to obtain an easily implementable decision procedure
which produces countermodels when no proof exists, how the generated countermodels can be
used to find all consequences of a policy, and how the labeled sequent calculus can be adapted to
find credentials that are sufficient to obtain a given access. Throughout the paper, we combine
ideas from Kripke semantics with those from proof theory.

It is well known that proving decidability of multi-modal logics like ours is a challenging
problem due to interactions between modalities, which can cause decision procedures to loop
(see [20] for examples). Producing countermodels is even harder. Our technical work is com-
plicated further by our decision to use an intuitionistic logic instead of a classical logic. We
make this choice because intuitionistic logics are known to be a better fit for modeling access
policies than classical logics. However, the choice requires us to introduce and handle an ad-
ditional preorder to model implication in the Kripke semantics, thus creating another source
of interaction in all our algorithms. Our eventual underlying decision procedure is an exten-
sion of our prior, general result for modal logics [15]. The extension is non-trivial because our
logic BLsf includes the connective A sf B (principal A speaks for principal B) that stipulates
relations between accessibility relations in Kripke models. The connective is used to represent
unrestricted delegation in access control [2].

Saturation of access control policies to derive all consequences is a well-studied technique
used in many policy engines like SecPAL [9]. Unlike the conventional, syntactic approach of
using forward chaining to find the consequence-set of a policy, our approach uses a completely
novel, and somewhat surprising technique based on sets of countermodels obtained from labeled
sequent calculi. Abduction for access control policies written in a small fragment of finite
domain, first-order logic, Datalog, has been studied by Becker et al. [10]. Although we do
not consider quantifiers directly in this paper, our abduction result is more general because
quantifiers over finite domains can be trivially eliminated and we work with an entire logic, not
a fragment.
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Organization

In Section 2 we introduce the logic we use, BLsf. After an informal description of the logic, we
present the foundations of our work: the Kripke semantics (Section 2.1) and the labeled sequent
calculus (Section 2.2). In Section 3, we present our countermodel producing decision procedure,
which also forms the basis of saturation and abduction, which are presented in Sections 4
and 5, respectively. Section 6 discusses related work and Section 7 concludes the paper with
some directions for future work. Proofs of key theorems are presented in an Appendix.

2 BLsf: The Access Control Logic

BLsf is propositional intuitionistic logic extended with two connectives, commonly used to model
access policies: A says ϕ (principal A supports formula ϕ) and A sf B (principal A speaks for
principal B)1. The syntax of BLsf formulas is shown below. p denotes an atomic formula, drawn
from a countable set of symbols, and A, B denote principals drawn from a different, finite set I.
The connectives > (true), ⊥ (false), ∧ (and), ∨ (or) and → (implication) have usual meanings.

Formulas ϕ,ψ ::= p | > | ⊥ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2 | A says ϕ | A sf B

(We do not include first-order quantifiers, but those ranging over a finite domain I of indi-

viduals can be defined in the usual way: ∀x∈I. ϕ ≡
∧
i∈I

ϕ[i/x] and ∃x∈I. ϕ ≡
∨
i∈I

ϕ[i/x].)

Although we formally define the semantics of BLsf in Section 2.1, we present here some
admissible axioms with their common names from literature.

(All intuitionistic propositional tautologies)

` ϕ
` A says ϕ (nec)

` (A says (ϕ→ ψ))→ ((A says ϕ)→ (A says ψ)) (K)

` (A says ϕ)→ (B says A says ϕ) (I)

` (A sf B)→ ((A says ϕ)→ (B says ϕ)) (speaksfor)

` A sf A

` (A sf B)→ ((B sf C)→ (A sf C))

Rule (nec) and axiom (K) are standard in modal logic; they are needed to treat A says ϕ
as a normal necessitation modality (with index A). Axiom (I) has been argued by Abadi [1] as
one of the weakest axioms needed to correctly model delegation in logic using A says ϕ. Axiom
(speaksfor) characterizes the formula A sf B: If A sf B, then any statement ϕ that A makes is
echoed by B, so the formula A sf B means that A has authority to speak on behalf of B [2].

Example 2.1. We illustrate our logic using an example from prior work [14]. Consider a simple
policy containing the following 3 formulas. Here, file1 is a file, deletefile1 means that file1
should be deleted and admin, Alice and Bob are principals.

1In existing literature, A sf B is often written A ⇒ B. We prefer the notation A sf B to prevent confusion
with logical implication.
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1. (admin says deletefile1)→ deletefile1

2. admin says ((Bob says deletefile1)→ deletefile1)

3. Alice sf Bob

The first formula means that if admin says that file1 should be deleted, then this should be
the case. The second formula says that admin trusts Bob to decide that file1 should be deleted.
The third formula means that Alice is trusted to make statements on Bob’s behalf. If P is the
set of formulas 1–3, then from P and the assumption Alice says deletefile1, we can derive
deletefile1 in BLsf, as may also be expected intuitively.

2.1 Kripke Semantics

The meaning of BLsf’s connectives are formally defined through semantics written in the style
of Kripke, which is standard for modal logics [12]. In the Kripke style, a model of the logic
contains several points called worlds, which represent possible states of knowledge. To interpret
modalities, binary accessibility relations on worlds are stipulated, with one relation SA for every
modality (A says ·). Intuitively, if wSAw

′ then principal A believes that world w′ is a potential
(knowledge) successor of the world w. Intuitionistic implication is modeled using a binary
preorder, ≤.

We treat the formula A sf B as an atom in the Kripke semantics and validate axioms related
to it, e.g., (speaksfor), through conditions on Kripke frames. This interpretation is very distinct
from earlier interpretations of A sf B, e.g., [2, 14], that define A sf B in terms of relations
between accessibility relations SA and SB.

Definition 2.2 (Kripke model). A Kripke model or, simply, model, M is a tuple (W,≤
, {SA}A∈I , h, sf) where,

• W is a set. Its elements are called worlds.

• ≤ is a preorder on W .

• For each principal A, SA is a binary relation on W , called the accessibility relation of
principal A.

• h, called the truth assignment or assignment, is a map from the set of atoms to P(W ).
Informally, for any atom p, h(p) is the set of worlds where p holds.

• sf is a map from pairs of principals to P(W ). Informally, for any two principals A and
B, sf(A,B) is the set of worlds where A sf B holds.

Let S∗ =
⋃

A∈I SA. We require that in any model, the following properties hold.

- ∀x.(x ≤ x) (refl)

- ∀x, y, z.(((x ≤ y) ∧ (y ≤ z))→ (x ≤ z)) (trans)

- ∀x, y, z.(((x ≤ y) ∧ (ySAz))→ (xSAz)) (mon-S)

- ∀x, y, z.(((xSBy) ∧ (ySAz))→ (xSAz)) (I)

- If w ∈ sf(A,B), then for all w′, wSBw
′ implies wSAw

′. (basic-sf)

- For all A and w, w ∈ sf(A,A). (refl-sf)
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- If w ∈ sf(A,B) ∩ sf(B,C), then w ∈ sf(A,C). (trans-sf)

- If x ∈ h(p) and x ≤ y, then y ∈ h(p). (mon)

- If x(≤ ∪ S∗)∗y and x ∈ sf(A,B), then y ∈ sf(A,B). (mon-sf)

Properties (refl) and (trans) make ≤ a preorder. Property (mon-S) validates axiom (K).
Other properties corresponding to axiom (K) have also been proposed in literature [24, 27];
our property (mon-S) is a slight simplification of a similar property used by Wolter et al. [27].
Property (I) corresponds to axiom (I). Property (basic-sf) corresponds to axiom (speaksfor).
Properties (refl-sf) and (trans-sf) make A sf B reflexive and transitive, respectively. Property
(mon) is standard in Kripke models of intuitionistic logics and forces monotonicity of satisfaction
(Lemma 2.5 below). Property (mon-sf) implies that if A sf B holds in a world, then it also
holds in all future worlds.

A model without the assignments h and sf , i.e., the tuple (W,≤, {SA}A∈I) is also called a
frame and the conditions (refl)–(I) on relations above are called frame conditions.

Definition 2.3 (Satisfaction). Given a modelM = (W,≤, {SA}A∈I , h, sf) and a world w ∈W ,
we define the satisfaction relation M |= w : α, read “the world w satisfies formula α in model
M”, by induction on α as follows:

- M |= w : p iff w ∈ h(p)

- M |= w : > (unconditionally)

- M |= w : α ∧ β iff M |= w : α and M |= w : β

- M |= w : α ∨ β iff M |= w : α or M |= w : β

- M |= w : α→ β iff for every w′ such that w ≤ w′ and M |= w′ : α, we have M |= w′ : β.

- M |= w : A says α iff for every w′ such that wSAw
′, we have M |= w′ : α.

- M |= w : A sf B iff w ∈ sf(A,B).

We say that M 6|= w : α if it is not the case that M |= w : α. In particular, for every M and
every w, M 6|= w : ⊥.

A formula α is true in a model M, written M |= α, if for every world w ∈M, M |= w : α.
A formula α is valid in BLsf, written |= α, if M |= α for every model M.

Example 2.4. It is easily checked that every axiom presented in Section 2 is valid in BLsf in
the sense of the definition above.

The following is a fundamental property of the Kripke semantics of all intuitionistic modal
logics, needed to prove soundness of sequent calculi (Theorem 2.7).

Lemma 2.5 (Monotonicity). If M |= w : α and w ≤ w′ ∈M, then M |= w′ : α.

Proof. By induction on α.
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2.2 SeqC: A Labeled Sequent Calculus

Next, we introduce a labeled sequent calculus for BLsf, which, although a syntactic proof system,
derives its inference rules directly from the inductive definition of satisfaction in the Kripke
semantics. This labeled sequent calculus, called SeqC, forms the basis of all the remaining work
in this paper. Conclusions in SeqC have the form: “Formula ϕ is true in world w”, where w is
a symbolic world. Hypotheses are assumptions of the same form, as well as symbolic relations
between the worlds. Formally, we introduce a syntactic category of labeled formulas, written
w : ϕ, to mean that formula ϕ is true in world w. A sequent in our calculus has the form
Σ;M; Γ⇒ ∆, where

- Σ is a finite set of world symbols appearing in the rest of the sequent. World symbols are
also called labels.

- M is a finite set of relations between labels in Σ. Relations have the forms x ≤ y and
xSAy.

- Γ is a finite set of labeled formulas.

- ∆ is a finite set of labeled formulas.

Semantically, Σ;M; Γ ⇒ ∆ is valid when every model with a world set containing at least
Σ, satisfying all relations in M and all labeled formulas in Γ also satisfies at least one labeled
formula in ∆.

Definition 2.6 (Sequent satisfaction and validity). A modelM and a mapping ρ from elements
of Σ to worlds of M satisfy a (possibly non-provable) sequent Σ;M; Γ ⇒ ∆, written M, ρ |=
(Σ;M; Γ⇒ ∆), if one of the following holds:

- There is an xRy ∈M with R ∈ {≤} ∪ {SA | A ∈ I} such that ρ(x) R ρ(y) 6∈ M.

- There is an x : α ∈ Γ such that M 6|= ρ(x) : α.

- There is an x : α ∈ ∆ such that M |= ρ(x) : α.

A model M satisfies a sequent Σ;M; Γ ⇒ ∆, written M |= (Σ;M; Γ ⇒ ∆), if for every
mapping ρ, we have M, ρ |= (Σ;M; Γ ⇒ ∆). Finally, a sequent Σ;M; Γ ⇒ ∆ is valid, written
|= (Σ;M; Γ⇒ ∆) if for every model M, we have M |= (Σ;M; Γ⇒ ∆).

Rules of SeqC

The labeled sequent calculus for BLsf is shown in Figure 1. Rules for each connective mimic the
(Kripke) semantic definition of the connective. For example, in the rule (∧R), to prove x : α ∧ β
in the conclusion, we prove x : α and x : β in the premises. The conditions (refl)–(mon-sf) in
the definition of Kripke models (Definition 2.2), with the exception of (mon), are modeled by
the frame rules in Figure 1. Condition (mon) is implicit in the rule (init). In the rules (→R)
and (saysR), the world y in the premise is fresh. We say that ` (Σ;M; Γ⇒ ∆) if Σ;M; Γ⇒ ∆
has a proof in the calculus. The sequent calculus is both sound and complete with respect to
the semantics.

Theorem 2.7 (Soundness). If ` (Σ;M; Γ⇒ ∆), then |= (Σ;M; Γ⇒ ∆).

Proof. Fix an M. It is easily proved by induction on the given derivation of Σ;M; Γ⇒ ∆ that
for every mapping ρ, M, ρ |= (Σ;M; Γ⇒ ∆).
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Axiom Rules

Σ;M, x ≤ y; Γ, x : p⇒ y : p,∆
init

Σ;M; Γ, x : A sf B ⇒ x : A sf B,∆
sf

Logical Rules

Σ;M; Γ⇒ x : >,∆
>R

Σ;M; Γ, x : ⊥ ⇒ ∆
⊥L

Σ;M; Γ⇒ x : α, x : α ∧ β,∆ Σ;M; Γ⇒ x : β, x : α ∧ β,∆
Σ;M; Γ⇒ x : α ∧ β,∆

∧R

Σ;M; Γ, x : α ∧ β, x : α, x : β ⇒ ∆

Σ;M; Γ, x : α ∧ β ⇒ ∆
∧L

Σ;M; Γ⇒ x : α, x : β, x : α ∨ β,∆
Σ;M; Γ⇒ x : α ∨ β,∆

∨R

Σ;M; Γ, x : α ∨ β, x : α⇒ ∆ Σ;M; Γ, x : α ∨ β, x : β ⇒ ∆

Σ;M; Γ, x : α ∨ β ⇒ ∆
∨L

Σ, y;M, x ≤ y; Γ, y : α⇒ y : β, x : α→ β,∆

Σ;M; Γ⇒ x : α→ β,∆
→R

Σ;M, x ≤ y; Γ, x : α→ β ⇒ y : α,∆ Σ;M, x ≤ y; Γ, x : α→ β, y : β ⇒ ∆

Σ;M, x ≤ y; Γ, x : α→ β ⇒ ∆
→L

Σ, y;M, xSAy; Γ⇒ y : α, x : A says α,∆

Σ;M; Γ⇒ x : A says α,∆
saysR

Σ;M, xSAy; Γ, x : A says α, y : α⇒ ∆

Σ;M, xSAy; Γ, x : A says α⇒ ∆
saysL

Frame Rules

Σ, x;M, x ≤ x; Γ⇒ ∆

Σ, x;M; Γ⇒ ∆
refl

Σ;M, x ≤ y, y ≤ z, x ≤ z; Γ⇒ ∆

Σ;M, x ≤ y, y ≤ z; Γ⇒ ∆
trans

Σ;M, x ≤ y, ySAz, xSAz; Γ⇒ ∆

Σ;M, x ≤ y, ySAz; Γ⇒ ∆
mon-S

Σ;M, xSBy, ySAz, xSAz; Γ⇒ ∆

Σ;M, xSBy, ySAz; Γ⇒ ∆
I

Σ;M, xSBy, xSAy; Γ, x : A sf B ⇒ ∆

Σ;M, xSBy; Γ, x : A sf B ⇒ ∆
basic-sf

Σ, x;M; Γ, x : A sf A⇒ ∆

Σ, x;M; Γ⇒ ∆
refl-sf

Σ;M; Γ, x : A sf B, x : B sf C, x : A sf C ⇒ ∆

Σ;M; Γ, x : A sf B, x : B sf C ⇒ ∆
trans-sf

Σ;M, x ≤ y; Γ, x : A sf B, y : A sf B ⇒ ∆

Σ;M, x ≤ y; Γ, x : A sf B ⇒ ∆
mon1-sf

Σ;M, xSCy; Γ, x : A sf B, y : A sf B ⇒ ∆

Σ;M, xSCy; Γ, x : A sf B ⇒ ∆
mon2-sf

Figure 1: SeqC: A labeled sequent calculus for BLsf
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The converse of Theorem 2.7, completeness, also holds but we do not prove the result here
because it is a consequence of the correctness of our countermodel producing decision procedure.
The following theorem is central to the proof of termination of our decision procedure.

Theorem 2.8 (Weak subformula property). If a formula ϕ appears in any proof tree (possibly
infinite) obtained by applying the rules of Figure 1 backwards starting from a concluding sequent
Σ;M; Γ⇒ ∆, then either ϕ has the form A sf B where A,B ∈ I, or ϕ is a subformula of some
formula in either Γ or ∆.

Proof. By induction on the distance (in the proof tree) of the occurrence of ϕ from the conclusion
Σ;M; Γ⇒ ∆.

3 Decidability and Countermodel Generation

Our first application of the labeled sequent calculus SeqC is a decision procedure that provides
countermodels if a sequent has no proof. Production of countermodels is of practical use in ac-
cess control because a countermodel can be used as evidence to justify denial of authorization.
Note that backwards search in SeqC does not directly yield a decision procedure because the
rules (→R) and (saysR) can be applied indefinitely to produce new worlds. The countermodel
producing decision procedure presented here bounds the backwards application of these rules
and is based on our prior general result for multi-modal logics [15], which in turn generalizes ear-
lier work on uni-modal tableaux calculi [18]. In the following we present the decision procedure
briefly and extend it with the connective A sf B. Readers not interested in understanding how
the procedure works may directly skip to Section 3.2, which lists the entire decision procedure
as a sequent calculus.

The key idea of our technique is to prevent infinite application of the rules (→R) and (saysR)
in backward search by checking for containment of formulas labeling a world in those labeling
another. In its naive form, this check results in incompleteness because of the condition (I)
and the connective A sf B. To recover completeness, we check containment not between sets
of formulas labeling two worlds, but between the sets obtained by applying a suitably chosen
function, called Sfor, on those sets. The selection of an appropriate definition for Sfor is the
central idea of our decision procedure. Using this function, we define a sub-class of sequents
called saturated histories, on which backwards application of any of the rules of Figure 1 is
certainly useless. We then use this notion of “uselessness of backwards rule application” to
build a decision procedure and use a counting argument based on the weak subformula property
(Theorem 2.8) to show that it terminates. We further show how to extract a countermodel from
a saturated history, thus forming the basis of our countermodel extraction.

In the following, we describe the decision procedure, starting with the definition of Sfor and
saturated history in Section 3.1, followed by the decision procedure itself in Section 3.2.

3.1 Saturated Histories

We use the term history for a tuple Σ;M; Γ; ∆ or, equivalently, for a sequent Σ;M; Γ⇒ ∆. Let
T (ϕ) and F (ϕ) be two uninterpreted unary relations. Informally, we read T (ϕ) as “ϕ should
be true” and F (ϕ) as “ϕ should be false”. Given a history Σ;M; Γ; ∆ and x ∈ Σ, the signed
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formulas of x, written Sfor(Σ;M; Γ; ∆, x) are defined as follows:

Sfor(Σ;M; Γ; ∆, x) =
{T (ϕ) | x : ϕ ∈ Γ}∪
{F (ϕ) | x : ϕ ∈ ∆}∪

{T (A says ϕ) | ∃y. y(≤ ∪S∗)∗x ∈M and y : A says ϕ ∈ Γ}∪
{T (ϕ→ ψ) | ∃y. y ≤ x ∈M and y : ϕ→ ψ ∈ Γ}∪

{T (p) | ∃y. y ≤ x ∈M and y : p ∈ Γ}

The key component in the definition of Sfor is the third one, which must align with the choice
of axioms for the modality A says ·. Here, the choice corresponds to the axiom (I). When
Σ,M,Γ,∆ are clear from context, we abbreviate Sfor(Σ;M; Γ; ∆, x) to Sfor(x). We say that
x 4 y iff Sfor(x) ⊆ Sfor(y).

We call a pair M; Γ closed if they are closed under backward application of the frame rules
of Figure 1. (Note that the frame rules of Figure 1 only add elements to M and Γ.) We write
M; Γ for the closure of M; Γ by the frame rules.

We call a frame M tree-like if it can be derived from a finite tree of the relations ≤ and SA
and (possibly partial) closure by frame rules. This tree is called the underlying tree of M and
we say that x� y (in M) iff there is a directed path from x to y in the tree underlying M.

The key definition in our method is that of a saturated history. Intuitively, this definition
characterizes those histories Σ;M; Γ; ∆ for which we can directly define a countermodel for the
sequent Σ;M; Γ⇒ ∆. (The definition of this countermodel is given soon after the definition of
a saturated history.)

Definition 3.1 (Saturated history). A history Σ;M; Γ; ∆ is called saturated if the following
hold:

1. M is tree-like and M; Γ is closed. (In particular, because M is tree-like, it has a relation
� defined on it.)

2. If x : p ∈ Γ, then there is no y such that x ≤ y ∈M and y : p ∈ ∆.

3. There is no x such that x : > ∈ ∆.

4. There is no x such that x : ⊥ ∈ Γ.

5. If x : α ∧ β ∈ Γ, then x : α ∈ Γ and x : β ∈ Γ.

6. If x : α ∧ β ∈ ∆, then either x : α ∈ ∆ or x : β ∈ ∆.

7. If x : α ∨ β ∈ Γ, then either x : α ∈ Γ or x : β ∈ Γ.

8. If x : α ∨ β ∈ ∆, then x : α ∈ ∆ and x : β ∈ ∆.

9. If x : α→ β ∈ Γ and x ≤ y ∈M, then either y : α ∈ ∆ or y : β ∈ Γ.

10. If x : α→ β ∈ ∆, then either:

(a) There is a y such that x ≤ y ∈M, y : α ∈ Γ and y : β ∈ ∆ or

(b) There is a y such that y 6= x, y � x and x 4 y.

11. If x : A says α ∈ Γ and xSAy ∈M, then y : α ∈ Γ.

12. If x : A says α ∈ ∆, then either:
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(a) There is a y such that xSAy ∈M and y : α ∈ ∆ or

(b) There is a y such that y 6= x, y � x and x 4 y.

13. There are no x,A,B such that x : A sf B ∈ Γ and x : A sf B ∈ ∆.

Definition 3.2 (Countermodel of a saturated history). For a saturated history Σ;M; Γ; ∆, the
countermodel of the history, CM(Σ;M; Γ; ∆) is defined as follows. Let C = {x ≤ y | x 4 y} and
let M′; Γ′ = (M ∪ C); Γ.

- The worlds of CM(Σ;M; Γ; ∆) are those in Σ.

- The relations of CM(Σ;M; Γ; ∆) are those in M′.

- h(p) = {x | ∃y. (y ≤ x ∈M) ∧ (y : p ∈ Γ)}.

- sf(A,B) = {x | x : A sf B ∈ Γ}.

It is not obvious that CM(Σ;M; Γ; ∆) is a model, because it may not satisfy the mono-
tonicity condition, (mon), for h. It trivially satisfies all other conditions in the definition of
a model. Lemma 3.3 states that the monotonicity condition (mon) must also always hold for
CM(Σ;M; Γ; ∆).

Lemma 3.3. If Σ;M; Γ; ∆ is a saturated history, then CM(Σ;M; Γ; ∆) has a monotonic valu-
ation h, i.e., x ∈ h(p) and x ≤ y ∈ CM(Σ;M; Γ; ∆) imply y ∈ h(p).

Proof. See Appendix A, Lemma A.2.

The next Lemma states the central property of our method. In particular, the Lemma imme-
diately implies that if Σ;M; Γ; ∆ is a saturated history, then CM(Σ;M; Γ; ∆) is a countermodel
to the sequent Σ;M; Γ⇒ ∆.

Lemma 3.4. The following hold for any saturated history Σ;M; Γ; ∆:

A. If T (ϕ) ∈ Sfor(Σ;M; Γ; ∆, x), then CM(Σ;M; Γ; ∆) |= x : ϕ

B. If F (ϕ) ∈ Sfor(Σ;M; Γ; ∆, x), then CM(Σ;M; Γ; ∆) 6|= x : ϕ

Proof. See Appendix A, Lemma A.3.

Corollary 3.5 (Existence of countermodel). If Σ;M; Γ; ∆ is a saturated history, then CM(Σ;M; Γ; ∆) 6|=
(Σ;M; Γ⇒ ∆).

Proof. Lemma 3.4 immediately implies that CM(Σ;M; Γ; ∆), ρ 6|= (Σ;M; Γ ⇒ ∆), where ρ :
Σ→ Σ is the identity substitution.

3.2 SeqCT: Countermodel Producing Decision Procedure

We synthesize a countermodel producing decision procedure for BLsf using the idea of saturated
histories and the definition of the countermodel CM(Σ;M; Γ; ∆). We present the decision pro-
cedure as a sequent calculus, SeqCT, with judgments of the form Σ;M; Γ ⇒T ∆ ↘ S, where
S is a possibly empty, finite set of (counter)models. Reading the rules backwards, the calculus
is an algorithm with inputs Σ, M, Γ and ∆ and output S. The correctness properties of the
algorithm are that: (1) Given any Σ, M, Γ and ∆ with tree-like M, the algorithm terminates
and produces some S. (2) If S = {}, then Σ;M; Γ ⇒ ∆ has a proof in SeqC and if S 6= {},
then every model M ∈ S satisfies M 6|= (Σ;M; Γ ⇒ ∆). The requirement that M be tree-like

10



Axiom Rules

No other rule applies

Σ;M; Γ⇒T ∆↘ {CM(Σ;M; Γ; ∆)}
CM

Σ;M, x ≤ y; Γ, x : p⇒T y : p,∆↘ {}
init

Σ;M; Γ, x : A sf B ⇒T x : A sf B,∆↘ {}
sf

Logical Rules

Σ;M; Γ⇒T x : >,∆↘ {}
>R

Σ;M; Γ, x : ⊥ ⇒T ∆↘ {}
⊥L

x : α 6∈ ∆ and x : β 6∈ ∆

Σ;M; Γ⇒T x : α, x : α ∧ β,∆↘ S1 Σ;M; Γ⇒T x : β, x : α ∧ β,∆↘ S2

Σ;M; Γ⇒T x : α ∧ β,∆↘ S1 ∪ S2

∧R

x : α 6∈ Γ or x : β 6∈ Γ Σ;M; Γ, x : α ∧ β, x : α, x : β ⇒T ∆↘ S

Σ;M; Γ, x : α ∧ β ⇒T ∆↘ S
∧L

x : α 6∈ ∆ or x : β 6∈ ∆ Σ;M; Γ⇒T x : α, x : β, x : α ∨ β,∆↘ S

Σ;M; Γ⇒T x : α ∨ β,∆↘ S
∨R

x : α 6∈ Γ and x : β 6∈ Γ

Σ;M; Γ, x : α ∨ β, x : α⇒T ∆↘ S1 Σ;M; Γ, x : α ∨ β, x : β ⇒T ∆↘ S2

Σ;M; Γ, x : α ∨ β ⇒T ∆↘ S1 ∪ S2

∨L

∀y ∈ Σ.(x ≤ y ∈M)⇒ (y : α 6∈ Γ or y : β 6∈ ∆)

∀y ∈ Σ.(y � x)⇒ (x = y or x 64 y) Σ, y;M, x ≤ y; Γ, y : α⇒T y : β, x : α→ β,∆↘ S

Σ;M; Γ⇒T x : α→ β,∆↘ S
→R

y : α 6∈ ∆ and y : β 6∈ Γ

Σ;M, x ≤ y; Γ, x : α→ β ⇒T y : α,∆↘ S1 Σ;M, x ≤ y; Γ, x : α→ β, y : β ⇒T ∆↘ S2

Σ;M, x ≤ y; Γ, x : α→ β ⇒T ∆↘ S1 ∪ S2

→L

∀y ∈ Σ.(xSAy ∈M)⇒ y : α 6∈ ∆

∀y ∈ Σ.(y � x)⇒ (x = y or x 64 y) Σ, y;M, xSAy; Γ⇒T y : α, x : A says α,∆↘ S

Σ;M; Γ⇒T x : A says α,∆↘ S
saysR

y : α 6∈ Γ Σ;M, xSAy; Γ, x : A says α, y : α⇒T ∆↘ S

Σ;M, xSAy; Γ, x : A says α⇒T ∆↘ S
saysL

Figure 2: SeqCT, part 1: Terminating, countermodel producing sequent calculus for BLsf.

Applicability conditions are written in boxes . Wherever mentioned, the relation 4 is the
equivalence relation of the contexts Σ;M; Γ; ∆ in the conclusion of the rule. Similarly, � is the
order of the underlying tree of M.
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Frame Rules

x ≤ x 6∈M Σ, x;M, x ≤ x; Γ⇒T ∆↘ S

Σ, x;M; Γ⇒T ∆↘ S
refl

x ≤ z 6∈M Σ;M, x ≤ y, y ≤ z, x ≤ z; Γ⇒T ∆↘ S

Σ;M, x ≤ y, y ≤ z; Γ⇒T ∆↘ S
trans

xSAz 6∈M Σ;M, x ≤ y, ySAz, xSAz; Γ⇒T ∆↘ S

Σ;M, x ≤ y, ySAz; Γ⇒T ∆↘ S
mon-S

xSAz 6∈M Σ;M, xSBy, ySAz, xSAz; Γ⇒T ∆↘ S

Σ;M, xSBy, ySAz; Γ⇒T ∆↘ S
I

xSAy 6∈M Σ;M, xSBy, xSAy; Γ, x : A sf B ⇒T ∆↘ S

Σ;M, xSBy; Γ, x : A sf B ⇒T ∆↘ S
basic-sf

x : A sf A 6∈ Γ Σ, x;M; Γ, x : A sf A⇒T ∆↘ S

Σ, x;M; Γ⇒T ∆↘ S
refl-sf

x : A sf C 6∈ Γ Σ;M; Γ, x : A sf B, x : B sf C, x : A sf C ⇒T ∆↘ S

Σ;M; Γ, x : A sf B, x : B sf C ⇒T ∆↘ S
trans-sf

y : A sf B 6∈ Γ Σ;M, x ≤ y; Γ, x : A sf B, y : A sf B ⇒T ∆↘ S

Σ;M, x ≤ y; Γ, x : A sf B ⇒T ∆↘ S
mon1-sf

y : A sf B 6∈ Γ Σ;M, xSCy; Γ, x : A sf B, y : A sf B ⇒T ∆↘ S

Σ;M, xSCy; Γ, x : A sf B ⇒T ∆↘ S
mon2-sf

Figure 3: SeqCT, part 2: Terminating, countermodel producing sequent calculus for BLsf.

Applicability conditions are written in boxes .
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is needed to complete the proofs. In practice, we start from an empty M, which is trivially
tree-like.

The rules of the calculus SeqCT are shown in Figures 2 and 3. With the exception of the new
rule (CM), each rule in the calculus corresponds to a rule of the same name in SeqC (Figure 1).
The difference between the calculi is that there are additional conditions on each rule in SeqCT,

which are written in boxes in the figure. These are called applicability conditions. There are
two key points to observe here. First, by design, if the applicability conditions of all rules in
the figure fail, i.e., no rule (except CM) applies, then the tuple Σ;M; Γ; ∆ in the conclusion of
the rule is a saturated history. Therefore, by Corollary 3.5, Σ;M; Γ ⇒ ∆ has a countermodel,
which is output into S using the rule (CM). Second, all rules of the calculus except (CM)
simply aggregate the countermodels from their premises into a single set in the conclusion.
This is sound because all rules of the Figure 1 are invertible, so any countermodel of any of the
premises is necessarily a countermodel of the conclusion. The following lemmas and theorems
state termination and partial correctness of SeqCT.

Theorem 3.6 (Termination). The following hold:

1. Any backwards derivation in SeqCT starting from a sequent Σ;M; Γ⇒T ∆ with M tree-like
terminates.

2. For any Σ;M; Γ; ∆ with M tree-like, there is an S such that ` (Σ;M; Γ ⇒T ∆ ↘ S) and
such an S can be finitely computed.

Proof. By a counting argument using Theorem 2.8. See Appendix A, Theorem C.3 for details.

Note that Theorem 3.6(2) does not stipulate that the computed S be unique. Indeed,
depending on the order in which the rules of the calculus ⇒T are applied to a given sequent,
S may be different. However, the fact that at least one such S exists and can be computed is
enough to get decidability for BLsf.

Theorem 3.7 (Correctness). For a tree-like M, suppose that S is such that ` (Σ;M; Γ ⇒T

∆↘ S) (such an S must exist and can be computed using Theorem 3.6). Then:

1. If S = {}, then |= (Σ;M; Γ⇒ ∆).

2. If S 6= {}, then every model M in S is a countermodel to the sequent, i.e., M 6|=
(Σ;M; Γ⇒ ∆).

Proof. The proof of this theorem uses an intermediate calculus. See Appendix C, Theorem C.5
for details.

Corollary 3.8 (Decidability and finite model property). BLsf is decidable, has the finite model
property and has a constructive decision procedure.

Proof. Immediate from Theorem 3.7.

Example 3.9. Consider the policy P containing the facts 1–3 from Example 2.1. These facts
do not entail deletefile1. When we run the sequent x; ·;x : P ⇒T x : deletefile1 ↘ . . .
through the procedure of Figures 2 and 3, all branches except one close. That one branch
produces a countermodel with three worlds x, y, z, relations xSadminy, ySBobz, ySAlicez, xSBobz,
xSAlicez, z ≤ y, x ≤ x, y ≤ y, z ≤ z, and the assignments h(deletefile1) = {} and
sf(Alice, Bob) = {x, y, z}. It is easily verified that this countermodel satisfies x : P , but
does not satisfy x : deletefile1.

13



4 Policy Saturation

Our second application of the labeled sequent calculus SeqC is policy saturation, the problem of
generating all possible atomic consequences of a given policy. This is useful, e.g., to pre-compile
a policy to access control lists. The usual approach to policy saturation is based in bottom-up
logic programming engines like Datalog, used in the context of access control in systems like
SecPAL [9]. We show that, surprisingly, our construction of countermodels from Section 3.2
directly yields a completely different algorithm to find all atomic consequences of a policy.

Our algorithm works as follows. Suppose we wish to find all atomic consequences of the
policy ϕ1, . . . , ϕn. We choose a symbolic world x and run the decision procedure of Section 3.2
with Σ = x, M = ·, Γ = x : ϕ1, . . . , x : ϕn and ∆ = ·. If the algorithm ends with S = {}, then
the policy is (clearly) inconsistent and it proves any atomic formula. If, on the other hand, the
algorithm ends with S 6= {}, then as the following theorem states, x : p is provable from Γ iff
x ∈ h(p) in every model M in S. Thus, by running our decision procedure on the policy with
an empty goal and intersecting the valuation of the initial worlds in the ensuing countermodels,
we obtain exactly the set of all provable atoms. We call this property comprehensiveness.

Theorem 4.1 (Comprehensiveness). Suppose M is tree-like and ` (Σ;M; Γ⇒T ∆↘ S). Then
` (Σ;M; Γ⇒ x : p,∆) iff ∀M ∈ S.M |= x : p.

Proof. See Appendix D, Theorem D.3.

Example 4.2. Let P be the set of formulas 1–3 from Example 2.1 and let P ′ = P, Alice says
deletefile1. We intuitively expect that the only atomic consequence of P ′ is deletefile1.
Using the saturation procedure described above, we confirm this intuition. When we run the
sequent x; ·;x : P ′ ⇒T · ↘ . . . through the procedure of Figures 2 and 3, it produces exactly one
countermodel with one world x, the relations x ≤ x, and the assignments h(deletefile1) = {x}
and sf(A,B) = {x}. Using Theorem 4.1, we conclude that the only atomic consequence of the
policy is deletefile1, which is also what we expected intuitively.

5 Policy Abduction

Next, we adapt the labeled sequent calculus SeqC to a procedure for abduction over access
policies written in BLsf. Abduction is the problem of finding credentials that together with
a given policy Γ prove a given goal ϕ. These missing credentials, the output of abduction,
are represented by a formula, often called the abducible. For example, if Γ entails ϕ then no
additional credentials are required and the abducible is >. Similarly, for Γ = q → p, (r ∧ s)→ p
and ϕ = p, the abducible is p ∨ q ∨ (r ∧ s). In practice, abducibles are restricted to formulas
of specific forms that can be easily justified a priori (without assumptions).

In the following, we adapt the terminating calculus SeqCT of Section 3.2 to obtain a general
abduction method for BLsf. Our abducibles are simple formulas containing the connectives ∧,
∨ and formulas >, ⊥, p and A says p at the leaves, as formalized in the following definition.

Abducible Θ ::= p | A says p | > | ⊥ | Θ1 ∧ Θ2 | Θ1 ∨ Θ2

We do not allow formulas of the forms ϕ → ψ and A sf B in abducibles because we want
that abducibles be easy to justify a priori; this is true for formulas of the above restricted forms,
but is not the case for arbitrary formulas.

The abduction procedure is presented as a calculus SeqCA, whose selected rules are shown
in Figures 4 and 5. The calculus is an adaptation of the terminating calculus SeqCT of Figures 2
and 3, obtained by replacing the output countermodels with abducibles. Its sequents have the
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Axiom Rules

No other rule applies

Σ;M; Γ⇒A ∆↘ AB(Σ;M; Γ; ∆)
AB

Σ;M, x ≤ y; Γ, x : p⇒A y : p,∆↘ >
init

Σ;M; Γ, x : A sf B ⇒A x : A sf B,∆↘ >
sf

Logical Rules

Σ;M; Γ⇒A x : >,∆↘ >
>R

Σ;M; Γ, x : ⊥ ⇒A ∆↘ >
⊥L

x : α 6∈ ∆ and x : β 6∈ ∆

Σ;M; Γ⇒A x : α, x : α ∧ β,∆↘ Θ1 Σ;M; Γ⇒A x : β, x : α ∧ β,∆↘ Θ2

Σ;M; Γ⇒A x : α ∧ β,∆↘ Θ1 ∧Θ2

∧R

x : α 6∈ Γ or x : β 6∈ Γ Σ;M; Γ, x : α ∧ β, x : α, x : β ⇒A ∆↘ Θ

Σ;M; Γ, x : α ∧ β ⇒A ∆↘ Θ
∧L

x : α 6∈ ∆ or x : β 6∈ ∆ Σ;M; Γ⇒A x : α, x : β, x : α ∨ β,∆↘ Θ

Σ;M; Γ⇒A x : α ∨ β,∆↘ Θ
∨R

x : α 6∈ Γ and x : β 6∈ Γ

Σ;M; Γ, x : α ∨ β, x : α⇒A ∆↘ Θ1 Σ;M; Γ, x : α ∨ β, x : β ⇒A ∆↘ Θ2

Σ;M; Γ, x : α ∨ β ⇒A ∆↘ Θ1 ∧Θ2

∨L

∀y ∈ Σ.(x ≤ y ∈M)⇒ (y : α 6∈ Γ or y : β 6∈ ∆)

∀y ∈ Σ.(y � x)⇒ (x = y or x 64 y) Σ, y;M, x ≤ y; Γ, y : α⇒A y : β, x : α→ β,∆↘ Θ

Σ;M; Γ⇒A x : α→ β,∆↘ Θ
→R

y : α 6∈ ∆ and y : β 6∈ Γ

Σ;M, x ≤ y; Γ, x : α→ β ⇒A y : α,∆↘ Θ1 Σ;M, x ≤ y; Γ, x : α→ β, y : β ⇒A ∆↘ Θ2

Σ;M, x ≤ y; Γ, x : α→ β ⇒A ∆↘ Θ1 ∧Θ2

→L

∀y ∈ Σ.(xSAy ∈M)⇒ y : α 6∈ ∆

∀y ∈ Σ.(y � x)⇒ (x = y or x 64 y) Σ, y;M, xSAy; Γ⇒A y : α, x : A says α,∆↘ Θ

Σ;M; Γ⇒A x : A says α,∆↘ Θ
saysR

y : α 6∈ Γ Σ;M, xSAy; Γ, x : A says α, y : α⇒A ∆↘ Θ

Σ;M, xSAy; Γ, x : A says α⇒A ∆↘ Θ
saysL

Figure 4: SeqCA, part 1: Abduction calculus calculus for BLsf.
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Frame Rules

x ≤ x 6∈M Σ, x;M, x ≤ x; Γ⇒A ∆↘ Θ

Σ, x;M; Γ⇒A ∆↘ Θ
refl

x ≤ z 6∈M Σ;M, x ≤ y, y ≤ z, x ≤ z; Γ⇒A ∆↘ Θ

Σ;M, x ≤ y, y ≤ z; Γ⇒A ∆↘ Θ
trans

xSAz 6∈M Σ;M, x ≤ y, ySAz, xSAz; Γ⇒A ∆↘ Θ

Σ;M, x ≤ y, ySAz; Γ⇒A ∆↘ Θ
mon-S

xSAz 6∈M Σ;M, xSBy, ySAz, xSAz; Γ⇒A ∆↘ Θ

Σ;M, xSBy, ySAz; Γ⇒A ∆↘ Θ
I

xSAy 6∈M Σ;M, xSBy, xSAy; Γ, x : A sf B ⇒A ∆↘ Θ

Σ;M, xSBy; Γ, x : A sf B ⇒A ∆↘ Θ
basic-sf

x : A sf A 6∈ Γ Σ, x;M; Γ, x : A sf A⇒A ∆↘ Θ

Σ, x;M; Γ⇒A ∆↘ Θ
refl-sf

x : A sf C 6∈ Γ Σ;M; Γ, x : A sf B, x : B sf C, x : A sf C ⇒A ∆↘ Θ

Σ;M; Γ, x : A sf B, x : B sf C ⇒A ∆↘ Θ
trans-sf

y : A sf B 6∈ Γ Σ;M, x ≤ y; Γ, x : A sf B, y : A sf B ⇒A ∆↘ Θ

Σ;M, x ≤ y; Γ, x : A sf B ⇒A ∆↘ Θ
mon1-sf

y : A sf B 6∈ Γ Σ;M, xSCy; Γ, x : A sf B, y : A sf B ⇒A ∆↘ Θ

Σ;M, xSCy; Γ, x : A sf B ⇒A ∆↘ Θ
mon2-sf

Figure 5: SeqCA, part 2: Abduction calculus calculus for BLsf.
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form Σ;M; Γ ⇒A ∆ ↘ Θ. The applicability conditions are the same, so backwards search in
the calculus terminates as it does for SeqCT. The main rule is AB, which is a replacement of
the earlier rule CM. In this rule, the input contexts Σ;M; Γ; ∆ are a saturated history, so the
output is an abducible, AB(Σ;M; Γ; ∆), which is defined below. Here, root(M) is the root of
the underlying tree of M.

AB(Σ;M; Γ; ∆) =
(
∨
{p | y : p ∈ ∆ and (root(M)) ≤ y ∈M})∨

(
∨
{A says p | y : p ∈ ∆ and (root(M))SAy ∈M})

Intuitively, for every labeled atom y : p ∈ ∆, we look at the path between the root of the
underlying tree of M and y. Because the saturated history is closed under backward application
of rules (I), (mon-S) and (trans), either (root(M)) ≤ y ∈ M or (root(M))SAy ∈ M for some
A ∈ I. In the former case, it suffices to add the credential p to complete the proof and in the
latter case it suffices to add the credential A says p to complete the proof. If both sets in the
definition of AB(Σ;M; Γ; ∆) are empty, then AB(Σ;M; Γ; ∆) = ⊥. This can happen only if we
start from a sequent that contains ⊥ in positive positions (i.e., as subgoals).

An abducible Θ is satisfied by extending the current policy Γ with a set F ⊆ {p,A says
p | A ∈ I}. Given such a set, we define the satisfaction relation F |= Θ in the obvious way:

- F |= > (always)

- F |= p iff p ∈ F

- F |= A says p iff (A says p) ∈ F

- F |= Θ1 ∧ Θ2 iff F |= Θ1 and F |= Θ2

- F |= Θ1 ∨ Θ2 iff F |= Θ1 or F |= Θ2

The following theorem states that our abduction procedure is sound in the sense that if
the abducible of a sequent is satisfied by F , then extending the hypotheses with F results in a
provable sequent.

Theorem 5.1 (Soundness). If ` (Σ;M; Γ⇒A ∆↘ Θ) and F |= Θ, then ` (Σ;M; Γ, root(M) :
F ⇒ ∆).

Proof. See Appendix E, Theorem E.1.

Next, we show that if we start from a sequent that does not contain ⊥ and formulas of
the form A sf B in positive positions (i.e., as subgoals), then the resulting abducible does not
contain any ⊥, so it is always satisfiable. This is practically useful because ordinary policies
often do not contain ⊥ and A sf B in positive positions. Informally, a policy does not contain
⊥ as a subgoal if authorization granted by it is not contingent on the negation of another atom
being true and it does not contain A sf B as a subgoal if access is never contingent on A sf B
being true.

Theorem 5.2. If Σ;M; Γ ⇒ ∆ has no positive occurrence of ⊥ and A sf B, ∆ is non-empty
and ` (Σ;M; Γ⇒A ∆↘ Θ), then Θ does not contain any occurrence of ⊥.

Proof. The proof of this theorem is non-trivial because we must show that in any occurrence
of the rule (AB), at least one of the two sets of formulas in the definition of AB(Σ;M; Γ; ∆) is
non-empty. See Appendix E, Theorem E.3 for details.
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Example 5.3. Let P be the set of formulas 1–3 from Example 2.1. These facts do not en-
tail deletefile1, so we can try to run our abduction algorithm. When we run the sequent
x; ·;x : P ⇒A x : deletefile1 ↘ . . . through the procedure of Figures 4 and 5, all branches
except one close. That one branch ends in a saturated history with three worlds x, y, z, re-
lations xSadminy, ySBobz, ySAlicez, xSBobz, xSAlicez, x ≤ x, y ≤ y, z ≤ z, and a ∆ containing
x : deletefile1, y : deletefile1 and z : deletefile1. Consequently, the abducible is the
formula deletefile1 ∨ (admin says deletefile1) ∨ (Bob says deletefile1) ∨ (Alice says
deletefile1), i.e., our goal deletefile1 can be proved if any of admin, Bob, Alice assert it.
This is exactly what we expect from an informal analysis of the policy.

6 Related Work

We discuss closely related work on decision procedures, saturation and abduction for access
control logics.

A procedure to generate countermodels in the context of access control is new to our work,
but the importance of this idea has been anticipated before. Regarding decision procedures,
there are some decidability results for access control logics, e.g., for the logic ICL [14] and
the logic programming language SecPAL [9], but for the logic presented in this paper, the
decidability result is also new. Our specific countermodel producing decision procedure is based
on our prior work on multi-modal logics [15], which in turn is inspired by work for uni-modal
logics, notably that of Gasquet et al. [18] and Negri [20, 21]. In terms of presentation, our
labeled sequent calculus is presented is similar to that of Negri [20].

The idea of saturation for access policies has been investigated several times, notably in ac-
cess control languages like SecPAL and Binder whose implementations or semantics are defined
by translation into Datalog [9, 13]. Our technique of saturating policies using a comprehensive
set of countermodels is novel. Saturation by translation to Datalog is likely more efficient than
our method, but our method is more general because it covers all connectives of the logic.

Abduction for access policies has been investigated formally by Becker et al. [10, 11] in the
context of SecPAL. Their procedure is based on an adaptation of a tabled logic programming
engine. Our algorithm is more general because it handles all connectives of the logic, but may
be less efficient. Abductive credential gathering for access policies has been implemented several
times using heuristics, e.g., in the Grey system [7].

7 Conclusion

Using a specific access control logic BLsf, we have argued that Kripke semantics, manifest in the
symbolic framework of labeled sequent calculi, can be used to solve three practical access control
problems: Countermodel generation, policy saturation, and policy abduction. The foundational
underpinning of our work is a non-trivial, countermodel producing decision procedure for the
logic BLsf. The same decision procedure yields algorithms for policy saturation and abduction.

In future work, we plan to implement our algorithms and evaluate them on realistic access
policies. The main challenge we anticipate is that our algorithms, as presented in this paper,
have significant computational complexity, and may be inefficient in practice. To alleviate this
problem, we plan to investigate adaptations of our techniques to goal-directed (backchaining)
search, which is usually very efficient in practice. The adaptation is likely to be non-trivial
because, unlike the rules of the sequent calculus of Figure 1, rules of goal-directed search are
non-invertible, which may make construction of countermodels very difficult.
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A Proofs from Section 3

Lemma A.1. Let Σ;M; Γ; ∆ be a saturated history, C ⊆ {x ≤ y | x 4 y} and M′; Γ′ =
(M ∪ C); Γ. Then:

1. If x ≤ y ∈M′, then x(≤ ∪ C)∗y ∈M

2. If xSAy ∈M′, then x((≤ ∪ S∗ ∪ C)∗ ◦ SA)y ∈M.
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Proof. By induction on iteration of frame rules that leads to the closure (M ∪ C); Γ. (1) is
straightforward. For (2), we need some Lemmas. First, we prove that for any intermediate result
Mn; Γn in the iteration that defines (M ∪ C); Γ, if x(≤∪N∗)y ∈Mn, then x(≤∪C ∪N∗)∗y ∈M.
Using this we prove that if x : A sf B ∈ Γn, then x : A sf B ∈ Γ. The critical rules are (mon1-sf)
and (mon2-sf). Finally, we prove the required statement. The critical rule is (basic-sf).

Lemma A.2 (Lemma 3.3). If Σ;M; Γ; ∆ is a saturated history, then CM(Σ;M; Γ; ∆) has a
monotonic valuation h, i.e., x ∈ h(p) and x ≤ y ∈ CM(Σ;M; Γ; ∆) imply y ∈ h(p).

Proof. Suppose that x ≤ y ∈ CM(Σ;M; Γ; ∆), i.e., x ≤ y ∈ M′ and x ∈ h(p). From the latter,
there is a z such that z ≤ x ∈M and z : p ∈ Γ. From Lemma A.1(1) it follows that x(≤∪C)∗y,
where all the relations ≤ are in M. Hence, we have a chain x = x0(≤∪C)x1 . . . (≤∪C)xn = y
where all relations ≤ are in M. We induct on i to show that T (p) ∈ Sfor(xi).

- For i = 0, x0 = x and we know that z : p ∈ Γ and z ≤ x ∈ M. It follows from definition
of Sfor that T (p) ∈ Sfor(x), as required.

- For the induction step, assume that T (p) ∈ Sfor(xi). We prove that T (p) ∈ Sfor(xi+1).
We consider two possible cases on the relation xi(≤ ∪ C)xi+1.

– xi ≤ xi+1 ∈ M. Because T (p) ∈ Sfor(xi), there is a z′ such that z′ ≤ xi ∈ M and
z′ : p ∈ Γ. Hence, also z′ ≤ xi+1 ∈M. So T (p) ∈ Sfor(xi+1).

– (xi, xi+1) ∈ C. Because of the definition of C, Sfor(xi) ⊆ Sfor(xi+1), so T (p) ∈
Sfor(xi) immediately implies T (p) ∈ Sfor(xi+1).

This completes the inductive proof that T (p) ∈ Sfor(xi). In particular, T (p) ∈ Sfor(xn). By
definition of Sfor, there is a z′ such that z′ ≤ xn ∈ M and z′ : p ∈ Γ. This immediately implies
xn ∈ h(p), i.e., y ∈ h(p), as required.

Lemma A.3 (Lemma 3.4). The following hold for any saturated history Σ;M; Γ; ∆:

A. If T (ϕ) ∈ Sfor(Σ;M; Γ; ∆, x), then CM(Σ;M; Γ; ∆) |= x : ϕ

B. If F (ϕ) ∈ Sfor(Σ;M; Γ; ∆, x), then CM(Σ;M; Γ; ∆) 6|= x : ϕ

Proof. We prove both properties simultaneously by lexicographic induction, first on ϕ, and
then on the partial (tree-like) order � of M. (Note that we cannot induct on either M or
the relation in CM(Σ;M; Γ; ∆), because both of these may potentially be cyclic.) Since the
context Σ;M; Γ; ∆ is fixed here, we abbreviate Sfor(Σ;M; Γ; ∆, x) to Sfor(x). Let C be the set
{(x, y) | x 4 y}.

Proof of A.

Case. ϕ = p. We are given that T (p) ∈ Sfor(x) and want to prove that CM(Σ;M; Γ; ∆) |= x : p.
Since T (p) ∈ Sfor(x), we know from definition of the function Sfor that there is a y with
y ≤ x ∈ M and y : p ∈ Γ. Since y ≤ x ∈ M, we know from definition of CM(Σ;M; Γ; ∆) that
x ∈ h(p). Hence, by definition of |=, we have CM(Σ;M; Γ; ∆) |= x : p.

Case. ϕ = >. Here, CM(Σ;M; Γ; ∆) |= x : > is trivial by the definition of |=.

Case. ϕ = ⊥. Then the pre-condition T (⊥) ∈ Sfor(x) or, equivalently, x : ⊥ ∈ ∆ is impossible
by clause (3) of the definition of saturated history. So this case is vacuous.

21



Case. ϕ = α ∧ β. We are given that T (α ∧ β) ∈ Sfor(x) or, equivalently, that x : α ∧ β ∈ Γ. By
clause (5) of the definition of saturated history, x : α ∈ Γ and x : β ∈ Γ. Hence, T (α) ∈ Sfor(x)
and T (β) ∈ Sfor(x). By the i.h., CM(Σ;M; Γ; ∆) |= x : α and CM(Σ;M; Γ; ∆) |= x : β. Hence,
CM(Σ;M; Γ; ∆) |= x : α ∧ β, as required.

Case. ϕ = α ∨ β. We are given that T (α ∨ β) ∈ Sfor(x) or, equivalently, that x : α ∨ β ∈ Γ.
By clause (7) of the definition of saturated history, either x : α ∈ Γ or x : β ∈ Γ. Hence,
either T (α) ∈ Sfor(x) or T (β) ∈ Sfor(x). By the i.h., either CM(Σ;M; Γ; ∆) |= x : α or
CM(Σ;M; Γ; ∆) |= x : β. In either case, CM(Σ;M; Γ; ∆) |= x : α ∧ β, as required.

Case. ϕ = α → β. We are given that T (α → β) ∈ Sfor(x). We need to show that for any y
such that x ≤ y in the model and CM(Σ;M; Γ; ∆) |= y : α, we have CM(Σ;M; Γ; ∆) |= y : β.
Pick any y such that x ≤ y in the model and CM(Σ;M; Γ; ∆) |= y : α. From Lemma A.1(1),
it follows that x(≤ ∪ C)∗y, where the ≤ relations are in M. Hence, there is a chain x =
x0(≤ ∪ C)x1 . . . (≤ ∪ C)xn = y, where the ≤ relations are in M. We induct on i to prove that
T (α→ β) ∈ Sfor(xi) for each i.

• For i = 0, x0 = x and we are given that T (α→ β) ∈ Sfor(x), so we are done.

• For the inductive case, assume that T (α → β) ∈ Sfor(xi) for some i. We show that
T (α→ β) ∈ Sfor(xi+1). We consider two possible cases on the relation xi(≤ ∪ C)xi+1:

– xi ≤ xi+1 ∈ M: From the i.h., we know that T (α → β) ∈ Sfor(xi). Hence, there
is a z′ such that z′ ≤ xi ∈ M and z′ : α → β ∈ Γ. Clearly, z′ ≤ xi+1 ∈ M, so
T (α→ β) ∈ Sfor(xi+1).

– (xi, xi+1) ∈ C: Because of the definition of C, Sfor(xi) ⊆ Sfor(xi+1), so T (α→ β) ∈
Sfor(xi) immediately implies T (α→ β) ∈ Sfor(xi+1).

This completes the inductive proof. It follows, in particular, that T (α → β) ∈ Sfor(xn). Con-
sequently, there is some z′ such that z′ ≤ xn = y ∈M and z′ : α→ β ∈ Γ. Hence, by clause (9)
of the definition of saturated history, we must have either y : α ∈ ∆ or y : β ∈ Γ. The for-
mer implies, by the i.h., that CM(Σ;M; Γ; ∆) 6|= y : α, which contradicts our assumption that
CM(Σ;M; Γ; ∆) |= y : α. So, we must have y : β ∈ Γ. This implies T (β) ∈ Sfor(y) and hence,
by the i.h., that CM(Σ;M; Γ; ∆) |= y : β.

Case. ϕ = A says α. We are given that T (A says α) ∈ Sfor(x). We need to show that
CM(Σ;M; Γ; ∆) |= x : A says α, i.e., for any y such that xSAy in the model, we have
CM(Σ;M; Γ; ∆) |= y : α. Pick any y such that xSAy in the model. By Lemma A.1(2), we
have x((≤ ∪ S∗ ∪ C)∗ ◦ SA)y, where the relations ≤ and SA are in M. So there are x0, . . . , xn
such that x = x0(≤ ∪ S∗ ∪ C)x1 . . . (≤ ∪ S∗ ∪ C)xnSAy. We now prove, by induction on i, that
T (A says α) ∈ Sfor(xi) for each i.

• For i = 0, x0 = x and we are given that T (A says α) ∈ Sfor(x).

• For the inductive case, assume that T (A says α) ∈ Sfor(xi) for some i. We show that
T (A says α) ∈ Sfor(xi+1) by case analyzing the relation xi(≤ ∪ S∗ ∪ C)xi+1.

– xi(≤∪S∗)xi+1 ∈M: By the i.h., T (A says α) ∈ Sfor(xi) so there is some z such that
z(≤ ∪ S∗)∗xi ∈ M and z : A says α ∈ Γ. Clearly, we have z(≤ ∪ S∗)∗xi+1 ∈ M, so
T (A says α) ∈ Sfor(xi+1).

– (xi, xi+1) ∈ C: Because of the definition of C, Sfor(xi+1) ⊇ Sfor(xi). Thus, T (A says
α) ∈ Sfor(xi) immediately implies T (A says α) ∈ Sfor(xi+1).
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Since we just proved that T (A says α) ∈ Sfor(xi), it follows, in particular, that T (A says α) ∈
Sfor(xn). Consequently, there is some z′ such that z′(≤ ∪ S∗)∗xn ∈ M and z′ : A says α ∈ Γ.
Then, we also have (within M) that: z′(≤∪S∗)∗x′nSAy. So, due to conditions (I) and (mon-S),
z′SAy ∈M. Hence, by clause (11) of the definition of saturated history, we must have y : α ∈ Γ.
Therefore, T (α) ∈ Sfor(y) and by the i.h., CM(Σ;M; Γ; ∆) |= y : α.

Case. ϕ = A sf B. We are given that T (A sf B) ∈ Sfor(x) and want to show that
CM(Σ;M; Γ; ∆) |= x : A sf B. From the assumption T (A sf B) ∈ Sfor(x) we know that
x : A sf B ∈ Γ, so by the definition of CM(Σ;M; Γ; ∆), we have x ∈ sf(A,B). Hence, by
definition of |=, we get that CM(Σ;M; Γ; ∆) |= x : A sf B.

Proof of B.

Case. ϕ = p. We are given that F (p) ∈ Sfor(x) or, equivalently, that x : p ∈ ∆. Suppose, for
the sake of contradiction, that CM(Σ;M; Γ; ∆) |= x : p. Then, x ∈ h(p) and hence, from the
construction of the countermodel, there is a z such that z ≤ x ∈ M and z : p ∈ Γ. This imme-
diately contradicts clause (2) of the definition of saturated history because we have z ≤ x ∈M,
z : p ∈ Γ and x : p ∈ ∆. Hence we must have CM(Σ;M; Γ; ∆) 6|= x : p.

Case. ϕ = >. Then the pre-condition F (>) ∈ Sfor(x) or, equivalently, x : > ∈ ∆ is impossible
by clause (3) of the definition of saturated history. So this case is vacuous.

Case. ϕ = ⊥. Here, CM(Σ;M; Γ; ∆) 6|= x : ⊥ is trivial by the definition of |=.

Case. ϕ = α ∧ β. Suppose F (α ∧ β) ∈ Sfor(x). Then, x : α ∧ β ∈ ∆. Hence, by
clause (6) of the definition of saturated history, either x : α ∈ ∆ or x : β ∈ ∆. There-
fore, either F (α) ∈ Sfor(x) or F (β) ∈ Sfor(x). By i.h., either CM(Σ;M; Γ; ∆) 6|= x : α or
CM(Σ;M; Γ; ∆) 6|= x : β. In either case, CM(Σ;M; Γ; ∆) 6|= x : α ∧ β.

Case. ϕ = α ∨ β. Suppose F (α ∨ β) ∈ Sfor(x). Then, x : α ∨ β ∈ ∆. Hence, by clause (8)
of the definition of saturated history, x : α ∈ ∆ and x : β ∈ ∆. Therefore, F (α) ∈ Sfor(x) and
F (β) ∈ Sfor(x). By i.h., CM(Σ;M; Γ; ∆) 6|= x : α and CM(Σ;M; Γ; ∆) 6|= x : β. By definition of
|=, we have CM(Σ;M; Γ; ∆) 6|= x : α ∨ β.

Case. ϕ = α → β. Suppose F (α → β) ∈ Sfor(x). This implies, by definition of Sfor, that
x : α→ β ∈ ∆. By clause (10) of the definition of saturated history, we have that either:

1. There is a y such that x ≤ y ∈M, y : α ∈ Γ and y : β ∈ ∆ or

2. There is a y such that y 6= x, y � x and x 4 y.

If (a) holds, then by the i.h., CM(Σ;M; Γ; ∆) |= y : α and CM(Σ;M; Γ; ∆) 6|= y : β. Further,
x ≤ y, so CM(Σ;M; Γ; ∆) 6|= x : α→ β.

If (b) holds, then since x 4 y, F (α → β) ∈ Sfor(y). By the i.h. on the world y, which is
strictly smaller than x in the relation � (since y 6= x), it follows that CM(Σ;M; Γ; ∆) 6|= y :
α→ β. Note that in CM(Σ;M; Γ; ∆), x ≤ y. So, by Lemma 2.5, CM(Σ;M; Γ; ∆) 6|= x : α→ β,
as required.

Case. ϕ = A says α. Suppose F (A says α) ∈ Sfor(x). This implies, by definition of Sfor that
x : A says α ∈ ∆. By clause (12) of the definition of saturated history, we have that either:
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(a) There is a y such that xSAy ∈M and y : α ∈ ∆ or

(b) There is a y such that y 6= x, y � x and x 4 y.

If (a) holds, then by the i.h., CM(Σ;M; Γ; ∆) 6|= y : α. Since xSAy, it immediately follows
that CM(Σ;M; Γ; ∆) 6|= x : A says α.

If (b) holds, then since x 4 y, F (A says α) ∈ Sfor(y). By the i.h. on the world y, which is
strictly smaller in the order � (since x 6= y), it follows that CM(Σ;M; Γ; ∆) 6|= y : A says α.
Since in CM(Σ;M; Γ; ∆) we have x ≤ y, Lemma 2.5 immediately implies CM(Σ;M; Γ; ∆) 6|= x :
A says α, as required.

Case. ϕ = A sf B. Suppose F (A sf B) ∈ Sfor(x). Hence, x : A sf B ∈ ∆. By clause (13) of
definition of saturated history, x : A sf B 6∈ Γ. Hence, from the definition of CM(Σ;M; Γ; ∆),
x 6∈ sf(A,B). So, by definition of |=, we get that CM(Σ;M; Γ; ∆) 6|= x : A sf B, as required.

B SeqCCM: Countermodels for BLsf

We define an intermediate sequent calculus SeqCCM, written ⇒CM, which uses the notion of
saturated histories to emit countermodels from unprovable sequents. Although this calculus
is not a decision procedure, we find it a useful step in proving several results, including the
correctness of the terminating calculus SeqCT as well as the results on saturation.

Sequents of SeqCCM have the form Σ;M; Γ ⇒CM ∆ ↘ S, where S is a finite set of finite
models. We write ` (Σ;M; Γ ⇒CM ∆ ↘ S) if Σ;M; Γ ⇒CM ∆ ↘ S has a proof. The meaning
of Σ;M; Γ ⇒CM ∆ ↘ S depends on S. If ` (Σ;M; Γ ⇒CM ∆ ↘ {}), then ` (Σ;M; Γ ⇒ ∆)
and if ` (Σ;M; Γ ⇒CM ∆ ↘ S) with S 6= {}, then every model M ∈ S is a countermodel to
Σ;M; Γ⇒ ∆ in the sense of (the converse of) Definition 2.6.

The rules of the sequent calculus SeqCCM are shown in Figures 6 and 7. First, every rule
in the ordinary sequent calculus (Figure 1) is modified to have in the conclusion the union of
the (counter)models in the premises. This is sound because the rules of the sequent calculus
are invertible (i.e., the conclusion of each rule holds iff the premises hold). Second, there is a
new rule (CM) that produces the countermodel CM(Σ;M; Γ; ∆) when Σ;M; Γ; ∆ is a saturated
history.

We emphasize again that this calculus is not necessarily a decision procedure because it
includes all rules of ⇒ and hence admits all of the latter’s infinite backwards derivations as
well.

Theorem B.1 (Soundness 1). If ` (Σ;M; Γ⇒CM ∆↘ {}), then ` (Σ;M; Γ⇒ ∆).

Proof. By induction on the given derivation of Σ;M; Γ ⇒CM ∆ ↘ {}. Note that the case of
rule (CM) does not apply because the set of countermodels in it is non-empty. The proof is
straightforward because the rules of ⇒CM mimic those of ⇒.

Theorem B.2 (Soundness 2). If ` (Σ;M; Γ ⇒CM ∆ ↘ S), then for every model M ∈ S,
M 6|= (Σ;M; Γ⇒ ∆).

Proof. By induction on the given derivation of Σ;M; Γ⇒CM ∆↘ S and case analysis of its last
rule. The rules (init), (sf), (⊥L), and (>R) are vacuous because they have empty S. For all
other rules, except (CM), we simply observe that contexts in all major premises are a superset
of corresponding contexts in the conclusion and hence we can trivially conclude by induction
on one of the premises. The case of rule (CM) is shown below:
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Axiom Rules

Σ;M; Γ; ∆ is a saturated history

Σ;M; Γ⇒CM ∆↘ {CM(Σ;M; Γ; ∆)}
CM

Σ;M, x ≤ y; Γ, x : p⇒CM y : p,∆↘ {}
init

Σ;M; Γ, x : A sf B ⇒CM x : A sf B,∆↘ {}
sf

Logical Rules

Σ;M; Γ⇒CM x : >,∆↘ {}
>R

Σ;M; Γ, x : ⊥ ⇒CM ∆↘ {}
⊥L

Σ;M; Γ⇒CM x : α, x : α ∧ β,∆↘ S1 Σ;M; Γ⇒CM x : β, x : α ∧ β,∆↘ S2

Σ;M; Γ⇒CM x : α ∧ β,∆↘ S1 ∪ S2

∧R

Σ;M; Γ, x : α ∧ β, x : α, x : β ⇒CM ∆↘ S

Σ;M; Γ, x : α ∧ β ⇒CM ∆↘ S
∧L

Σ;M; Γ⇒CM x : α, x : β, x : α ∨ β,∆↘ S

Σ;M; Γ⇒CM x : α ∨ β,∆↘ S
∨R

Σ;M; Γ, x : α ∨ β, x : α⇒CM ∆↘ S1 Σ;M; Γ, x : α ∨ β, x : β ⇒CM ∆↘ S2

Σ;M; Γ, x : α ∨ β ⇒CM ∆↘ S1 ∪ S2

∨L

Σ, y;M, x ≤ y; Γ, y : α⇒CM y : β, x : α→ β,∆↘ S

Σ;M; Γ⇒CM x : α→ β,∆↘ S
→R

Σ;M, x ≤ y; Γ, x : α→ β ⇒CM y : α,∆↘ S1 Σ;M, x ≤ y; Γ, x : α→ β, y : β ⇒CM ∆↘ S2

Σ;M, x ≤ y; Γ, x : α→ β ⇒CM ∆↘ S1 ∪ S2

→L

Σ, y;M, xSAy; Γ⇒CM y : α, x : A says α,∆↘ S

Σ;M; Γ⇒CM x : A says α,∆↘ S
saysR

Σ;M, xSAy; Γ, x : A says α, y : α⇒CM ∆↘ S

Σ;M, xSAy; Γ, x : A says α⇒CM ∆↘ S
saysL

Figure 6: SeqCCM, part 1: Countermodel producing sequent calculus for BLsf
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Frame Rules

Σ, x;M, x ≤ x; Γ⇒CM ∆↘ S

Σ, x;M; Γ⇒CM ∆↘ S
refl

Σ;M, x ≤ y, y ≤ z, x ≤ z; Γ⇒CM ∆↘ S

Σ;M, x ≤ y, y ≤ z; Γ⇒CM ∆↘ S
trans

Σ;M, x ≤ y, ySAz, xSAz; Γ⇒CM ∆↘ S

Σ;M, x ≤ y, ySAz; Γ⇒CM ∆↘ S
mon-S

Σ;M, xSBy, ySAz, xSAz; Γ⇒CM ∆↘ S

Σ;M, xSBy, ySAz; Γ⇒CM ∆↘ S
I

Σ;M, xSBy, xSAy; Γ, x : A sf B ⇒CM ∆↘ S

Σ;M, xSBy; Γ, x : A sf B ⇒CM ∆↘ S
basic-sf

Σ, x;M; Γ, x : A sf A⇒CM ∆↘ S

Σ, x;M; Γ⇒CM ∆↘ S
refl-sf

Σ;M; Γ, x : A sf B, x : B sf C, x : A sf C ⇒CM ∆↘ S

Σ;M; Γ, x : A sf B, x : B sf C ⇒CM ∆↘ S
trans-sf

Σ;M, x ≤ y; Γ, x : A sf B, y : A sf B ⇒CM ∆↘ S

Σ;M, x ≤ y; Γ, x : A sf B ⇒CM ∆↘ S
mon1-sf

Σ;M, xSCy; Γ, x : A sf B, y : A sf B ⇒CM ∆↘ S

Σ;M, xSCy; Γ, x : A sf B ⇒CM ∆↘ S
mon2-sf

Figure 7: SeqCCM, part 2: Countermodel producing sequent calculus for BLsf

Case.
Σ;M; Γ; ∆ is a saturated history

Σ;M; Γ⇒CM ∆↘ {CM(Σ;M; Γ; ∆)}
CM

Here M = CM(Σ;M; Γ; ∆). So, the result follows by Corollary 3.5.

C Proofs from Section 3.2

Lemma C.1 (Correctness of CM). Let Σ, M, Γ and ∆ be such that M is tree-like and no rule
except (CM) applies backwards to Σ;M; Γ⇒T ∆↘ . . .. Then, Σ;M; Γ; ∆ is a saturated history.

Proof. We verify all conditions in the definition of a saturated history. Each condition corre-
sponds to the negation of premises of one of the rules of Figures 2 and 3.

Lemma C.2 (Tree-like M). Let M be tree-like. Then, the M′ in any sequent Σ′;M′; Γ′ ⇒T

∆′ ↘ . . . appearing in a backwards search starting from Σ;M; Γ⇒T ∆↘ . . . is tree-like.

Proof. By backwards analysis of each rule observing that the M in the premises of each rule is
tree-like if that in the conclusion is.

Note that the underlying tree of M in any sequent of a backward proof search starting from
a single formula consists of exactly those edges that are introduced in one of the rules (→R)
and (saysR).

Theorem C.3 (Termination, Theorem 3.6). The following hold:

1. Any backwards derivation in SeqCT starting from a sequent Σ;M; Γ⇒T ∆ with M tree-like
terminates.

2. For any Σ;M; Γ; ∆ with M tree-like, there is an S such that ` (Σ;M; Γ ⇒T ∆ ↘ S) and
such an S can be finitely computed.
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Proof. Proof of (1): Suppose, for the sake of contradiction, that there is an infinite backward
proof starting from Σ;M; Γ ⇒T ∆ ↘ . . .. Since the proof is finitely branching (every rule
has a bounded number of premises), it must have an infinite path. Observe that M,Γ,∆ are
monotonic backwards, so the applicability conditions in the rules prevent application of the
same rule on the same principal labeled formula more than once in any branch. Since there
are only a finite number of formulas that can appear in any search (weak subformula property,
Theorem 2.8), it follows that in the infinite path there must be an infinite number of labels. Let
T be the underlying tree of this entire path (i.e., the underlying tree of the union of M for each
sequent on this path). Since the tree is finitely branching (because we cannot apply rules (→R)
and (saysR) to the same label infinitely often), it must have an infinite path. Let this path be
x0 � x1 � . . .. Let Si be the value of Sfor(xi) when either of the rules (→R) and (saysR) is
applied to create xi+1. Note that for i < j, Si 6⊇ Sj , because if Si ⊇ Sj , then at the time that
xj+1 is created, Sfor(xi) ⊇ Si ⊇ Sj = Sfor(xj), so the application of the rules (→R) and (saysR)
on xj would be blocked, so xj+1 could not have been created. Hence, for i < j, Si 6⊇ Sj . Call
this fact (A). (The reader may note that the deduction Sfor(xi) ⊇ Si two sentences ago relies
on the fact that Sfor(x) increases monotonically as we move backwards in a derivation.)

If Φ is the set of all subformulas of the original sequent we start from, together with
formulas of the form A sf B where A,B are in the sequent, then by Theorem 2.8, each
Si ⊆ {T (α) | α ∈ Φ} ∪ {F (α) | α ∈ Φ}. Note that the right hand side is a finite set, so
its subsets form a finite partial order under set inclusion. Call this partial order P . Since P is
finite, it has a finite number of chains and since the sequence S1, S2, . . . is infinite, at least one
infinite subsequence R of S1, S2, . . . must contain elements from only a single chain in P . Con-
sider any two elements Si, Sj ∈ P with i < j. Since P is a chain, we must have either Si ⊇ Sj
or Si ( Sj . The former is ruled out fact (A). So Si ( Sj . Hence, we have S1 ( S2 ( S3 . . ., so
the chain P contains an infinite ascending sequence, which is a contradiction because P is finite.

Proof of (2): Follows immediately from (1), Lemma C.2, and the observation that all applica-
bility conditions are finitely computable.

Lemma C.4 (Simulation). If M is tree-like and ` (Σ;M; Γ⇒T ∆↘ S), then ` (Σ;M; Γ⇒CM

∆↘ S).

Proof. By induction on the given derivation of Σ;M; Γ ⇒T ∆ ↘ S. The case of rule (CM)
follows from Lemma C.1. The rest of the cases are immediate from the i.h. The only fact
to take care of is that the tree-like property holds for each i.h. application. This follows from
Lemma C.2.

Theorem C.5 (Correctness, Theorem 3.7). For a tree-like M, suppose that S is such that
` (Σ;M; Γ⇒T ∆↘ S) (such an S must exist and can be computed using Theorem C.3). Then:

1. If S = {}, then |= (Σ;M; Γ⇒ ∆).

2. If S 6= {}, then every model M in S is a countermodel to the sequent, i.e., M 6|=
(Σ;M; Γ⇒ ∆).

Proof. By Lemma C.4, we have that ` (Σ;M; Γ ⇒CM ∆ ↘ S). Now, (1) follows from Theo-
rems B.1 and 2.7 and (2) follows from Theorem B.2.

D Proofs from Section 4

Lemma D.1 (Comprehensiveness 1). Suppose ` (Σ;M; Γ⇒CM ∆↘ S). Suppose x and p are
such that ∀M ∈ S.M |= x : p. Then, ` (Σ;M; Γ⇒CM x : p,∆↘ {}).
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Proof. By induction on the given derivation of Σ;M; Γ ⇒CM ∆ ↘ S and case analysis of its
last rule (the rules are listed in Figures 6 and 7).

Case.
Σ;M; Γ; ∆ is a saturated history

Σ;M; Γ⇒CM ∆↘ {CM(Σ;M; Γ; ∆)}
CM

Here S = {CM(Σ;M; Γ; ∆)}. The given condition ∀M ∈ S. M |= x : p implies (by def-
inition of CM) that there is a z such that z ≤ x and z : p ∈ Γ. Therefore, by rule (init),
` (Σ;M; Γ⇒CM x : p,∆↘ {}), as required.

Case.
Σ;M, y′ ≤ y; Γ, y′ : q ⇒CM y : q,∆↘ {}

init

By rule (init), we have ` (Σ;M, y′ ≤ y; Γ, y′ : q ⇒CM x : p, y : q,∆↘ {}), which is what we
need to prove.

Case. (⊥L), (>R) and (sf) are similar to (init).

Case.
Σ;M; Γ⇒CM y : α, y : α ∧ β,∆↘ S1 Σ;M; Γ⇒CM y : β, y : α ∧ β,∆↘ S2

Σ;M; Γ⇒CM y : α ∧ β,∆↘ S1 ∪ S2
∧R

Here, S = S1 ∪ S2. We are given that ∀M ∈ (S1 ∪ S2).M |= x : p.

1. ∀M ∈ S1.M |= x : p (From assumption ∀M ∈ (S1 ∪ S2).M |= x : p)

2. ` (Σ;M; Γ⇒CM x : p, y : α, y : α ∧ β,∆↘ {}) (i.h. on 1st premise and (1))

3. ∀M ∈ S2.M |= x : p (From assumption ∀M ∈ (S1 ∪ S2).M |= x : p)

4. ` (Σ;M; Γ⇒CM x : p, y : β, y : α ∧ β,∆↘ {}) (i.h. on 2nd premise and (2))

5. ` (Σ;M; Γ⇒CM x : p, y : α ∧ β,∆↘ {}) (Rule (∧R) on 2,4)

Case. All other cases are similar to the case of (∧R) above: We apply the i.h. to the premises
and reapply the rule.

Lemma D.2 (Comprehensiveness 2). Suppose ` (Σ;M; Γ⇒CM ∆↘ S). Suppose x and p are
such that ` (Σ;M; Γ⇒CM x : p,∆↘ {}). Then, ∀M ∈ S.M |= x : p.

Proof. Suppose M ∈ S. From Theorem B.2, we know that (1) ∀w,w′ ∈ Σ. (wRw′ ∈ M) ⇒
(wRw′ ∈M), (2) ∀(w : ϕ) ∈ Γ.M |= w : ϕ and (3) ∀(w : ϕ) ∈ ∆.M 6|= w : ϕ. By Theorem B.1
applied to the assumption ` (Σ;M; Γ⇒CM x : p,∆↘ {}), we know that ` (Σ;M; Γ⇒ x : p,∆).
Applying Theorem 2.7, we get that M, ρ |= (Σ;M; Γ⇒ x : p,∆) for every ρ and, in particular,
for ρ(x) = x. Using (1)–(3) and the definition of |= on sequents, we immediately getM |= x : p,
as required.

Theorem D.3 (Comprehensiveness, Theorem 4.1). Suppose M is tree-like and ` (Σ;M; Γ⇒T

∆↘ S). Then ` (Σ;M; Γ⇒ x : p,∆) iff ∀M ∈ S.M |= x : p.

Proof. If ` (Σ;M; Γ⇒T ∆↘ S), then by Lemma C.4, ` (Σ;M; Γ⇒CM ∆↘ S).
Suppose ` (Σ;M; Γ⇒ x : p,∆). Then, by Theorems C.3 and C.5, ` (Σ;M; Γ⇒T x : p,∆↘

{}). By Lemma C.4, ` (Σ;M; Γ⇒CM x : p,∆↘ {}). By Lemma D.2, ∀M ∈ S.M |= x : p.
Conversely, suppose that ∀M ∈ S.M |= x : p. By Lemma D.1, ` (Σ;M; Γ⇒CM x : p,∆↘

{}). By Theorem B.1, ` (Σ;M; Γ⇒ x : p,∆).
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E Proofs from Section 5

Theorem E.1 (Soundness, Theorem 5.1). If ` (Σ;M; Γ ⇒A ∆ ↘ Θ) and F |= Θ, then
` (Σ;M; Γ, root(M) : F ⇒ ∆).

Proof. By induction on the given derivation of Σ;M; Γ⇒A ∆↘ Θ and case analysis of its last
rule. There is only one interesting case, that of the rule (AB).

Case.
No other rule applies

Σ;M; Γ⇒A ∆↘ AB(Σ;M; Γ; ∆)
AB

By definition, we know that

AB(Σ;M; Γ; ∆) =
(
∨
{p | y : p ∈ ∆ and (root(M)) ≤ y ∈M})∨

(
∨
{A says p | y : p ∈ ∆ and (root(M))SAy ∈M})

We are given that F |= AB(Σ;M; Γ; ∆), so one of the following must be true:

1. There is a y : p ∈ ∆, (root(M)) ≤ y ∈ M and p ∈ F : Then, Σ;M; Γ, root(M) : F ⇒ ∆ by
rule (init).

2. There is a y : p ∈ ∆, (root(M))SAy ∈M and (A says p) ∈ F : Then, we have can complete
a proof of Σ;M; Γ, root(M) : F ⇒ ∆ as follows:

(a) Σ;M; Γ, root(M) : F, y : p⇒ ∆ (Rule (init))

(b) Σ;M; Γ, root(M) : F ⇒ ∆ (Rule (saysL))

The rule (saysL) in step (b) is correct because (A says p) ∈ F and (root(M))SAy ∈M.

Lemma E.2. Suppose Σ;M; Γ; ∆ is a saturated history, ∆ is non-empty and has no positive
occurrence of ⊥ and A sf B. Then, there is an atom p and a world x ∈ Σ such that x : p ∈ ∆.

Proof. We prove by a lexicographic induction, first on ϕ and then on the order �, that if
w : ϕ ∈ ∆, then some x : p ∈ ∆. Since we know that ∆ is non-empty, the result follows
immediately. We proceed by case analysis of ϕ.

Case. ϕ = p. Then, w : p ∈ ∆, so we are done.

Case. ϕ = >. This is impossible by clause (3) of the definition of saturated history.

Case. ϕ = ⊥. This is impossible because ∆ has no positive occurrence of ⊥.

Case. ϕ = α ∧ β. By clause (6) of the definition of saturated history, either w : α ∈ ∆ or
w : β ∈ ∆. In each case, the result follows by the i.h. on the smaller formula α or β.

Case. ϕ = α ∨ β. By clause (8) of the definition of saturated history, w : α ∈ ∆ and w : β ∈ ∆.
The result follows by the i.h. on the smaller formula α (or β).

Case. ϕ = α → β. By clause (10) of the definition of saturated history, at least one of the
following must hold.

(a) There is a y such that w ≤ y ∈M, y : α ∈ Γ and y : β ∈ ∆ or
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(b) There is a y such that y 6= w, y � w and w 4 y.

If (a) holds, then the result follows by i.h. on the smaller formula β. If (b) holds, then because
w 4 y, we must have y : ϕ ∈ ∆. The result now follows from i.h. on the world y, which is
strictly before w in the order �.

Case. ϕ = A says α. By clause (12) of the definition of saturated history, at least one of the
following must hold.

(a) There is a y such that wSAy ∈M and y : α ∈ ∆ or

(b) There is a y such that y 6= w, y � w and w 4 y.

If (a) holds, then the result follows by i.h. on the smaller formula α. If (b) holds, then because
w 4 y, we must have y : ϕ ∈ ∆. The result now follows from i.h. on the world y, which is
strictly before w in the order �.

Case. ϕ = A sf B. This is impossible because ∆ does not have any positive occurrence of
A sf B.

Theorem E.3 (Theorem 5.2). If Σ;M; Γ⇒ ∆ has no positive occurrence of ⊥ and A sf B, ∆
is non-empty and ` (Σ;M; Γ⇒A ∆↘ Θ), then Θ does not contain any occurrence of ⊥.

Proof. By induction on the given derivation of Σ;M; Γ ⇒A ∆ ↘ Θ. The inductive cases are
easy because the condition “Σ;M; Γ⇒ ∆ has no positive occurrence of ⊥ and A sf B, and ∆ is
non-empty” is invariant from conclusion to all premises of all rules in the calculus ⇒A, so the
i.h. applies to the premises. The only remaining interesting case is the base case of rule (AB). In
that case we must show that the abducible AB(Σ;M; Γ; ∆) is not ⊥. This follows immediately
from Lemma E.2.
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