CLL: A Concurrent Language
Built from Logical Principles

Deepak Garg

January, 2005
CMU-CS-05-104

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

e-mail: dg+@cs.cmu.edu

This work has been partially supported by NSF Grant CCR-838€&fficient Logical Frameworks.

Keywords: Concurrent language, propositions as types, linear léggge programming, monad

Abstract

We present CLL, a concurrent programming language that stnieally integrates functional and concur-
rent logic programming. First, a core functional languageltained from a proof-term assignment to a
variant of intuitionistic linear logic, called FOMLL, vighe Curry-Howard isomorphism. Next, we intro-
duce a Chemical Abstract Machine (CHAM) whose moleculegygred terms of this functional language.
Rewrite rules for this CHAM are derived by augmenting pree&rch rules for FOMLL with proof-terms.
We show that this CHAM is a powerful concurrent language dnad the linear connectives, 4, &, —o
and& correspond to process-calculi connectives for paralleimmsition, name restriction, internal choice,
input prefixing and external choice respectively. We alsmaigstrate that communication and synchro-
nization between CHAM terms can be performed through pseaf-ch on the types of terms. Finally, we
embed this CHAM as a construct in our functional languagédltevanterleaving functional and concurrent
computation in CLL.

Contents
1 Introduction

2 fCLL: Functional Programming in CLL
2.1 Parallel Evaluation in Expressions .
2.2 Type-Safety
23 Examples

3 ICLL: Concurrent Logic Programming in CLL
3.1 IntroducindCLL e e 22

3.1.1 Structural Rules for Monadic Values and Synchronomsn€ctives 23
3.1.2 Functional Rules for In-place Computation 25
3.1.3 Summary of Structural and Functional Rules ciee i e i ... 25
3.1.4 Reaction Rules for Term Values and Asynchronous Gnmee 25
3.2 Programming Technique: Creating Private Names 34
3.3 Example: Encoding the-calculus 37
3.4 TypesfolCLL CHAM Configurations 40
3.5 Comparing process-calculial@LL 43
4 Full-CLL: Integrating fCLL and ICLL 44
4.1 Type-Safety e e e e 46
5 Programming Techniques and Examples 47
5.1 Example: A Concurrent Fibonacci Program 47
5.2 Programming Technique: Buffered Asynchronous MesBagsing 50
5.3 Example: Sieve of Eratosthenes e 52
5.4 Implementing Buffered Asynchronous Message Passing &sinctions 55
5.5 Programming Technique: Synchronous Message Passing..... 58
5.6 Example: OneCellBuffer 60
5.7 Programming Technique: Synchronous Choices 60
5.7.1 Input-input Choice e e 62
5.7.2 Output-output Choice e 63
5.7.3 Input-output Choice e e 64
5.8 Example: Read-Write Memory Cell 66
6 Discussion 67
Acknowledgment 68
References 68

1 Introduction

There are several ways to design a typed concurrent progragiamguage. We may start from a syntax and
operational semantics for the terms of the language andyaéd tn order to guarantee certain properties of
typed terms. Such properties include but are not limitegpe-{safety, deadlock freedom and several secu-
rity properties. Examples of such languages are typedmntariaf ther-calculus [20, 21, 22], join-calculus
[16], CML [31] and Concurrent Haskell [28]. A completely fdifent approach is to begin from a logic and
lift it to a type system for a programming language using therfzHoward isomorphism. Proof-terms that
are witnesses for proofs in the logic become the terms of thgramming language and proof normaliza-
tion corresponds to the operational semantics. This apprbas been successfully applied to the design of
functional programming languages. When we come to the cogrmuparadigm where we allow creation of
processes executing in parallel and communicating with e#lter through one of several mechanisms like
shared memory, message queues or synchronization cdedikecsemaphores, monitors and events, at-
tempts to design languages using the Curry-Howard isonenphave mostly been theoretical. Most work
[1, 2] in this direction is restricted to classical lineagio [18] and away from practice.

A completely different meeting point for logic and concunr@rogramming is concurrent logic program-
ming [34]. In this approach, one uses parallelism inhenemiroof-search to design a logic programming
language which simulates concurrent process behaviors Asual with all logic programming, only pred-

icates and logical propositions play a part in programming proof-terms are not used. Examples of
languages of this kind are Concurrent Prolog[33] and FCP[23

In this report, we use both the Curry-Howard isomorphism@ogf-search to design a concurrent program-
ming language from logical principles. We call this langai&j_L (Concurrent Linear Language). Our un-
derlying logic is a first-order intuitionistic linear logighere all right synchronous connectives, @, 1, 3)

are restricted to a monad. We refer to this logic as FOMLLS{F®rder Monadic Linear Logic). Using
linear logic to build the type system for a concurrent language seematural choice since processes are
linear entities. Ever since Girard’s first work on linearito§l8], deep connections between linear logic
and concurrency have been suggested. For example, Abrateskiops a concurrent computational inter-
pretation of classical linear logic in [1]. FOMLL differsdm the logic used by Abramsky in two essential
ways. First, it is intuitionistic. Second, it is equippedtwva monad. We use a monad in FOMLL because
concurrent computations haeéfectdike deadlocks and the monad separates pure functionas team ef-
fectful concurrent computations, enabling us to prove a-yafety theorem. This use of monads goes back
to Moggi’s work [26] and similar uses of monads in concurrlamguages like CML, Concurrent Haskell
and Facile [31, 28, 17]. FOMLL has also been used in the Coastit.ogical Framework [35] which has
been used to represent several concurrent languages [12].

We design CLL in three steps. First, we construct a purelgtional language (calleffCLL for functional
CLL) by adding proof-terms to FOMLLECLL admits basic linear functional constructs like abgimag
linear pairing, disjunctions, replication and recursiypds, recursion and first-order dependent types. It
also allows parallelism - parts of programs may be evaluatguhrallel. However, there is no primitive
for communication between parallel processes. In the skstap, we embefiCLL in a concurrent logic
programming language calld@LL (logic programmingCLL). The semantics of this logic programming

1Abramsky’s work [1] mentions some computational interatiens ofintuitionistic linear logic also. However, these are
sequential, not concurrent, interpretations and are notumh interest in the context of this report.

language are presented as a Chemical Abstract Machine (QH#AM, 7]. Molecules inCLL CHAM con-
figurations are terms diCLL annotated with their types. Rewrite rules for these CHA&dMfigurations are
derived from proof-search rules for FOMLICLL differs from other logic programming languages in two
respects. First, we use the forward style of proof-searahthe traditional backward style. Second, proof-
terms obtained during proof-search play a computatioralindCLL, which is not the case with other logic
programming languagedCLL is a powerful concurrent language that can encode aickbascurrency
constructs like input and output processes, parallel caitipn for processes, choices, communication and
even n-way synchronization. In the third step, we emli@dd_ back inf CLL as a language construct. This
makes functional and concurrent logic programming symimgtrthe language. Sind€LL configurations
produce side effects like deadlocks, we restrict all CHAMfigurations to the monad #fCLL. The resul-
tant language is callelll-CLL. We sometimes drop the prefix ‘full’ if it is clear from otext.

An implementation of full-CLL in the Concurrent Logical Fnework is available from the author’'s home-
page ahttp://www.cs.cmu.edu/"dg

The contributions of this work are as follows. First, we shibat proof-search in logic has an interest-
ing computational interpretation - it can be viewed as a @doce to link together programs to form larger
programs, which can then be executed. Working with FOMLL ale® show how proof-search can be ex-
ploited to add concurrency constructs to a programmingudagg. Second, we demonstrate how functional
and logic programming can be symmetrically integrated imgls framework that allows interleaving func-
tional computation and proof-search. Third, we establigtt functional and concurrent programming can
be integrated symmetrically in a typed setting. In particuive describe a method that allows concurrent
computations inside functional programs to return novigatiresults, which can be used for further func-
tional evaluation. Finally, we show that there is a corresiemce between various concurrent constructs
like parallel composition, name restriction, choices atw connectives of linear logic like, 3 and&:.

Organization of the report. In section 2 we present the syntax, types and semantitSIdf. We prove

a type-safety result for this language and illustrate theressiveness of our parallel construct with some
examples. In section 3 we build the concurrent logic prognamg ICLL and prove a type-preservation
result for it. ICLL is integrated witif CLL as a monadic construct to obtain full-CLL in section 4. @Yeve

a type-safety theorem for the whole language. A number ahgkes to illustrate the constructs in full-CLL
are presented in section 5. Section 6 discusses relatedandrkoncludes the report.

2 fCLL: Functional Programming in CLL

Syntax. As mentioned in the introductiof,CLL is the functional core of CLL. It is designed from an
underlying logic (FOMLL), which under the Curry-Howard rmorphism corresponds to the type system.
Hence the syntax of types is presented first. We assume a nafrdmrts which are finite or infinite sets of
index refinements (index terms are denoted)oyndex variables are denoted hySee [36] for a detailed
description of index refinements. Sort names are denoteddnd its variants. Atomic type constructors
denoted byP and its decorated variants hakiadswhich are given by the grammar:

K == Type
| =K

We assume the existence of at least one infinite sort, namelgdrt of channel names. This sort is called

4

chan. Channels are denoted by the letter k and its decoratedntgri&Ve assume the existence of some
implicit signature that gives the kinds of all atomic typenstsuctors.

Types in CLL are derived from a variant of first-order intaitistic linear logic [35, 13, 19] called FOMLL.
We classify types into two categories based on the top lgpel tonstructor. If the top level constructor is
atomic,&, —, — or V, we call the typeasynchronousollowing Andreoli[3]. In a sequent style presentation
of linear logic, the right rules for asynchronous conswustare invertible, whereas their left rules are not.
If the top constructor i$, ®, 1, @, 3 or u, we call the typesynchronousin sharp contrast to asynchronous
connectives, right rules for synchronous connectives atenvertible, whereas their left rules are. All
synchronous types are restricted to a monad, whose cotwstisiclenoted by. . .}. Types are generated by
the following grammar:

A B = (Asynchronous types)
Pty...t, (Atomic types)
| A&B (With or additive conjunction)
| A— B (Unrestricted implication)
| A-—oB (Linear implication)
| {S} (Monadic type)
| Vi:v.A (Universal quantification)
S n= (Synchronous or monadic types)
A (Base synchronous types)
| S1 ® S (Tensor or multiplicative conjunction)
| 1 (Unit of tensor)
| S1 P S, (Additive disjunction)
| 1A (Replication or exponential)
| pe.S (Iso-recursive type)
| di: .8 (Existential quantification)
| @ (Recursive type variable)

For proof-terms, we distinguish three classes of terms.réPierms, sometimes simply called terms, de-
noted byN, represent proofs of asynchronous types. Proofs of synolsotypes are represented by two
classes of syntax: monadic terms, denoted/byand expressions denoted By In general, monadic terms
are constructive; they correspond to introduction rulesyoichronous connectives. Expressions correspond
to elimination terms and are the site of all parallelismf@LL, as discussed later. The whole monad is
presented in a judgmental style [29]. The syntax of termsexpuessions in the language is given below.
We assume the existence of three disjoint and infinite setar@dbles - term variables denoted byy, . . .,
recursion variables denoted hyw, ... and “choice” variables denoted [yzs, . ..

Terms N = | <N1,N2> |7T1N | molN | Ax.N | S\.I'N | N1 Ny | N1~ Ny | {E}
| Ai:v.N | N [t]

Monadicterms M == N |M;® Ms|1]|inl M | inr M | !N
| £01d(M) | w | .M | [t, M] | M| My

Expressions £ n= M |let {p} =N in F | Ey|cF>

patterns p = x| 1|p1i®pa|pilep2 | o] [i,p] | £old(p)

For elimination of the synchronous connectives®, 1, 3 andu, we use let constructions similar to [10]. As
opposed to usual elimination rules, which correspond torahtleduction style eliminations, the use of lets

5

gives rise to rules corresponding to left sequent rules efséquent calculus. Choice variablgsc, ...}
are used to distinguish case branches for eliminating theexiive®. For a detailed description of this
treatment see [10]. For clarity, we sometimes annotatedwoarnables andold constructs with their types.

Type System We use four contexts in our typing judgmenis:(index variable context)l” (unrestricted
context),A (linear context) andl (recursion context). The grammars generating these csraes:

X ou= X iy
r == -|I'z:A
A = |Ap:S ifp=S
U o= |V u:S

The judgmenip = S, read as p matchesS” is described in figure 1. Subsequently, it is assumed that
whenever : S occurs in a contexly = S. Given a context, the variables it defines are called its ddfin
variablesdv. Related concepts are defintkar variablesdlv and definedndexvariablesdiv . These
are precisely described in figure 2. Given a confexi’; A; ¥, we assume that the sets(I"), dv(A),
dv(V), div(X) anddiv(A) are all pairwise disjoint. We use four typing judgments im type system:

S A; 0 N: A

Sy AU - M#S

A0 - E - S
X FE ity

The last judgment is external to the language and we do noifggew we check the well-sortedness of
refinement terms. We simply assume the following propedfdhis judgment:

1. Substitution: I F t:~vyandX,i:v - t': 4/, thenX + ¢ [t/i] : +.
2. Weakening: I - ¢ :~,thenX,i: v F ¢: .
3. Strengthening: IE,i: v F t:~vandi € ¢, thenX F ¢: 7.

The other three typing judgments assume that all typds ih and ¥ are well-formed with respect to the
refinement term context. The typeP t; ...t, is well formed inX if Kind(P) = 71 ...7, — Type and

> F t; -y fori =1...n. The well formedness of other types is obtained by liftinig tielation in the
standard way. The typing rules f6€CLL are given in figures 3, 4, 5 and 6. It may be observed here tha
there is nod — L rule for terms similar to the rules — L;; and® — Lg (see figure 6) because we do not
allow choice branches in pure terms. This is done becauseumgl fthat in practice choice branches in pure
terms are never needed.

Operational Semantics We use call-by-value semantics faZLL. However, certain constructs have to be

evaluated lazily due to linearity constraints and the preseof a monad. For example, pairs at the level
of terms have to be lazy because the two components of a e $sfe same linear resources and only
the component that will be used in the remaining computasioould be evaluated. Thus evaluation of

the components of a pair is postponed till one of the comptsnisrprojected. The monad is also a lazy

construct because it encloses expressions, whose euvalwatn have side effects. We do not evaluate the
body of a functional abstractiomg¢.N, Az.N and Ai.N), since evaluation is restricted thosedterms,

6

z= A lx =1A

: : p= 95
= [il,p] = E]ig : ’y.S
p1 = 51 p2 = S p = S(pa.S(a))
p1 ®p2 = 51 ® 5 fold(p) = pa.S(a)

p1 = 51 p2 = S
P1lep2 = S1 @ So

Figurel: p= S

dv(z) = {z} dv(lz) = {z}
dv(p1 @ p2) = dv(p1) U dv(p2) dv(l) = ¢
dv(pifcp2) = {¢}Udv(pr) Udv(pz) dv([i,p]) = dv(p)
dv(fold(p)) = dv(p)
dv(:) = dv(l',z : A) = av(l') U {z}
dv(A,p: S) dv(A) Udv(p) dv(¥,u: S) = dv(¥) U {u}
dv(X) = ¢
dlv(z) = {z} div(lz) = ¢
dlv(p: ® p2) = dlv(pr) Udlv(pz) dlv(l)=¢
le(pl‘Cpg) = dlv(p;) Udlv(ps) dlv([i,p]) = dlv(p)
dlv(fold(p)) = dlv(p)
dlv(:) = ¢ dlv(A,p: S) =dlv(A)Udlv(p)
div(l) = ¢ dlv(¥) = ¢
dlv(X) = ¢
div(:p) =9 div(lxz) = ¢
div(p; ® pg) = div(py) Udiv(pe) div(l) =¢
div(pi|¢p2) = div(py) Udiv(ps) div([i,p]) = {i}
div(fold(p)) = div(p)
div(:) = ¢ div(A,p: S) =div(A)Udiv(p)
div(l) = ¢ div(¥) = ¢
div(¥) = ¢ div(X) = dom(%)

Figure 2: Defined variables of patterns and contexts

Hyp2

Hypl
Yilhx: A0 F o A " S A0 Fx: A

S0 A0 F Ny Ay S0 A0 F Nyt As .
23; I‘; ZS; U <]\71,]\ﬁ2> : 144»85142

STy A0 F N A& Ay . STy AU F N A& Ay .
X000 F mN A ' S AW F omoN Ay

ST A;A; 0 F N B Iy Ajx: A, H N B

5 A0 - M. N:A— B - ;A0 F Az N:A—B

>»IAvE N:A— B >0 F Ny A .
S:T;A; 0 - Ny No: B -

. I5A;8 - Ni:A—oB XA W Nyt A .
$:T:A1, AU - Ny "Ny : B -

S IvA 0 - E o+ S o
;A0 = {E}: {S}

Yicy; A0 E N A .
DA F Ai:y.N:Vi:v.A

S0 A W N Vi A Sk ity
50400 - Nt A(t)

V-E

Figure 3: Type system for Terms

o-

S IA; 0 NG A »
Y:T;A; 0 - N#A

yp3 1-R

H
XiyWu:S Eu#S I v 1T#1

ST AU B My # 5 iAW E My # 5o .
XD A1, AW - My @ My # 51 ® 59

S A0 - M # S . XA M #S,

-R;
STy A; U inl M # S1 8 S ST A;0 F inr M # 51D So

I N A
500 F IN#1A

I-R

S = pa.S'(a) A0 - M #S5(S)
STy A; 0 = fold(M) # S

fold-R

Xy wu: S EM#S
W opuM # S

rec

ST AW = M #S(t) Sk tiy
5000 [t M # T y.5(4)

3-R

Figure 4: Type system for Monadic Terms

S TyA; U = M#S
500 M+ S

T A0 B N {S} A0, p:S;90 F E = 9
YA, AW F let {p} =NinE =+ &

{}-E

Figure 5: Type system for Expressions

D-Ra

THZ:=N:A|M#S|E + S

“ho: ANY FT%Z . YA pr i S1,p2: S ¥ = T % Z o
S:TiA Nz A F T %2 YDA P Q@pe:S10853V FT%Z

A0 T%Z } YA p: S(pa.S(a); ¥ =T % Z
1-
SAL: L0 - T%Z YA £0ld(p) : pa.S(a); ¥ = T % Z

fold-L

Yi:y DA p: SV T%Z
S 5A [iyp) i Fi:y. S50 - T% Z

FLGEE S, T,A,p, ¥, 2)

S Ap Sy B My #S 0 XA py Sos W = My # S
LA pi|ep2 0 S1® 523V = M| My # S

DS-L g

XA pr S, E B+ S XA pe: So; W F Ey + S .
ST A pi|ep2 1 S1 @ SV = Ey|cEy + S

_LE

Figure 6: Type system : Left rules for patterns

monadic terms and expressions only. We call a term, monadic or expression closed if it has no free
variables. Apart from these restrictions, all other cardty infCLL (®, inl, inr, !, fold and existentials)
are evaluated eagerly. Values f@LL are described below:

Term values V c= Ae.N | A&.N | {E} | (N1, Ny) | Ai.N
Monadic values M, == V |M,, ® M,, |1|inl M, | inr M, |V | £old M, | [t, M,]

There are no values at the expression level, because exmesyaluate to monadic values. We define two
operations on terms, monadic terms and expressiof€of: left, andrightc, which are the left and
right case branches for the choice variabjeespectively. Figure 7 defines some of the interestingscase
of these operations. The definitions for the remaining syfittaconstructors are obtained by lifting these
definitions homomorphically. Thuseft (z) = z, left (Ax.N) = Az.left:(N), left (N No) =
leftc(Nl) leftc(Ng), leftc(Ml &® Mg) = leftC(Ml) ® leftc(MQ), leftc({E}) = {leftc(E)}, etc.
The result of substituting a monadic valli&, for a patterrp of the corresponding “shape” in a program
(subst(M/p,T)) is given in figure 8. This substitution is defined by induntin the structure of the pat-
ternp. The base substitutiorj¥’/z] and[t/i] are the usual capture avoiding substitutions for free e
and free index variables respectively.

The call-by-value evaluation rules f6CLL are given in figures 9, 10 and 11. We use three reduction
judgments -N — N’, M +— M’ andE — E'. The rules are standard. We allow reductions\ff

and M- to interleave when we redudd; ® Ms. Thus the two components of a tensor may be evaluated
in parallel. For reasons mentioned earlier, pairs and theadcat the term level are evaluated lazily. The
reduction rules for abstractions and applications aredstahcall-by-value.

10

leftc(MlkMg) = M 1eftC(M1’EM2) = leftC(Ml)‘eleftc(Mg) e#(
leftc(El‘CEg) =F leftC(El‘eEg) = leftC(El)‘eleftc(Eg) €e#£(

Leftc(Let {p} = N in) = (Let {p} = left (N) inleft(E)) (¢ ¢ av(p))

rightC(Ml‘CMg) = M, rightC(MllgMg) = rightC(Ml)’ErightC(Mg) €e#£(
rightC(ElkEg) = Fy rightC(El‘eEg) = rightC(El)‘erightC(Eg) €e#£(

right(let {p} = N in E) = (let {p} = right (N) inright (E)) (¢ ¢ dv(p))

Figure 7: Choice projections fofCLL

T:=N|M|E
subst(1/1,7) =T subst(V/x,T) = T[V/x]
subst(!V/lz,T) = subst(V/x,T) subst([t, M,]/[i,p],T) = subst(M,/p,T[t/i])
subst(inl M,/(p1|cpz2), T) = subst(M,/p1,leftc(T))
subst(inr M,/(p1|cp2),T) = subst(M,/ps, right (T))
subst(M,, ® M,,/p1 ® p2,T) = subst(M,,/p2, subst(M,, /p1,T))
subst(fold(M,)/fold(p),T) = subst(M,/p,T)

Figure 8: Substitution of monadic values for patterns

11

N — N’ .

N — N’

7T1N — 7T1N/

— ()m

m (N1, Na) — Ny

— o

7T2N — 7T2N/

Ng—)Né

— ()2

mp (N1, N2) — Na

— APP; . APP, — XAPP
Ny Ny — Ni N, VN, — VN AzN)V — N[V/a]
M = N{ — LAPP No — Né . LAPP < R — ALAPP
Ny "Ny — Ni° N, V°Ny — V"N, (Az.N)"V — N[V/a]
N — N’ Y . . AAPP
N[f] — N'[{ (Ai:y.N)[t] — N[t/i]
Figure 9: Reduction for termsN — N’
N — N’ s N — N’ L
N — N’ IN — IN
Ml = M{ M2 g Mé
— ®1 — ®2

My ® My — M{@MQ

M, @ My — M; @ M}

MHM/ — @1 MHM/ — Do
inl M +— inl M’ inr M +— inr M’
/
M — M — FOLD
fold M — fold M’
M — M’ -

6, M] — [t,M]

pu. M — M pu.M/u]

Figure 10: Reduction for monadic term&/ — M’

M — M’

M — M

N

let {p} ={M,}in F — subst(M,/p, E)

— LETRED

R
let {p}=NinFk —

E —

< LET

let {p} = N'in E

let {p} = {E}in By —

— LETy

let {p} = {F'} in B

Figure 11: Reduction for expressionf;, — FE’

Contexts for expression evaluation:

Cl] ==]
|let {p} = N in([]
|let {p} ={C[|} in E

‘I—‘

Reduction rules:

M — M Mclosed

C|M] — C[M’]
(Let {p} = {M,} in E) closed
— LETRED
Cliet {p} = {M,} in E] — Clsubst(M,/p, E)]
N — N’ Nclosed LeTy

Cllet {p} = N in B] — C[let {p} = N in E]
Figure 12: Generalized evaluation rules for expressions

2.1 Parallel Evaluation in Expressions

Consider the following expression whén(p;) N fv(Ny) = ¢.

E = let{pi}=Niin
let {p2} = Np in F’

If Eis a closed expression, then according to the rules in figlyét is evaluated as follows. First; is
evaluated to a term of the forqiE;}. Then E; is evaluated to a monadic valug,, of shapep;. This
monadic value is then substituted for in the expressioniet {po} = N> in E’. Subsequently}N; is
evaluated. But by the given conditiW, is a closed term. Henceaubst(M,, /p1, N2) = N, and therefore
there is no need to postpone the evaluatiovVefuntil V; is completely evaluated. We may interleave or
parallelize the evaluation a¥; and N,, without affecting the result of the computation. This idglaws

us to generalize the evaluation rules for expressions teetsbown in figure 12. The generalized rules for
evaluating expressions are presented using evaluatidexteron expressions. We obtain parallel evalua-
tion from these rules using the following heuristic #fis a closed expression attl = C; [E] = Ca[Es]
whereE, and Es are closed and non-overlapping sub-expressions,dhenE; and E; may be evaluated
in parallel.

Even though these generalized rules allow parts of exgnesdio evaluate in parallel, they provide no
primitive for communication between simultaneously eatihg sub-terms. In section 3, we introduGe.L,
which is a concurrent logic programming language that al@synchronous message passing between
parallel processes.

2.2 Type-Safety

We establish the type-safety theoremff@LL by proving progress and preservation theorems. Therpssg
theorem states that a typed term is either a value or it canfgtther. The preservation theorem says that

13

A= NTA 11 - i AAA =141z 1A -

= —-Q®
S0 A P S1,p2: So =51 A,p1 @p2 1 51 ® S

— -3

Yoy DA p: S() <= XT3 A [i,p] 2 Fi:4.5(0)

<— —fold

YA p: S(pa.S(a) <= ;T A fold(p) : pa.S(«)

— rer LA =YTHA YT A = X" T A
2,P7A P — 2,P7A EFA — E//'F//'A// — ~TRANS

Figure 13: Context entailment; I'; A <— X/;TV; A’

reduction of a typed term under the evaluation rules preseis type. Together these two impijpe-safety
i.e. any typed term either evaluates to a value or divergasfimtely. In order to establish these theorems,
we need a few results.

Notation 1. We usel’ % Z to denote any ofV : A, M # SorE + S.

Definition 1 (Context Entailment). The relationy; I'; A < Y/;TV; A/, read as; T'; A entailsY’; TV; A,
is shown in figure 13.
Lemma 1 (< properties).
15T A <Y1 A thenX D ¥ andll D T,
2. If ;1A < YT, A, then
(@) av(l') Udv(A) = av(IV) U dv(A')
(b) d1iv(A) = d1v(A’)
(c) div(X) Udiv(A) =div(X') Udiv(A’)

B.UHD = ;A0 F T% ZandX; T A < Y;TV; A/, thenD can beextendedo a derivation
D =Y T;A W + T% Zusing theruleso — L,1 — L,3— L,! — L andfold — L only.

4. (Weakening) I&;T; A < ¥/;T7; A/, then
(@ 3,2 T7A <= X 3" T A
(b) ;T I A <= 3,1V, T AY
© IiT5A, A" = X5 T A A

Proof. In each case by induction on the given derivatioi’; A < ¥/;T7; A/,

Definition 2 (Height of a derivation). The height of a derivatio®, height(D) is defined to be the length
of longest path from the conclusion to any leaf.

14

Lemma 2 (Weakening) If X;T; A; W F ¢, then
1%,y A 0 - .
2. 5:T,2: A; AU+ b,
3.5 A U u: S F .

Proof. By induction on the given derivation.
Lemma 3 (Left inversion).
1 IS0 p: ;0 F o, thenp =1andX; T A; 0 - 4.
PN A p A o, thenp =l andd; Tx s A AU F 4.
PN A p AW o, thenp = .

2
3
4. FX;T;A,p: S1® 85,0 F 9, thenp = p1 @ po and>; T A py 2 Sy, p2: So; U+ 2.
5 XA p:Fi: .59 F o, thenp = [i,p1] andX, i : v; T A py 2 S; 0 F .

6

ST A p 51 @ So; U 4, thenp = pyepa, XT3 A, py 2 S1; ¥ F lefte(y) andS; T A, ps -
So; U b right (¢). (Left (N : A) = left¢(NV): A, etc.)

7. 85 TA p: pa.S(a); U F 1), thenp = £old(p') andX; T AL p' : S(pa.S(w)); ¥ F 4.

Proof. Each statement may be separately proved by induction ogivba typing derivation.

Lemma 4 (Strong right value inversion).

1. D = A0 - Vi A — BthenV = Az.N and there is a derivatio®’ :: ;T x :
A; A; ¥ N : Bwith height(D’) < height(D).

2.6D = O:T;A; ¥ + V : A — BthenV = Az.N and there is a derivatio® :: ©;T; A,z :
A; ¥ F N : Bwithheight(D’) < height(D).

3. fD= ST A0 F Vi A&BthenV = (N1, Ny) and there are derivation?; :: ;T A; ¥ + Ny -
AandDy :: ¥;T;A; U F Ny : Bwithheight(D;) < height(D) andheight(D;) < height(D).

4. fD = 3T A; ¢ + Vo {S}thenV = {F} and there is a derivatioP’ :: ;T A; ¥ - F + S
with height(D’) < height(D).

5. fD = ST;A0 F Vi Vi 4.A®), i ¢ YthenV = Ai : 4.N(i) and there is a derivation
D Xi:y; T A0 B ON(i) - A(i) with height(D') < height(D).

Proof. Each statement can be proved separately by induction ayivke typing derivation.

Lemma 5 (Right monadic value inversion).

1. FX A0 - M, # A, thenM, =V andX; I A0 - Vi Al

15

2. If ;A0 = M, # 'A, thenM, =!V and for somex’ andI”, ¥/;TV;:¥ + V : A and
1= ;T A

3. ST A0 - M, # 51 ® Sy, thenM,, = M, ® M, and for some’, TV, A}, Al the following
three hold:

(@) ;I AL AL «— 5T A
(b) T ALY M, # S
(€) XTI AL U+ M, # 5o

4. f ;T A0 = M, # 1, thenM,, = 1 and for some&X’ andI”’, ¥/; ;- < ;T A.
5. 5, T A0 = M, # 51 @S2, then one of the following holds

(@) M, =inl M} andX;T; A; U + M, # 5,
(b) M, =inr M) and¥;T; A; @ = M) # S5

6. If ;1A 0 = M, # 3i: ~v.5(i), thenM, = [t, M]] and for some’, I and A/, the following
three hold:

(@ T A =T A
(b) X + t:vy
(©) XTI AW B M # S(t)

7. 850,00 - M, # pa.S(a), thenM, = fold(M)) andX; T A; W + M) # S(pa.S(@)).

Proof. In each case by induction on the given typing derivation.

Lemma 6 (Strong right inversion for expressions).

1L D= ST;A;0 F M + S, then there exist®’ :: ;T A; U + M # S with height(D') <
height(D).

2. f DT A; 0 + let {p} = Nin F + S, thenthere exist’, I, A, A}, S, Dy, D; such that

(@) XTI AL AL «— S T5A
(b) Dy : 3T, A; 0+ N : {S} andheight(D;) < height(D)
(€) Dy = X1 AL p: S;¥ H E + S andheight(Ds) < height(D)

Proof. By induction on the given typing derivation.

Lemma 7 (Substitution).
LUD ST A0 F ViAandD 5 A o A0 - T% Z, thenyS; T; AA O F TV /)% Z.
2. fX F t:yandD = X0 ;T A0 = T(i) % Z(4), thenX; Tt /d]; Aft/i); W[t /i) B T(t) % Z(¢t).
B.UD ST, A0 = My, # SandD’ ;T A p: S; ¥ - T % Z, then
;A A U F osubst(M,/p, T) % Z.

16

4. fD X050 F ViAandD = ST,z A ;A0 F T % Z,thenS; Ty A0 = TV/2) % Z.
5. f D05 50 - M#SandD’ = S5 T5A W, u: S = T%Z, thenS; T; A0 = TIM/ul % Z.

Proof. Statements (1), (2), (4) and (5) can be proved by inductioderivationD’. To prove (3), we use
induction on the derivatio®, lemmas 2 and 3 and statements (1) and (2).

Lemma 8 (Preservation)
1. f ;T A; 0 F N: AandN — N/, thenX; I A0 = N/ @ A
2. fX; A0 - M # SandM — M’ thenX; T A; ¥ = M # S,
3. ;A0 - F + SandE — E',thenX;T; A0 + E =+ S.

Proof. By simultaneous induction on the height of the given tygiegvation, using lemmas 7, 6 and 4. For
the case of expressions, we perform a sub-induction on tileation contex€| | and use lemma 6.

Lemma 9 (Progress)

1. If%;-;- = N: A, theneithetN = V or forsomeN’, N — N'.
2. IfX; - = M # S, then eithetM = M, or for someM’, M +— M’.
3. If%;- = E + S, then eithetE = M, or for someE’, E — FE'.

Proof. By induction on the given typing derivation.

Theorem 1 (Type-Safety)

1. fX;- F N:AandN —* N’,then eithetN' = V or there existsV” such thatN' — N”.

2. f%; - F M4 SandM —* M’ then eithetM’ = M, or there existd/” such that\V/’ — M".

3. If%;- - E + SandE —* FE/,then eithetlE’ = M, or there exist&” such thatt’ — E”.
Proof. By induction on the number of steps in the reduction. Theestiant at the base case (no reduction)
is the same as the progress lemma (lemma 9). For the indwgteépnwe use preservation (lemma 8).

2.3 Examples

In this section we explain program constructiorf @LL through a number of examples. We present these
examples in ML-like syntax. We assume that we have named eqgive functions, conditionals and
datatype constructions at the term level, which may be atlwe@LL presented above in a straightforward
manner.

Divide and Conquer. Our first example is a general divide and conquer prograrhus.euppose we have a
type P of problems and a typd of solutions. A general divide and conquer method assuneefotowing
input functions:

1. divide : P — P x P that divides a given problem into two subproblems, each atlwis strictly
smaller than the original.

17

2. istrivial : P — bool that decides if the input problem is at its base case.
3. solve : P — Athat returns the solution to a base case problem.

4. merge : A — A — A that combines solutions of two subproblems obtained uding.de into a
solution to the original problem.

In fCLL, we have no product type (which would be present in a nogar language). So we encode
the product type ast x B = {!{A ® !B}. Then we have the following divide and conquer function,
divAndConquer:

divAndConquer =
M(divide) : P — {IP®!P}. A(istrivial) : P — bool.
A(solve) : P — {1A}. N(merge) : A — A — {lA}. \p: P.
if (istrivial p) then solve p
else
{
let {!p1®!p2} = divide p in
let {!s1} = divAndConquer divide istrivial solve merge p; in
let {!sy} = divAndConquer divide istrivial solve merge ps in
let {!s} = merge s1 s2 in
Is

The return type oiivAndConquer is {!A}. Observe that in this program, the t&et eliminations corre-
sponding to the two recursive calls may occur in parallel e termsdivAndConquer divide istrivial
solve merge p; anddivAndConquer divide istrivial solve merge pa can be evaluated simultaneously.
This is because the second term does not use the vasiabléerefore the program above attains the paral-
lelism that is expected in a divide and conquer approach.

Bellman-Ford algorithm. We now present a parallel implementation of Bellman-Fdgdr@thm for single
source shortest paths in directed, non-negative edgeategiggraphs. Assume that a directed grgphas

n vertices, numbered, . .., n. For each vertex we have a list of incoming edges called tfecadcy list

of the vertex. Each element of the adjacency list is a padr fitlst member of which is an integer, which
is the source vertex of the edge and the second member is megative real number, which is the weight
of the edge. The whole graph is represented as a list of adjgdists, one adjacency list for each vertex.
During the course of the algorithm, we have approximatidnshortest distance from the source vertex to
each vertex. These are stored as a list of reals. The typésdighis calleddistlist

type distlist = {lreal} list
type adjlist = {!lint® lreal} list
type edgelist = {ladjlist} list

The following function finds the ith element of a list I.

18

val find: ‘a list — int — ’‘a
find =
M:'a list. Aziint.
if (i=1) then head(l) else find(tail(D) i—1)

The main routine of the Bellman-Ford algorithm is a relaoatprocedure that takes as input a vertex,
(which in our case is completely represented by the adjgchsic al. The exact vertex number of the
vertex is immaterial), a presently known approximationtusrsest distances to all vertices from the source
(calleddl), the present known approximation of the shortest disté&oee the source te and returns a new
approximation to the shortest distance from source to

val relax: adjlist — distlist — real — {lreal}
relax =
A al):adjlist. A(dl):distlist. Ad:real.
case (al) of
| => {ld}
| (a:al) =>
{

let {lv®lw} = a in_

let {ld'} = find di v in_

let {!d"} = relax al dl d in_
Imin(d”, d + w)

The callsfind di v andrelax al dl d can be reduced in parallel in the above function. The main
loop of the Bellman-Ford algorithm is a functigelaxall , that applies the functiorelax to all the
vertices. To make the code simpler, we assume that thisifumattually takes as argumemto copiesof

the distance list. To make the code more presentable, wetldedpcalculus notation and use standard ML’s
fun notation.

val relaxall: edgelist — distlist — distlist — {ldistlist}
fun relaxall [] [] dl = {1 }
| relaxall (al zel)(d:dl')(dl) =

{

let {lal'} = al in_

let {Id'} = d in_

let {ld1} = relax al’ dl d in

let {!I} = relaxall el dl' dl in
I({ld1} =2 1)

19

In the above function, the callelax al’ di d’ andrelaxall el dl’ dl can be reduced in parallel.
This results in simultaneous relaxation for the whole graph

Suppose now that our source vertex is the veiitexrhen we can initialize theistlist to the value
[0, 00, ..., 00]. Using this initial value of thelistlist , we iterate the functionelaxall n times. The
resultant value oflistlist is the list of minimum distances from the source (vertex 1altdhe other

vertices. The functiorBF below takes as input a graph (in the form of esigelist) and returns the
minimum distances to all vertices from the vertex 1.

fun BF (el: edgelist) =

(* makedistlist: int — {ldistlist} *)
let fun makedistlist 0 = {!}
| makedistlist k =
{
let {!I} = makelist (k—1)
in_
I({loo} 2 1)
¥
(* loop: int — distlist — {ldistlist} *)
fun loop 0 dl = {ldi}
| loop Kk di =
{
let {ldl'} = relaxall el dl di
in_
loop (k—1) dlI
¥
(* length: ’a list — {lint} *)
fun length [] = {!0}
| length (x:10) =
{
let {llen} = length (i)
in_
(1 + len)
¥
in
{
let {In} = length el in
let {l} = makedistlist (n—1) In_
let {ldl} = loop n ({l0}::1) in_
ldi
¥
end

20

3 ICLL: Concurrent Logic Programming in CLL

As mentioned in the introduction, an alternate paradignu tieeconcurrent languages is concurrent logic
programming [34]. In this paradigm, proof-search in logim@ates computation and assignment to vari-
ables as well as communication are implemented throughcatign. Concurrency is inherent in such a
setting because many parts of a proof can be computed orhseait parallel. We use similar ideas to
create a concurrent logic programming language that allmmsurrent computation of terms. We call this
languagdCLL.

ICLL differs significantly from other logic programming lamages. Traditionally, logic programming uses
only logical propositions and predicates but no proof-ternkven if proof-terms are synthesized by the
proof-search mechanism, they are merely witnesses to tied found by the search. They play no compu-
tational role. In sharp contrast, we interpret proof-teamgrograms and use the proof-search mechanism
to link programs together. This linking mechanism is dieecby the types of the terms that can be viewed
as logical propositions through the Curry-Howard isom@ph The whole idea may be viewed as an ex-
tension of the Curry-Howard isomorphism to include proefsh - in computational terms, proof-search
corresponds to linking together programs using their types example, ifV; : A — B andN; : A, then

the proof-search mechanism can link and IV, together to produce the terfi; * N, : B. ICLL extends

this idea to all the connectives in FOMLL, and is rich enouglexpress most concurrency constructs.

We presentCLL as a Chemical Abstract Machine (CHAM)[4, 5]. The molexiinlCLL CHAM configu-
rations ard CLL programs annotated by their types. The rewrite rulesfiese CHAM configurations are
derived by modifying the inference rules for a proof-searathod for FOMLL. One question that remains
at this stage isvhichproof-search method we use for FOMLL and we answer this guesext.

Proof-search in logic can be implemented in two differeritrielated styles. In thbackwardstyle, search

is started from the proposition to be proved as the goal. Bashible rule (assumption of the forh— B)
that can be used to conclude this goal is then consideredhangrémises of the rule applied become the
subgoals for the proof-search. This process of matchingabagminst the conclusion of a rule and making
the rule’s premises the subgoals for the remaining searcéillesd backchaining It is continued till the set

of goals contains only axioms or no more rules apply. In thhenéir case, the (sub) goal is provable. In
the latter case, the (sub) goal cannot be proved and the-peanth must backtrack and find other possible
rules to apply to some earlier goals in the search. Thereiisrement non-determinism in this proof-search
mechanism - at any step, one may apply any of the possible wi®se conclusion matches the goal at
hand. This kind of non-determinism is callddn’t-knownon-determinism. Since there is a possibility of
backtracking if a bad rule is applied, search strategies@rglete in the sense that proof-search will always
find a proof of a proposition that is true. Most logic programgnlanguages like Prolog use this style of
theorem-proving.

A very different approach to proof-search is to start by aseg that the only known facts are axioms and
then apply rules to known facts to obtain more facts whichiare This can be continued till the goal to be
proved is among the facts known to be true, or no new facts easobcluded. In the former case, proof-
search succeeds whereas in the latter case it fails. Theggat applying a rule to known facts to obtain
more facts in calledorward chaining In this style, search is exhaustive and does not requirkttaaiing.
This is known as thé&rward or inversestyle of theorem-proving. One important aspect of the fodislyle

21

in linear logic is that the facts obtained during this metlaod also linear. As a result, each fact may be
used to conclude exactly one more fact and subsequentiyni@vesl from the set of known facts. This re-
introduces non-determinism in the facts we choose to cdeclli also introduces the need to backtrack if we
want completeness. However, in some applications, incerapess is acceptable and the forward method is
implemented without backtracking. Such implementationskvas follows. At any stage, the proof-search
procedure non-deterministically picks up any of the falotg it can conclude and continues. Such a proof-
search procedure is non-deterministic in a sense différemt don’t-know non-determinism. The procedure
simply concludes an arbitrary selection of facts and teateis, without caring about the goal. Hence this
non-determinism is calledon’t-care non-determinism. A large number of concurrent logic pragrang
languages use this non-determinism because it closeljidse non-deterministic synchronization between
parallel processes in process calculi. We also choose tthissenethod of proof-search foé€LL. In our
case, using this method is even more advantageous becausse\weoof-search to link programs together
and execute them. Backtracking in such a setting is coumtgitive and computationally expensive.

Our computation strategy fdCLL CHAM configurations is as follows. Each CHAM configuratidgs
started with a certain number of type-annotated terms anohhtgpe. Once started, the configuration is
allowed to rewrite according to a specific set of non-deteistic rules, which are based on forward chaining
rules for proof-search in FOMLL. We do not backtradk.ever the CHAM configuration reaches a state
where it has exactly one term of the goal type, computatichelfCLL CHAM configuration succeeds, else
it fails. Thus we uselon’t-carenon-determinism and CHAM configurations can get stuck withieaching
the goal. As a result, we do not have a progress lemmiClor as a whole. However, we develop a notion
of types for CHAM configurations and prove a type-preseoratemma for CHAM rewrite moves. This
preservation lemma implies a weak type-safety theoremiGat. CHAM configurations. This theorem
states thaindividual fCLL terms inICLL CHAM configurations obtained by rewriting well-typed @iV
configurations are either values or they can reduce furth&before, we are interested in the execution of
closed terms only and we assume that termi€iol. CHAMs do not have free variables in them. In order
to demonstrate the expressivenesE3ifL, we present a translation of an asynchrongtsalculus [6] to it.
Examples of more sophisticated program#3hL are described in section 5.

3.1 Introducing ICLL

We introduce constructs and rewrite rules@iLL step by step. Informally described, our CHAM solutions
consist off CLL terms labeled by their types. We use the notatiofor such solutions.

A= - |AN:A|AM#S|AE + S

The rewrite rules on these solutions fall into three categorThe first one, calledtructural rulesallow
rewrite of monadic values. These rules, in general, areelgfrom the left rules for synchronous connec-
tives of a sequent style presentation of FOMLL. Like thegit@al counterparts, they are invertible. They
correspond to heat-cool rules in the CHAM terminology. Heerelike other well-designed CHAMSCLL
uses these rules in the forward (heating) direction onlyugéethe symbol for structural rules oriented in
the forward directiorf. The second set of rules fanctional rulesthat allow in-place computation of terms
using the evaluation rules f6CLL. These rules do not affect the types of terms as showmimia 8. They
are not invertible and correspond to administrative monegSHAMs. We denote functional rules using the

Traditionally, the symbot= is used to denote heat-cool rules in CHAMs, in order to errighabeir reversibility. We use~
instead of= to emphasize thd€CLL uses these rules in the forward direction only.

22

symbol—. The final set of rules is derived from left rules for asynciues connectives of FOMLL. These
rules are calledeaction rulesbecause of their close connection to reaction rules in CHAR&saction rules
are also non-invertible. They are denoted-by. We do not have any rules corresponding to right sequent
rules of asynchronous connectives, because from the poii¢w of a programming language they corre-
spond to synthesis of abstractions (functions) and a@d@onjunctions (choices). For example, consider
the following typing rule.

Az A; 0 F N B
A0 - Az N:A— B

—5-

If used as a rule in a proof-search, the proof—téXmN is synthesizedy the proof-search mechanism.
However, from the point of view of a programming languagés throof-term is a function whose exact
behavior is not known and hence we do not use the above ani@disies in our proof-search.

3.1.1 Structural Rules for Monadic Values and Synchronous @Gnnectives

As mentioned earlier, structural rules are derived fromrdes for synchronous connectives and like their
logical counterparts, they are invertible. For practieadsons, we use them in the forward direction only.
The principal terms on which they apply are always monadiges We systematically derive structural
rules for all synchronous connectives by looking at theesponding typing rules.

Multiplicative Conjunction, (®). Consider the left rule for tensor in FOMLL:

UL Apr:Spe i SO E Y
YA p1 @pe: 51050 - 9

This rule is invertible, as proved in lemma 3. In order to derm CHAM rewrite rule from this rule, we
substitute a monadic valu¥, for p; ® py. Since the type i$; ® Sy, M,, = M,,, ® M,,. This gives us the
following structural rule:

A> (le ® Mvz) # (Sl ® 52) - A,le # Slanz # 52
Linear Unit (1). Reasoning as above, we arrive at the following rule for thie un
A1#1 —~ A

Additive disjunction (¢). Consider the left rule for additive disjunction:

I A p SV E Ep = S XA pg: So; W F Ey = S .
DA pi|ep2 0 S1 DSV BBy + S

-Lg

From the invertibility of this rule it follows that whenevere can use5; @ S, to prove some conclusiofi,
we can also use eithéf; or S, to proveS. Operationally, this decision can be made using the actuad t
that has type5; & Ss. If it has the forminl M;, then we useS; and if it has the forminr Ms, we useSs.
This intuition gives us the following two rewrite rules:

A,EMU#(Sl@SQ) — Ava#Sl

A,EMU#(Sl@SQ) — Ava#SZ

23

Thus® acts as ainternal choiceoperator in our language.

Iso-recursive type(ua.S(«)). We use the following rule for iso-recursive types.
A, £01d(M,) # po.S(a) — A, M, # S(ua.S())
Existential quantification (3). The left rule for existentials is:

iy T Ap: S50 F o N
ST A [i,p): iS00 F

This rule suggests that in our rewrite system we add a codteftindex variables and the rule below. We
use the symbo| to separate different kinds of contexts in CHAMSs.

SIA [t M # 3i:74.8() — S,i:y| A, M, # S()

While attractive from a logical point of view, such a rule istrsound for a programming language. First,
M, does not have typ§(i). Instead it has the typ&(¢). Thus the right hand side of this rewrite rule is
“ill-formed”. Second, we have completely lost the absteddiermt, which is not good from a programming
perspective. The other alternative shown below is “typeemit but eliminates the abstraction ovewhich

is contradictory to the idea of using tBeguantifier.

At M) # 3i:y.5(6) — A, M, # 5(t)

To correctly implement this rule, we keep the abstractighin a separate context of substitutions. We
denote this context by.

G u= - |o,tfiy

Our correct rewrite rule is:
S161A, [t M) # 3i:7.S(6) — S,i:vl6,t/i:v|A M, #S(i) (ifresh)

If we have a configuratiol: | | A, M, # S, thenM,, has the type5[5], whereS[4] is the result of apply-
ing the substitutior to S. Since nested existentials may be present; ttfeosen at each step is fresh. An
important invariant we maintain while evaluatingLL CHAM configurations is that terms, monadic terms
and expressions in CHAM solutions are always closed uéidiee. if T % Z € A in a CHAM configuration

Y |6 A, thenfv(T) N dom(6) = ¢. Thus the substitutiod is meant to be applied only to types, not to
proof-terms.

Exponential (!). Consider the left rule for exponentials:

ST Ay A0+ o '
Az A R)

-L

This rule suggests that we introduce a new solufiaf unrestricted values i.e. values that may be used any
number of times. Due to typing restrictionsfi@LL, all such values must have asynchronous types.

= |I,V:A

3The proof-termainl M, andinr M, play an important role in the use of these rules. In lineaiclegthout proof-terms, it is
not possible to concludé; andS; from an assumptios; @ Ss.

24

The corresponding rewrite rule is:
S|IGITIA, WV #14 — 2|61,V : A]A

Type Ascription. Once an expression evaluates to a monadic value or a momeaaiof typeA evaluates
to a value, we need to be able to change its type ascriptiordier ¢o evaluate further. This is achieved by
the following rules.

SI6ITIAV#A = S|6|TA,V: A
SI6IT1AM, + 8 = S|6|T 1AM, #S

3.1.2 Functional Rules for In-place Computation

We also need some rules to allow evaluation of terms and ssijores to reduce them to values. One such
rule is the following:

N — N/
SIGITJAN: A4 - S|6|T|A N : A

The type preservation lemma (lemma 8) guarantees théthas typeA, then so doe®v’. The remaining
rules in this category are:
M M’
SIGITIA M #585 - S|6|T|A M #S

1

E — F'
SIGITIAE + S — SI6IT|AE =+ S

3.1.3 Summary of Structural and Functional Rules

We summarize all the structural and functional rules in Bgl4.

3.1.4 Reaction Rules for Term Values and Asynchronous Congéves

Consider a sequent style presentation of the asynchrormusectives of FOMLL &, —, —, V). The left

or elimination rules for such a presentation are given inrglb. Using these rules, we can derive one
possible set of CHAM reaction rules fo€LL, as given below. These logic rules are not invertible trel
corresponding CHAM rules are irreversible. As we shall ¢gbese rules are too general to be useful for
concurrent programming, and we will replace them with aedéht set of rules later.

Sle|T, v AlA . S|V AlAV A
S6|TIA (N, N - Aiedy — S|6|T|A N A
SIo|TIA (N1, No) : A1&Ady — E[G|TA Nz : Ay
Sle|T 1A {E} {5} — SI6IT[AE =+ S
161 1AV A—BVa: A — S|6|T|A VI Vo: B
1610, Va: AJAVi:A—B — S|6|0,Va: A|A,ViVa: B

X FE ity
S|6|D|A,N :Vi:v.AG) — S|6|T|A, N [t]: A®t)

25

CHAM solutions

|AM#S|AE + S

Q> b >>
Il
Q> ’_J> D>

JAN:A
VA
|ost)iy

CHAM configurations

Sle|r'A
Structural rules, |5 |T|A — =/ | 1| A’

S1IT1A, (My, ® My,) # (51 © So)
- X[eIllA 1 #1

N6 |T|A,inl M, # (S1 @ Sa)
S16|T1A, inr M, # (S1© S))
L6 |T| A, £01d(M,) # pa.S(a)
1 IT 1A, [t M) # 3i: 7.5(1)
S|GIT]A WV #14

S| |AV #4
Yol A M, + S

Ell&llf‘léva #Slanz #52
Sl |1]A

21617 1A M, # S

S16|T 1AM, # S

S16 1T 1A, M, # S(ua.S(a))
Z,i:fyjl&,t/z’:fyA\|F\|A,Mv#S(z’)
Yo, V:A|A

SI6ID|A, VA

SI6 1T 1A M, # S

N

Functional rules, |5 |T'|A — Z|&|T| A’

N — N/
S|6ITJAN: 4 - S|6|T|AN - A

M — M R
SIITIA M #S — S|6|T|A,M #5
E — F
S|6IT|AE = S —» S|6|T|AE = S

Figure 14: Structural and Functional rules for the CHAM

26

Contexts

>
I
E_

S:TA — 9

- EIAAA -
5hA - A S DLAA — o

S ALA — > IAB —
STy A A&B — @ ST A A&B — @

A — A N0, B —
I A1,A0,A— B —)

I — A > IAB — o
Y INALA— B —

Yty Y A A(f) — ¥»IA S — 8
YA Vi iy A() — A {SH - 9

Figure 15: Sequent calculus left rules for asynchronous connectives

27

These simple rewrite rules, however, allow too much noreinism to be useful in a programming lan-
guage. For example, consider the following configuratiotictvluses an index refinement by sgron the
typesA andB:

koyymey| - |- Vi A(k), Vo = (Vi 7.A() — {B(i)})

We expect the reaction to go as follows:

kryymeyl- |- 1V AR), Ve : (Vi 7. A() — {B(i)})
— kryymeyl -] Vi AR), Ve [k] 2 A(k) — {B(k)}
=" kryymey| | Vi A(R), Vs A(k) — {B(k)}
— kiymey] |- [Ve T Vi {B(R)}

However, there is another possible sequence of reactiangdis stuck:

kryymeyl- |- Vi AR), Ve : (Vi 7. AG) — {B(i)})
— kiyymeal - 1Vi AR), Va [m] - A(m) — {B(m)}
> krymeqyl - |- Vi AR), V2 A(m) — {B(m)}

At this point the CHAM configuration cannot react further.ig problem has occurred because we chose a
wrong term {n) to instantiate the universal quantifier at the first steporkirer to rectify this situation, we
use chaining of reactions i.e. a “look-ahead” to see whatti@as to perform. One important problem at
this stage is to decide how much look-ahead to perform. Atexttieeme, we have seen that performing no
look-ahead at all is not a good forward chaining strategye dther possible extreme is to perform complete
look-ahead, i.e. to predict all reaction steps needed whréd®e desired goal. Unfortunately, this problem
is undecidable. Therefore, we choose a solution which ktwden the two extremes. We let each reaction
chain correspond to exactly ofecusingstep in a focused theorem prover for our underlying logic.

Focusing in proof-search [3] was introduced as a methoddfaiag the search space of proofs. Tradition-
ally, focusing is used in backwards proof-search only. Ha@wdt is possible to use focusing in a forward
chaining procedure (see for example [14]). Here we will trgdmbine focusing and forward reasoning to
obtain reaction rules faiCLL CHAM configurations that do not have the problem mentiabove. We
will start by combining forward chaining and focusing for MOL without proof-terms. Later we will add
proof-terms to our rules to obtain the reaction rulesi@icL.

Focusing with forward chaining in FOMLL. In a forward chaining procedure new facts are concluded
from known facts based on some rules. At any point of time ioravérd chaining procedure, a certain
set of linear facts and a certain set of unrestricted fagskaown to be true. We denote these using the
conventional notatiod\ andI" respectively.

A = JAA|AS
r == -|IA

Since we are working at first order, the known facts can benpaitéc in some indexes. We record these
indexes explicitly in a context of parameteks,

You= - [Bicy

28

We represent the facts known at any time using the notafion; A. Now the principal judgment in a
forward chaining procedure is a rewrite judgme&ht’; A — X’;T; A/, which means that given the facts
¥;T'; A, we can conclude the facks’; T7; A’. In this judgmenty’, IV and A’ areoutputs As it turns out,
since we are dealing only with asynchronous connectives, heandI" do not change in this judgment.
Thus we can write this judgment more explicitly BsI"; A — X;T'; A’. We have already seen some
examples of rules of this judgment(with proof-terms) eaurliwe abandoned these rules because they are
ineffective for linking programs. The rules we saw earliex eeproduced below without proof-terms.

E;F;A,Al&AQ — E;F;A,Al

A A& As — X INA As

»IAA—oB,A — XN ITNAB

>ILAAA—-B — X:ILAAB
X FE ity

ST AV v A(l) — ST A A(t)
As we saw, these rules are too general in the sense that fbeytab many possible computations, all of
which are not desirable. Going back to our example of the ctatipn that got stuck, we observe that we
wanted to forward chain the two typeKk) andVi : v.A(i) — {B(i)} to conclude{ B(k)}. This required
instantiation of the second type withto obtain A(k) — {B(k)} and then an elimination ofo to obtain
{B(k)}. However, using the rules presented above, we could altmitieste: : v.A(i) — {B(i)} with m
instead oft and reach a deadlock. As we noticed, we need to perform adbekd, or a certain amount of
reasoning to decide that we have to instantiate the secq@edwith &, notm. This kind of look-ahead can
be done using focusing. Rather than arbitrarily selectingr & to instantiatevi : v.A(i) — {B(i)}, we
begin afocusonVi : v.A(i) — {B(i)}. Once this type is under a focus, we perfdoackwards reasoning
with backtrackingon this type to decide what to do till we have either succdlgstoncluded a fact, or we
have exhausted all possibilities.

We present a focused forward chaining procedure for FOMLIith@ut proof-terms) in two steps. In the
first step, we present some focusing rules that allow us tolade asinglefact of the form{S} from a set

of factsX; T'; A. This judgment is writtert; T; A — {S}. In the second step, we modify some of these
rules to obtain a focusing forward chaining procedure foMEQ. The principal judgment of this procedure
is as mentioned beforeds; I'; A — ;T AL

Concluding single facts with forward chaining in FOMLL. We begin with the first step i.e. we present
focusing rules that allow us to conclude a single fact of trenf{S} from a set of facts;I"; A. This
process consumes the factsdin Figures 16 and 17 show four related judgments. All ruleb@se figures
are used backwards. The rules in figure 16 will later be reyldiy a new set of rules to obtain a focused
forward chaining procedure for FOMLL.

The principal judgment in figure 16 5;T;A — {S}. We read this judgment as follows - “if we can
deduceX;T; A — {S} from the rules in figures 16 and 17 using backward reasonimem in a forward
chaining procedure we can conclude the linear {fatt from the unrestricted facts i and the linear facts
in A”. Thus this judgment allows us to combine forward and bagklweasoning. The propositiof5} is
an output of this judgment. In order to deducel’; A — {S}, we must first focus on a fact in eith€r
or A. This is done using one of the two rules that concliié; A — {S}. Once we have focused on
a formula, we move to the second judgment in figure 3§ F; A; A = {S}. The propositionA at the

29

Contexts

r == -|IA
A = - |AA|AS
3 T;A — {S} (Inputs: £,T', A; Output: {S})

T AA = {S}) 5T, A0 A = {S}

A A — {S} B T, AA — {S}

-2

3 T;AA = {S} (Inputs: X, T, A, A; Output: {S})

= —HYP YEtiy ST A A(t) = {S}
5158 = {5} YT A Vi v.A(R) = {S}

YA A = {S} . Y150 Ay = {S}
DT A A1&edy = (S} DA A&Ay = {S)

Y:IA —4 P T Ag; B = {S}
Y05 AL, Ay P — B = {S}

— —o

¥:Iye —y P T A;B = {S}
;AP — B = {S}

Figure 16: Focused left rules for asynchronous connectives (Part)

30

S:IA -4 P (Inputs: X, T, A, P; Outputs: None)

ST AA =4 P) XU A AA =4 P

- —a =2

S IAA — 4 P e LA A — 4 P

S:TAA =4 P (Inputs: X, T, A, A, P; Outputs: None)

e —HYP Yty ST A A(t) =4 P

T .- =4 -V
L5 P =a P T A Vi v.A(G) =4 P !
I A AL =4 P . XiIA Ay =4 P .
=A —&1 = A &2
iy A; A& Ay =4 P i A A1&As =4 P
iy Ay — 4 P I A:B =4 P R
P
YA 1,Ay; PP —o B =4 P
Iy —y P ST A;B =4 P R
R

S:I3A; PP — B =4 P

Figure 17: Focused left rules for asynchronous connectives (Part II)

31

end of the three contexts is the formula in foc{is.} is an output in this judgment also. In this judgment,
we keep eliminating the top level connective of the formulddcus till we are left with a single formula
of the form{S}. This formula{S} becomes the output of the judgment. If this does not happemust
backtrack and find some other sequence of eliminations tly.app

In order to eliminate an implication- or —), we have to show that the argument of the implication is prov
able. This requires the introduction of the auxiliary judgms shown in figure 17. They axeI'; A —4 P
andX;T;A; A =4 P. The symbolA in the subscript ot 4 and— 4 stands forauxiliary. These judg-
ments are exactly like those in figure 16 with three diffeemncFirst, the conclusion is atomic propo-
sition P instead of{S}. The proposition must be atomic because as mentioned rearlie backwards
reasoning does not use any right rules. Second, these jundg/=e not principal; even if we can conclude
;A — 4 P, the forward chaining procedure cannot concldtiérom the unrestricted facts and the
linear factsA. The judgments of figure 17 can be used only to prove that tmeuia needed in the argu-
ment of an implication actually holds. Third, the conclusmf the sequentP, is an input in the auxiliary
judgments. On the other hand, the conclusjéf} is an output in the judgments of figure 16.

There are some remarks to be made here. The principal judghén A — {S} always has a fact of
the type{S} in the conclusion. Thus the forward chaining procedure gda@ncludes facts of the form
{S} when it uses focusing. Further, backward search neverraies a monad in focus. Thus the monad is
also the constructor where backwards reasoning stopsnglauich a clear demarcation of where backward
reasoning stops is essential in writing correct programs.

Forward chaining rules for FOMLL. So far we have seen how we can combine focusing with forward
chaining to successfully concludesingle fact from a number of given facts. We now come to the sec-
ond step. We use the rules in figures 16 and 17 to obtain a fdraelzining procedure for FOMLL. As
mentioned earlier, the principal judgment we want to obtail; I'; A — X;T; A’. This judgment is

to be read as follows - “given the parametric index assumptia X and the unrestricted facts we can
conclude the linear factd’ from the linear facts\”. We already know how to conclude a single fact from
a given set of facts. Now we allow this deduction to occur ig arbitrary context. We want to say that
if ;1A — {S}, then we can concludg, ©X";T",T"; {S}, A” from the factsX, ¥"; T, T"; A, A” for
arbitrary X", T” and A”. We can integrate this closure under contexts directly iheobackwards search
rules. To do that, we reformulate the rules of figure 16. Thasedified rules are shown in figure 18. A
step-by-step explanation of the transformation of rulegivien below.

We begin by changing the judgmentl’; A — {S}toX; ;A — X;T; A’. There are two rules to derive
this new judgment, both of which are shown in figure 18. Thagjument is the principal forward chaining
judgment for FOMLL and the context’ is an output. Next we revise the judgméntl’; A; A = {S}. We
change this ta;T'; A; A = X;T; A’. We do this one by one for all the rules. In the rale— HY P (see
figure 16), we concludéS} if we have focused ofiS}. Since we are now implementing a forward chaining
rewrite judgment, we can change this to the unconditionafite rule; T'; A; {S} = 3;T; A, {S}. Inthe
rule=- —V (figure 16), we instantiate a universally quantified termoicus as we move from the conclusion
of the rule to the premises and the right hand side of the seg|ire the second premise and conclusion is
the same. This gives us the following revised rule:

Xk t:iy YA A(Y) = XA
YDAV v AG) = ST A/

= v

32

Contexts

r == -|T,A
A = - |AJATAS
A - ST A (Inputs: X,T", A; Output: A')
STy AA = ST A YT A AA = S A
T AA — ST A T A A — ST A
ST AA = ST A (Inputs: X, T, A, A; Output: A')

= —HYP Xk tiy E;F;A;A(t) = Z;F;A/
5T A {S} = =5 A,{S) ST AN 7 Al) = ST - v

T A A = ST A . YT A Ay = TG A
YT A; A& Ay = BT A ST A A& Ay = ST A

= 7&2

IA) —4 P ;T3 A0; B = ;TG A
YT A1, AP —o B = YT A

Iye —y P T A;B = BTG A
AP — B = 5T A

— —

Figure 18: Judgments— and=- for forward chaining in FOMLL

The rules= —&; and=- —&- can be modified similarly (see figure 18). For the rules— — and
= — —, we need to replace thg5'} in the right hand sides of the sequents3ixyl™; A’. In this manner we

can revise the entire system in figure 16 and obtain the syistéigure 18. The judgments> 4 and=-_4 in
figure 17 are auxiliary and do not change.

In summary, the rules of figures 17 and 18 are focused rewriés ffor a forward chaining procedure for
FOMLL. The principal judgment i&; T'; A — X;T'; A’ (figure 18). Itis used as follows. If using backward
reasoning we can conclude the judgm&ni’; A — X:T';A’, then in a forward chaining procedure for
FOMLL, we can conclude the linear facfs from the linear facts\, if the unrestricted context has the the
factsI'. Further, this conclusion is parametric in the assumptiors. As remarked earlier, the backward

search procedure constructs the set of facts We now augment these rules with proof-terms to obtain
reaction rules for CHAM configurations.

Reaction rules for CHAMs. We augment the rules in figures 18 and 17 with proof-terms taioliocused

33

reaction rules folCLL-CHAMSs. These new rules are shown in figures 19 and 20. Uitlgments—, —,
— 4 and=—4 are obtained by adding proof-terms to the judgments=-, — 4 and=-_4 respectively. We
also add the context of substitutioasto all our judgments. This process is straightforward. Asllas-
tration, we explain some of the rules. In the rule- —& 4, we have a focus on a formuld, & A, whose
proof-term isNV. As we reason backwards, we replatgf A, by A; and its withessV by 7; N, which is a
proof of A;. In the rule— —V, we instantiate the proaV of Vi : v.A(i) by a concrete index term. Since
we assumed earlier that index variables in the domaénratist not occur in terms inside configurations, we
instantiatelV with ¢[5] instead ot.* Observe thatV [t[5]] has the typed(¢)[5] if N has the typ&/i : v.A(i)
andt : v. The rule— —{} is a new rule to eliminate the monadic constructor, as meatiearlier. It is
instructive to compare figures 18 and 17 with figures 19 and&peactively.

As for the case of FOMLL, these rules are conditional rewntles for CHAM configurations that use
backward reasoning and focusing. The principal judgmere FeX | 6 | T I A — X|6|T|A. The
interpretation is the same as before - if we can concludeuitigment® | & | LA — 2|60 |A using
backward reasoning, then the CHAM configurat®hs | I'| A rewrites to the configuratiol | 6 | I | A’
using a single reaction step.

The typeP in the judgment: |6 [T |A =4 N : P must be atomic because we do not use right rules
for asynchronous connectives in our proof-search. Oneetpesce of this is that all arguments passed to
functions during the focusing steps have atomic typesn.the rules— — — and=— — —, the term/V;

is forced to have an atomic typge (see figure 19). In order to pass values of other types toifumeturing

the linking steps, the values must be abstracted to atoméstyThis requires an extension of the language
with suitable primitives like datatypes as in ML.

This completes our discussion of rewrite rules fBLL CHAMs. In summary, there are three types of
rewrite rules inCLL: structural (), functional () and reaction{—). Structural and functional rules are
shown in figure 14. Reaction rules require some backwardngag. They are shown in figures 19 and 20.

3.2 Programming Technique: Creating Private Names

We illustrate here how to use the existential quantifier tate fresh names. Suppose we haeemstant
¢y : 7y in the sorty. Now consider a typed monadic term of the folen, M (c.,)] # Ji : .5(4). If this term
is put in a solution, the only way it rewrites is using the rule—4:

SIGITIA, o), M(cy)] # Ji:7.8() — S,k:v]|6,cq/k:v|T1A, M(e,) # S(k)

In the typeS(i) on the right hand side;, has been abstracted ldywhich is a fresh name by the side
condition on this rewrite rule. In effect, we have createckali namé of sorty. We can use this mechanism
to create more private names using the same ngrfa the index term again and again. Based on this idea,
we define a new language construct as follows.

priv. k:yin M # S(k) =
ey, Mley/k) | # 3i:7.5(0)

4Since this rule is used backwards determined through unification in a practical impleménta Thus in practice this rule is
implemented as follows. We replac¢evith a unification variableX to obtain the typed(X). Unification on types determines the
exact index ternt that substitutes(. Then we instantiat&’ with ¢[5].

SDatatypes can also be implemented by introducing existenticursive and sum types at the level of pure terms.

34

S|s|T|A — =|6|T] A (Inputs: ,6,T, A; Output: A"

SIGITIAIV: 4 = S5 T|4A
SI6IT1A VA — Z|6|T |4

— = -1

|60, V:AJAIV:A = |60,V :A|A
S|6|0,V:AlA — S|6|T,V: A|A

— —{}
SloITAAE} {S} — Z|6|T|AE + S
S|6|ITJAIN: A = Z|6|T| A’ (Inputs: ,6,1, A, N, A; Output: A')
— —HYP

SIGITIAIN : {S} = S|s|T|A,N: {5}

Skitiy SIs|PIAIN[fs): At) = S[6IF|A
SIGIPIA|N Vi 1.AG) — Z|o|D|A

-V

SISIT|AIm N: A = S|s|T |4
SIGITIAIN : Ai&dy = S|6|T A

—&1

S|6IT[Alm N: 4y = S|6|T |4
SIGITIAIN : Ai&dy = S|6|T A

—&2

SI6IT1AL —a Ni: P Z|6IT[As| N2 N A = S5 DA
EI6IT1AL ANy : P o A = X6 |T|A

610 —a Ni: P S|G|D[A|N; Ny A = S5 D[4
SIGITIAINy: P— A = S|6|T| A

Figure 19: Reaction rules for the CHAM (Part)

35

S|6|T|A —4 N:P (Inputs: %, 5,1, A, P; Output: N)

S|6|T|JA|V:A =4 N:P
S|6IT|JAV:A — 4 N:P

— A — =4 —1

S|6|0,V:A|A|V:A =4 N:P
S|6|0,V:A|JA —4 N: P

— 4 — = —2

L|6|T|A|IN:A =4 N:P (Inputs: 2,6,1,A, N’, A, P; Output: N)

— 4 —HYP

S|6|T| - IN:P =4 N:P

=4 -V

Skt:y S|G|T|A|N [t[s]): At) =>4 N: P
S|6ITIA|N :Vi:y.A(l)) =>4 N:P

=a &

S|6IT|A|m N : Ay =4 N: P
S|GITJA|N : A1&Ay =>4 N: P

S|6IT|A|m N : Ay =4 N: P
S|GITJA|N : A1&Ay =>4 N: P

= &2

S| |T A Ng Nyt A =4 N: P

E||c}||f||A1 —s 4 N1 : P o
S| T 1AL, Ay Ny: P A =4 N: P
BI6I01 - —a Ni:P SIGITIAIN N A = N:P

S|6|TJA|Ny: P A =4 N: P

Figure 20: Reaction rules for the CHAM (Part II)

36

Syntax

m= T(y1...Yn) | x(y1...yn).P (Actions)
= A|C+C (External Choice)
w= C|P|P|vx.P|0 (Processes)

RS
I

CHAM solutions

m == Plvx.S (Molecules)
S == ¢|Sy{m} (Solutions)

Equations on terms and solutions

Ci+(Co+C3) = (C1+Cy)+Cs
C1+Cy Cy+Cy
vr.P = vy Ply/x] y¢&P
ve.S = vySy/z] y¢&S

CHAM semantics

z(yi1...yn) P+ Cr, T21...2n+Co — Plzi/in] ... [2n/yn]
ve.P — vax{P}
ve.S,P — vz.(SW{P})
PP - PP
O N

Figure 21: Ther-calculus: syntax and semantics

The typing rule for this construct is

ok Ty AU B M # S(k)
ST AW - (privk:yin M # S(k)) # 3i:~.5(i)

priv

3.3 Example: Encoding ther-calculus

In this section, we show an encoding of variant of thealculus [6] inICLL. The syntax and semantics
of the w-calculus we use are shown in figure 21. The encoding we choogkis calculus is based on an
encoding of a similar calculus in MSR [11]. We assume thastgeature for our language contains a family

of type constructorsut, forn = 0,1,.... These have the kinds:
outo : chan — Type
out; : chan — chan — Type
outy : chan — chan — chan — Type

37

Assume also that we have a family of constanis,, out,, ... having the types:

out, : Vz:chan.outyx
out, : Vz:chan. Y1 : chan. outy = 1
out, : Vz:chan.Vy; :chan. Yy : chan. outy 2 y1 Y2

In effect, for any n, and an¥,, ..., k,+1 : chan, out, ki ...k,41 iS actually asingleton typd.e. the
only closed value of this type isut, [k1]...[kn+1]. Let us also assume a family of destructor functions
destroyout_ which have the types:

destroyout, : Vz:chan.outoz —o {1}
destroyout —: Va : chan. Yy : chan. outy z y; — {1}
destroyout2 : Vx : chan. Vy; : chan. Vys : chan. outy x 41 y2 — {1}

The corresponding reduction rule is:

destroyout [ki]...[knt1] " (outy [ki]...[kni1]) — {1}

We now translate the-calculus into our language. Evenycalculus term is translated into a type and a
term. These translations are shown in figure 22. 41€td), £n(C') andfn(P) stand for the free names
contained in an action, choice and process respectivelyn Tre following typing lemma holds.
Lemma 10 (Typing of translated terms).

1. fn(A) : chan; ;- F TAT:TAT

2. fn(C) : chan;-; ;- F TCT:TCT

3. fn(P) : chan;-;;- = TPTH#TPT
Proof. By induction on the structure of the-calculus term4, C or P.

Definition 3 (Translation of =-terms). We define the translatio) of ar-term P as the CHAM config-
urationfn(P) : chan| - | - |"TPT# TP

To illustrate how reductions occur in this framework, caesither-processP = (z(y) +C1) | (z(2).0+
C3). The translation of this process at types and terms is:

TPT = (outyzy&T™C1") ® ((Vz:chan. outyzz —o {1}) &TCy™)
"PT = (outy [x] [y],"Ch) @ (Ni(x),"CyT)
whereN;(z) is an abbreviation defined as follows:

Ni(z) = Az:chan Am:out; z z.

{

let {1} = destroyout [z][z] " m
in1l

}

38

Translation into types

TZ (Y1, Yn) " = outpTYi...Yn
T2(y1, ... Yn). P = Vyi...yp:chan.outpazyy...y, — {TP"}
TCL+ Cym = TCLM&TCyT
Tyx.PT = dz:chan™PT
Translation into terms
"T(Y1s - yn) = outy [7] [y1]. .. [yn]
"x(y1,...,yn)- P = Ayi...y,:chan. \m:out, x y1...Yn.
{
let {1} = destroyout_[z] [z1] .- [yn] "
in
I—P—l
¥
I_C’1 + 027 — <f_01_|, I_C2_I>
|—0—| — 1
I_P1|P2—I — I_Pl_l ® f_P2—|
"ve. P = priv z:chanin" P

Figure 22: Translation of ther-calculus

39

The process reduces td) in the w-calculus. Correspondingly we have the following reduttsgquence
on the translated term:

(P) = wx:chan,y:chan| | -|"TP#TPT
— x:chan,y:chan| - | - | (out, [z] [y],"C1") # (out; zy &TC1 M),
(N1(z),"C2™) # ((Vz : chan. outy x z — {1}) & TCy ™)
—2 z:chan,y:chan| - |- |{out, [7] [y],"C17) : (out; x y & TC1 M),
(N1(z),"C2™) : ((Vz : chan. outy x z — {1}) & TCy™)
. wichany:chan] - |- |(m (Ni(@),"Co) [y] " (i fout, [o] G (1} (1)
—" x:chan,y:chan| - | - [{let {1} = destroyout, [z][y]" (out, [z][y]) in 1} : {1}
— :chan,y:chan| - | - |(Llet {1} = destroyout, [z] [y] " (out, [z] [y]) in1) + 1 (2)
— x:chan,y:chan| - |- |(Qet {1} ={1}inl) = 1
— x:chan,y:chan| -] |1 + 1
— x:chan,y:chan| - | - |1#1
— gz :chan,y:chan]| |- |-

The reactionsteps here have been markgd and (2). Step(2) is the elimination of. ..} in the monad.
Step(1) requires some backwards reasoning and the exact proofliinas ahis step is shown in figure 23.
All rules used in this proof are from figure 19. It is instruetito observe that chaining of reactions allows
us to simulate the correct behavior of external choice intfoalculus. The remaining steps in the above
reduction are either structural rearrangemenyj 6r functional evaluation-{).

The rewrite steps shown above show howalculus reductions are simulated in the translation. &xaet
formulation of a correctness result for the translationunexs a notion of observation d€LL-CHAM
configurations, which is a subject of future research.

3.4 Types for|CLL CHAM Configurations

Since terms inCLL CHAM configurations already have types with them, we naedreate a judgment
like ©;T;A; ¥ + X' |6 || A in order to typelCLL CHAM configurations. The obvious intu-
ition of splitting resources in\ for all terms inA does not not work. For example, consider proving
g A E)] e A, xe s Ao whenA = 2y @ xo 0 A ® As. Intuitively, we want this to be provable
but A is a singleton and cannot be split. From such observatioagmive at the following definition.

Definition 4 (ICLL typing relation). Let>'|5|I"| A be a CHAM configuration. Leh =T} % Z; ... T,, % Z
andl' =Vy : Ay ...V, 0 Ay We say thabs; T; A; 0 - Y| 6 | T | A iff there existA; ... A, TV and¥”
such that the following conditions hold:

1. ¥ 2%

2. 35T AL A, = ST A

3. Foreacht/i:ve€d,i:yeX andX’ t:~
4. Forl <i<n, T A; W + T % Z;[6]

5. Forl <j <m, YT W F V;: Aj[6]

40

>> = x:chan,y:chan

7= (m (Ni(z),"Co) [y] ™ (m (euty [a] [y],"C1 7)) < {1}
== —HYP
S1-1- 1 Imouty [2] [y],"C17) : outs 2y
:>.A
mi(out, [z] [y],"C17) routs 2y
— 4 —&1
Dy = X1 [{euty [2] [y],"Ch7) souty xy &TCLT
iA
mi{out, [z] [y],"C1") : outy z y
—A — =4 —1
S| [{outy [#] [y],"C17) routi 2y & TC T

> A

mi{out, [z] [y],"C1") :outy x y

— _HYP
Di Y- 1110w (Ni(2),"Co™) [y~ (m (outy (2] [y],"Ch") - {1} =~
B0 llouty 2] [y],"Cr7) couts oy &TCT
(m1(N1(x),"C2) [y] : outy xy — {1} »

|1 Iouty [2] [y,"Ch) souts wy LT

m1{N1(2),"C27) : (Vz : chan. outy x z — {1}) U

— —&
|- |- [outy [2] [y,"Ci Y soutswy LT
(Ni(x),"C2™) : (Vz : chan. outy 2 z — {1} & TCy ™) U
-1 - Houty [2] [y],"Cr7) souta wy &TCLT,

—

(N1(z),"Co™) : (Vz: chan. outy x z — {1} & TCy ™)

Figure 23: Main reduction step for-calculus example

41

We also say thal; T; A; 0 + Y |6|T|A|N: Aiff 5;T;A;0 F Y |6|T|A N : A

This definition essentially allows the contextto be split into several contexts, one for each of the terms in
A.

Lemma 11. Let >’ | 6 | I'| A be a CHAM configuration. Lef\ = 71 % Zy... T, % Zp, I = V4 -
Ay ...V, A, and suppose there exiat, A, ... A,, I', ¥ and¥ such that the following hold:

»Do¥.
Foreach/i:y€d,i:ve X andX + ¢:v
Foreach <i<n, ;A5 0 + T; % Z;[6]

Foreach < j <m,%;T; ¥ F V;: Aj[0]

a r w0 dPF

ST A0 - N : A6
Then,
1.2 TA ... A0 F Y 6|T|A.
2. 5 D:A AL AT F Y |6|T AN : A
3. Y |6|T|A|N:A =4 N': P, thenS; ;A A ... A, ¥ - N': P[6].
4. fY|6|T|A —4 N': P, thens;T;A ... A; ¥ - N': Pl6].

Proof. Proof of (1) and (2) is immediate from definition 4. Proof of é&hd (4) follows by a mutual induc-
tion on the given rewrite derivation.

Lemma 12.

LIS AY - Sle|PJAandS || DA — ¥ |6 |TV]| A, then® C ¥/ and
YTy AW R Y 6TV AL

2. FS; ;A0 F 26 T |AandS |6 |T|A - |6 || A, thens; ;A F S|6|T A

3. FS; ;A0 F S|6|T|A|IN : AandS |6 |T|A|N': A =4 N : P, thens;T;A; ¥ F N :
P[s).

4. FS;T;A;0 + S]6|T|AandS |6 |T|A — 4 N : P, thenS;I;A; ¥ + N : P[5].

5. O;;A;0 - N6 D |AIN: AandS |6 |T|A|N : A = X|6|D|A, then
T A0 F XA

6. fS; ;A0 F 26T |AandS |6 |T|A — |6|T|A/, thenS; ;A0 - |6 |0 A

Proof. Proof of (1) follows from lemma 5. (2) is immediate from lem&a(3) and (4) follow from lemma
11 and lemma 1(3). For (5) we use induction on the derivatidhegiven rewrite relation and lemma 11.
(6) follows immediately from (5).

42

Definition 5 (ICLL CHAM moves). We define dCLL CHAM rewrite move=as= = — U —» U —.
=* denotes the reflexive-transitive closureof

Lemma 13 (CLL preservation). If 3:T;A; ¥ + S|6|T|AandS |6 |T|A =* /|6 |1V | A/, then
Y CY¥andXT; A0 = X6 | TV] A.

Theorem 2 (Type-safety for terms inICLL CHAMS). If ;- = |6 |T|AandS|6|T|A =7
Yo" || A, then for any typedCLL term T % Z in A’, itis the case thdl is a value ofT’ reduces to
someT”.

Proof. Using lemma 13%/;-;;- + X/ |6/ | TV | A LetA = Ty % Z1,..., Ty % Z,. By defini-
tion 4, there exist2” . IV, Aq,...,A,, such that2”;T"; Aq,...,A,, <= Y';-;- and for eachl < i < n,
YT Ay - B T % Z;[6']. Now from lemma 1itis clear thd?’ = - andA; = ... = A,, = -. Thus, for
eachl <i <n,%"; - + T; % Z;[6']. Using the progress lemma fo€ELL (lemma 9), eacl’; must

either be a value, or it can reduce further.

3.5 Comparing process-calculi andCLL

As seen from the encoding of thecalculus in section 3.3CLL can encode several basic concurrency
primitives. In fact, there is a correspondence between ehstoucts of process-calculi like thecalculus
and constructors dfCLL. Various common constructs of process-calculi, togethith their equivalents in
ICLL are listed below.

1. Processeslin general, we view monadic terms and expressions as mesé#s CHAM solutions.

2. Parallelism Apart from parallelism introduced for expressions in ggcR.1, monadic terms of the
form M; ® M, can be viewed as processes reducing in parallel. Simiterys in CHAM solutions
can be viewed as processes executing in parallel.

3. Communication channelsCommunication channels can be simulated@hL using index refine-
ments of a fixed sortchan) as we do in section 3.3.

4. Input prefixing The language constructs. N, Az : P.N and)z : P.N together with the associated
typesVi : v.A, P — B andP — B provide encodings for input processes.

5. Asynchronous outputAny valueV of (possibly refined) atomic typ® can be viewed as an output
term without continuation because it can be linked to a tefriyme P — B as an input. If the
valueV : P is linear, then this corresponds to an output that has to &g as an input to exactly one
program. If it is unrestricted, then it can be used as inpainfpnumber of programs. Such an output
term corresponds to an asynchronous broadcast.

6. Name restriction We showed in section 3.2 that channels can be made privatg abstraction
semantics of thel quantifier. Thepriv construct defined in that section can be used to create @rivat
channel names in CHAM executions.

7. Choices The type constructo& and the associated term constructd¥,, N») act as an external
choice operator in our logic programming language. Thefpsearch procedure can project out one
component of a choice if it can be used to complete a link stEpe type constructo® and the
monadic term constructorsl andinr can be used to simulate internal choicé@hL.

43

Process-calculus construct EquivalentiCLL construct

ProcesspP Monadic term{\/), expressiong)

Parallel compositionp; | P» My @ My # 51 ® S

Communication channel Index refinement of sokdhan

Input prefixing,z(y). P Ai.N :Vi:~v.A M x.N:P— Band\z.N : P — B
Asynchronous output;y Linear assumptiodV : P whereP is atomic
Name restrictionyz. P priv x :chanin M # Jx : chan.S
Internal choice inl M # 51 6® Sy, inr M # 51 @ S
External choice(; + Cs (N1, No) : A1&Aq

n-way input N:P—o...—oP,—oB
Communication and synchronizatignProof-search

Figure 24: Correspondence between process-calculil@hd

8. n-way input Due to chaining of linking steps in tHELL, we have a mechanism for n-way input in
ICLL. For example, a receiver of typg, — P, — B alwayssynchronizes simultaneously with two
senders of type#; and P;.

9. Communication and synchronizationCommunication and synchronization liG@LL occurs using
reaction steps-{—).

For an illustration of these constructsli@LL, the reader is referred to the encoding of thealculus in
section 3.3. Figure 24 shows a summary of the above corrdspor between process-calculi constructs
andICLL connectives.

4 Full-CLL: Integrating fCLL and ICLL

fCLL described in section 2 is purely functional. Even tholtggdmits some parallelism in the tensor and
evaluation of expressions, it is essentially free fromaffe The concurrent (logic) programming language
ICLL described in section 3 allows an additional layer of conency overf CLL. In this section we integrate
in the other direction - we allow concurrent logic programgito occur insidd CLL programs. Since
concurrent computations can deadlock and get stuck, tleegarfree from effects. As a result, we confine
such concurrent evaluation to the monad only. We extend ridw@mar for expressions with an additional
construct as follows.

E = ... |link (F + S)to G

whereG ::= A|!A|1andA is any asynchronous typé&: is called a goal type. Observe tlGts a subset
of the family of types. We do not allow arbitrary types as gdal reasons described later. The typing rule
for the 1ink construct is the following.

S IvAv - E o+ S
A0 F link (B + S)to G + G

LINK

It is assumed in the above rule th@tis well-formed in the context. The 1ink construct is always
evaluated in the context of index variablksn which it is well-typed. To evaluat®; 1ink (F <+ S)to G

44

we start a neC' L L CHAM configuration with only the terny = S'initi.e. we startwith2| - |- | E + S.

Then we let this configuration rewrite according to all thiesun figures 14, 19 and 2ntil it saturates
i.e. no more rewrite rules apply. If the configuration nesusates, computation runs forever andthek

construct does not terminate. If the configuration saterat®’ |5 |I'| A, then the computation of tHeink

construct succeeds iff one of the following conditions Isold

1. G = AandA = V : A. Then the whole construct evaluatesStoV .

2. G=A, A = andthere exist¥ : 4 € I'. In this case the whole construct evaluateXtol .
3. G =4, A = - and there exist¥ : A € I. Then the whole construct evaluatesto!V'.

4. G =1andA = -. In this case the whole construct evaluateZtol.

If none of these conditions hold, then the computation faild evaluation deadlocks. The above conditions
are summarized in the following evaluation rules.

Sl 1B+ 8 = ¥s|0|V:A
Y;link (E + S)to A — ¥V

— LINK — 1

Sl-1-1E+ 8 = ¥s|0V Al
Silink (E + S)tod — 23V
Sl 1B+ 8= Ys|bv Al
Yilink (B + S)told — X5V
Sl-1-18 + 8 = Ssf]-
¥ilink (B + $)tol — M1
where= = — U —» U —, as in definition 5. It is implicitly assumed in these ruleattany CHAM

configuration on the right of=* is saturated (it cannot be rewritten using the relatioh We also lift the
evaluation relatior? — E’ from figure 12 to include the contexi.

E — F
WE — S F

At this point we can explain why we restrict the gd@alin the construclink (EF + S) to G to the set
{A,!A,1}. The reason for disallowing arbitrary goals is that for gggles other thag A,!A, 1}, compu-
tation of thelink construct will always fail because saturated CHAM confijores cannot contain terms
having those types. Suppose, for example, we allow the@peS; ® S3 as a goal. In order for evaluation
to succeed witts; ® S, as a goal, the CHAM rewriting would have to end in a configoral’ | 5 | T'| A
whereA = M # S, ® S,, for someM. However, this is impossible because at this point the CH/N-c
figuration cannot be saturated. We can prove this as foll@yghe progress theorem, eith&f is a value,

or it can reduce further. I3/ is a value, it has to be of the fori,, ® M,, and in that case we can apply the
rule — —® on the CHAM configuration. I1fi/ can reduce further, then the whole CHAM configuration can
reduce using the rule» — —. Thus arlCLL CHAM configuration cannot end with a monadic term of type
51 ® S, in A. Similar arguments show that a CHAM configuration cannairsée if it has a program afny
synchronous type in it. For the particular set of goél4,!A, 1}, it is possible for CHAM computations to
succeed without any synchronous types in them. Thus we gjadts to this set. Limiting goal types to the

45

set{A,!A, 1} may seem like a big restriction but in practice we found thiaépgoal types are never needed.

We call the resultant language with thénk construct full-CLL or CLL for brevity. Full-CLL symmetri-
cally integrates functional and concurrent logic prograngnConcurrent logic programming can be nested
insidef CLL programs using theink construct. On the other hand, the functional rewrite rubleSHAMs
allow functional evaluation inside concurrent logic praguming. Execution of full-CLL programs occurs
in interleaving phases of functional evaluation and corenirlogic programming.

An important remark related to programming in full-CLL isatht is essential that the top-level construct
of any program that performs concurrent computation be gression. This is because all concurrency in
full-CLL is restricted to thdink construct which is an expression, and evaluation of exfmessoerced
into terms is lazy (recall thatE'} is a value in CLL). If the top-level construct of a program igeam or a
monadic term, then nested expressions in the program willrmee evaluated, and hence the program will
not perform any concurrent computation.

4.1 Type-Safety

Since thelink construct may get stuck, full-CLL does not have a progressria at the level of expres-
sions. However the monad in CLL is lazy and this lemma stilllb@t the level of terms and monadic terms.
We also have a type preservation lemma at the level of terrasadic terms and expressions. Type-safety
lemmas and theorems for full-CLL are given below.

Lemma 14 (Preservation).
1 FS:T:A:W - N: AandN — N, thenS:T: A: ¥ - N’ : A.
2. fX; A0 F M # SandM — M’ thenX; T A; W = M # S,
3. IA; ¢ - F + SandX; B — Y/ E' theny C ¥ andY;T;A; ¥ + E' + S.

Proof. In this case we use induction on the given derivation to kamaously prove this and lemmas 12
and 13.

Lemma 15 (Progress).
1. fX;;;- = N : A, then eithetN = V or forsomeN', N — N’.
2. IfX;+ - = M # S, then eithetM = M, or for someM’, M +— M’.

Proof. By induction on the given typing derivation. As expectdtre is no progress lemma at the level of
expressions.

Theorem 3 (Type-Safety)

1. I1fY;- F N: AandN —* N/, then eithetN' = V or there existsV” such thatN' — N”.
2.3 M# SandM —* M, then eitherM’ = M, or there existsV/” and such that
M’ — M".

46

Proof. By induction on the number of steps in the reduction, a$@irL.

In full-CLL, nestedICLL-CHAM configurations contain full-CLL programs in placé f CLL programs.
This has a significant effect on theorem 2 of section 3.4, whitist be modified fofCLL-CHAM con-
figurations that contain full-CLL programs. Since the probtheorem 2 uses progress (lemma 9), which
no longer holds for expressions in full-CLL, we expect toaitonly a weaker type-safety property for
CHAMSs embedded in full-CLL. Indeed, we can prove only thédaing theorem.

Theorem 4 (Type-safety for terms in CHAMs in full-CLL). If ¥3; ;- = £|&|T|AandS|6|T|A =7
¥ |6’ |T"| A, then for any typed full-CLL ternT” % Z in A, itis the case thdl is an expression df is
a value orT reduces to some”.

The only reason full-CLL programs get stuck is that the faxehaining procedure in some nestetk
construct fails to reach its stated goal. In all practicalgbems that we encountered, we found that it was
possible to write full-CLL programs in a way that embeddiel constructs always succeed in producing
the desired goal. An exploration of methods and techniquesdve the correctness of full-CLL programs
formally is left to future work.

5 Programming Techniques and Examples

In order to illustrate the relatively new style of programigithat CLL requires, we devote this section to
developing programming techniques and examples of pragiarfull-CLL. The concurrency primitives
already present in full-CLL are very simple (but expresgiaed in order to write useful programs we need
to build library code that implements more conventionalaorency primitives like buffered-asynchronous
message passing, synchronous message passing, nontdistersynchronous choices etc. We present this
library code as a set of macros. The reasons for using matgade of functional abstractions are clarity
and brevity. The functional abstraction mechanisms in CALX and 5\) are expressive enough to allow
us to rewrite all the library code in this section as funcsianstead of macros. However, doing so results
in more complicated implementations and types for the abstms. Thus we use macros for library code
in place of functions. Just as an illustration, we desciiteimplementation of the primitives for buffered-
asynchronous message passing using functions insteadcofsria section 5.4.

Many of the examples in this section are based on similarrprog in John Reppy’s book Concurrent
Programming in ML [32]. As a convention, we write all macrawes inboldface

5.1 Example: A Concurrent Fibonacci Program

In this section we build a concurrent program to compute fdoei numbers. For this and subsequent
examples, we assume that our language has fundamentalbhalotonstructs like basic types (integers,
int and booleanshool), datatypes (a la ML), recursion at the level of terms anadié@nal if-then-else
constructs. All these may be added to the language in a Btfaiggard manner. Fibonacci numbers are
defined by the following equations.

fib(0) = 1

fib(l) = 1
fib(n) = fib(n—1)+ fib(n—2) n>2

a7

fun fib (n) =

if (n=0) then {!1}
else if (n=1) then {!1}
else

{

let {In1}=£fib (n—1)
let {lno}=£fib (n—2)

I(n1 + ng)

—

Figure 25: The functionfib

fun fibc (n) =
if

else
{

link

(

(fibc (n—1) ® fibc (n—2) ® Ang:int. Ang:int. {!(n1 +n9)})
+ ({!int} ® {!lint} ® (int — int — {lint}))

) to lint

}

Figure 26: An incorrectfunctionfibc

We can write gparallel version of the functiorfib as shown in figure 25. This function does not use
any communication between processes executing in pagetlmay be derived from the more general
divAndConquer function described in section 2.3. It has the type — {!int}.

Figure 26 shows @&oncurrenf but incorrect implementation dib . The functionfibc has the type
int — {lint}. Givenn > 2, we spawn a CHAM with three threads. The first two threadsrsdely
computefib(n — 1) and fib(n — 2). These two computations may spawn nested CHAMs during &tiaiu
Such nested CHAMSs are distinct from each other and termdfierelint CHAMs cannot interact. The third
thread is a synchronization thread that waits for the resiithese two computations and adds them together
to produce the result. This synchronization is performedraatically by the CHAM. As mentioned earlier,
this implementation is incorrect and the reason for inatress is described below.

In the functionfibc, there are four ways for the CHAM to proceed affebc(n — 1) has evaluated to a
value{!N;} andfibc(n — 2) evaluates to a valugl N2 }. In one casep; gets instantiated to the result of

48

evaluatingN; andns to the result of evaluatingys:

] 1IN} s {lint}, {INo} : {lint},

Ang :int. Ang :int. {!(n1 + ng)} : int — int — {lint}

—2 |- |- 1'Ny + lint,!Ny + lint,
Ang :int. Ang :int. {!(n1 + ng)} : int — int — {lint}
—2] .| - !Ny # lint, !Ny # lint,
Anj :int. Ang :int. {!{(n1 + n2)} : int — int — {lint}
L] (Vi # Vint, 1V 4 lin,
Anp :int. Ang :int. {!{(n1 + n2)} : int — int — {lint}
—2] - | V5 :int, Vo :int | Ang : int. Ang : int. {{(ny + n2)} : int — int — {!int}
— -] - | Vi :int, Vo int | ((Ang @ int. Ang @ int. {!{(ny +n2)}) V1 Vo) : {lint}
—2] - | Vi:int, Vo int | {{(V1 + Va)} : {!int}

In the second case the instantiations are swappedis instantiated tds andn. is instantiated td/;.
Assuming that+ is commutative, the result of both possible programs is #meesand correct. However,
observe that sinc®; andVs are unrestricted values in the configuration, it is posdibiastantiate both
andns with either one ofl; andVs. This gives us two more possible incorrect computationse @frthese
is shown below.

—2 .| - |Vi:int, Vo :int | Ang :int. Ang : int. {!(ny + n2)} : int — int — {lint}
— | - | V4 :int, Vo dint | ((Ang : int. Ang : int. {!(n1 + n9)}) V4 V1) : {!int}
—2 | - |Vi:int, Vo rint | {{(V1 +V1)} : {!int}

We can use index refinements to correct this function. Asshatave have a type constructoft : chan —
Type and the constructor-destructor pagfineint andfetchint with the typing rules

> F k:chan XI5 A; ¥ - N :int
YT A; ¥ + refineint [k] " (N) : int k

int — I

¥ F k:chan ;T A; 0 F N iint bk .,
YT A; ¥ - fetchint [k] " (N) : int

and the reduction rules
N N’

—

fetchint [k] "N — fetchint [k] " N’

N — N’
—

refineint [k] "N refineint [k] " N’

fetchint [k] " (refineint [k] "n) — n

The functionfibc’ shown in figure 27 is a correctly implemented concurrentigarsf £ib that takes
as input a channel nanieand an integer. and returnsfib(n) refined by channel namei.e. the value
(refineint [k] " (fib(n))). It has the type&/k : chan. int — {!(int k)}. In this case there is exactly one
possible program execution.

49

fun fibc [k] (n) =
if (n=0) then {!(refineint [k] "~ 1)}
else if (n=1) then {!(refineint [k] ~ 1)}

—~

priv kj :chan in
priv kg :chan in
fibc' [k1] (n—1)
® fibc [ko] (n—2)
&)\nl E kl.)\ngtm kg.
{!(refineint [k] * ((fetchint [ki;] ~ n1)+ (fetchint [ko] "~ mn2)))}
)
+ Jky : chan. Jko: chan. ({!(int k1)} @ {!(int k9)}®
(int ki — int ky — {{(int k)}))
) to !(THE K)

Figure 27: The functionfibc’

5.2 Programming Technique: Buffered Asynchronous Messageassing

We assume that we have a conditional if-then-else condutérms, monadic terms and expressions. This
construct has the formf N then T} else Ty (1" stands for any ofV, M or E). The associated typing and
reduction rules are shown below.

T = ... |if N then T} elseTh
Y:T;A; ¥ - N :bool AN T % Z SN F Ty % Z
STy AA U - if NthenT) elseTy % 2

N — N
if N thenT) elseTy — if N’ thenT] elseTh

if true thenT) elsely — T}

if — then — else

if falsethenT) else Ty — 15

We now build a library of programs in CLL to allow us to writeggrams that use asynchronous, queue
based message passing. For every channel riathat is to be used for communication of values of the
asynchronous typ8, we introduce a first-in, first-out queue of elements of tifeto our CHAM solution.

In order to distinguish various queues in a CHAM solutiort [ustheir types, we refine the queue type with

channel names. Queues have the following abstract spéicifica

abstype queuep: chan — Type with
empty: Vi : chan. queuep i

50

push: Vi:chan. queuep i — B — queuep i
isempty: Vi : chan. queuep i —o {/bool ® queuey i}
pop: Vi:chan. queuep i —o {!|B ® queuep i}

top: Vi:chan. queuep i —o {!|B ® queuep i}
destroy: Vi : chan. queuep i —o {1}

The above first-in, first-out queue may be implemented usatg dtructures like ML-style lists, which
we assume are present in our language. The exact detaile afnflementation are not relevant to our
discussion. A more important fact is that queues are lingggats in CHAM solutions, and hence can
be used to capture the notion of state of communication orrtecpiar channel. On the other hand, the
data within the queue is non-linear and can be used muliiplest One can also design a different model
of communication in which the data in the queue is linear. &or queue of typeueue k, we view the
elements in the queue as messages thagtemding to be readn channek. Message sending in this model

is asynchronous in the sense that a sender simply appendgsstgage to the end of a message queue and
continues execution. It does not wait for a receiver to recéie message. Thus we can define a ‘send’
macro:

asyncsendk, N : B);M # S =
Ag:queuey k. {(push [k] ~ ¢ N) ® M}

Intuitively, the above macro should be read as “send thdtreavaluating/N on channek and continue
with the proces@/”.% If we define the typésyncsend(k, B, S) = queuey k — {queuey k ® S}, then
the derived typing rule foasyncsend is

> F k:chan >»Iywv - N:B Sy A0 E M#S
¥ T;A; ¢ + (asyncsend(k, N : B); M # S) # Asyncsend(k, B, S)

The corresponding receive macro is harder to create. Sappesvant to bind: to a value received on the
channelk in the monadic term\/. Then we need to wait till there is a message pending on theages
queue for channet. This we do by repeatedly synchronizing with the associgigglie and checking for
non-emptiness. If the queue is empty, we leave the queueeem\kaiting. If it is non-empty, we pop the
gqueue, bind the value poppedi@nd return the popped queue to the solution. The followiogive macro
implements this.

asyncsend

asyncrecvz: B on k in M # S =
pu. £0ldygincrecy(k,B,5)- NG : queuep k.

{
let {lb®q'} =isempty [k] ~ ¢ in
if b then inl (u®()
else
let {lz®q¢"} =pop [k] *~ ¢ in
inr (M ®@ ¢")
}

The typeAsyncrecv is defined as follows

Asyncrecv(k, B, S) = pa. queuey k — {(a ® queuep k) & (S ® queueg k)}

6N may not be a value and might be evaluated in parallel witlitself. Since evaluation of pure terms has no side effebts, t
exact point of evaluation oV does not matter.

51

The derived typing rule for this macro is:

> F k:chan Xl By = M#S
¥;T; ¥ (asyncrecvx : Bon kin M : S) # Asyncrecv(k, B, S)

asyncrecv

Next we define a macro to actually create a private channeérfancommunication. This macro uses the
previously defined macrpriv . In addition to creating the private channel name, it alsats a new
queue to be used for communication on the channel. This ie tyra call to the functioempty from the
specification of the typqueuep.

privasyncchan k in M # S(k) =
privv k:chan in (M ® (empty [k])) # (S(k) ® (queuep k))

If we define the typ@rivasyncchan(B, k.S(k)) = 3k : chan.(S ® queuey k), then the typing rule for
the above construct’is

Y,k :chan; AU H M # S(k)
;T A; ¥ = (privasyncchan k in M # S(k)) # Privasyncchan(B, k.S(k))

privasyncchan

Finally we define a cleanup macro that destroys the message@ssociated with a channel. This macro
is used when the channel is no longer needed for commumnica@mce this macro is used on a channel,
subsequent attempts to send or receive on the channel adlaiek.

destroyasyncchank; M # S =
Aq:queuey k. { let {1} =destroy [k] ~ ¢ in M }
If we defineDestroyasyncchan(k, B, S) = queuep k — {S}, then we have the following derived typing
rule

Y F k:chan S0 M#S
YT A; ¢ - (destroyasyncchan k; M # S) # Destroyasyncchan(k, B, S)

destroyasyncchan

All the above constructs are summarized in figure 28. We afteit type annotations from these constructs
if they are clear from the context.

5.3 Example: Sieve of Eratosthenes

We build a concurrent version of the sieve for Eratosthenediltering prime numbers from a sequence
[2,...,n]. This example uses the asynchronous message passing setki@scribed earlier. For this ex-
ample, the messages we send on channels are integers aediregoeue data structure described earlier
usesB = int. We omit the type annotatioint from the typequeue, .. We begin with a function that
sends all numbers fro@to N on channek. Let us assume we have a special integer caliddD which

we use to signal end of data on a (message) queue. This fardiedintegersupto is shown in figure

29. It has the typ&k : chan. int — {ua.Asyncsend(k, int, 1 & {a})}.

If we allow integersupto [k] NV to execute in a CHAM, then each recursive call of the loop addsw in-
teger to the queue associated with chakndtventually the conditiom > N succeeds anilhtegersupto

"We use the notatioh.S(k) to indicate thak is bound in the typ@rivasyncchan (B, k.S(k)).

52

Types

Asyncsend(k, B, S) = queueg k —o {queueg k ® S}

Asyncrecv(k, B, S) = pa. queuey k —o {(a ® queuey k) @ (S ® queuey k)}
Privasyncchan(B, k.S(k)) = 3k : chan.(S(k) ® queuey k)
Destroyasyncchan(k, B, S) = queuepy k — {S}

Macros

asyncsendk, N : B);M # S =
Aq:queuey k. {(push [k] ~ ¢ N) ® M}

asyncrecvz:B on k in M # S =
pu. £0ldygincrecy(k,B,5)- NG : qQueuep k.

{
let {Ib®q'} =isempty [k] ~ ¢ in
if (b=true) then inl (u® ¢’)
else
let {lz®q"} =pop [k] = ¢ in
inr (M ® ")
¥

privasyncchan k in M # S(k) =
priv. k:chan in (M (empty [k])) # (S(k) ® (queuep k))

destroyasyncchank; M # S =
A :queuey k. { let {1} =destroy [k] ~ ¢ in M }

Typing Rules

> F k:chan >»Iywv - N:B S0 M#S
T3 A; ¥ + (asyncsend(k, N : B); M # S) # Asyncsend(k, B, S)

asyncsend

Y F k:chan S;T,o:B; U = M#S
;T U + (asyncrecvz : Bon kin M : S) # Asyncrecv(k, B, S)
Y, k:chan; I A0 H M # S(k)
Y AU = (privasyncchan k in M # S(k)) # Privasyncchan(B, k.S(k))
Y F k:chan S0 M#S
YT A; ¢ - (destroyasyncchan k; M # S) # Destroyasyncchan(k, B, S)

asyncrecv

privasyncchan

destroyasyncchan

Figure 28: Macros for asynchronous communication

53

(* integersupto: Vk : chan. int — {u«.Asyncsend(k, int, 1 ® {a})} *)

fun integersupto [k:chan] (N:int) =

(* loop: int — {po.Asyncsend(k,int, 1 @ {a})} *)
let val loop (n:int) =
{

@ua.Asyncsend(k,int,169{04}) :
if (n > N) then
asyncsend(k, END); inl 1
else
asyncsend(k,n); inr (loop(n + 1))

loop 2
end

Figure 29: The functionintegersupto

terminates withinl 1. Note that otheasyncsend andasyncrecv calls on the channet can be inter-
leaved. For example, if at some point of time, the messageeqoek has integer?.. . . 10, then some other
process may use the macigyncrecv up to nine times on channglbefore any more integers are sent by
integersupto . Next we write a filter function which given an input chanaep, an output channelut
and a primep, filters the integers oinp for numberaot divisibleby p and writes the output to channelt.
This function is shown in figure 30. It has the typg#&p : chan. Yout : chan. int — {F(inp, out)}.

Next we come to the program sieve which takes an input chanpednd an output channelit and filters

the input channel for all integers that are relatively primé¢heir predecessors on the same channel. These
filtered integers are written to the chaneek. This program is shown in figure 31. It has the typy@np :
chan. Yout : chan. { R(inp, out)}} whereR(inp, out) is the type:

type R(inp,out) =
Asyncrecv(inp, int,
Destroyasyncchan(inp, int, Asyncsend(out, int, 1))
@ Asyncsend(out, int,Privasyncchan(int, k.({F(inp, k)} ® R(k,out))))

)

The typeR(inp, out) is not a regular recursive type since it cannot be expressiad the standard recursive
constructua.S. Instead, it requires recursive definitions or recursiyeetpinders at kinds higher than
Type . Either may be added to the language without much techniffadulty. Recursive definitions, in
particular, can be added using the standg&stld construction as follows. Under the assumption that we
have a definitionR(7; ...i,) = S, where the synchronous tyge may mentionR again, we have the
following typing rules:

STy A; U = M#S
S0y A; W F foldpy, . 4)(M) # R(iy .. . in)

fold-R’

54

type F(inp,out) =
pc. Asyncrecv(inp, int, Destroyasyncchan(inp, int, Asyncsend(out, int, 1))®
(o ® Asyncsend(out, int, a)))

(* filter :Vinp:chan. Yout: chan. int — {F(inp,out)} x)

fun filter [inp] [out] p =
{
Hu. @F(inp,out)
asyncrecv n:int on inp in
if (n=END)
then inl
destroyasyncchan inp in asyncsend(out, END);1
else inr
if (n mod p=0) then inl u
else inr (asyncsend(out,n);u)

Figure 30: The functionfilter

ST Ap: S;¥ F oy e
YA £oldpg, 4y (P) t R i); ¥ F o

The statementet {!f} = {lu} in ... in the body ofsieve binds f to a pure term which has the same
behavior and type as the recursive variableWe integrate all the functions together to produce a single
function primes that takes a channel nameat and an integefNV and produces as output a single queue
of type queue out containing all primes up té&v. This function is shown in figure 32. It has the type
Vout : chan. int — {queue out}.

5.4 Implementing Buffered Asynchronous Message Passinging Functions

As mentioned in the introduction to section 5, it is possitslaewrite all the macros for buffered asyn-
chronous message passing presented in section 5.2 a®hsctn this section we present the functional
equivalents of all the macros of section 5.2. Similar trarsftions can be applied to all macros presented
in later sections. The purpose of doing this is to establistt the library code presented here can be rep-
resented using the abstraction mechanisms in CLL, and tn@fusmacros is merely a convenience rather
than a necessity. We start by writing an equivalent funetioepresentation of the macesyncsendsee
figure 28). As can be seen, this macro requires three arggmenthannel namég, a valueN of type B

to send on the channel and a continuatighof type S. The type ofasyncsend (k, N : B); M # S'is
Asyncsend(k, B, S). This suggests the type for the corresponding functionstrattion:Vk : chan. B —

{S} — Asyncsend(k, B, S). We observe three facts here. First, the argument of fype unrestricted
because we want values passed on channels to be unrestBetenhd, we have to pasdg after enclosing

it in a monad because due to syntactic restrictions in CLLcamnot pass monadic terms as arguments.
Hence the second argument of the functional abstractiofityge { S} instead ofS. Third, since we do not
have polymorphism in CLL, we need a separate function foh gedr of types(B, S). All these functions

55

type R(inp,out) =
Asyncrecv(inp, int,
Destroyasyncchan(inp, int, Asyncsend(out, int, 1))
@ Asyncsend(out, int,Privasyncchan(int, k.({F (inp, k)} @ R(k,out))))

)
(* sieve:{Vinp:chan. Yout: chan. {R(inp,out)}} *)

sieve =

{

pu. Ainp : chan. Aout : chan.

let {If} ={lu} in
@R(inp,out)
asyncrecv p:int on inp in
if (p=END)
then inl
(destroyasyncchan inp in asyncsend(out, END) in 1)
else inr
asyncsend (out, p); privasyncchan k in
(filter [inp] [k] p) ® (f [K] [out])

Figure 31: The progransieve

(* primes:Vout: chan. int — {queue out} *)

fun primes [out: chan] (N :int) =

{
let {f} =sieve in_
link
(
privasyncchan k in (integersupto [k] N) ® (f [k] [out])
+ Privasyncchan(k, int, {ua.Asyncsend(k, int, 1 @ {a})} ® {R(k, out)})
) to queue out
}

Figure 32: The functionprimes

56

look exactly the same, except that they have different typesuming fixed type®3 and S, the function
asyncsend’ is shown below. It has the typ# : chan. B — {S} —o Asyncsend(k, B, S).

fun asyncsend’ [k :chan] (N:B) (M:{S}) =
5\(] : queuep k.
{
let {m'} =M in
(push [k] ~ ¢ N) @ m/
}

Now we consider the macasyncrecv. This macro takes two arguments - a channel name which input

is to be received and a monadic teMhof type S that has a free variableof type B that is to be bound to the
input value received on the chanrmelWe can represent the second argum&htas a function of typd3 —
{S}. This gives us the type of the functional abstraction cpoesing toasyncrecv : Vk : chan. (B —
{S}) — {Asyncrecv(k, B, S)}. We observe that the return type of this functiojdAsyncrecv(k, B, S)}
instead ofoAsyncrecv(k, B, S) becausésyncrecv(k, B, S) is a synchronous type and owing to syntactic
restrictions in CLL, it cannot be returned directly by a ftion. The functional abstractioasyncrecv’

is shown below. It has the typ#: : chan. (B — {S}) — {Asyncrecv(k, B, S)}.

fun asyncrecv’ [k :chan] (M :B — {S}) =

{
/{“L foAAsyncrecv(k,B,S)' Ag : queuep k.
let {b®q'} =isempty [k] ~ ¢ in
if (b=true) then inl (u®¢’)
else
let {lz®@q"} =pop [k] = ¢
let {m'} =M =z in
inr (m/ ® q//)
}
}

Next we come to the macqrivasyncchan. This macro takes as argument a monadic téfrof type S(k)
wherek is a parameterized channel name (see the typing rulprieasyncchanin figure 28). In terms
of abstractions, such a monadic term can be representedeblypgbVk : chan.{S(k)}. The functional
abstractiorprivasyncchan that corresponds to the mags@ivasyncchan ’ is shown below. It has the
type (Vk : chan.{S(k)}) — {3k : chan.{S(k) ® queuey k}}. Itis instructive to compare this function
and its return type to the macpoivasyncchanand the typerivasyncchan(B, k.S(k)) respectively.

fun privasyncchan’ (M : (Vk : chan.{S(k)})) =
{
priv. k:chan in
{
let {m'} =M [k in
} (m' @ (empty [K])) # (S(k) ® (queuep k))

57

Finally we consider the maciestroyasyncchan This macro takes two arguments - a channel naraed
a continuationV/ of type.S. Writing an equivalent functional representation for thigcro is straightforward
and is shown below. The functiatestroyasyncchan’ shown below has the typék : chan. {S} —
Destroyasyncchan(k, B, S).

fun destroyasyncchan’ [k : chan] (M :{S}) =
VE queuep k.
{
let {1} =destroy [k] " ¢
let {m'} =M in m’

}

Thus the abstraction mechanisms in CLL are expressive értouajlow us to write all the macros presented
so far as functions. However, the bodies and types of thesgifuns are more complicated than those of the
corresponding macros. For the sake of conciseness anty claripresent the remaining library code only
as macros. It should, however, be kept in mind that all themeros can be represented as functions as well.

5.5 Programming Technique: Synchronous Message Passing

The communication primitive in CLL is inherently asynchoois. The basic communication primitive is to
use the theorem prover to link together a function of typeo B and a value of the input typB using the
rule— — —. In this case the value itself is consumed and hence senaegslo continuation i.e. they are
asynchronous. In section 5.2, we built a library of macrosxiend this communication primitive to allow
gqueuing of messages on a channel. However, communicatisragganchronous in the sense that senders
received no confirmation that the message sent had beewaddeefore they were allowed to continue
evaluation. Now we build a library of macros to implement@ymmnous communication, where senders
receive confirmation that their message has been receifecelibey are allowed to continue execution.
As expected, this requires implementation of a protocol dive primitive asynchronous communication.
The protocol we choose is based on a protocol in [6] to imphntiee synchronoug-calculus (without
choices) in the asynchronouscalculus. It works as follows. Suppose a senflevants to sends a valué

to receiverR on channek. S and R create a private channel each. Let us call thesmdt respectively.
First, S sends the channel naméo R on channek. OnceR knows the channel name it sends back the
channel name on the channelk to S. S now forks - in one thread it sends to R ont¢ and in the other it
resumes execution with its continuatioR. on receivingl” ont resumes its own execution. frrcalculus
notation, this translation is represented as follows.

(RV.P') = wu (kulu@). @V[{(P)) (1)
(k@) P) = vt k(u). (at|t(y). (P)) (2)
In order to implement this protocol, we assume that we havedhstructor-destructor paiisut,, destroyout)

and(out,, destroyoutl) and the corresponding kindsit, andout; from section 3.3. The signature for
these constants is reproduced below.

outg : chan — Type

outy : chan — chan — Type

out, . Vx :chan.outgx

out, : Vx :chan. Vy: chan. out; z y
destroyout, : Vz:chan.outoz —o {1}
destroyout : V& :chan.Vy:chan. out; zy — {1}

58

We also need a datatype to encode data being sent on ctiar@et signature for this datatype is

datap : chan — Type
datap : Vz:chan. B —datap
undatag : Vz:chan.datapx — DB

The corresponding reduction rules are:

undatap [k] " (datag [k]"V) — V

N — N’
datag [k] "N — datag [k]" N’
N — N’
undatap [k]" N — undatag [k]" N’

The actual implementation of the send and receive macrasthisesame encoding as in section 3.3. The
synchronous send macro, calkegincsend is defined below.

syncsend (k,N :B);M # S =
priv uw:chan in
(out, k] [u]) ®
At : chan. Ac:outy u t.

{
let {1} =destroyout |[u] [t] "~ ¢
 (datay [] T N) ® M

}

Let us define the typByncsend(k, B, S) as follows.

Syncsend(k, B, S) = Ju : chan. ((outy ku) ® (Vt: chan. out; ut —o {(datapt) ® S}))
The derived typing rule for this construct is

> F k:chan Sy AU - M#S AU R N:B
;A AU - (syncsend(k, N : B); M # S) # Syncsend(k, B, S)

syncsend

The definitionssyncsend andSyncsend correspond to the translation of the right hand side of eguat
(1) according to the rules in figure 22. The correspondinglsganous receive macro is the following.

syncrecv y: B on k in M # S =
priv ¢:chan in
Au : chan. \c:outy k wu.
{
let {1} =destroyout [k] [u] ~ c in
(outy [u] [t]) ®

~

Ay :datap t.

59

type Bufp(read,write) = pa.Syncrecv(write, B, Syncsend(read, B, «))
(* oneCellBufferp : Vread : chan. Ywrite : chan. {Bufpg(read,write)})

fun oneCellBufferp [read :chan| [write: chan] =

{
pu. @Buf}g(read,write)
syncrecv z: B on write in
syncsend(read, x); u
}

Figure 33: The functiononeCellBuffer

let {y} = {undatap [t] = y'}
in M

¥
We define the typ8yncrecv(k, B, S) as follows.
Syncrecv(k, B,S) = 3t : chan. Vu : chan. outy k u — {(out; ut) ® (datapt— {S})}

Then the derived typing rule fatyncrecv is

Y F k:chan S5 Ay: By E M#S
YT A; ¥ + (syncrecv y: Bonk in M # S) # Syncrecv(k, B, S)

syncrecv

Again, this encoding is actually the translation of the tighnd side of equation (2) according to the rules
in figure 22.

5.6 Example: One Cell Buffer

Using the synchronous send and receive methods definedrearti define a one cell buffer This buffer
operates on two channetsad andwrite which are used to read and write to the buffer. When the buffer
is empty, sending a value anrite has the effect of storing this value in the buffer. Subsetipesttempts

to write to the buffer block, until some process reads théehbufn channetead. After the buffer is read,
attempts to read block until the buffer is written to agaihislimplementation is shown in figure 33.

5.7 Programming Technique: Synchronous Choices

Choice in the context of concurrent programming refers taimipve that allows the system to non-
deterministically choose from one of several possibditiefrhe candidates for the choice may be values,
events (like send and receive) or processes. Usually, thieels based on some criteria i.e. not all of the

8A one cell buffer is also called an M-structure.

60

possibilities are considered as possible candidates fectsm. The simplest notion of choice iisternal
choice, where the executing process spontaneously sélectseveral possible alternatives and continues
with one of these. In our system, the tyfe® S» represents internal choice between processes. A monadic
term of this type may evaluate to a monadic value of t¥p@r S,. The environment in which the process
computes plays no role in this selection. Thus this kind daficd is internal. Another very useful kind

of choice isexternal This is a choice resolved by the environment, based on seleeti®n criteria. In
process-calculi liker, several variants of external choice have been suggestaikt & these are based
on selecting some input or output action. For example, irstiiehronousr-calculus [24, 25], there is an
associative and commutative (AC) choice operdlt@nd a syntactic clasS' to represent external choice
between input and output actidhs

C == z(y).P|zy.P| Ch]]Cy
The semantics of this operator are as follows.

(z(y)-P [C1) | (22.P"[] C2) — Plz/y] | P

A choice may be resolved by the environment in favor of aroadfithere is a corresponding co-action. In
[27] it is shown that this kind of choice is strictly more egpsive than internal choice apdmitive in the
sense that it cannot be implemented in a system without samiksconstruct. The concurrent program-
ming language CML provides similar constructs cakddose andselect.

In the case of asynchronous process-calculi (concurresteisys where senders have no continuation) like
the asynchronous-calculus, mention of external choice operators in litgmtis rather limited. Most of
these choice operators allow choice between input prosesgg

C = z(y).P|Ci+ Cy (3)

(z(y).P + C1) |22 — Plz/y]

As shown in [27], this choice operator is also strictly legpressive than the external choice operator in
synchronous calculi mentioned earlidCLL is also an asynchronous language. As seen in section 3.5,
the pairing constructNy, N») and the associated type constructoact as an external choice primitive in
ICLL because forward chaining can project out eithgror N, from a pair(Ny, N»), if it can be used to
complete a reaction step. From the translation in secti8nv@e see that our choice construct corresponds
to the following choice operator in the asynchronausalculus.

C == z(y).P|zy| Cy+ Co

(z(y)-P +C1) [(724 C) — Plz/y]

Clearly this operator is at least as expressive as the implytehoice operator in equation (3). We now show
that this operator can be used to implement a complete synahs external choice operafpin CLL. The
encoding is not obvious and we present it case by case. Thootidghis section, we use analogy with the
w-calculus to describe constructions abstractly.

°This choice operator is called in the original paper. We call t to avoid syntactic ambiguity.

61

5.7.1 Input-input Choice

We implement a choice between two receivers. Suppose wetlaw&/nchronous receiverk; (y;).P; and
ka(y2).P». Using equation (2), the translations of these two recsiirgo the asynchronous-calculus are

(Kk1(y)- Pr) = vtr ki(ua). (wta [ta(yr). Pr))
(k2(y2). P2) = wvta. ka(uz). (U2t2 | t2(y2). (P2)

This suggests the following translation for synchronoysitrinput choices.

(ki(y1). Pr [k2(y2). P2) = vtjvts.
(
(k1(u1). (@ata [t2(y1). (Pr))) +
| (2 (u2). (agts | ta(y2). (P2)

We can now define the operatgyncchoice,, that allows us to choose synchronously between two re-
ceivers. It is just a translation of the above term into CLLe Wse notation from the languadgdCT

[30] to denote events in a choicek?(y : B).M denotes the event of receiving a value of tyBeon
channelk and binding it toy in M. Observe that theventk?(y : B).M differs from the process
syncrecv y : B on k in M in that the latter will execute on its own. The former, on thien hand,

is notation for a potential communication.

syncchoice,, [k17(y1: B1).My # S1, ka?(yz2: Ba).My # So] =
priv ¢; : chan in

priv f¢9 :chan in

{

Auy : chan. Ac:outy ki .

{
let {1} =destroyout [ki] [wi] ~ ¢ in
(outy [ui] [t1]) @
Ayj : datap, ti.
{
let {y1} = {undatap, [t] " 1}
in M,
}
I .
Auo : chan. Ac:outy ko us.
{
let {1} =destroyout [ko] [uz] "~ ¢ in
(outy [ug] [to]) ®
Ay, : datap, to.
let {yo} = {undatap, [t2] " w5}
in M,
}
}

62

The typing rule for this macro is

3 F k;:chan STy Ay : B M; # S; i=1,2
(syncchoice,, [k17(y1 : B1).My # S1, k2?(y2 : Ba).My # Sa))
Syncchoicey,(k1, B1,S1, ko, B2, S2)

syncchoiceyry

AT

whereSyncchoice,, iS defined as

Syncchoice,,(ki, B1, S, ko, Ba, S2) =
Jt1 : chan. Jts : chan.
(Vuy : chan. outy kj u; —o {(outs u; t1) ® (datap, t1 — {S1})}) &
(Vug : chan. outy kg ug —o {(out; ug t3) ® (datap, ta — {S2})})

5.7.2 Output-output Choice

Now we implement a synchronous choice between two sendex$orAhe case of receivers, we begin by
considering two senders, N1.P; and ko No. P in the synchronousr-calculus. Their translations to the
asynchronoug-calculus are

(kN1 PL) = wvun. (kyug | ui(ty). (N | (P)
(kaN2. Py) = wvug. (kuz | ua(tz). (22N2 | (P2)

From these we obtain the following translation for outputpat choice.

((kiN1.Py) [] (k2No.P2)) = wvuy. vus.
(
(Elul —I—_E’zuz) | B
| (ur(t1)- (L Ny [(P) + ua(t)- (2N [(P2)

This encoding works because in order for communication tzged with the term on the right, the first
communication must occur witky u; or kous. Once this has happened, the other option is eliminated from
the choice. As an example, suppose that a receiver recejven k; before a receiver communicates on
ks. Then the termkyus is eliminated and since, is private, no process can communicate with the term
ua(ta).(taNo | ((P2))). This term gets eliminated when the receiverkgmeplies onu;. Thus we can define

a synchronous choice macro for output as shown below. Agdefie useéPICT notation to denote events

in the choice.k!(N : B); M denotes the event of sendifig of type B on channek and continuing with

the process\.

syncchoicess [kll(Nl ZBl);Ml # 51, k‘g!(Ng:Bg);Mg # 52] =
priv wujp :chan in
priv wug :chan in
(outy [k1] [u1], outy [ko] [uz]) ®

Aty : chan. \c:out; up .

{

Z!.Lt {1} = destroyout, [ui] [t:] " ¢
in

63

(datap, [t1] ~ N1i) ® M

[
Ats : chan. e outy ug ts.
{
let {1} =destroyout [ug] [t2] " ¢
in
(datap, [ta] = Na) ® Mo
}

)

The typing rule for this macro is
¥ b k;: chan S A0 - M; # S, AU RN B
(syncchoicess [kll(Nl : Bl); Ml # Sl, k‘g!(Ng : Bg);MQ # 52])
Syncchoicegs(k1, B1,S1, ko, B2, S2)
where the typ&yncchoicegs(k1, By, S1, k2, B2, S2) is defined as
Syncchoicess(kl, By, 51, ko, Bo, Sg) =
Juq : chan. Jus : chan.

((out1 k1 u1 & outy ko UQ) &

((Vt1 : chan. outy uy t; —o {(datap, t1) ® Si}) &

(Vtg : chan. outy us ty —o {(datap, t2) ® S2})))

syncchoicegg

AN U -

5.7.3 Input-output Choice

Consider a receivek; (y;).P; and a sendeky; No.P,. The translations of these to the asynchroneus

calculus are
(ki(yr) P) = vt ki(ua). (@ata | ta(yn). (Po)))

(kaNa2. Py) = wug. (kaug | ua(t2). (l2N2 | (P2)
We can combine these two terms in a choice as follows.

((k1(y1). P) [} (kaNo. Py)) = vty vus.
(
(k1(u1). (aaty [t1(y1)- (PL) + kaug) |
us(t2). ((aNa | (P2)
)

Though this encoding is correct in thecalculus, we cannot implement it in CLL because we encode
choices using the type connecti¥e and hence the two components of a choice must use the sagae lin
resources. This is not the case here since there is a chawedyd k1 (u1). (a1t1 | t1(y1). (P1) andkaus

in the above equation. An alternate encoding that balaritessaurces is shown below. This encoding is
incorrect because it has an atomicity problem, which isrilesd after the encoding.

{ (k1(y1)-P1) [| (kaNo.P2)) = vty. vus.
kous |

(ki(ur). (unty | ta(y1). € P1))
+ ua(ta). (E2N2 [(P2)

64

The atomicity problem in this encoding is the following. Gater the scenario where there is a receiver
on ko and a sender oAk i.e. both actions in the choice can be selected. Since teaaaeceiver ork,,

the termkyuy can communicate with it. If the process(us). (@1t1 | t1(y1). (P))) communicates with
the sender ork; beforethe receiver ork, can reply onus, the choice is resolved and the continuation
us(ta). (t2N2 | ((P) is eliminated. This deadlocks the partial communicatiorkgn

One way to eliminate this problem is to deactivate the inpotessk; (u1). (a1t1 | t1(y1). (Py))) once
kous has communicated. This can be done by creating a privatexehan and requiring the input process
to obtain a signal on that. One such encoding is shown bel@wéshall see later, an internal communi-
cation can occur in this encoding, and hence it does not wotlkd r-calculus. However, in CLL, we can
implement this encoding using 3-way synchronization.

((k1(y1)-P1) [| (koeNo.Po)) = vty. vug. vay.

(
() + koug) |
() ki (ur). (aity | ta(yr)- € 21)
+ ua(tz). (L2N2 | (P2)

(w1

(
)

As mentioned earlier, the atomicity problem does not ansthis encoding because onkgu, communi-
cates,wy () is eliminated and hence the input process cannot commenitltwever, this encoding suffers
from an internal communication problem. The term on thetrgtie above can perform a communication
within itself and reduce, thus resolving the choice intdyna

vt1. Vug. VW1 .

(w1<> + kaug) | vti. vug. vwy.
uy). (arty | t1(y1). Pr)) (kaug | uz(t2). (BaN2 | (P2)))
o(t2). (taNa | (P2))))

—~
S
firy
—~
—
T
iy
—~

S

Thus this encodingloes notwork in the r-calculus. However, in CLL, we can chain reactions together
In particular, successive inputs can be chained togeteerwe can force two senders to synchronize si-
multaneously with a receiver. If we chain together the twauis inw; (). ki (uq). ..., then this internal
communication onv; cannot occur without the presence of a sendekonConversely, no sender dn

can communicate with this term unless() is also present. Thus this encoding works for CLL. We build a
macro based on this encoding as follows.

syncchoiceys [k17(y1: B1).My # S1, ko!(No: Ba); My # So] =
priv ¢; : chan in
priv wug :chan in
priv wi : chan in
(outy [wi], outy [ka] [ug]) ®
-
Al i outy wi.
Au; : chan. e outy k1 wu.

{

65

let {1} =destroyout [ki] [w1] ~ ¢ in
let {1} =destroyout [wi] "~ ¢ in

(outy [w] [h1]) ®

N

Ay} : datap, f.

{
let {y1}={undatap [t] ~ 1}
in M,
}
b A
Aty : chan. Ac:outy ug to.
{
let {1} =destroyout |[ug] [t2] " ¢
in
(datap, [to] = N2) ® M
¥
)
The typing rule for this construct is
¥ F k; : chan STy A U = Ny By
A Ay - By U B My # 5, STy A;U B Mo # 5

syncchoicerg
. . (syncchoice,s [k17(y1 : By).My # S1, ka2!(Ny : Ba); My # So])
LA, ALY F # Syncchoice,s(k1, By, S1, k2, B2, S2)

where the typ8yncchoiceys(ki, B1, S1, ko, B2, S2) is defined as follows.

Syncchoicers(kl, B, 51, ko, Bs, Sg) =
dt1 : chan. Juy : chan. Jw; : chan
((outg wy & outy ko uz) ®
((outg wy —o Vu; : chan. outy ky u; —o {(outy u; t1) ® (datap, t1 — {S1})}) &
(Vtg : chan. outy ug to —o {(datap, t2) ® S2})))

The input-output choice construct described here can bergkred to an arbitrary number of senders and
receivers. The extension is straightforward and we elideditails here. We also observe that the choice
macros presented here can be used in conjunction with thewssamcsend andsyncrecv defined earlier.
However, separate channels must be used for synchronoussgndnronous communication i.e. channels
used for calls omsyncsend or syncrecv must not be used for calls asyncsend or asyncrecv and
vice-versa.

5.8 Example: Read-Write Memory Cell

We construct a read-write memory cell to illustrate the caonechanism designed above. A read-write cell
is a process that remembers one single value. It listengjtests to read the value stored on chamael!

and to write (change) the value in the cell on channelte. Since a single write can be followed by several
reads, the value stored in the cell has to be non-linearh&ymve assume that the cell is always created with

66

type Cellg(read,write) = pa.Syncchoice,s(write, {!B}, {{a}}, read, B,{a})

(*+ memoryCelly : Vread : chan. Ywrite : chan. B — {Cellp(read,write)})

fun memoryCelly [read: chan| [write: chan| (v:B) =

{

@Cellg (read,write)
syncchoice,g

[
write?(x : {|B}).
{
let {ly} == in
memoryCelly [read] [write] y

2

read!(v : B); memoryCelly [read] [write] v

Figure 34: The functionmemoryCell

a value stored in 9 Figure 34 describes a functiatemoryCel1 that creates a memory cell on channels
read andwrite and initializes it with the value.

6 Discussion

CLL is a concurrent language designed from logical priregplin the process of designing CLL, we have
accomplished four main objectives. First, we have shownhgtaof-search in logic has an interesting com-
putational interpretation - it can viewed as a proceduréntotbgether programs to form larger programs.
This may be viewed as an extension of the Curry-Howard ispimsm to include proof-search procedures.
Second, we have obtained a symmetric integration betweasttifunal and logic programmingtCLL is
purely functional.ICLL introduced in section 3 embeds this functional languiage concurrent logic pro-
gramming language that performs proof-search on typesagframs and then links programs together. In
section 4 we embed tH€LL back intof CLL, making the integration between functional and logio-pr
gramming symmetric. Execution of programs in full-CLL peecls in interleaving phases of functional
evaluation of programs and proof-search to link parts ofams. To the best of our knowledge, this is the
first time that functional and logic programming have bedagrated in this manner.

CLL is also a symmetric integration of functional and comeuat programming in a typed settingCLL in
section 3 adds concurrency to the functional langu#gje.. Full-CLL allows ICLL CHAMSs to be created
and nested inside functional evaluation throughlthek construct, thus making the integration symmetric.
The idea of integrating functional and concurrent prograngms not new. The blue-calculus [8], CML

%This is in sharp contrast with memory cells called I-struesuwhich are created empty and have a write-once, read-many
semantics. See [32] for a description of I-structures.

67

[31, 32], JoCAML [15], PICT [30] and Facile [17] all integefunctional and concurrent programming.
All these languages have both functional and concurrettifes and are typed. However, there are several
differences between these languages and CLL. First, aetlmguages have a “flat” model for concurrent
processes, i.e. there issagleglobal configuration in which all parallel processes exeainultaneously.
When a function creates a sub-process, the process is didalydifted and placed in this global con-
figuration. This process can then freely communicate witlothler processes. Thus communication and
synchronization cannot be localized to specific parts ofms. In sharp contrast, each call to thek
construct in CLL creates a separate configuration for coratiprocesses. Processes within a configu-
ration can communicate and synchronize with each othemptagesses in separate configurations cannot
(for an illustration, see the example of Fibonacci numbersection 5.1). Another consequence of having
a single configuration for processes in existing concurf@mttional languages is that concurrent compu-
tations (processes) do not return values to functionalgeatimectly. This has to be done indirectly through
the message passing mechanism of the language. In CLL, oothibe hand, a concurrent computation
started using th&ink construct directly returns a result that can be used in thmareder of the functional
computation. This results in a significant difference in streicture of programs written in CLL and other
languages. It also makes the integration between fundteomiconcurrent programming more symmetric
in CLL. The third difference between CLL and blue-calculGsiL, JOCAML, PICT and Facile is that every
process in CLL has a distinct type that provides definitermfation about the behavior of the process. For
example, a process of tyf§ ® S, is a parallel composition of two processes of typgsand S;. On the
other hand, typing for processes in the other concurremjuiages mentioned above is weak and process
types provide no information about the behavior of proceskeFacile, PICT and JOoCAML processes have
no types at all. The type system only checks that each ingiitlnctional term in a process has a type.
In the blue-calculus, all processes in the global configumanust have the same type. In CML, processes
are not explicitly visible; they are only observable thrbwide-effects like communication. We believe that
having informative types on processes will make it easiee#son about correctness of CLL programs.

The fourth contribution of CLL is an exploration of connecis between process-calculi constructs and
connectives of linear logic in the context of programmingdaage design. As seen in section 3.5, the lin-
ear logic connectives), 4, &, &, — and atomic propositions correspond to process-calculstcocts of
parallel composition, hame restriction, external choinggrnal choice, input prefixing and asynchronous
output respectively. Further, communication channelslmsimulated using index refinements and syn-
chronization and communication between processes canrf@med using proof-search. Thus there is a
correspondence between linear logic connectives and ggaidculi constructs and proof-search in linear
logic and communication in process-calculi. Abramsky’s'kvon computational interpretations of linear
logic [1] and the MSR framework [11] also explore similar cections between linear logic and concur-
rent computation but as opposed to CLL they do not use thiggpondence to construct a programming
language. As far as we know, this is the first time that sucmeotions have been used explicitly in a
programming language.

Acknowledgment

The author expresses his sincere thanks to Frank Pfenningsaguidance, comments, suggestions and
ideas that have been invaluable to the creation of CLL arsdrépiort.

"The ambient calculus [9] allows creation of several separasted configurations for processes. However, the antzikmntus
lacks functional programming and emphasizes process ityodild cannot be compared to CLL directly.

68

References

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

Samson Abramsky. Computational interpretations ofdinlogic. Theoretical Computer Science
111(1-2):3-57, 1993.

Samson Abramsky, Simon Gay, and Rajagopal Nagarajaacif§mation structures and propositions-
as-types for concurrency. In G. Birtwistle and F. Molleritexs, Logics for Concurrency: Structure vs.
Automata—Proceedings of the VIlIIith Banff Higher Order V¥bdg volume 1043 otf.ecture Notes in
Computer Sciencespringer-Verlag, 1996.

Jean-Marc Andreoli. Logic programming with focusingopfs in linear logic. Journal of Logic and
Computation2(3):297-347, 1992.

Gérard Berry and Gérard Boudol. The chemical abstraathine. InProceedings of the ACM Sympo-
sium on Principles of Programming Languageages 81-94. ACM, January 1990.

Gérard Berry and Gérard Boudol. The chemical abstnaathine. Theoretical Computer Science
96:217-248, 1992.

Gérard Boudol. Asynchrony and the pi-calculus. TechhReport RR-1702, INRIA SofiaAntipalis,
1992.

Gérard Boudol. Some chemical abstract machines Drecade of Concurrengyolume 803 oLNCS
pages 92-123. Springer-Verlag, 1994.

Gérard Boudol. Ther-calculus in direct styleHigher Order Symbol. Computl1(2):177-208, 1998.

Luca Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Bgfor the ambient calculusnf. Comput,
177(2):160-194, 2002.

Serenella Cerrito and Delia Kesner. Pattern matchinguaelimination. IrLogic in Computer Science
pages 98-108, 1999.

lliano Cervesato. The logical meeting point of multisewriting and process algebra. Unpublished
manuscript. 2004. Available electronically from httghgory.stanford.edu/"iliano/forthcoming.html.

lliano Cervesato, Frank Pfenning, David Walker, andiki@Vatkins. A concurrent logical framework
II: Examples and applications. Technical Report CMU-CSt02, Computer Science Department,
Carnegie Mellon University, May 2003.

Bor-Yuh Evan Chang, Kaustuv Chaudhuri, and Frank Ffepn A judgmental analysis of linear
logic. Technical Report CMU-CS-03-131, Computer Scienepdtment, Carnegie Mellon Univer-
sity, 2003.

Kaustuv Chaudhuri. Focusing the inverse method fagdimlogic. Unpublished Manuscript. 2005.
Available electronically from http://www.cs.cmu.edudistuv/papers/lics05.pdf.

Sylvain Conchon and Fabrice Le Fessant. Jocaml: Magknts for objective-caml. IASAMA’99:
Proceedings of the First International Symposium on Aggstedns and Applications Third Interna-
tional Symposium on Mobile Agengmage 22. IEEE Computer Society, 1999.

69

[16] Cédric Fournet, Cosimo Laneve, Luc Maranget, and &igiemy. Implicit typing a la ML for the join-
calculus. InProceedings of the 8th International Conference on Corenagy Theorypages 196-212.
Springer-Verlag, 1997.

[17] Alessandro Giacalone, Prateek Mishra, and SanjivadekaFacile: A symmetric integration of con-
current and functional programmingnternational Journal of Parallel Programmind.8(2):121-160,
1989.

[18] Jean-Yves Girard. Linear logic. [Fheoretical Computer Scienceolume 5, pages 1-102, 1987.

[19] Jean-Yves Girard and Yves Lafont. Linear logic and lapynputation. InProceedings of TAP-
SOFT'87, vol 2volume 250 of_ecture Notes in Computer Sciengages 52—66, 1987.

[20] Atsushi Igarashi and Naoki Kobayashi. A generic typstasgn for the pi-calculus. IRroceedings of the
28th ACM SIGPLAN-SIGACT symposium on Principles of prognarg languagespages 128-141.
ACM Press, 2001.

[21] Naoki Kobayashi. Type-based information flow analysisthe pi-calculus. Technical Report TRO3-
0007, Department of Computer Science, Tokyo Institute ahfelogy, October 2003.

[22] Naoki Kobayashi, Benjamin C. Pierce, and David N. Turnkinearity and the pi-calculusACM
Trans. Program. Lang. Sys21(5):914-947, 1999.

[23] C. Mierowsky, S. Taylor, E. Shapiro, J. Levy, and S. SafiThe designh and implementation of flat
concurrent prolog. Technical Report CS85-09, Departme@omputer Science, Weiszmann Institute
of Science, 1985.

[24] Robin Milner, Joachim Parrow, and David Walker. A cdlsuof mobile processes part 1. Technical
Report ECS-LFCS-89-85, Edinburgh University, 1989.

[25] Robin Milner, Joachim Parrow, and David Walker. A cdlsuof mobile processes part 2. Technical
Report ECS-LFCS-89-86, Edinburgh University, 1989.

[26] Eugenio Moggi. Notions of computation and monadisformation and Computatiqro3(1):55-92,
1991.

[27] Catuscia Palamidessi. Comparing the expressive pofvéte synchronous and the asynchronous
pi-calculus. InSymposium on Principles of Programming Languages (POpdges 256—-265, 1997.

[28] Simon Peyton Jones, Andrew Gordon, and Sigbjorn Fi@ancurrent haskell. IRroceedings of the
23rd ACM SIGPLAN-SIGACT symposium on Principles of prognamg languagespages 295-308.
ACM Press, 1996.

[29] Frank Pfenning and Rowan Davies. A judgmental recoictittn of modal logic. Mathematical.
Structures in Comp. S¢il1(4):511-540, 2001.

[30] Benjamin C. Pierce and David N. Turner. Pict: a prograngrhanguage based on the pi-calculus. In
Proof, language, and interaction: essays in honour of Rdbilmer, pages 455-494. MIT Press, 2000.

[31] John H. Reppy. CML: A higher-order concurrent languade Proceedings of the ACM SIGPLAN
1991 conference on Programming language design and implietien pages 293-305. ACM Press,
1991.

70

[32] John H. ReppyConcurrent programming in MLCambridge University Press, 1999.

[33] Ehud Shapiro, editoiConcurrent Prolog: Collected Papergolume 1-2. MIT Press, Cambridge, MA,
1987.

[34] Ehud Shapiro. The family of concurrent logic programmilanguages. ACM Comput. Sury.
21(3):413-510, 1989.

[35] Kevin Watkins, lliano Cervesato, Frank Pfenning, ara/id Walker. A concurrent logical framework

I: Judgements and properties. Technical Report CMU-C3@X2- Computer Science Department,
Carnegie Mellon University, May 2003.

[36] Hongwei Xi and Frank Pfenning. Dependent types in pcatprogramming. IrProceedings of the
26th ACM SIGPLAN-SIGACT symposium on Principles of prognang languagespages 214-227.
ACM Press, 1999.

71

