
Type-Directed Concurrency

Deepak Garg and Frank Pfenning?

Carnegie Mellon University
{dg,fp}@cs.cmu.edu

Abstract. We introduce a novel way to integrate functional and con-
current programming based on intuitionistic linear logic. The functional
core arises from interpreting proof reduction as computation. The concur-
rent core arises from interpreting proof search as computation. The two
are tightly integrated via a monad that permits both sides to share the
same logical meaning for the linear connectives while preserving their dif-
ferent computational paradigms. For example, concurrent computation
synthesizes proofs which can be evaluated as functional programs. We
illustrate our design with some small examples, including an encoding of
the pi-calculus.

1 Introduction

At the core of functional programming lies the beautiful Curry-Howard isomor-
phism which identifies intuitionistic proofs with functional programs and propo-
sitions with types. In this paradigm, computation arises from proof reduction.
One of the most striking consequences is that we can write functions and reason
logically about their behavior in an integrated manner.

Concurrent computation has resisted a similarly deep, elegant, and practical
analysis with logical tools, despite several explorations in this direction (see, for
example, [4, 15]). We believe the lack of a satisfactory Curry-Howard isomor-
phism is due to the limits inherent in complete proofs: they provide an analysis
of constructive truth but not of the dynamics of interaction.

An alternative logical foundation for concurrency is to view computation
as proof search [6]. In this paper we show that the two views of computation,
via proof reduction and via proof search, are not inherently incompatible, but
can coexist harmoniously in a language that combines functional and concur-
rent computation. We retain the strong guarantees for functional computation
without unduly restricting the dynamism of concurrent computation.

In order to achieve this synthesis, we employ several advanced building
blocks. The first is linearity: as has been observed [12], the evolution and commu-
nication of processes maps naturally to the single-use semantics of assumptions
in linear logic. The second is dependency: we use dependent types to model com-
munication channels and also to retain the precision of functional specifications
for transmitted values. The third is monads: we use monadic types to encapsu-
late concurrent computation, so that the linear connectives can retain the same

? This work has been partially supported by NSF Grant CCR-0306313 Efficient Logical
Frameworks.

2

logical meaning on the functional and concurrent side without interference. The
fourth is focusing [5]: we use it to enforce the atomicity of concurrent interactions
during proof search.

The result is a tightly integrated language in which functional computation
proceeds by reduction and concurrent computation proceeds by proof search.
Concurrent computation thereby synthesizes proofs which can be evaluated as
functional programs. We illustrate the design with some small examples, includ-
ing an encoding of the π-calculus to help gauge its expressive power.

There has been significant prior work in combining functional and concurrent
programming. One class of languages, including Facile [11], Concurrent ML [18,
19], JOCaml [9], and Concurrent Haskell [13], adds concurrency primitives to a
language with functional abstractions. While we share some ideas (such as the
use of monadic encapsulation in Concurrent Haskell), the concurrent features in
these languages are motivated operationally rather than logically and are only
faintly reflected in the type system. Another class of languages start from a rich
concurrent formalism such as the π-calculus and either add or encode some fea-
tures of functional languages [17]. While operationally adequate, these encodings
generally do not have a strong logical component. An interesting intermediate
point is the applied π-calculus [2] where algebraic equations are added to the
π-calculus. However, it is intended for reasoning about specifications rather than
as a programming language.

Perhaps most closely related to our work is CLF [21] and the logic program-
ming language LolliMon [14] based on its first-order fragment. Our type system
is based on the common logic underlying both these systems. However, these
systems are intended as a logical framework and concurrent logic programming
language respectively and differ significantly from our language in the opera-
tional semantics. Another closely related line of work is Abramsky’s computa-
tional interpretations of linear logic [3], but the discussion of concurrency there
is based on classical rather than intuitionistic linear logic and lacks functional
features.

The principal contributions of this paper are conceptual and foundational,
although a simple prototype [1] indicates that there is at least some practical
merit to the work. Owing to space constraints we omit the linear type construc-
tors & and ⊕, recursive types and all proofs from this paper. These details can
be found in the companion technical report [10].

In the remainder of the paper we present our language (called CLL) in three
steps. First, we present the functional core (f CLL) which integrates linearity and
a monad. Second, we present the concurrent core (lCLL), which is based on proof
search, and which can call upon functional computation. Third, we complete the
integration with one additional construct to allow functional computation to
call upon concurrent computation. We call the complete language full-CLL. We
conclude with some remarks about the limitations of our work.

Our main technical results are as follows. For the functional core f CLL, we
prove type soundness by proving preservation and progress. For the concurrent
core lCLL, we only formulate and prove a suitable notion of preservation. For
full-CLL, we prove both preservation and progress, but the progress theorem is

3

Sorts γ ::= chan | . . .
Index terms s, t ::= i | f(t1, . . . , tn)
Index variable contexts Σ ::= · | Σ, i : γ
Sorting judgment Σ ` t ∈ γ

Kinds K ::= Type | γ → K
Types T ::= A | S
Asynchronous types A, B ::= C t1 . . . tn | A → B | A(B | ∀i : γ.A(i) | {S}
Synchronous types S ::= A | S1 ⊗ S2 | 1 | !A | ∃i : γ.S(i)

Programs P ::= N | M | E

Terms N ::= x | λx : A.N | N1 N2 | λ̂x : A.N | N1 ˆ N2

| Λi : γ.N | N [t] | {E}
Monadic-terms M ::= N | M1 ⊗ M2 | ? | !N | [t, M]
Patterns p ::= x | ? | p1 ⊗ p2 | !x | [i, p]
Expressions E ::= M | let {p : S} = N in E

Fig. 1. f CLL syntax

weaker than that of f CLL. This is because in full-CLL concurrent computations
started during functional computation can deadlock.

2 f CLL: Functional core of CLL

Syntax. The functional core of CLL is a first-order dependently typed linear
functional language called f CLL. It is an extension of a linear lambda calculus
with first-order dependent types from DML [22] and a monad. Its type and term
syntax is based largely on that of CLF [21]. The syntax of f CLL is summarized
in figure 1. Types in f CLL can depend on index terms (denoted by s, t) that are
divided into a number of disjoint sorts (γ). Index terms contain index variables
(i, j, k, . . .) and uninterpreted function symbols (f, g, h, . . .). We assume the ex-
istence of a sorting judgment Σ ` t ∈ γ, where Σ is a context that mentions
the sorts of all free index variables in t.

Type constructors (denoted by C) are classified into kinds. For every f CLL
program we assume the existence of an implicit signature that mentions the
kinds of all type constructors used in the program. An atomic type is formed
by applying a type constructor C to index terms t1, . . . , tn. If C has kind γ1 →
. . . → γn → Type, we say that the atomic type C t1 . . . tn is well-formed in the
index variable context Σ iff for 1 ≤ i ≤ n, Σ ` ti ∈ γi. In the following we
assume that all atomic types in f CLL programs are well-formed.

Following CLF, types in f CLL are divided into two classes - asynchronous
(A, B) and synchronous (S). Asynchronous types can be freely used as syn-
chronous types. However, synchronous types must be coerced explicitly into
asynchronous types using a monad {. . .}, which is presented in a judgmental
style [16].

Programs (P) are divided into three syntactic classes – terms (N), monadic-
terms (M) and expressions (E). This classification is reminiscent of a similar

4

Σ ::= · | Σ, i : γ
Γ ::= · | Γ, x : A

∆ ::= · | ∆, x : A
Ψ ::= · | Ψ, p : S

Σ;Γ;∆ ` N : A
Hyp1

Σ; Γ ; x : A ` x : A
Hyp2

Σ; Γ, x : A; · ` x : A

Σ; Γ, x : A; ∆ ` N : B
→I

Σ; Γ ;∆ ` λx : A.N : A → B

Σ; Γ ;∆, x : A ` N : B
(I

Σ; Γ ;∆ ` λ̂x : A.N : A(B

Σ, i : γ; Γ ;∆ ` N : A
∀I

Σ; Γ ; ∆ ` Λi : γ.N : ∀i : γ.A

Σ; Γ ; ∆ ` E ÷ S
{}I

Σ; Γ ; ∆ ` {E} : {S}

Σ;Γ;∆ ` M m S

Σ; Γ ; · ` N : A
!R

Σ; Γ ; · ` !N m!A

Σ; Γ ; ∆ ` M m S(t) Σ ` t ∈ γ
∃R

Σ; Γ ; ∆ ` [t, M] m ∃i : γ.S(i)

Σ; Γ ; ∆1 ` M1 m S1 Σ; Γ ; ∆2 ` M2 m S2
⊗R

Σ; Γ ;∆1, ∆2 ` M1 ⊗ M2 m S1 ⊗ S2

Σ;Γ;∆ ` E ÷ S

Σ; Γ ; ∆1 ` N : {S} Σ; Γ ; ∆2; p : S ` E ÷ S′

{}E

Σ; Γ ; ∆1, ∆2 ` let {p : S} = N in E ÷ S′

Σ;Γ;∆;Ψ ` E ÷ S

Σ; Γ ;∆ ` E ÷ S
÷÷

Σ; Γ ; ∆; · ` E ÷ S

Σ; Γ, x : A;∆; Ψ ` E ÷ S
!L

Σ; Γ ; ∆; !x :!A, Ψ ` E ÷ S

Σ; Γ ;∆; Ψ ` E ÷ S
1L

Σ; Γ ; ∆; ? : 1, Ψ ` E ÷ S

Σ; Γ ;∆; p1 : S1, p2 : S2, Ψ ` E ÷ S
⊗L

Σ; Γ ; ∆; p1 ⊗ p2 : S1 ⊗ S2, Ψ ` E ÷ S

Σ, i : γ; Γ ; ∆; p : S′, Ψ ` E ÷ S
∃L (i fresh)

Σ; Γ ; ∆; [i, p] : ∃i : γ.S′, Ψ ` E ÷ S

Fig. 2. f CLL type system (selected rules)

classification in CLF’s objects. Under the Curry-Howard isomorphism, terms
are proofs of asynchronous types whereas monadic-terms and expressions are
proofs of synchronous types that end with introduction rules and elimination

rules respectively. A f CLL program is called closed if it does not contain any
free term variables. Closed programs may contain free index variables.

Typing. Programs in f CLL are type-checked using four contexts – a context
of index variables Σ, a context of linear variables ∆, a context of unrestricted
variables Γ and a context of patterns Ψ . Only the last of these contexts is
ordered. There are four typing judgments in the type system. We use the notation
N : A, M m S and E ÷S for typing relations. Some interesting rules from these
judgments are shown in figure 2. Type-checking for f CLL is decidable.

Operational Semantics. We use a call-by-value reduction semantics for f CLL.
Figure 3 shows the definition of values in f CLL and some interesting reduction
rules. The substitution relation P [MV /p] substitutes the monadic-value MV for
a pattern p in the program P . It is defined by induction on the pattern p.
P [V/x] and P [t/i] are the usual capture avoiding substitutions for term and
index variables respectively. In f CLL, the monad {E} is a value because after

5

Term values V ::= λx : A.N | λ̂x : A.N | {E} | Λi : γ.N
Monadic values MV ::= V | MV1

⊗ MV2
| ? | !V | [t, MV]

Expression values EV ::= MV

P[MV/p]

P [?/?] = P P [[t, MV]/[i, p]] = (P [t/i])[MV /p]
P [!V/!x] = P [V/x] P [MV1

⊗ MV2
/p1 ⊗ p2] = (P [MV1

/p1])[MV2
/p2]

N N′

 Λ

(Λi : γ.N) [t] N [t/i]
 λ

(λx : A.N) V N [V/x]

 λ̂

(λ̂x : A.N) ˆ V N [V/x]

M 7→ M′

N N ′

 7→

N 7→ N ′

N N ′

7→!

!N 7→ !N ′

M 7→ M ′

7→ ∃

[t, M] 7→ [t, M ′]

M1 7→ M ′

1
7→ ⊗1

M1 ⊗ M2 7→ M ′

1 ⊗ M2

M2 7→ M ′

2
7→ ⊗2

M1 ⊗ M2 7→ M1 ⊗ M ′

2

Σ;E ↪→ Σ;E′

M 7→ M ′

7→↪→

Σ; M ↪→ Σ; M ′

↪→ LETRED

Σ; let {p : S} = {MV } in E ↪→ Σ; E[MV /p]

N N ′

↪→ LET1

Σ; let {p : S} = N in E ↪→ Σ; let {p : S} = N ′
in E

Σ; E ↪→ Σ; E′

↪→ LET2

Σ; let {p : S} = {E} in E1 ↪→ let Σ; {p : S} = {E′} in E1

Fig. 3. f CLL operational semantics (selected rules)

we extend the language in section 4, expressions have effects. Reduction of the
two components of a ⊗ can be interleaved arbitrarily, or it may performed in
parallel.

Expressions are reduced in a context of index variables Σ. This context plays
no role in f CLL, but when we extend f CLL to full-CLL in section 4, the con-
text Σ becomes computationally significant. We state preservation and progress
theorems for f CLL below.

Theorem 1 (Preservation for f CLL).
1. If Σ; Γ ; ∆ ` N : A and N N ′, then Σ; Γ ; ∆ ` N ′ : A.
2. If Σ; Γ ; ∆ ` M m S and M M ′, then Σ; Γ ; ∆ ` M ′ : S.
3. If Σ; Γ ; ∆ ` E ÷ S and Σ; E ↪→ Σ; E′, then Σ; Γ ; ∆ ` E′ ÷ S.

Theorem 2 (Progress for f CLL).
1. If Σ; ·; · ` N : A then either N = V or N N ′ for some N ′.
2. If Σ; ·; · ` M m S then either M = MV or M 7→ M ′ for some M ′.
3. If Σ; ·; · ` E ÷ S then either E = EV or Σ; E ↪→ Σ; E′ for some E′.

Example 1 (Fibonacci numbers). As a simple example of programming in
f CLL, we describe a function for computing Fibonacci numbers. These numbers
are defined inductively as follows.

6

fib: int → {!int} = λn : int.
if (n = 0 or n = 1) then {!1}
else

{
let {!n1} = fib (n − 1) in

let {!n2} = fib (n − 2) in

!(n1 + n2)
}

Fig. 4. The function fib in f CLL

fib(0) = fib(1) = 1 fib(n) = fib(n− 1) + fib(n− 2)
For implementing this definition as a function in f CLL, we assume that f CLL
terms have been extended with integers having type int, named recursive func-
tions and a conditional if-then-else construct. These can be added to f CLL in
a straightforward manner. Figure 4 shows the f CLL function fib that computes
the nth Fibonacci number. It has the type int → {!int}. It is possible to write
this function in a manner simpler than the one presented here, but we write it
this way to highlight specific features of f CLL.

The most interesting computation in fib, including recursive calls, occurs
inside the monad. Since the monad is evaluated lazily in f CLL, computation in
fib will actually occur only when the caller of fib eliminates the monad from
the returned value of type {!int}. Syntactically, elimination of the monadic con-
structor can occur only in expressions at the let construct. Hence the program
that calls fib must be an expression. Here is an example of such a top level
program that prints the 5th Fibonacci number: let {!x} = fib 5 in print(x).

3 lCLL: Concurrent core of CLL

The concurrent core of CLL is called lCLL. It embeds the functional language
f CLL directly. In the structure of concurrent computations lCLL is similar to
the π-calculus. However it is different in other respects. First, it allows a direct
representation of functional computation inside concurrent ones, as opposed to
the use of complex encodings for doing the same in the π-calculus [20]. Second,
the semantics of lCLL are directed by types, not terms. This, we believe, is a
new idea that has not been explored before.

Syntax. We present lCLL as a chemical abstract machine (CHAM) [7]. lCLL
programs are called configurations, denoted by C. Figure 5 shows the syntax
of lCLL configurations. Each configuration is made of four components, written
Σ; σ̂.Γ̂ ||| ∆̂. Σ is a context of index variables, as defined in section 2. σ̂ is a sorted
substitution mapping index variables to index terms. Γ̂ is a set of closed f CLL
term values along with their types. ∆̂ is a multiset of closed f CLL programs
together with their types. We require that whenever N : A ∈ ∆̂, N have the
type A[σ̂], where A[σ̂] is the result of applying the substitution σ̂ to the type A.
Similar conditions hold for monadic-terms and expressions in ∆̂ and term values
in Γ̂ . Formally, a configuration Σ; σ̂ . Γ̂ ||| ∆̂ is said to be well-formed if it satisfies
the following conditions.

7

Configurations C ::= Σ; σ̂ . Γ̂ ||| ∆̂
Global index names Σ ::= · | Σ, i : γ
Local name substitutions σ̂ ::= · | σ̂, t/i : γ

Unrestricted solutions Γ̂ ::= · | Γ̂ , V : A

Linear solutions ∆̂ ::= · | ∆̂, N : A | ∆̂, M m S | ∆̂, E ÷ S

Fig. 5. lCLL syntax

1. If (t/i : γ) ∈ σ̂, then i 6∈ dom(Σ) and Σ ` t ∈ γ.
2. If P is a program in Γ̂ or ∆̂, then fv(P) ∩ dom(σ̂) = φ.
3. If V : A ∈ Γ̂ , then Σ; ·; · ` V : A[σ̂].
4. If N : A ∈ ∆̂, then Σ; ·; · ` N : A[σ̂].
5. If M m S ∈ ∆̂, then Σ; ·; · ` M m S[σ̂].
6. If E ÷ S ∈ ∆̂, then Σ; ·; · ` E ÷ S[σ̂].

We assume that all our configurations are well-formed. Programs in ∆̂ and
values in Γ̂ are collectively called processes. Intuitively, we view programs in ∆̂
as concurrent processes that are executing simultaneously. ∆̂ is called a linear
solution because these processes are single-use in the sense that they can neither
be replicated, nor destroyed. Term values in Γ̂ are viewed as irreducible processes
(like functional abstractions) that are replicable. For this reason Γ̂ is also called
an unrestricted solution. The context Σ can be viewed as a set of global index
names, that are known to have specific sorts. The domain of the substitution σ̂
can be viewed as a set of local (private) index names that are created during
the evaluation of the configuration. The substitution σ̂ maps these local index
names to index terms that depend only on the global names (see condition (1)
for well-formedness above).

3.1 Semantics of lCLL

The semantics of lCLL are rewrite rules that allow a configuration to step to
other configuration(s). The specific rules that apply to a particular configuration
are determined by the types of processes in that configuration. In this sense, these
rules are type-directed. We classify rewrite rules into three classes – functional,
structural and synchronization.

Functional rules. Functional rules allow reduction of programs in the linear
solution ∆̂. We denote them using the arrow �. Figure 6 shows the functional
rewrite rules for lCLL configurations. There are three rules, one for reducing
programs in each of the three syntactic classes of f CLL. Reductions of differ-
ent programs in ∆̂ can be performed in parallel. This supports the idea that
programs in ∆̂ can be viewed as processes executing simultaneously.

Structural rules. Structural rules apply to those irreducible programs in ∆̂
that have synchronous types. These are exactly the monadic values MV . A struc-
tural rule decomposes a monadic value into smaller monadic values. We denote
structural rules with the arrow ⇀. All structural rules for rewriting lCLL con-
figurations are shown in figure 7. Unlike most CHAMs, our structural rules are
not reversible.

8

N N ′

�

Σ; σ̂ . Γ̂ ||| ∆̂, N : A � Σ; σ̂ . Γ̂ ||| ∆̂, N ′ : A

M 7→ M ′

� 7→

Σ; σ̂ . Γ̂ ||| ∆̂, M m S � Σ; σ̂ . Γ̂ ||| ∆̂, M ′
m S

Σ; E ↪→ Σ; E′

�↪→

Σ; σ̂ . Γ̂ ||| ∆̂, E ÷ S � Σ; σ̂ . Γ̂ ||| ∆̂, E′ ÷ S

Fig. 6. Functional rewrite rules for lCLL configurations

Σ; σ̂ . Γ̂ ||| ∆̂, (MV1
⊗ MV2

) m (S1 ⊗ S2) ⇀ Σ; σ̂ . Γ̂ ||| ∆̂, MV1
m S1, MV2

m S2 (⇀ ⊗)

Σ; σ̂ . Γ̂ ||| ∆̂, ? m 1 ⇀ Σ; σ̂ . Γ̂ ||| ∆̂ (⇀ 1)

Σ; σ̂ . Γ̂ ||| ∆̂, [t, MV] m ∃i : γ.S(i) ⇀ Σ; σ̂, t/i : γ . Γ̂ ||| ∆̂, MV m S(i) (⇀ ∃)
(i fresh)

Σ; σ̂ . Γ̂ ||| ∆̂, !V m!A ⇀ Σ; σ̂ . Γ̂ , V : A ||| ∆̂ (⇀!)

Σ; σ̂ . Γ̂ ||| ∆̂, V m A ⇀ Σ; σ̂ . Γ̂ ||| ∆̂, V : A (⇀m)

Σ; σ̂ . Γ̂ ||| ∆̂, MV ÷ S ⇀ Σ; σ̂ . Γ̂ ||| ∆̂, MV m S (⇀ ÷)

Fig. 7. Structural rewrite rules for lCLL configurations

The rule ⇀ ⊗ splits the monadic value MV1
⊗ MV2

of type S1 ⊗ S2 into two
monadic values MV1

and MV2
of types S1 and S2 respectively. Intuitively, we

can view MV1
⊗ MV2

as a parallel composition of the processes MV1
and MV2

.
The rule ⇀ ⊗ splits this parallel composition into its components, allowing each
component to rewrite separately.

In the rule ⇀ ∃, there is a side condition that i must be fresh i.e. it must not
occur anywhere except in S(i). Some α-renaming may have to be performed to
enforce this. In lCLL, the ∃ type acts as a local index name creator. The rule
⇀ ∃ creates the new index name i and records the fact that i is actually bound
to the index term t in the substitution σ̂.

The rule ⇀! moves a program of type !A to the unrestricted solution, thus
allowing multiple uses of this program. For this reason, the type !A serves as a
replication construct in lCLL. The rules ⇀m and ⇀ ÷ change the type ascription
for programs that have been coerced from one syntactic class to another.

Synchronization Rules. Synchronization rules act on values in Γ̂ and ∆̂ having
asynchronous types. These are exactly the term values V . Synchronization rules
are denoted by the arrow −→. Figure 8 shows the two synchronization rules.
The rule −→ {} eliminates the monadic constructor {} from values {E} of
asynchronous type {S}.

The second rule −→=⇒ performs synchronization of several term values at
the same time. It uses an auxiliary judgment Σ; σ̂ . Γ̂ ||| ∆̂ =⇒ N : A, which we
call the sync judgment. The rules of this judgment are also shown in figure 8.
The sync judgment links values in Γ̂ and ∆̂ to form a more complex program N .

9

Synchronization rules, Σ; σ̂ . Γ̂ ||| ∆̂ −→ Σ; σ̂ . Γ̂ ||| ∆̂′

−→ {}

Σ; σ̂ . Γ̂ ||| ∆̂, {E} : {S} −→ Σ; σ̂ . Γ̂ ||| ∆̂, E ÷ S

Σ; σ̂ . Γ̂ ||| ∆̂ =⇒ N : {S}
−→=⇒

Σ; σ̂ . Γ̂ ||| ∆̂, ∆̂′ −→ Σ; σ̂ . Γ̂ ||| N : {S}, ∆̂′

Sync judgment, Σ; σ̂ . Γ̂ ||| ∆̂ =⇒ N : A

=⇒ HY P1

Σ; σ̂ . Γ̂ ||| V : A =⇒ V : A
=⇒ HY P2

Σ; σ̂ . Γ̂ , V : A ||| · =⇒ V : A

Σ ∪ dom(σ̂) ` t ∈ γ Σ; σ̂ . Γ̂ ||| ∆̂ =⇒ N : ∀i : γ.A(i)
=⇒ ∀

Σ; σ̂ . Γ̂ ||| ∆̂ =⇒ N [t[σ̂]] : A(t)

Σ; σ̂ . Γ̂ ||| ∆̂1 =⇒ N1 : A Σ; σ̂ . Γ̂ ||| ∆̂2 =⇒ N2 : A(B
=⇒(

Σ; σ̂ . Γ̂ ||| ∆̂1, ∆̂2 =⇒ N2 ˆ N1 : B

Σ; σ̂ . Γ̂ ||| · =⇒ N1 : A Σ; σ̂ . Γ̂ ||| ∆̂ =⇒ N2 : A → B
=⇒→

Σ; σ̂ . Γ̂ ||| ∆̂ =⇒ N2 N1 : B

Fig. 8. Synchronization rewrite rules for lCLL configurations

We call this process synchronization. Synchronization uses values in ∆̂ exactly
once, while those in Γ̂ may be used zero or more times.

In the rule −→=⇒ shown in figure 8, ∆̂ denotes a subset of the linear solution
that participates in the synchronization. The remaining solution ∆̂′ is kept as
is. Some backward reasoning is performed in the judgment =⇒ to produce the
linked program N of type {S}. This is the essential point here – the result of a
synchronization must be of type {S}.

The semantic rewriting relation for lCLL is defined as ⇒=� ∪ ⇀ ∪ −→.
It satisfies the following type preservation theorem.

Theorem 3 (Preservation for lCLL). If C is a well-formed configuration and
C ⇒ C′, then C′ is also well-formed.

Concurrent computation as proof search. Given a lCLL configuration C =
Σ; σ̂ . Γ̂ ||| ∆̂, types in ∆̂[σ̂] and Γ̂ [σ̂] can be viewed as propositions that are
simultaneously true, in a linear and unrestricted sense respectively. Using the
Curry-Howard isomorphism, the corresponding programs in ∆̂[σ̂] and Γ̂ [σ̂] can
be seen as specific proofs of these propositions. The sync judgment (figure 8) is
actually a linear entailment judgment – if Σ; σ̂ . Γ̂ ||| ∆̂ =⇒ N : A, then from
the unrestricted assumptions in Γ̂ [σ̂] and linear assumptions in ∆̂[σ̂], A[σ̂] can
be proved in linear logic. The term N synthesized by this judgment is a proof of
the proposition A[σ̂]. As a result, each use of the synchronization rule −→=⇒
can be viewed as a step of proof search in linear logic that uses several known
facts to conclude a new fact, together with its proof term. By the Curry-Howard
isomorphism, the proof term is a well-typed program that can be functionally
reduced again.

10

More specifically, each use of −→=⇒ corresponds to a single focusing step
for eliminating asynchronous constructors from a proposition that has {S} in
the head position. For a detailed description of this see [10].

Example 2 (Client-Server Communication). We illustrate concurrent pro-
gramming in lCLL with an example of a client-server interaction. The server
described here listens to client requests to compute Fibonacci numbers. Each
request contains an integer n. Given a request, the server computes the nth
Fibonacci number and returns this value to the client.

We model communication through asynchronous message passing. Assume
that all clients and the server have unique identities, which are index names
from a special sort called procid. The identity of the server is serv. A mes-
sage from one process to another contains three parts – the identity of the
sender, the identity of the recipient and an integer, which is the content of the
message. Messages are modeled using a type constructor mess and a term con-
structor message having the kind and type shown in figure 9. For every pair
of index terms i and j of sort procid and every integer n, we view the value
(message [i] [j] n) of type (mess i j) as a message having content n from the
process with identity i to the process with identity j. In order to extract the
integer content of a message, we use the destructor fetchmessage that has the
reduction rule fetchmessage [i] [j] ˆ (message [i] [j] n) {!n}.

The server program called fibserver is shown in figure 9. It waits for a
message m from any client i. Then it extracts the content n from the message,
computes the nth Fibonacci number using the function fib defined in example 1
and returns this computed value to the client i as a message. fibserver has the
type fibservtype = ∀i : procid. mess i serv({mess serv i}.

A sequence of rewrite steps in lCLL using fibserver is shown in figure 9.
The initial configuration contains fibserver and a message to fibserver con-
taining the integer 6 from a client having identity k. For brevity, we omit the
client process. The crucial rewrite in this sequence is the first one, where the
synchronization rule −→=⇒ is used to link the fibserver program with the
message for it. Rewriting ends with a message containing the value of the 6th
Fibonacci number (namely 13) from fibserver to the requesting client k.

3.2 An encoding of the π-calculus in lCLL

We describe a translation of a variant of the asynchronous π-calculus [8] to lCLL.
The syntax and semantics of this variant are shown in figure 10. It extends
the asynchronous π-calculus with a nil process 0. The replication operator ! is
restricted to actions only.

Two translations p·q and pp·qq are shown in figure 11. They map π-calculus
entities to programs and types of fCLL respectively. We model channels as
index terms of a specific sort chan. In order to translate x̄y, which is an output
message, we introduce a type constructor out and a related term constructor
output, whose kind and type are shown in figure 11. The translations of x̄y to
terms and types are output [x] [y] and out x y respectively.

11

Additional Signature

procid: sort
serv : procid
mess: procid → procid → Type

message: ∀i : procid. ∀j : procid. int → mess i j
fetchmessage: ∀i : procid. ∀j : procid. mess i j ({!int}
fetchmessage [i] [j] ˆ (message [i] [j] n) {!n}

Fibonacci Server

fibservtype = ∀i : procid. mess i serv({mess serv i}

fibserver: fibservtype = Λi : procid. λ̂m : mess i serv.
{

let {!n} = fetchmessage [i] [serv] ˆ m in

let {!v} = fib (n) in

(message [serv] [i] v)
}

Sample Execution (Σ = serv : procid, k : procid)

Σ; · . · ||| fibserver : fibservtype, (message [k] [serv] 6) : mess k serv
−→ Σ; · . · ||| fibserver [k] ˆ (message [k] [serv] 6) : {mess serv k}

�
∗ Σ; · . · |||

{ let {!n} = fetchmessage [k] [serv] ˆ (message [k] [serv] 6) in
let {!v} = fib (n) in (message [serv] [k] v)

} : {mess serv k}

−→ Σ; · . · |||

(let {!n} = fetchmessage [k] [serv] ˆ (message [k] [serv] 6) in

let {!v} = fib (n) in (message [serv] [k] v)
) ÷ mess serv k

�
∗ Σ; · . · ||| (let {!v} = fib (6) in (message [serv] [k] v)) ÷ mess serv k

�
∗ Σ; · . · ||| (message [serv] [k] 13) ÷ mess serv k

⇀2 Σ; · . · ||| (message [serv] [k] 13) : mess serv k

Fig. 9. Server for computing Fibonacci numbers in lCLL

Syntax

Actions A ::= x̄y | x(y).P
Processes P, Q ::= A | !A | P |P | νx.P | 0
Molecules m ::= P | νx.S
Solutions S ::= φ | S] {m}

Equations on terms and solutions

νx.P = νy.P [y/x] (y 6∈ P) νx.S = νy.S[y/x] (y 6∈ S)

CHAM semantics

P1|P2
 P1, P2

0

!A
 !A, A

x(y).P , x̄z → P [z/y]
νx.P
 νx.{P}

(νx.P)|Q
 νx.(P |Q) (x 6∈ Q)

Reduction semantics

P ≡ P ′ ⇔ P
∗ P ′ P → P ′ ⇔ P
∗→
∗ P ′

Fig. 10. A variant of the asynchronous π-calculus

To translate x(y).P , we introduce a term destructor destroyout correspond-
ing to the constructor output. Its type and reduction rule are shown in figure 11.
The translation px(y).Pq waits for two inputs – the channel name y and a mes-

12

Additional Signature

chan: sort
out: chan → chan → Type

output: ∀x : chan. ∀y : chan. out x y
destroyout: ∀x : chan. ∀y : chan. out x y({1}
destroyout [x] [y] ˆ (output [x] [y]) {?}
cchan : chan

A/P f CLL Type, ppA/Pqq f CLL Program, pA/Pq

x̄y out x y output [x] [y]

x(y).P ∀y : chan. out x y({ppPqq} Λy : chan. λ̂m : out x y.
{

let {?} = destroyout [x] [y] ˆ m
in pPq

}
0 1 ?
!A ! ppAqq ! pAq

P1|P2 ppP1qq ⊗ ppP2qq pP1q ⊗ pP2q

νx.P ∃x : chan.ppPqq [cchan , (pPq[cchan/x])]

Fig. 11. Translation of the π-calculus

sage m that corresponds to the translation of x̄y. It then discards the message
m and starts the process P .

Translations of !A, P1|P2 and 0 are straightforward. We translate νx.P to the
type ∃x : chan.ppPqq. To translate νx.P to a program, we assume that there is an
index constant cchan of sort chan. Then we translate νx.P to [cchan, (pPq[cchan/x])],
which has the type ∃x : chan.ppPqq.

For any π-calculus process P , fn(P) : chan; ·; · ` pPq m ppPqq. The
translation of a π-calculus process P to lCLL is defined as the configuration
〈P 〉 = fn(P) : chan; · . · ||| pPq m ppPqq. Although we have not formally proved
it, we believe that the following correctness result holds for this translation:
P →∗ P ′ iff there is a lCLL configuration C such that 〈P 〉⇒∗ C and 〈P ′〉 ⇀∗ C.

4 Full-CLL: The complete language

Full-CLL is an extension of f CLL that allows lCLL’s concurrent computations
inside functional ones. This is done by extending f CLL expressions by a single
construct – link E ÷ S to G. G ∈ {A, !A,1} is called a goal type. Additional
syntax and semantics for this construct are shown in figure 12. Other than
the link construct, full-CLL inherits all of f CLL’s syntax, typing rules and
semantics.

link E ÷ S to G is evaluated in a context of index variables Σ as follows.
First, the lCLL configuration C = Σ; · . · ||| E ÷ S is created and allowed to
rewrite according to the relation ⇒ till it reaches a quiescent configuration C′.
By quiescent we mean that no rewrite rule applies to C′ i.e. C′ is in ⇒-normal
form. After C′ is obtained, the result of evaluating link E ÷S to G depends on
the goal type G.

13

Syntax

Expressions E ::= . . . | link E ÷ S to G
Goal Types G ::= A | !A | 1

Typing rules

Σ; Γ ; ∆ ` E ÷ S
LINK

Σ; Γ ; ∆ ` (link E ÷ S to G) ÷ G
Operational Semantics

Σ; · . · ||| E ÷ S ⇒∗ Σ; σ̂ . Γ̂ ||| V : A
↪→ 1

Σ; link E ÷ S to A ↪→ Σ; V

Σ; · . · ||| E ÷ S ⇒∗ Σ; σ̂ . Γ̂ , V : A ||| ·
↪→ 2

Σ; link E ÷ S to A ↪→ Σ; V

Σ; · . · ||| E ÷ S ⇒∗ Σ; σ̂ . Γ̂ , V : A ||| ·
↪→ 3

Σ; link E ÷ S to !A ↪→ Σ; !V

Σ; · . · ||| E ÷ S ⇒∗ Σ; σ̂ . Γ̂ ||| ·
↪→ 4

Σ; link E ÷ S to 1 ↪→ Σ; ?

Fig. 12. Full-CLL syntax and semantics

1. If G = A and C′ = Σ; σ̂ . Γ̂ ||| V : A or C′ = Σ; σ̂ . Γ̂ , V : A ||| ·, then
link E ÷ S to G evaluates to V .

2. If G =!A and C′ = Σ; σ̂ . Γ̂ , V : A ||| ·, then link E ÷S to G evaluates to !V .
3. If G = 1 and C′ = Σ; σ̂ . Γ̂ ||| ·, then link E ÷ S to G evaluates to ?.

All these conditions are summarized in figure 12. If none of these conditions
hold, evaluation of the link construct fails and computation deadlocks. We call
this condition link failure. Since expressions are coerced into terms through a
monad, link failure never occurs during evaluation of terms and monadic-terms.
As a result, full-CLL has the following progress theorem.

Theorem 4 (Progress for full-CLL).
1. If Σ; ·; · ` N : A then either N = V or N N ′ for some N ′.
2. If Σ; ·; · ` M m S then either M = MV or M 7→ M ′ for some M ′.
3. If Σ; ·; · ` E ÷ S then either E = EV or Σ; E ↪→ Σ; E′ for some E′ or

reduction of Σ; E deadlocks due to link failure.

Link failure is easy to detect at runtime and can be handled, for example, by
throwing an exception. For all practical problems that we encountered, we found
it possible to write programs in which link failure never occurs. f CLL’s preser-
vation theorem (theorem 1) holds for full-CLL also.

Example 3 (Fibonacci numbers in full-CLL). Figure 13 shows a concurrent
implementation of Fibonacci numbers in full-CLL. The function fibc uses the
additional signature from example 2 and assumes that the sort procid contains
at least three constants k1, k2 and k. fibc has the type int → {!int}. Given
an input integer n ≥ 2, fibc computes the nth Fibonacci number using a link

construct that starts concurrent computation with a tensor of three processes
having identities k1, k2 and k respectively. The first two processes recursively
compute fib(n − 1) and fib(n − 2) and send these values as messages to the
third process. The third process waits for these messages (m1 and m2), extracts
their integer contents and adds them together to obtain fib(n). This becomes
the result of evaluation of the link construct.

During the evaluation of fibc, each of the two recursive calls can encounter a
link construct and create a nested lCLL concurrent computation. Since the two

14

fibc = λn : int.
if (n = 0 or n = 1) then {!1}
else

{ link

(
{let {!n1} = fibc (n − 1) in (message [k1] [k] n1)}

⊗ {let {!n2} = fibc (n − 2) in (message [k2] [k] n2)}

⊗ λ̂m1 : mess k1 k. λ̂m2 : mess k2 k.
{

let {!x} = fetchmessage [k1] [k] ˆ m1 in

let {!y} = fetchmessage [k2] [k] ˆ m2 in

!(x + y)
}

) ÷ {mess k1 k} ⊗ {mess k2 k} ⊗ (mess k1 k(mess k2 k({!int})
to !int

}
Fig. 13. The function fibc in full-CLL

recursive calls can be executed simultaneously, there may actually be more than
one nested lCLL configuration at the same time. However, these configurations
are distinct – processes in one configuration cannot synchronize with those in
another. In general, full-CLL programs can spawn several nested concurrent
computations that are completely disjoint from each other.

5 Conclusion

We have presented a language that combines functional and concurrent compu-
tation in a logically motivated manner. It requires linearity, a restricted form of
dependent types, a monad, and focusing, in order to retain the desirable prop-
erties of each paradigm in their combination.

Perhaps the biggest limitation of our work is that the logic underlying the
type system is not strong enough to express many useful properties of concurrent
programs like deadlock freedom. This is clearly visible in the fact that full-CLL
does not have a progress theorem as strong as that of its functional core f CLL.
Our types represent only basic structural properties of concurrent processes. At
the same time, due to the presence of dependent and linear types, the type
system can be used to express very strong functional guarantees about various
components of a concurrent program. Finding a logic that can express useful
properties of both functional and concurrent computation and converting it to
a programming language using the Curry-Howard isomorphism is a challenge
at present. Another challenge is to build a realistic implementation of CLL,
including a more complete functional language and type reconstruction to see if
our ideas scale in practice. Since concurrency in CLL is somewhat low-level, it
will be important to build up libraries of common idioms in order to write large
programs conveniently.

15

References

1. CLL implementation. Available electronically from http://www.cs.cmu.edu/˜dg.
2. M. Abadi and C. Fournet. Mobile values, new names, and secure communication.

In Proc. of POPL’01, pages 104–115, 2001.
3. S. Abramsky. Computational interpretations of linear logic. Theoretical Computer

Science, 111(1–2):3–57, 1993.
4. S. Abramsky, S. Gay, and R. Nagarajan. Specification structures and propositions-

as-types for concurrency. In Logics for Concurrency: Structure vs. Automata—

Proc. of the VIIIth Banff Higher Order Workshop, volume 1043 of Lecture Notes

in Computer Science. Springer-Verlag, 1996.
5. J.-M. Andreoli. Logic programming with focusing proofs in linear logic. Journal

of Logic and Computation, 2(3):297–347, 1992.
6. J.-M. Andreoli and R. Pareschi. Communication as fair distribution of knowledge.

Technical Report ECRC-91-12, European Computer-Industry Research Centre,
1991.

7. G. Berry and G. Boudol. The chemical abstract machine. Theoretical Computer

Science, 96:217–248, 1992.
8. G. Boudol. Asynchrony and the pi-calculus. Technical Report RR-1702, INRIA

SofiaAntipolis, 1992.
9. S. Conchon and F. L. Fessant. Jocaml: Mobile agents for objective-caml. In Proc.

of ASAMA’99. IEEE Computer Society, 1999.
10. D. Garg. CLL: A concurrent language built from logical principles. Technical Re-

port CMU-CS-05-104, Computer Science Department, Carnegie Mellon University,
January 2005.

11. A. Giacalone, P. Mishra, and S. Prasad. Facile: A symmetric integration of concur-
rent and functional programming. International Journal of Parallel Programming,
18(2):121–160, 1989.

12. J.-Y. Girard. Linear logic. In Theoretical Computer Science, volume 5, 1987.
13. S. P. Jones, A. Gordon, and S. Finne. Concurrent Haskell. In Proc. of POPL’96,

1996.
14. P. López, F. Pfenning, J. Polakow, and K. Watkins. Monadic concurrent linear

logic programming. In Proc. of PPDP’05, 2005. To appear.
15. M. Nygaard and G. Winskel. Domain theory for concurrency. Theor. Comput. Sc.,

316(1-3), 2004.
16. F. Pfenning and R. Davies. A judgmental reconstruction of modal logic. Math.

Struc. in Comp. Sci., 11(4):511–540, 2001.
17. B. C. Pierce and D. N. Turner. Pict: a programming language based on the pi-

calculus. In Proof, language, and interaction: essays in honour of Robin Milner,
pages 455–494. MIT Press, 2000.

18. J. H. Reppy. CML: A higher-order concurrent language. In Proc. of PLDI’91,
1991.

19. J. H. Reppy. Concurrent programming in ML. Cambridge University Press, 1999.
20. D. Sangiorgi and D. Walker. The π-calculus: A Theory of Mobile Processes. Cam-

bridge University Press, 2001. Chapters 15–17.
21. K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. A concurrent logical frame-

work I: Judgements and properties. Technical Report CMU-CS-02-101, Computer
Science Department, Carnegie Mellon University, May 2003.

22. H. Xi and F. Pfenning. Dependent types in practical programming. In Proc. of

POPL’99, 1999.

